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Abstract. We develop a general theory which, under certain as-
sumptions, enables the computation of the Picard group of a symmet-
ric monoidal triangulated category equipped with a weight structure
in terms of the Picard group of the associated heart. As an appli-
cation, we compute the Picard group of several categories of motivic
nature – mixed Artin motives, mixed Artin-Tate motives, bootstrap
motivic spectra, noncommutative mixed Artin motives, noncommu-
tative mixed motives of central simple algebras – as well as the Picard
group of certain derived categories of symmetric ring spectra.
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1. Introduction and statement of results

The computation of the Picard group Pic(T ) of a symmetric monoidal (trian-
gulated) category T is, in general, a very difficult task. The goal of this article
is to explain how the theory of weight structures allows us to greatly simplify
this task.
Let (T ,⊗,1) be a symmetric monoidal triangulated category equipped with
a weight structure w = (T w≥0, T w≤0); consult §3 for details. Assume that
the symmetric monoidal structure − ⊗ − (as well as the ⊗-unit 1) restricts
to the heart H := T w≥0 ∩ T w≤0 of the weight structure. We say that the
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category T has the w-Picard property if the group homomorphism Pic(H)×Z →
Pic(T ), (a, n) 7→ a[n], is invertible. Our first main result provides sufficient
conditions for this property to hold:

Theorem 1.1. Assume that the weight structure w on T is bounded, i.e.

T = ∪n∈ZT w≥0[−n] = ∪n∈ZT w≤0[−n], and that there exists a full, additive,
conservative, symmetric monoidal functor from H into a symmetric monoidal
semi-simple abelian category A which is moreover local in the sense that if
a ⊗ b = 0 then a = 0 or b = 0. Under these assumptions, the category T has
the w-Picard property.

As explained in [7, §4.3], every bounded weight structure is uniquely deter-
mined by its heart. Concretely, given any additive subcategory H′ ⊂ T which
generates T and for which we have HomH′(a, b[n]) = 0 for every n > 0 and
a, b ∈ H′, there exists a unique bounded weight structure on T with heart the
Karoubi-closure of H′ in T . Roughly speaking, the construction of a bounded
weight structure on a triangulated category amounts simply to the choice of an
additive subcategory with trivial positive Ext-groups.
Our second main result formalizes the conceptual idea that the w-Picard prop-
erty satisfies a “global-to-local” descent principle:

Theorem 1.2. Assume the following:

(A1) The heart H of the bounded weight structure w is essentially small
and R-linear for some commutative indecomposable Noetherian ring
R. Moreover, HomH(a, b) is a finitely generated flat R-module for any
two objects a, b ∈ H;

(A2) For every residue field κ(p), with p ∈ Spec(R), there exists a symmet-
ric monoidal triangulated category (Tκ(p),⊗,1) equipped with a weight
structure wκ(p) and with a weight-exact symmetric monoidal functor
ικ(p) : T → Tκ(p). Moreover, the functor ικ(p) induces an equivalence
of categories between the Karoubization of H⊗R κ(p) and Hκ(p).

Under assumptions (A1)-(A2), if the categories Tκ(p) have the wκ(p)-Picard
property, then the category T has the w-Picard property.

Remark 1.3. (i) At assumption (A1) we can consider more generally the
case where R is possibly decomposable; consult Remark 5.3(i).

(ii) As it will become clear from the proof of Theorem 1.2, at assumption
(A2) it suffices to consider the residue fields κ(m) associated to the
maximal and minimal prime ideals of R; consult Remark 5.3(ii).

Due to their generality and simplicity, we believe that Theorems 1.1-1.2 will
soon be part of the toolkit of every mathematician interested in Picard groups
of triangulated categories. In the next section, we illustrate the usefulness of
these results by computing the Picard group of several important categories of
motivic nature; consult also §2.6 for a topological application.
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2. Applications

Let k be a base field, which we assume perfect, and R a commutative ring of co-
efficients, which we assume indecomposable and Noetherian. Voevodsky’s cate-
gory of geometric mixed motives DMgm(k;R) (see [14, 24]), Morel-Voevodsky’s
stable A1-homotopy category SH(k) (see [26, 28, 40]), and Kontsevich’s cate-
gory of noncommutative mixed motives KMM(k;R) (see [19, 20, 21, 34]), play
nowadays a central role in the motivic realm. A major challenge, which seems
completely out of reach at the present time, is the computation of the Picard
group of these symmetric monoidal triangulated categories2. In what follows,
making use of Theorems 1.1-1.2, we achieve this goal in the case of certain im-
portant subcategories.

2.1. Mixed Artin motives. The category ofmixed Artin motives DMA(k;R)
is defined as the thick triangulated subcategory of DMgm(k;R) generated by
the motives M(X)R of zero-dimensional smooth k-schemes X . The smallest
additive, Karoubian, full subcategory of DMA(k;R) containing the objects
M(X)R identifies with the (classical) category of Artin motives AM(k;R).

Theorem 2.1. When the degrees of the finite separable field extensions of k
are invertible in R, we have Pic(DMA(k;R)) ≃ Pic(AM(k;R))× Z.

Example 2.2. Theorem 2.1 holds, in particular, in the following cases:

(i) The field k is arbitrary and R is a Q-algebra;
(ii) The field k is formally real (e.g. k = R) and 1/2 ∈ R;
(iii) Let p be a (fixed) prime number, l a perfect field, and H a Sylow

pro-p-subgroup of Gal(l/l). Theorem 2.1 also holds with k := l
H

and
1/p ∈ R.

Whenever R is a field, the R-linearized Galois-Grothendieck correspondence
induces a symmetric monoidal equivalence of categories between AM(k;R)
and the category RepR(Γ) of continuous finite dimensional R-linear represen-
tations of the absolute Galois group Γ := Gal(k/k). Since the ⊗-invertible
objects of RepR(Γ) are the 1-dimensional Γ-representations, Pic(AM(k;R)) ≃
Pic(RepR(Γ)) identifies with the group of continuous characters from Γab to
R×. In the particular case where k = Q, the profinite group Γab agrees with

Ẑ×. Consequently, all the elements of RepR(Γ) can be represented by Dirichlet
characters. Moreover, in the cases where char(k) 6= 2 and R = Q, we have the
following computation

k×/(k×)2
≃−→ Pic(RepQ(Γ)) λ 7→ (Γ ։ Gal(k(

√
λ)/k)

σ 7→−1−→ Q×) ,

where σ stands for the generator of the Galois group Gal(k(
√
λ)/k) ≃ Z/2Z;

see Peter [30, pages 340-341]. A similar computation holds in characteristic 2
with k×/(k×)2 replaced by k/{λ+ λ2 |λ ∈ k}.

2Consult Bachmann [4], resp. Hu [17], for the construction of ⊗-invertible objects in the
motivic category DMgm(k;Z/2Z), resp. SH(k), associated to quadrics.
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Now, let A(k;R) be an additive, Karoubian, symmetric monoidal, full sub-
category of AM(k;R), and DA(k;R) the thick triangulated subcategory of
DMA(k;R) generated by the motives associated to the objects of A(k;R). Un-
der these notations, Theorem 2.1 admits the following generalization:

Theorem 2.3. Assume that there exists a set of finite separable field extensions
li/k, i ∈ I, such that the following two conditions hold:

(B1) Every object of the category A(k;R) is isomorphic to a summand of
a finite direct sum of the motives associated to the field extensions
li/k, i ∈ I;

(B2) For each i ∈ I, the degree of the finite field extension li/k is invertible
in R.

Under assumptions (B1)-(B2), we have Pic(DA(k;R)) ≃ Pic(A(k;R))× Z.

Example 2.4 (Mixed Dirichlet motives). Let R be a field. Following Wildeshaus
[41, Def. 3.4], a Dirichlet motive is an Artin motive for which the corresponding
Γ-representation factors through an abelian (finite) quotient. Take A(k;R) to
be the category of Dirichlet motives. In this case, the associated symmetric
monoidal triangulated category DA(k;R) is called the category ofmixed Dirich-
let motives. Since the ⊗-invertible objects of RepR(Γ) are the 1-dimensional
representations, and all these representations factor through an abelian (finite)
quotient, the inclusion of categoriesA(k;R) ⊂ AM(k;R) yields an isomorphism
Pic(A(k;R)) ≃ Pic(AM(k;R)). Consequently, in the case where R is of char-
acteristic zero, Theorem 2.3 implies that Pic(DA(k;R)) ≃ Pic(AM(k;R))×Z.
Intuitively speaking, the difference between (mixed) Dirichlet motives and
(mixed) Artin motives is not detected by the Picard group.

2.2. Mixed Artin-Tate motives. The category DMAT(k;R) of mixed
Artin-Tate motives is defined as the thick symmetric monoidal triangulated sub-
category of DMgm(k;R) generated by the motives M(X)R of zero-dimensional
smooth k-schemes X and by the Tate motives R(m),m ∈ Z.

Theorem 2.5. When the degrees of the finite separable field extensions of k
are invertible in R, we have DMAT(k;R) ≃ Pic(AM(k;R))× Z× Z.

Now, let A(k;R) be an additive, Karoubian, symmetric monoidal, full subcat-
egory of AM(k;R), and DAT(k;R) the thick symmetric monoidal triangulated
subcategory of DMAT(k;R) generated by the motives associated to the ob-
jects of A(k;R) and by the Tate motives R(m),m ∈ Z. Theorem 2.5 admits
the following generalization:

Theorem 2.6. Assume that there exists a set of field extensions li/k, i ∈ I,
as in Theorem 2.3. Under these assumptions, we have Pic(DAT(k;R)) ≃
Pic(A(k;R))× Z× Z.

Example 2.7 (Mixed Tate motives). Take A(k;R) to be the smallest additive,
Karoubian, full subcategory of AM(k;R) containing the ⊗-unit. In this case,
the associated symmetric monoidal triangulated category DAT(k;R) is called
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the category of mixed Tate motives. Since A(k;R) identifies with the category
of finitely generated projective R-modules3, we conclude from Theorem 2.6 that
the Picard group of DAT(k;R) is isomorphic to Pic(R)×Z×Z. Note that we
are not imposing the invertibility of any integer in R.

Example 2.8 (Mixed Dirichlet-Tate motives). Take A(k;R) to be the cate-
gory of Dirichlet motives. In this case, the associated symmetric monoidal
triangulated category DAT(k;R) is called the category of mixed Dirichlet-
Tate motives. Recall from Example 2.4 that the Picard group of A(k;R)
is isomorphic to the Picard group of AM(k;R). Consequently, in the case
where R is of characteristic zero, Theorem 2.6 implies that Pic(DAT(k;R)) ≃
Pic(AM(k;R))× Z× Z.

2.3. Motivic spectra. The bootstrap category Boot(k) is defined as the thick
triangulated subcategory of SH(k) generated by the⊗-unit Σ∞(Spec(k)+). The
former category contains a lot of information. For example, as proved by Levine
in [22, Thm. 1], whenever k is algebraically closed and of characteristic zero,
the category Boot(k) identifies with the homotopy category of finite spectra
SHc. In particular, we have non-trivial negative Ext-groups

HomBoot(k)(Σ
∞(Spec(k)+),Σ

∞(Spec(k)+)[−n]) ≃ πn(S) n > 0 ,(2.9)

where S stands for the sphere spectrum. Moreover, as proved by Morel in [25,
Thm. 6.2.2], whenever k is of characteristic 6= 2, we have a ring isomorphism

(2.10) EndBoot(k)(Σ
∞(Spec(k)+)) ≃ GW (k) ,

where GW (k) stands for the Grothendieck-Witt ring of k.

Theorem 2.11. Assume that char(k) 6= 2 and that GW (k) is Noetherian.
Under these assumptions, we have Pic(Boot(k)) ≃ Pic(GW (k)) × Z.

Remark 2.12. The ring GW (k) is Noetherian if and only if k×/(k×)2 is finite.

Example 2.13. Theorem 2.11 holds, in particular, in the following cases:

(i) The field k is quadratically closed (e.g. k is algebraically closed or the
field of constructible numbers). In this case, we have GW (k) ≃ Z;

(ii) The field k is the field of real numbers R. In this case, we have
GW (R) ≃ Z[C2], where C2 stands for the cyclic group of order 2;

(iii) The field k is the finite field Fq with q odd. In this case, k×/(k×)2 = C2.

Intuitively speaking, Theorem 2.11 shows that none of the motivic spectra
which are built using the non-trivial Ext-groups (2.9) is ⊗-invertible!

3Recall that the Picard group Pic(R) of a Dedekind domain R is its ideal class group
C(R).
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2.4. Noncommutative mixed Artin motives. The category of noncommu-
tative mixed Artin motives NMAM(k;R) is defined as the thick triangulated
subcategory of KMM(k;R) generated by the noncommutative motives U(l)R
of finite separable field extensions l/k. The smallest additive, Karoubian,
full subcategory of NMAM(k;R) containing the objects U(l)R identifies with
AM(k;R).
The category of noncommutative mixed Artin motives is in general much richer
than the category of mixed Artin motives. For example, whenever R is a
Q-algebra, DMA(k;R) identifies with the category GrZAM(k;R) of Z-graded
objects in AM(k;R); see [39, page 217]. This implies that DMA(k;R) has
trivial higher Ext-groups. On the other hand, given any two finite separable
field extensions l1/k and l2/k, we have non-trivial negative Ext-groups (see [33,
§4])

HomNMAM(k;R)(U(l1)R, U(l2)R[−n]) ≃ Kn(l1 ⊗k l2)R n > 0 ,(2.14)

where Kn(l1 ⊗k l2) stands for the nth algebraic K-theory group of l1 ⊗k l2.
Roughly speaking, NMAM(k;R) contains not only AM(k;R) but also all the
higher algebraicK-theory groups of finite separable field extensions. For exam-
ple, given a number field F, we have the following computation (due to Borel
[12, §12])

HomNMAM(Q;Q)(U(Q)Q, U(F)Q[−n]) ≃





Qr2 n ≡ 3 (mod 4)
Qr1+r2 n ≡ 1 (mod 4)
0 otherwise

n ≥ 2 ,

where r1 (resp. r2) stands for the number of real (resp. complex) embeddings
of F.

Theorem 2.15. When the degrees of the finite separable field extensions of k
are invertible in R, we have Pic(NMAM(k;R)) ≃ Pic(AM(k;R))× Z.

Example 2.16. Theorem 2.15 holds in the cases (i)-(iii) of Example 2.2.

Theorem 2.15 shows that although the category NMAM(k;R) is much richer
than DMA(k;R), this richness is not detected by the Picard group.
Now, let A(k;R) be an additive, Karoubian, symmetric monoidal, full sub-
category of AM(k;R), and NMA(k;R) the thick triangulated subcategory of
NMAM(k;R) generated by the noncommutative motives associated to the ob-
jects of A(k;R). Theorem 2.15 admits the following generalization:

Theorem 2.17. Assume that there exists a set of field extensions li/k,∈ I,
as in Theorem 2.3. Under these assumptions, we have Pic(NMA(k;R)) ≃
Pic(A(k;R))× Z.

Example 2.18 (Noncommutative mixed Dirichlet motives). Take A(k;R) to
be the category of Dirichlet motives. In this case, the associated symmetric
monoidal triangulated category NMA(k;R) is called the category of noncom-
mutative mixed Dirichlet motives. Recall from Example 2.4 that the Picard
group of A(k;R) is isomorphic to Pic(AM(k;R)). Consequently, in the case
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where R is of characteristic zero, Theorem 2.15 implies that Pic(NMA(k;R)) ≃
Pic(AM(k;R))× Z. Roughly speaking, the difference between mixed Dirichlet
motives and noncommutative mixed Dirichlet motives is not detected by the Pi-
card group.

Example 2.19 (Bootstrap category). Take A(k;R) to be the smallest addi-
tive, Karoubian, full subcategory of AM(k;R) containing the ⊗-unit. In this
case, the associated symmetric monoidal triangulated category NMA(k;R) is
called the bootstrap category. Since A(k;R) identifies with the category of
finitely generated projective R-modules, we conclude from Theorem 2.17 that
Pic(NMA(k;R)) ≃ Pic(R)×Z. Similarly to Example 2.7, we are not imposing
the invertibility of any integer in R.

2.5. Noncommutative mixed motives of central simple algebras.
Let us denote by NMCSA(k;R) the thick triangulated subcategory of
KMM(k;R) generated by the noncommutative motives U(A)R of central sim-
ple k-algebras A. In the same vein, let CSA(k;R) be the smallest additive,
Karoubian, full subcategory of NMCSA(k;R) containing the objects U(A)R.
As proved in [35, Thm. 9.1], given any two central simple k-algebras A and B,
we have the following equivalence

(2.20) U(A)Z ≃ U(B)Z ⇔ [A] = [B] ∈ Br(k) ,

where Br(k) stands for the Brauer group of k. Intuitively speaking, (2.20)
shows that the noncommutative motive U(A)Z and the Brauer class [A] contain
exactly the same information. We have moreover non-trivial negative Ext-
groups:

HomNMCSA(k;Z)(U(A)Z, U(B)Z[−n]) ≃ πn(K(Aop ⊗k B) ∧HZ) n > 0 ,(2.21)

where HZ stands for the Eilenberg-MacLane spectrum of Z. Roughly speak-
ing, the category NMCSA(k;Z) contains information not only about the Brauer
group but also about all the higher algebraic K-theory of central simple alge-
bras.

Theorem 2.22. The following holds:

(i) We have an isomorphism Pic(NMCSA(k;R)) ≃ Pic(CSA(k;R))× Z;
(ii) We have an isomorphism Pic(CSA(k;Z)) ≃ Br(k).

Remark 2.23. Let R be a field. As explained in Remark 10.6, the Picard group
of the category Pic(CSA(k;R)) is trivial when char(R) = 0 and isomorphic to
Br(k){p} when char(R) = p > 0.

Intuitively speaking, Theorem 2.22 shows that none of the noncommutative
mixed motives which are built using the non-trivial negative Ext-groups (2.21)
is ⊗-invertible!

2.6. A topological application. Let E be a commutative symmetric ring
spectrum and Dc(E) the associated derived category of compact E-modules;
see [15, 31].
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Theorem 2.24. Assume that the ring spectrum E is connective, i.e. πn(E) = 0
for every n < 0, and that π0(E) is an indecomposable Noetherian ring. Under
these assumptions, we have Pic(Dc(E)) ≃ Pic(π0(E)) × Z.

Example 2.25 (Finite spectra). Let E be the sphere spectrum S. In this case,
the category Dc(S) is equivalent to the homotopy category of finite spectra SHc

and π0(S) ≃ Z. Consequently, we obtain Pic(SHc) ≃ Z. This computation was
originally established by Hopkins-Mahowald-Sadofsky in [16] using different
tools. Note that this computation may be understood as a particular case of
Theorem 2.11.

Example 2.26 (Ordinary rings). Let E be the Eilenberg-MacLane spectrumHR
of a commutative indecomposable Noetherian ring R. In this case, Dc(HR) ≃
Dc(R) and π0(HR) ≃ R. Consequently, we obtain Pic(Dc(R)) ≃ Pic(R) × Z;
consult Remark 5.3(i) for the case where R is decomposable. This computation
was originally established in [13]. Although Fausk did not use weight struc-
tures, one observes that by applying our arguments (see §5) to the triangulated
category Dc(R), equipped with the weight structure whose heart consists of
the finitely generated projective R-modules, one obtains a reasoning somewhat
similar to his one.

3. Weight structures

In this section we briefly review the theory of weight structures. This will
give us the opportunity to fix some notations that will be used throughout the
article.

Definition 3.1. (see [7, Def. 1.1.1]) A weight structure w on a triangulated
category T , also known as a co-t-structure in the sense of Pauksztello [29], con-
sists of a pair of additive subcategories (T w≥0, T w≤0) satisfying the following
conditions4:

(i) The categories T w≥0 and T w≤0 are closed under taking summands in
T ;

(ii) We have inclusions of categories T w≥0 ⊂ T w≥0[1] and T w≤0[1] ⊂
T w≤0;

(iii) For every a ∈ T w≥0 and b ∈ T w≤0[1], we have HomT (a, b) = 0;
(iv) For every a ∈ T there exists a distinguished triangle c[−1] → a → b → c

in T with b ∈ T w≤0 and c ∈ T w≥0.

Given an integer n ∈ Z, let T w≥n := T w≥0[−n], T w≤n := T w≤0[−n], and
T w=n := T w≥n ∩ T w≤n. The objects belonging to ∪n∈ZT w=n are called w-
pure and the additive subcategory H := T w=0 is called the heart of the weight
structure. Finally, a weight structure w is called bounded if T = ∪n∈ZT w≥n =
∪n∈ZT w≤n.

Assumption: Let (T ,⊗,1) be a symmetric monoidal triangulated category

4Following [7], we will use the so-called cohomological convention for weight structures.
This differs from the homological convention used in [8, 10, 11, 41].
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equipped with a weight structure w. Throughout the article, we will always
assume that the symmetric monoidal structure is w-pure in the sense that the
tensor product −⊗− (as well as the ⊗-unit 1) restricts to the heart H.

Remark 3.2 (Self-duality). The notion of weight structure is (categorically) self-
dual. Given a triangulated category T equipped with a weight structure w, the
opposite triangulated category T op inherits the opposite weight structure wop

with (T op)w
op≤0 := T w≥0 and (T op)w

op≥0 := T w≤0.

Definition 3.3. An exact functor F : T → T ′ between triangulated categories
equipped with weight structures w and w′, respectively, is called weight-exact
if F (T w≤0) ⊆ T ′w′≤0 and F (T w≥0) ⊆ T ′w′≥0.

Remark 3.4. Whenever the weight structure w is bounded, an exact func-
tor F : T → T ′ is weight-exact if and only if F (T w=0) ⊆ T w′=0; see [10,
Prop. 1.2.3(5)].

3.1. Weight complexes. Let T be a triangulated category equipped with a
weight structure w. Following [7, Def. 2.2.1] (see also [8, §2.2]), we can assign to
every object a ∈ T a certain (cochain) weight H-complex t(a) : · · · → am−1 →
am → am+1 → · · · . For example, if a ∈ T w=0, then we can take for t(a) the
complex · · · → 0 → a → 0 → · · · supported in degree 0. As explained in loc.
cit., the assignment a 7→ t(a) is well-defined only up to homotopy equivalence.
Nevertheless, we will use the notation ap for the pth term of some choice of a
weight H-complex t(a). This is justified by the next result:

Proposition 3.5. (see [10, Prop. 1.4.2(6)-(7)])

(i) Let F : T → T ′ be a weight-exact functor as in Definition 3.3. If t(a)
is a weight H-complex for a, then F (t(a)) is a weight H′-complex for
F (a);

(ii) Given an additive functor G : H → A, with values in an abelian cate-
gory, the assignment a 7→ H0(G(t(a))) yields a well-defined (i.e. inde-
pendent of the choice of t(a)) homological functor5 H0 : T → A. More-
over, the assignment G 7→ H0 is natural in the functor G.

We denote by Hn the precomposition of H0 with the nth suspension functor
of T .

Remark 3.6. Note that if a ∈ T w=m, then Hn(a) = 0 for every n 6= m.

Remark 3.7. Following the referee’s suggestion, we recall here in an informal
way the construction of weight complexes. Let T be a triangulated category
equipped with a weight structure w. Given a ∈ T and m ∈ Z, the axiom (iv)
of Definition 3.1 implies the existence of a distinguished triangle bm → a →
cm → bm[1] with bm ∈ T w≥m and cm ∈ T w≤m−1. These triangles are not
determined (up to isomorphism) by the couple (a,m). Nevertheless, given a
morphism g : a → a′ and an integer m′ ≤ m, we can extend g to a morphism

5The homological functors obtained this way are called pure due to their relation with
Deligne’s theory of weights on cohomology; see [8, Rk. 2.4.5(5)].
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between the corresponding triangles; this extension is unique wheneverm′ < m.
This fact, applied to a fixed object a and to all integers m, yields connecting
morphisms ∂m : bm+1 → bm. If one shifts the cone of ∂m by [m], we then
obtain a sequence of objects am in T w=0. Moreover, the corresponding triangles
give rise to connecting morphisms which yield a weight complex for a. The
above considerations show that weight complexes are naturally “respected” by
weight-exact functors. This naturality easily carries over to the pure functors
considered in the above Proposition 3.5(ii). However, these pure functors do
not depend on any choices up to canonical isomorphisms.

3.2. Karoubization. Given a category C, let us write Kar(C) for its
Karoubization. Recall that the objects of Kar(C) are the pairs (a, e), with a ∈ C
and e an idempotent of the ring of endomorphisms EndC(a, a). The morphisms
are given by HomKar(C)((a, e), (b, e

′)) := e ◦ HomC(a, b) ◦ e′. By construction,
Kar(C) comes equipped with the canonical functor C → Kar(C), a 7→ (a, id).
Whenever C is symmetric monoidal, resp. triangulated, the category Kar(C) is
also symmetric monoidal, resp. triangulated; see [6, Thm. 1.5]. Moreover, the
canonical functor C → Kar(C) becomes symmetric monoidal, resp. exact.
The following result relates Karoubian categories to bounded weight structures.

Proposition 3.8. Let T be a Karoubian triangulated category. Assume that
there exists a full additive subcategory H′ ⊂ T that generates6 T and which is
negative in T in the sense that there are no T -extensions of positive degrees
between objects of H′. Under these assumptions, there exists a unique bounded
weight structure w on T such that its heart H contains H′. Moreover, H is
equivalent to Kar(H′).

Proof. The proof is an immediate consequence of [7, Thm. 4.3.2 II and
Prop. 5.2.2]; consult also [11, Cor. 2.1.2] for the generalization of this statement
to the case where T is not necessarily Karoubian. �

4. Proof of Theorem 1.1

We start with the following auxiliary result:

Proposition 4.1. A symmetric monoidal triangulated category (T ,⊗,1),
equipped with a weight structure w, has the w-Picard property (see §1) if and
only if all its ⊗-invertible objects are w-pure.

Proof. Let (a, n), (b,m) ∈ Pic(H)×Z. On the one hand, when n = m, we have
a[n] ≃ b[m] in T if and only if a ≃ b in H. This follows from the fact that the
suspension functor is an auto-equivalence of T . On the other hand, when n 6=
m, we have a[n] 6≃ b[m] in T . This follows from the fact that HomT (a[n], b[m]),
resp. HomT (b[m], a[n]), is zero whenever m < n, resp. n < m; see Definition
3.1(iii). This implies that the canonical group homomorphism

Pic(H)× Z −→ Pic(T ) (a, n) 7→ a[n](4.2)

6
i.e. the smallest thick triangulated subcategory of T containing H′ is T itself.
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is injective. Consequently, we conclude that the category T has the w-Picard
property if and only if (4.2) is surjective. In other words, T has the w-Picard
property if and only if all its ⊗-invertible objects are w-pure. �

Remark 4.3. Let (T ,⊗,1) be a symmetric monoidal triangulated category
equipped with a weight structure w. The arguments used in the proof of
Proposition 4.1 allow us to conclude that if by hypothesis a[n] ⊗ b[m] ≃ 1 for
certain objects a, b ∈ H and integers n,m ∈ Z, then n = −m and a is the
⊗-inverse of b.

Let us now prove Theorem 1.1. Let b ∈ T be a (fixed) ⊗-invertible object.
Thanks to Proposition 4.1, it suffices to prove that b is w-pure. By assump-
tion, there exists a full, additive, conservative, symmetric monoidal functor
G : H → A into a symmetric monoidal semi-simple abelian category which is
moreover local. Proposition 3.5(ii) applied to this functor G yields well-defined
homological functors Hn : T → A, n ∈ Z.
Consider the homological functor T → A, a 7→ H0(a⊗ b). Since by assumption
the weight structure w is bounded, [7, Thm. 2.3.2] applied to the preceding
homological functor yields a convergent Künneth spectral sequence

(4.4) Epq
1 = Hq(a

p ⊗ b) ⇒ Hp+q(a⊗ b) .

The object ap belongs to the heart H and the functor ap ⊗ − : T → T is
weight-exact in the sense of Definition 3.3. Using the fact that t(b) is a weight
H-complex for b, we conclude from Proposition 3.5(i) that ap ⊗ t(b) is a weight
H-complex for ap ⊗ b. Therefore, the complex computing H∗(a

p ⊗ b) can be
obtained from the complex computing H∗(b) by tensoring with G(ap) (recall
that G is symmetric monoidal). Since the category A is semi-simple, it follows
then that Hq(a

p⊗b) ≃ G(ap)⊗Hq(b). Furthermore, the functoriality of the as-
signment G 7→ H0 mentioned in Proposition 3.5(ii) implies that the differential

Epq
1 → E

(p+1)q
1 equals the corresponding morphism induced by the boundary

ap → ap+1 (tensored with b). Making use once again of the semi-simplicity of
A, we conclude that Epq

2 ≃ Hp(a) ⊗ Hq(b). Recall from [7, Thm. 2.3.2] that,
in contrast with the E1-terms, the E2-terms are essentially independent of the
choice of (the terms of) the weight complex t(a). Let us denote by ma, resp.
m′

a, the smallest, resp. largest, integer such that Hn(a) = 0 for every n < ma,
resp. n > m′

a; the existence of such integers follows from the fact that the
weight structure w is bounded. Similarly, let mb, resp. m′

b, be the smallest,
resp. largest, integer such that Hn(b) = 0 for every n < mb, resp. n > m′

b.
Since by assumption the category A is local, we have Hma

(a)⊗Hmb
(b) 6= 0 and

Hm′

a
(a) ⊗ Hm′

b
(b) 6= 0. Using the second page of the spectral sequence (4.4),

we conclude that

Hma+mb
(a⊗ b) 6= 0 and Hm′

a
+m′

b
(a⊗ b) 6= 0 .(4.5)

Now, recall that b is a ⊗-invertible object. Therefore, by definition, we have
a⊗b ≃ 1 for some (⊗-invertible) object a ∈ T . Since Hn(a⊗b) ≃ Hn(1) = 0 for
every n 6= 0, we conclude from (4.5) that mb = m′

b, ma = m′
a, and ma = −mb.
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Thanks to Proposition 4.6 below, this implies that b ∈ T w=mb . In particular,
the object b is w-pure, and so the proof is finished.

Proposition 4.6. (Conservativity I) Let T be a triangulated category equipped
with a bounded weight structure w. Assume that there exists a full, additive,
conservative functor G : H → A from the heart of w into a semi-simple abelian
category. Under this assumption, an object b ∈ T belongs to T w=m if and only
if Hn(b) = 0 for every n 6= m.

Proof. Consult [8, Cor. 2.3.5]. �

Remark 4.7 (Künneth spectral sequence). (i) Let (T ,⊗,1) be a symmet-
ric monoidal triangulated equipped with a bounded weight structure w, and
G : H → A a symmetric monoidal additive functor. Consider the associated
homological functors Hn : T → A, n ∈ Z. The arguments used in the proof
of Theorem 1.1 allow us to conclude that there exists a convergent Künneth
spectral sequence

Epq
1 = Hq(a

p ⊗ b) ⇒ Hp+q(a⊗ b) .

Assume that the (abelian) category A is moreover semi-simple and local. Then,
given any ⊗-invertible object b ∈ T , there exists an integer mb such that
Hn(b) = 0 for every n 6= mb and Hmb

(b) ∈ A is ⊗-invertible.
(ii) Given non-zero objects a and b as in item (i), Proposition 4.6 yields the
existence of integers ma and mb satisfying the conditions described in the proof
of Theorem 1.1. This implies that Hma+mb

(a⊗ b) 6= 0, and consequently that
a ⊗ b 6= 0. In particular, T is local in the sense of [5, §4]; consult Proposition
4.2 from loc. cit.

5. Proof of Theorem 1.2

Let b ∈ T be a ⊗-invertible object. Thanks to Proposition 4.1, it suffices
to prove that b is w-pure. Since the functors ικ(p) : T → Tκ(p) are symmet-
ric monoidal, and by assumption the categories Tκ(p) have the wκ(p)-Picard
property, the objects ικ(p)(b) are wκ(p)-pure. Concretely, ικ(p)(b) belongs to

T w=mκ(p)

κ(p) for some integer mκ(p) ∈ Z. Our goal is to prove that all the integers

mκ(p), with p ∈ Spec(R), are equal and that the object b belongs to T w=mk(p) .
We start by addressing the first goal. Since by assumption the commutative
ring R is indecomposable, its spectrum Spec(R) is connected. Hence, it suffices
to verify that mκ(p) = mκ(P) for every p ∈ Spec(R) belonging to the closure
of a prime ideal P ∈ Spec(R); in the particular case where R is moreover an
integral domain we can simply take P = {0}. Note that the assumptions of
Theorem 1.2, as well as the definition of the integers mκ(p) and mκ(P), are
(categorically) self-dual; see Remark 3.2. Therefore, it is enough to verify the
inequalities mκ(p) ≥ mκ(P).

Given an R-algebra S, consider the abelian category PShvS(H) of R-linear
functors from Hop to the category of S-modules. Note that the Yoneda functor

H −→ PShvS(H) a 7→ (c 7→ HomH(c, a)⊗R S)(5.1)
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induces a fully faithful embedding of H ⊗R S into the full subcategory of
PShvS(H) consisting of projective objects; see [24, Lem. 8.1]. Note also
that every R-algebra homomorphism S → S′ gives rise to a functor − ⊗S

S′ : PShvS(H) → PShvS
′

(H). Since PShvS(H) is abelian, Proposition 3.5(ii)
yields a homological functor

HS
0 : T −→ PShvS(H) a 7→

(
c 7→ H0(HomH(c, t(a))⊗R S)

)
.

Recall from assumption (A2) that the functor ικ(p) induces a ⊗-equivalence of

categories Kar(H ⊗R κ(p)) ≃ Hκ(p). This implies that H
κ(p)
0 factors through

ικ(p). Consequently, thanks to Remark 3.6, we have H
κ(p)
n (b) = 0 for every

n 6= mκ(p).
Let us denote by Q the localization of R/P at the prime ideal p. Note that
Q is a local Noetherian integral domain with fraction field κ(P). Recall from
assumption (A1) that the commutative ring R is Noetherian and that the R-
modules of morphisms of the heart H are finitely generated and flat. Thanks to

the universal coefficients theorem, this implies that HQ
l (b)⊗Q κ(p) = H

κ(p)
l (b),

with l being the largest integer such that HQ
l (b) 6= 0. Consequently, by apply-

ing the Nakayama lemma to the local ring Q and to the (objectwise) finitely

generated Q-module HQ
l (b), we conclude that H

κ(p)
l (b) 6= 0. Hence, the equality

mκ(p) = l holds. Now, since κ(P) is a flat Q-module, the universal coefficients

theorem yields that H
κ(P)
n (b) = 0 for every n > l. This allows us to conclude

that l = mk(p) ≥ mk(P).
Let us now address the second goal, i.e. prove that b ∈ T w=m with m := mk(p).
Making use of Remark 3.2 once again, we observe that it suffices to prove
that b ∈ T w≤m. Thanks to Proposition 5.2 below, it is enough to verify that
HR

n (b) = 0 for every n > m. Let us denote by l the largest integer such that
HR

l (b) 6= 0. An argument similar to the one used in the preceding paragraph,

implies that HR
l (b)⊗Rκ(p) = H

κ(p)
l (b) for every p ∈ Spec(R). Since H

κ(p)
n (b) = 0

for all n > m and p ∈ Spec(R), we then conclude that HR
n (b) = 0 for every

n > m. This finishes the proof.

Proposition 5.2 (Conservativity II). Let T be a triangulated cate-
gory equipped with a bounded weight structure w whose heart H is R-linear and
small. Consider the associated homological functors HR

n : T → PShvR(H), n ∈
Z. Under these assumptions, an object b ∈ T belongs to T w≤m if and only if
HR

n (b) = 0 for every n > m.

Proof. Combine [8, Prop. 2.3.4] with [8, Rk. 2.3.6(2)]. �

Remark 5.3. (i) Suppose that in Theorem 1.2 the commutative ring R is
of the form Πr

j=1Rj , with Rj an indecomposable Noetherian ring. In
this case, the corresponding idempotents ej ∈ R give naturally rise to
categorical decompositions T ≃ Πr

j=1Tj andH ≃ Πr
j=1Hj . By applying

Theorem 1.2 to each one of the categories Tj , we conclude that

Pic(T ) ≃ Πr
j=1Pic(Tj) ≃ Πr

j=1(Pic(Hj)× Z) ≃ Pic(H)× Zr
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whenever all the triangulated categories Tj are non-zero;
(ii) At assumption (A2) of Theorem 1.2, instead of working with all prime

ideals p ∈ Spec(R), note that it suffices to consider any connected sub-
set of Spec(R) that contains all maximal ideals of R. For example, in
the particular case where R is local, it suffices to consider the (unique)
closed point p0 of Spec(R).

6. Proof of Theorem 2.3

Recall from [24, Part 4 and Lecture 20][39] the construction of the symmetric
monoidal triangulated category DMgm(k;R). Given any two zero-dimensional
smooth k-schemes X and Y , we have trivial positive Ext-groups:

HomDMA(k;R)(M(X)R,M(Y )R[n]) = 0 n > 0 .

This implies that the subcategory AM(k;R) ⊂ DMA(k;R) is negative in the
sense of Proposition 3.8. Consequently, the subcategory A(k;R) ⊂ DA(k;R)
is also negative. Making use of Proposition 3.8, we then conclude that the
DA(k;R) carries a bounded weight structure wR with heart A(k;R).
Let us now show that the category DA(k;R) has the wR-Picard property;
note that this automatically concludes the proof. By construction, A(k;R) is
essentially small. Moreover, we have natural isomorphisms

HomDA(k;R)(M(X)R,M(Y )R) ≃ CH0(X × Y )R .

Since the R-modules CH0(X×Y )R are free, assumptions (A1) of Theorem 1.2
are verified. In what concerns assumptions (A2), take for Tκ(p) the category
DA(k;κ(p)) and for ικ(p) the functor − ⊗R κ(p) : DA(k;R) → DA(k;κ(p)).
By construction, the latter functor is weight-exact (see Remark 3.4), symmet-
ric monoidal, and induces an equivalence of symmetric monoidal categories
between Kar(A(k;R) ⊗R κ(p)) and A(k;κ(p)). This shows that assumptions
(A2) are also verified.
Let us now prove that the categories DA(k;κ(p)) have the wκ(p)-Picard prop-
erty; thanks to Theorem 1.2 this implies that DA(k;R) has the wR-Picard
property. In order to do so, we will make use of Theorem 1.1. Concretely, we
will prove that the categories A(k;κ(p)) are abelian semi-simple and local. Let
us write L for the composite of the finite separable field extensions li/k, i ∈ I,
inside k, G for the profinite Galois group Gal(L/k), and Gi for the finite Galois
group Gal(li/k). Thanks to assumption (B1), there is a ⊗-equivalence between
A(k;κ(p)) and the category of finite dimensional κ(p)-linear continuous G-
representations Repκ(p)(G). Consequently, since G ≃ limi∈IGi, we conclude

that A(k;κ(p)) ≃ colimi∈IRepκ(p)(Gi). Now, since the group Gi is finite, the

category Repκ(p)(Gi) may be identified with the category of finitely generated

(right) κ(p)[Gi]-modules. Thanks to assumption (B2), the degree of the field
extension li/k is invertible in R and hence in κ(p). The (classical) Maschke the-
orem then implies that the category Repκ(p)(Gi) is abelian semi-simple. Note
that this category is moreover local since the tensor product is defined on the
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underlying κ(p)-vector spaces. The proof follows now automatically from the
above description of the categories A(k;κ(p)).

7. Proof of Theorem 2.6

Let us denote by AT(k;R) the smallest additive, Karoubian, full subcategory
of DAT(k;R) containing the objects M(X)R(m)[2m], with M(X)R ∈ A and
m ∈ Z. Under these notations, we have trivial positive Ext-groups:

HomDAT(k;R)(M(X)R(m)[2m],M(Y )R(m
′)[2m′][n]) = 0 n > 0 .

This implies that the subcategory AT(k;R) ⊂ DAT(k;R) is negative in the
sense of Proposition 3.8. The motives of the zero-dimensional smooth k-
schemes, as well as the Tate motives, are stable under tensor product. There-
fore, AT(k;R) generates7 the triangulated category DAT(k;R). Making use of
Proposition 3.8 once again, we then conclude that DAT(k;R) carries a bounded
weight structure wR with heart AT(k;R). Thanks to the equivalence of cate-
gories

GrZA(k;R)
≃−→ AT(k;R) {M(Xm)}m∈Z 7→

⊕

m∈Z

M(Xm)(m)[2m] ,

an argument similar to the one of the proof of Theorem 2.3 implies that
the category DAT(k;R) has the wR-Picard property. Consequently, we have
Pic(DAT(k;R)) ≃ Pic(AT(k;R))×Z. The proof follows now from the natural
isomorphisms

Pic(AT(k;R)) ≃ Pic(GrZA(k;R)) ≃ Pic(A(k;R)) × Z .

8. Proof of Theorem 2.11

Recall from Ayoub [2, §4][3, §2.1.1] the construction of the symmetric monoidal
triangulated category DA(k;Z) (with respect to the Nisnevich topology);
in what follows, we write Boot(k;Z) for the thick triangulated subcategory
generated by the ⊗-unit Σ∞(Spec(k)+)Z. By construction, we have an ex-
act symmetric monoidal functor (−)Z : SH(k) → DA(k;Z) which restricts to
the bootstrap categories. Let P(k), resp. P(k;Z), be the smallest additive,
Karoubian, full subcategory of Boot(k), resp. Boot(k;Z), containing the ⊗-
unit Σ∞(Spec(k)+), resp. Σ

∞(Spec(k)+)Z. We have trivial positive Ext-groups
(see [40, Thm. 4.14]):

HomBoot(k)(Σ
∞(Spec(k)+),Σ

∞(Spec(k)+)[n]) = 0 n > 0 ;

similarly for Boot(k;Z). This implies that the subcategory P(k) ⊂ Boot(k),
resp. P(k;Z) ⊂ Boot(k;Z), is negative in the sense of Proposition 3.8. Making
use of this latter proposition, we then conclude that the category Boot(k), resp.
Boot(k;Z), carries a bounded weight structure w, resp. wZ, with heart P(k),
resp. P(k;Z).

7
i.e. the smallest thick triangulated subcategory containing AT(k;R) is DAT(k;R).
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Let us now show that the category Boot(k) has the w-Picard property. Thanks
to the ring isomorphism (2.10), P(k) identifies with the category Proj(GW (k))
of finitely generated projective GW (k)-modules. Moreover, the functor (−)Z
restricts to an equivalence of categories P(k)

≃→ P(k;Z); this is an immediate
consequence of [9, Prop. 2.3.7] (this equivalence also follows easily from [27,
Thm. 6.37]). Consequently, since the Grothendieck-Witt ring GW (k) is inde-
composable (see [18, Prop. 2.2]), all the assumptions (A1) of Theorem 1.2 (with
R = GW (k)) are verified. In what concerns assumptions (A2), take for Tκ(p)
the bounded derived category Db(κ(p)) of finite dimensional κ(p)-vector spaces
Vect(κ(p)) and for ικ(p) the composed functor:

(8.1) Boot(k)
(−)Z−→ Boot(k;Z)

t(−)−→ Kb(Proj(GW (k)))
−⊗GW (k)κ(p)−→ Db(κ(p)) .

Some explanations are in order: since the category DA(k;Z) is defined as
the localization of a certain category of complexes, it admits a tensor dif-
ferential graded (=dg) enhancement. Making use of [4, Lem. 18], we then
conclude that the weight complex construction gives rise to an exact sym-
metric monoidal functor t(−) with values in the bounded homotopy cate-
gory of Proj(GW (k)). By construction, the composed functor (8.1) is weight-
exact, symmetric monoidal, and induces a ⊗-equivalence of categories between
Kar(P(k)⊗GW (k) κ(p)) and Vect(κ(p)). This shows that the assumptions (A2)

are also verified. Finally, since the categories Db(κ(p)) clearly have the wκ(p)-
Picard property, we conclude from Theorem 1.2 that Boot(k) has the w-Picard
property. This finishes the proof.

9. Proof of Theorem 2.17

Recall from [34, §9][33, §4] the construction of the symmetric monoidal trian-
gulated category KMM(k;R). Given any two finite separable field extensions
l1/k and l2/k, we have trivial positive Ext-groups (see [33, Prop. 4.4]):

HomNMAM(k;R)(U(l1)R, U(l2)R[n]) ≃ π−n(K(l1 ⊗k l2) ∧HR) = 0 n > 0 .

This implies that the subcategory AM(k;R) ⊂ NMAM(k;R) is negative in the
sense of Proposition 3.8. Consequently, the subcategory A(k;R) ⊂ NMA(k;R)
is also negative. Making use of Proposition 3.8, we then conclude that the cat-
egory NMA(k;R) carries a bounded weight structure8 wR with heart A(k;R).
Now, a proof similar to the one of Theorem 2.3, with DA(k;R) and DA(k;κ(p))
replaced by NMA(k;R) and NMA(k;κ(p)), respectively, allows us to conclude
that the category NMA(k;R) has the wR-Picard property. Consequently, we
have Pic(NMA(k;R)) ≃ Pic(A(k;R)) × Z.

8A bounded weight structure on the category of noncommutative mixed motives was
originally constructed in [36, Thm. 1.1].
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10. Proof of Theorem 2.22

Item (i). Similarly to the proof of Theorem 2.17, given any two central simple
k-algebras A and B, we have trivial positive Ext-groups (see [33, Prop. 4.4]):

HomNMCSA(k;R)(U(A)R, U(B)R[n]) ≃ π−n(K(Aop ⊗k B) ∧HR) = 0 n > 0 .

This implies that the subcategory CSA(k;R) ⊂ NMCSA(k;R) is negative in
the sense of Proposition 3.8. Making use of this latter proposition, we then
conclude that NMCSA(k;R) carries a bounded weight structure wR with heart
CSA(k;R).
Let us now show that the category NMCSA(k;R) has the wR-Picard property.
By construction, the category CSA(k;R) is essentially small. Moreover, since
the K-theory spectrum K(Aop ⊗k B) is connective, we have natural isomor-
phisms

HomCSA(k;R)(U(A)R, U(B)R) ≃ π0(K(Aop ⊗k B) ∧HR)

≃ π0(K(Aop ⊗k B)) ⊗Z R(10.1)

≃ K0(A
op ⊗k B)⊗Z R ≃ R ,

where (10.1) follows from the stable Hurewicz theorem. This implies, in par-
ticular, that the assumptions (A1) of Theorem 1.2 are verified. In what con-
cerns assumptions (A2), take for Tκ(p) the category NMCSA(k;κ(p)) and for
ικ(p) the functor − ⊗R κ(p) : NMCSA(k;R) → NMCSA(k;κ(p)). By con-
struction, the latter functor is weight-exact (see Remark 3.4), symmetric
monoidal, and induces an equivalence of symmetric monoidal categories be-
tween Kar(CSA(k;R) ⊗R κ(p)) and CSA(k;κ(p)). This shows that the as-
sumptions (A2) are also verified.
We now claim that the categories NMCSA(k;κ(p)) have the wκ(p)-Picard prop-
erty; thanks to Theorem 1.2 this implies that the category NMCSA(k;R) has
the wR-Picard property. Since the categories of finite dimensional (graded) vec-
tor spaces are local, our claim follows then from the combination of Theorem
1.1 with the following general result (with R = κ(p)):

Proposition 10.2. Let R be a field.

(a) When char(R) = 0, the category CSA(k;R) is ⊗-equivalent to the cat-
egory of finite dimensional R-vector spaces vect(R);

(b) When char(R) = p > 0, there exists a full, additive, conservative,
symmetric monoidal functor from CSA(k;R) into the category of finite
dimensional Br(k){p}-graded R-vector spaces GrBr(k){p}vect(R).

Proof. Given an R-linear, additive, Karoubian, rigid9 symmetric monoidal cat-
egory (C,⊗,1), with EndC(1) ≃ R, recall from [1, §1.4.1 and §1.7.1] the con-
struction of the following categorical ideals

N (a, b) := {f : a → b | ∀g : b → a tr(g ◦ f) = 0}
R(a, b) := {f : a → b | ∀g : b → a ida −(g ◦ f) is invertible} ,

9Recall that a symmetric monoidal category is called rigid if all its objects are dualizable.
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where tr(g ◦ f) stands for the categorical trace of the endomorphism g ◦ f . As
explained in loc. cit., the categorical ideal N is moreover symmetric monoidal.
Item (a). As proved in [38, Thm. 2.1], we have U(A)R ≃ U(k)R for every cen-
tral simple k-algebra A. Using the natural ring isomorphism End(U(k)R) ≃ R,
we then conclude that the category CSA(k;R) is ⊗-equivalent to the category
of finite dimensional R-vector spaces vect(R).
Item (b). By construction, the category CSA(k;R) is R-linear, addi-
tive, and symmetric monoidal. Moreover, all its objects are dualizable and
End(U(k)R) ≃ R; see [34, §1.7.1]. As proved in [32, Prop. 6.11], the quotient
CSA(k;R)/N is ⊗-equivalent to the category GrBr(k){p}vect(R). Consequently,
we have an induced full, additive, and symmetric monoidal functor

(10.3) CSA(k;R) −→ GrBr(k){p}vect(R) .

It remains then only to prove that the functor (10.3) is moreover conservative.
In order to do so, we will show the inclusion N ⊆ R. Thanks to [1, Prop. 7.1.6],
this implies that the quotient functor (10.3) is conservative. By definition, the
categorical ideals N and R are compatible with direct sums and summands.
Hence, given central simple k-algebras A and B, it suffices to show that the
inclusionN (U(A)R, U(B)R) ⊆ R(U(A)R, U(B)R) holds. This inclusion follows
now from the combination of the definitions of N and R with Lemma 10.4
below. �

Lemma 10.4. Given a central simple k-algebra A, the following morphism

EndCSA(k;R)(U(A)R) −→ EndCSA(k;R)(U(k)R) ≃ R h 7→ tr(h) ,(10.5)

induced by the categorical trace construction, is invertible.

Proof. By construction, the induced morphism (10.5) is R-linear. Therefore,
thanks to the natural isomorphism End(U(A)R) ≃ R, (10.5) is completely de-
termined by the image of the identity of U(A)R. In other words, (10.5) reduces
to the morphism R → R, r 7→ r · χ(U(A)R), where χ(U(A)R) stands for the
Euler characteristic of the noncommutative motive U(A)R. As proved in [34,
Prop. 2.24], the Euler characteristic χ(U(A)R) agrees with the Grothendieck
class [HH(A)]R ∈ K0(k)R ≃ R of the Hochschild homologyHH(A) of A. Since
HH(A) ≃ A/[A,A] ≃ k (see [23, §1.2.12]), we then conclude that (10.5) is the
identity. This finishes the proof. �

Remark 10.6. It follows from the proof of Proposition 10.2 that the Brauer
group of the symmetric monoidal category CSA(k;R) is trivial when char(R) =
0 and isomorphic to Br(k){p} when char(k) = p > 0.

Item (ii). Thanks to equivalence (2.20), we have an injective group homomor-
phism

Br(k) −→ Pic(CSA(k;Z)) [A] 7→ U(A)Z .(10.7)

It remains then only to prove that (10.7) is moreover surjective. Recall from
[34, §9][36] the construction of the symmetric monoidal triangulated category
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KMM(k) and of the full subcategories NMCSA(k) and CSA(k). By con-
struction, we have an exact symmetric monoidal functor (−)Z : KMM(k) →
KMM(k;Z) which restricts to a ⊗-equivalence CSA(k) ≃ CSA(k;Z). There-
fore, making use [37, Thm. 2.20(iv)], we observe that the objects U(A1)Z ⊕
· · · ⊕ U(Am)Z of CSA(k;Z), with m > 1 are not ⊗-invertible. Since the cat-
egory CSA(k;Z) is Karoubian (see [37, Thm. 2.20(i)]), we then conclude that
(10.7) is moreover surjective.

Remark 10.8. Given any two central simple k-algebras A and B, we have

HomNMCSA(k)(U(A)R, U(B)R[n]) ≃ K−n(A
op ⊗k B) = 0 n > 0 .

Therefore, a proof similar to the one of Theorem 2.22, with NMCSA(k;Z)
replaced by NMCSA(k), allows us to conclude that Pic(NMCSA(k)) ≃ Br(k)×
Z. In conclusion, although the categories NMCSA(k) and NMCSA(k;Z) are
not equivalent, they have nevertheless the same Picard group!

11. Proof of Theorem 2.24

Let us denote by P(E) the smallest additive, Karoubian, full subcategory of
Dc(E) containing the E-module E. Since by assumption the ring spectrum E
is connective, we have trivial positive Ext-groups:

HomDc(E)(E,E[n]) ≃ π−n(E) = 0 n > 0 .

This implies that the subcategory P(E) ⊂ Dc(E) is negative in the sense of
Proposition 3.8. Making use of this latter proposition, we then conclude that
the category Dc(E) carries a bounded weight structure w with heart P(E).
Let us now show that the category Dc(E) has the w-Picard property. By
construction, P(E) identifies with the category of finitely generated projective
π0(R)-modules. Therefore, by taking R := π0(E), all the assumptions (A1) of
Theorem 1.2 are verified. In what concerns assumptions (A2), take for Tk(p)
the category Db(k(p)), equipped with the canonical bounded weight structure
with heart Vect(k(p)), and for ιk(p) the (composed) base-change functor

Dc(E)
−∧EHπ0(E)−→ Dc(Hπ0(E)) ≃ Dc(R)

−⊗Rk(p)−→ Db(k(p)) .

By construction, the latter functor is weight-exact (see Remark 3.4), symmetric
monoidal, and induces a ⊗-equivalence of categories between Kar(P(E)⊗Rκ(p))
and Vect(k(p)). Since the categories Db(k(p)) clearly have the wk(p)-property,
we conclude from Theorem 1.2 that Dc(E) has the w-Picard property.
Finally, since the category Dc(E) has the w-Picard property, we have an iso-
morphism Pic(Dc(E)) ≃ Pic(P(E)) × Z. The proof follows now from the fact
that Pic(P(E)) is isomorphic to Pic(π0(E)).
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évanescents dans le monde motivique. Astérisque 314–315 (2007). Société
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