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1. INTRODUCTION

Let L C S2 be an m-component oriented link in the 3-sphere. Each connected,
oriented Seifert surface F' for L has a bilinear Seifert form defined by

V: H(F;Z7) x Hi(F;Z) — 7
(plz], qly]) = palk(z™,y),

where p,q € Z, x,y are simple closed curves on F' with associated homology
classes [z], [y], and 2~ is a push-off of z in the negative normal direction of F.
Given a unit modulus complex number z € S'\ {1}, choose a basis for H; (F'; Z)
and define the hermitian matrix

B(z)=(1-2)V+1-2)V"',

The Levine-Tristram signature or,(z) of L at z is defined to be the signature of
B(z), namely the number of positive eigenvalues minus the number of negative
eigenvalues. The nullity 11, (z) of L at z is the dimension of the null space of
B(z). Both quantities can be shown to be invariants of the S-equivalence class
of the Seifert matrix, and are therefore link invariants [Lev69, Tri69)].
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We say that two oriented m-component links L and J are concordant if there
is a flat embedding into S3 x I of a disjoint union of m annuli A C S3 x I, such
that the oriented boundary of A satisfies

0A=—-LUJC-S*US*=0(8*x I).

An m-component link L is slice if it is concordant to the m-component unlink.
The purpose of this paper is to answer the following question: for which values
of z are or,(z) and ni(z) link concordance invariants? We work in the topo-
logical category, in order to obtain the strongest possible results. In order to
state our main theorem, we need one more definition.

DEFINITION 1.1. A complex number z € S\ {1} is a Knotennullstelle if there
exists a Laurent polynomial p(t) € Z[t,t~!] with p(1) = £1 and p(z) = 0.

Note that a complex number z € S\ {1} is a Knotennullstelle if and only if
there exists a knot K whose Alexander polynomial Ag has the property that
Ak (2) = 0. This follows from the fact that all Laurent polynomials ¢ € Z[t, ]
with ¢(1) = +1 and ¢(t) = ¢(t~!) can be realised as Alexander polynomials of
knots [BZ03, Theorem 8.13]. Here is our main theorem.

THEOREM 1.2. The link invariants or,(z) and ni(z) are concordance invariants
if and only if z € S'\{1} does not arise as a Knotennullstelle.

Discussion of previously known results. The first point to note is that, due to
J. C. Cha and C. Livingston [CL04], when z is a Knotennullstelle neither o, (2)
nor 7ny,(z) are link concordance invariants.

THEOREM 1.3 (Cha, Livingston). For any Knotennullstelle = € S'~{1}, there
exists a slice knot K with ox(z) # 0 and nx(z) # 0.

Given a polynomial p(t) with p(1) = £1 and p(z) = 0, Cha and Livingston
construct a matrix V with V' — V7T nonsingular, with det(tV — VT) equal to
p(t)p(t~1), such that the upper left half-size block contains only zeroes, and
such that o(B(z)) # 0. Such a matrix can easily be realised as the Seifert
matrix of a slice knot.

Some positive results on concordance invariance are also known. For z a
prime power root of unity, o (z) and n.(z) are concordance invariants; see
[Mur65], [Tri69] and [Kau78]. D. Cimasoni and V. Florens [CF08] dealt with
multivariable signature and nullity concordance invariants, but again only at
prime power roots of unity.

For the signature and nullity at algebraic numbers away from prime power
roots of unity, we could not find any statements or results in the literature
pertaining to our question. Levine [Lev07] studied the question in terms of
p-invariants, but only discussed concordance invariance away from the roots of
the Alexander polynomial.

By changing the rules slightly, one can obtain a concordance invariant for all
z. The usual method is to define a function that is the average of the two
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one-sided limits of the Levine-Tristram signature function. Let z = ¢ € S,
and consider:

oL(z) = l( lim o(B(e™)) + lim U(B(eiw))).

2 \w—64 w—0_

Since prime power roots of unity are dense in S*, this averaged signature func-
tion yields a concordance invariant at every z € S'. The earliest explicit obser-
vation of this that we could find was by Gordon in the survey article [Gor78].
One can also consider the averaged nullity function, to which similar remarks
apply: )

7(2) = 5 (lim n(B(e) + lim n(B(e™))).

2 \w—04
In particular this is also a link concordance invariant.
Note that the function o : S'\{1} — Z is continuous away from roots of the
Alexander polynomial det(tV — V) of L. More generally one can consider the
torsion Alexander polynomial AT°" of L, which by definition is the greatest
common divisor of the (n — r) x (n — 7) minors of tV — VT where n is the
size of V and r is the minimal nonnegative integer for which the set of minors
contains a nonzero polynomial. The function oy, is continuous away from the
roots of the torsion Alexander polynomial AT°", by [GL15, Theorem 2.1] (their
Ay is our ATer).
Thus if z is not a root of the torsion Alexander polynomial of any link, the sig-
nature cannot jump at that value, and the signature function o, (z) equals the
averaged signature function 7 (z) there. Since the averaged function is known
to be a concordance invariant, the non-averaged function is also an invariant
when z is not the root of any link’s Alexander polynomial. The excitement
happens when z is the root of the Alexander polynomial of some link, but
is not the root of an Alexander polynomial of any knot. The averaged and
non-averaged signature functions can differ at such z, but nevertheless both
are concordance invariants. In Section 2 we will give an example which illus-
trates this difference, and gives an instance where the non-averaged function
is more powerful. Similar examples were given in [GL15], but only with jumps
occurring at prime power roots of unity.
Finally we remark that our proof of Theorem 1.2 covers the previously known
cases of prime power roots of unity and transcendental numbers, as well as the
new cases.

Organisation of the paper. The rest of the paper is organised as follows. In
Section 2, we give an example of two links that are not concordant, where we
use the signature and nullity functions at a root of their Alexander polynomials,
which is not a prime power root of unity, to detect this fact. Section 4 proves
that the nullity is a concordance invariant, and the corresponding fact for
signatures is proven in Sections 5 and 6.

Acknowledgements. We thank Stefan Friedl, Pat Gilmer, Chuck Livingston and
Andrew Ranicki for helpful discussions. In particular [GL15] inspired the ques-
tion that led to this paper. We also thank the referee for helpful feedback. M.
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2. AN APPLICATION

In the introduction, for a link L we defined the signature function o, (z) and the
nullity function 7y (z), for each z € S'\{1}. From the characterisation in The-
orem 1.2, one easily finds new values z for which it was not previously known
that o(z) and n(z) are concordance invariants. In Proposition 2.3, by exhibiting
the obligatory explicit example, we show that these values give obstructions to
concordance that are independent from previously known obstructions coming
from the signature and nullity functions. We finish the section by constructing,
in Proposition 2.5, a family of such examples for any algebraic number on S*.
Before the construction, we collect some facts on the set of roots of Alexander
polynomials of links. We say that a complex number z € S\ {1} is a Linknull-
stelle if z is a root of a non-vanishing single variable Alexander polynomial of
some link. We have the following inclusions:

{Knotennullstellen} C {Linknullstellen} c S'~\{1}
U

prime power
roots of 1
We will see that these inclusions are strict. The two subsets of the set of
Linknullstellen are disjoint, since no prime power root of unity can be a root of
a polynomial that augments to £1, because the corresponding cyclotomic poly-

nomial augments to the prime. Moreover, the union of the Knotennullstellen
and the prime power roots of unity is not exhaustive.

LEMMA 2.1.

(1) The set of Linknullstellen coincides with the set of algebraic numbers
in S1\{1}.

(2) The number zy = % € St is an algebraic number, which is neither a
Knotennullstelle nor a root of unity.

Proof. Let z € S'~{1} be an algebraic number, so that p(z) = 0 for some
p € Z[t]. Let
q(t) = (t = 1)°p(t)p(t™") € Z[t, ¢ 1]
We claim that there is a link L with single variable Alexander polynomial
Ar(t) = q(t). Choose a 2-variable polynomial P(x,y) € Z[z*! y*!] with
P(t,t) = p(t). Let
Q(z,y) := (z = )(y — VYP(a,y)Pla~ ",y ).

A corollary [Hill2, Corollary 8.4.1] to Bailey’s theorem [Bai77] states that any
polynomial Q(z,y) in Z[z*!,y*!], with Q = Q up to multiplication by +z*y*,
and such that (z — 1)(y — 1) divides @, is the Alexander polynomial of some

2-component link of linking number zero. Thus there exists a 2-component link
L with 2-variable Alexander polynomial Q(z,y).
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The single variable Alexander polynomial Ay, (t) is obtained from the 2-variable
Alexander polynomial of a 2-component link Q(z,y) as (t — 1)Q(¢t,t) [BZ03,
Remark 9.18]. But

(t=1)Q(t,t) = (t = 1)*P(t, )P(t~",t71) = (¢t = 1)°p(t)p(t™") = q(t).

This completes the proof of the claim and therefore of (1): the set of Linknull-
stellen is the set of algebraic numbers lying on S\ {1}.
For (2), first observe that the complex number zy := 3£4
and that zg is a zero of the polynomial

has unit modulus

p(t) := 5t> — 6t + 5,

and therefore is an algebraic number. Note that no cyclotomic polynomial
divides the polynomial p(t). This can be checked for the first six by hand,
and the rest have degree larger than 2. From Abel’s irreducibility theorem, we
learn that zg is not a zero of a cyclotomic polynomial and thus is not a root of
unity. Since p(1) =4 and p(t) is irreducible over Z[t], zy is not the root of any
polynomial that augments to +1. As a result, z is not a Knotennullstelle. [

Next we describe links L and L’ whose signature and nullity functions are equal
everywhere on S'~\ {1} apart from at zp, which will be a root of the Alexander
polynomials of L and L’. We find these links by realising suitable Seifert forms.

EXAMPLE 2.2. Consider the following Seifert matrix:

00 0 0 10 0 0
00 0 0 05 —4 4
00 0 0 00 1 0
yo_l0o0 0 000 01
“ 1 -1 0 0o 00 0 o0
0 5 -1 0 00 0 0
0 -4 1 —-100 0 0
0O 4 0 1 00 0 1

This matrix represents the Seifert form of the 3-component link L given by
the boundary of the Seifert surface shown in Figure 1. As usual, a box with
n € Z inside denotes n full right-handed twists between two bands, made
without introducing any twists into the individual bands. To see what we
mean, observe that there are three instances in the figure of one full left-handed
twist, otherwise known as —1 full right-handed twists. The left-most twist is
between the bands labelled e; and es5. To obtain the Seifert matrix, note that
the beginning of each of the eight bands is labelled e;, for i = 1,...,8. Orient
the bands clockwise and compute using V;; = lk(e;, e;), where the picture is
understood to show the positive side of the Seifert surface.

Produce a link L’ from L by removing the single twist in the right-most band,
labelled eg in Figure 1. This gives rise to a Seifert matrix V’ for L’ which is
the same as V', except that the bottom right entry is a 0 instead of a 1.
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FIGURE 1. Realisation of the Seifert form V.

Consider the sesquilinear form B over Q[t*!]

1-tV+ 1 -t HvT.

determined by the matrix

The form B splits into a direct sum of sesquilinear forms. For a Laurent
polynomial p(t) € Q[t*1], abbreviate the form given by the 2 x 2 matrix

<p(ﬁ0‘1) pg)> '

by [p(t)]. A calculation shows that B is congruent to the form

t-1ot-1ot-1]e <q(t0_1) _ﬁ_ﬁﬁg B t) :
where the polynomial ¢(t) is
qit)=t"1-(t —1)%- (5¢t* — 6t +5).
On the other hand the corresponding sesquilinear form B’ over Q[t*!] for L' is
equivalent to

t—1at—1a[t—1]®q)]

PROPOSITION 2.3. Let zg denote the algebraic number 3';‘”. The links L and
L' constructed in Example 2.2 have the following properties.

(1) If z is a root of unity, then or,(2) = or/(2) and nr(z) = n(2).
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(2) The averaged signature and nullity functions agree, i.e.

oL(z) =o(2) and 7 (2) =71 (2)
for all z € S™\{1}.
(3) The signatures and nullities of L and L' at zy differ:

or(z0) # or/(20) and nr(20) # N1 (20),

and so L is not concordant to L'.

Proof. Note that for any z € C~{0,1} with ¢(z) # 0, the form B(z) over C is
nonsingular and metabolic. The same holds for B’(z). This implies that the
signatures sign B(z) and sign B’(z) vanish. The nullities 7y, (2),n5/(z) are also
both zero. Since the roots of ¢(z) are exactly zo and zg, which are not roots of
unity by Lemma 2.1, we obtain the first statement of the proposition. We also
see that the averaged signature function on S*~\{1} and the averaged nullity
function are identically zero, so we obtain the second statement.
_ 3+4i

From Lemma 2.1, we know that zo := %= is not a Knotennullstelle, and

5
Thus o1,(20) = 1 = nr(20). On the other hand, for L’ the matrix B’(z) is

sign B(zg) = sign <8 2) = 1.

a 2 X 2 zero matrix, so we have that or(20) = 0 and nz(29) = 2. Both
signatures and the nullities at z¢ differ, so L and L’ are not concordant by
Theorem 1.2. O

Remark 2.4. One can also see that L and L’ are not concordant using linking
numbers.

A more systematic study of the construction of the example above leads to the
following proposition.

PROPOSITION 2.5. Let q(t) € Z[t] be a polynomial. Then there exists a natural
number k > 0 and a link L with Alexander polynomial Ar(t) = q(t~)q(t)(t —
1)* up to units in Z[t,t™'] such that

(1) the form B(z) of L is metabolic and nonsingular for all z € S*~{1}
which are not roots of q(t), so or(z) = 0.
(2) if zo # 1 is a root of q(t) of unit modulus, then or,(z9) # 0.

The proof of this proposition is based on ideas from [CLO04].

Proof. Consider the size n 4 1 square matrix P with entries in Z[y] given by

1 vy O yay
0 1 wy Yyas
Py):= | : 2E
Ly yan
0 0 1 wyan,
y 0 0 0 0
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with a; integers. Over Z[y™!], the matrix P can be transformed via invertible
row operations and column operations to the matrix

1.0 0 p(y)

01 0 0

Ay) = E :
1 0 0

0 0 1 0

y 0 ... 0 0 0

with p(y) = b1(y) where bi(y) € Z[y] is defined by the recursion by_1(y) :=
y - (ar — be(y)) and b, (y) := y - a,. Notice that, up to units, we can arrange
p(y) to be any polynomial in Z[y*!] by choosing n sufficiently large and then
suitable entries ay € Z. That is, multiply by y* so that the lowest order term
is the linear term, and take (—1)%a; to be the coefficient of y*~! in p(y), for
1=2,...,n+ 1.

Pick the entries a, so that if we evaluate p(y) at (¢t —1) we get the equality p(t—
1) = q(t)(t — 1)* for a suitable integer k. Now consider the block matrix

"= (VO” QV(:)>

with
01 0 ai - 00 !
00 1 as L
0 1 ap_1 -1 0 O
0 0 0 oap 0 1 -1 0
10 0 0 0 a, as ... Gp_1 an O
and
0 0 0
Q=" "
0 ... 00
0 ... 0 vy

The matrix V is the Seifert matrix of a link as V — V7 is the intersection form
of a genus n oriented surface with three boundary components. Let L be such
a link, necessarily a 3-component link. We remark in passing that the matrix V'
from Example 2.2 is not a special case of the matrix V defined in the current
proof, although it is close to being so.

Recall that B(z) = (1—2)V+(1-2z)VT = (z—1)- (2V — VT). The matrix V
was constructed in such a way that

- 0 (z-1)-P(z-1)
B(z) = ((z—l)-PT(E—l) Q(-Z—2+2) )
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Using the transformations associated to the above row and column operations,
we see that B(z) is congruent to

0 (z-1)-A(z—-1)
B(z) ~ ((z—l)-AT(E—l) Q(—Z—2472) ) :

Note that the matrix @ is unchanged by this congruency, because in the cor-
responding sequence of row and column operations, it never happens that the
last row or column is added to another row or column.

We complete the proof of the proposition by showing that indeed the link L
has the required properties. If z € S'~\{1} is not a zero of ¢(t), then also
p(z) # 0. Consequently, the form B(z) is nonsingular and metabolic. On the
other hand, if z € S1\{1} is a root of ¢(t), then also p(z) = 0. In this case the
Levine-Tristram form B(z) is a sum

B(z)=Me (8 —E—Oz—i—Q)

with M nonsingular and metabolic. Thus o, (z) = 1. O

Remark 2.6. Replace Q(1) with Q(0) in the construction of the matrix V' in the
proof of Proposition 2.5, to obtain a matrix V’. Using the same construction as
in Example 2.2, the matrices V and V' give rise to links L and L’ respectively,
such that
nL(z) = nu(2) and or(2) = or/(2)

for every z € St that is not a root of ¢(t). Analogously to Example 2.2, L and
L' are not concordant, but again this can also be seen using linking numbers.
This leads to the following question. Does there exist a pair of links L and L',
with the same pairwise linking numbers, whose signature and nullity functions
can only tell the concordance classes of the links apart at an isolated algebraic
numbers z,Z € S! that are roots of the Alexander polynomial Ay = Ay,

3. TWISTED HOMOLOGY AND INTEGRAL HOMOLOGY ISOMORPHISMS

Now we begin working towards the proof of Theorem 1.2. Fix z € S\ {1} to
be a unit complex number that is not the root of any polynomial p(t) € Z[t]
with p(1) = £1 i.e. 2z is not a Knotennullstelle. We denote the classifying space
for the integers Z by BZ, which has the homotopy type of the circle S'. Given
a CW complex X, a map X — BZ induces a homomorphism 71 (X) — Z. This
determines a representation

a: Zm (X)) = Z[7Z) BALNYg

of the group ring of the fundamental group of X, with respect to which we can
consider the twisted homology

Hi(X;(Ca) = H; ((C ®Z[7r1(X)] C*()’Z)) .

Let ¥ C Z[Z] be the multiplicative subset of polynomials that map to 41
under the augmentation ¢: Z[Z] — Z, that is ¥ = {p(¢t) € Z[Z]||p(1)| = 1}.
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By inverting this subset we obtain the localisation ¥ 71Z[Z] of the Laurent
polynomial ring. This has the following properties.
(i) The canonical map Z[Z] — Y ~'Z[Z] is an inclusion, since Z[Z] is an
integral domain.
(ii) For any Z[Z]-module morphism f: M — N of finitely generated free
Z]Z]-modules such that the augmentation

E(f) =1d ®f 7 ®Z[Z] M —= 7 ®Z[Z] N
is an isomorphism, we have that
d®f: S Z[Z) @z M — X7 Z[Z) @777 N

is also an isomorphism.
The second property can be reduced to the following. Assume A is a matrix
over Z[Z] such that £(A) is invertible. Consequently, we have det(e(A)) =
+1 and as (det(A)) = det(e(A)), we deduce that det(A) € 3. Therefore,
the determinant det(A) is invertible in the localisation X 7'Z[Z] and so is the
matrix A over X 1Z[Z].

As the unit modulus complex number z that we have fixed is not a Knoten-

nullstelle, the representation « defined above factors through the localisation,

-1
i.e. evaluation at z determines a ring homomorphism X ~1Z[Z] 2~ =, C such

that the ring homomorphisms Z[Z] <% C and

Z[Z] — =2[z) 2 ¢
coincide.

LEMMA 3.1. Let f: X =Y be a map of finite CW complezes over S', that is
there are maps g: X — S' and h: Y — S' such that ho f = g, and suppose
that N
for Hi(X;2) — Hi(Y;Z)
is an isomorphism for all i. Then
fui Hi(X;C%) = Hy(Y;C?)
s also an isomorphism for all 1.

The lemma follows [COT03, Proposition 2.10]. The difference is that we use the
well-known refinement that one does not need to invert all nonzero elements.
We give the proof for the convenience of the reader. This is adapted from the
proof given in [FP12].

Proof. The algebraic mapping cone D, := € (f.: C.(X;Z) — C.(Y;Z)) has
vanishing homology, and comprises finitely generated free Z-modules. There-
fore it is chain contractible. We claim that the chain contraction can be lifted
to a chain contraction for €' (f.: Ci(X;X71Z[Z]) — C.(Y; 7 1Z[Z])), the map-
ping cone over the localisation %~ 1Z[Z].

To see this, let s: D, — D,4; be a chain contraction, that is we have that
dsi+si_10 = Idp, for each i. Define D, := € (f.: C.(X;Z[Z)) — C.(Y;Z[Z]))
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and consider ¢: 15* — D, =7 ®z[z] 15*, induced by the augmentation map.
Denote E, := € (f.: C«(X;371Z[Z]) — C.(Y;371Z[Z])) and note that there
is an inclusion D; — E; = X 7'Z[Z] ®zz) D;, induced by the localisation. Lift

stoamap s: D, = D,y1, as in the next diagram

D* 77777 >.D*+1
\LE \LE
D, —— =D

The lifts exist since all modules are free and ¢ is surjective. But then we have
that

f:=ds+3d: D, — D,
is a morphism of free Z[Z]-modules whose augmentation £(f) is an isomorphism.
Thus by property (ii) of ©71Z[Z], f is also an isomorphism over ¥~1Z[Z], and
so s determines a chain contraction for E,. We therefore have that EF, =
C.(Y, X;¥717Z]7Z]) ~ 0 as claimed.
Next, tensor E, with C over the representation «, to get that

C* @177 Cu(Y, X; £7Z[Z]) = C. (Y, X;C¥) ~ 0.

Thus H;(Y,X;C%) = 0 for all 4 and so f.: H;(X;C?%) =N H;(Y;C?*) is an
isomorphism for all 7 as desired. |

4. CONCORDANCE INVARIANCE OF THE NULLITY

In this section we show concordance invariance of the nullity function away
from the set of Knotennullstellen.

DEFINITION 4.1 (Homology cobordism). A cobordism (W"*1; M™ N™) be-
tween n-manifolds M and N is said to be a Z-homology cobordism if the in-
clusion induced maps H;(M;Z) — H;(W;Z) and H;(N;Z) — H;(W;Z) are
isomorphisms for all 7 € Z.

THEOREM 4.2. Suppose that oriented m-component links L and J are concor-
dant and that z € S*\{1} is not a Knotennullstelle. Then nr(z) = n;(2).

Proof. As in the statement suppose that z € S1\{1} is not a Knotennullstelle.
Denote the exterior of the link L by X := S3~vL. As above, let V be a
matrix representing the Seifert form of L with respect to a Seifert surface F'
and a basis for Hy(F;Z).

We assert that the matrix zV — V7 presents the homology H;(X;C®). This
can be seen as follows. Consider the infinite cyclic cover X corresponding
to the kernel of the homomorphism 71 (Xz) — Z, defined as the composi-
tion of the abelianisation 71 (X1) — Hy(X1;Z) = Z™, followed by the map
(1, ...y Tm) — >oie, ; Le. each oriented meridian is sent to 1 € Z. A decom-
position of X and the associated Mayer-Vietoris sequence [Lic97, Theorem
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6.5] give rise the following presentation

T R
Clt*!) @c Hi(F;C) X=X C[t*Y) @c Hi(F;C)Y — Hi(X1;C) — 0,
where H;(F;C)Y is the dual module Homc(H;(F;C),C). Apply the right-
exact functor C*®c+1) to this sequence, to obtain the sequence
_yT _
C* @c H1(F;C) 2=V C* @¢ Hi(F;C)Y — C* @¢py+ Hi(X1;C) — 0.

[til

As Hy(X 1;C) = C, we have that Tor(lc ](HO(YL; C),C%) = 0 by the projec-

tive resolution

0t B e - ¢ = o
and z # 1. Since C[t*!] is a principal ideal domain, we can apply the univer-
sal coefficient theorem for homology to deduce that C* ®cp=1) Hi (X1;C) =
H1(X1;C®). This completes the proof of the assertion that 2V — V7T presents
the homology H;(Xp;C%).
Next observe that (Z—1)(2V — V7T) = (1 —2)V + (1 —2)V7T presents the same
module as zV — V7T since 7 — 1 is nonzero. The dimension of H;(X;C®)
therefore coincides with the nullity 5 (z), which is by definition the nullity of
the matrix (1 — 2)V + (1 —2)VT.
Now, let A C 3 x I be a union of annuli giving a concordance between L and
J, and let W := S3 x I~vA. Then W is a Z-homology bordism between X,
and X ; this is a straightforward computation with Mayer-Vietoris sequences
or with Alexander duality; see for example [FP14, Lemma 2.4]. Thus by two
applications of Lemma 3.1, with Y = W and X = X and X = X ; respectively,
we see that Hy(Xp;C*) =2 Hy(W;C%) = Hy(X;;C%), and so the nullities of
L and J agree. We need that z is not a Knotennullstelle in order to apply
Lemma 3.1. ([l

5. IDENTIFICATION OF THE SIGNATURE WITH THE SIGNATURE OF A
4-MANIFOLD

In the proof of Theorem 4.2, a key step was to reexpress the nullity n(z) of
the form B(z) as a topological invariant of a 3-manifold, and then to use the
bordism constructed from a concordance to relate the invariants. An analogous
approach is used here to obtain the corresponding statement for the signature.
Everything in this section is independent of whether z is a Knotennullstelle.
Recall that we fixed an oriented m-component link L C 52, and that we picked
a connected Seifert surface F' for L. Denote the link complement by X :=
S3\vL. First note that the fundamental class [F] € Ha(F,0F;Z) of the Seifert
surface F' is independent of the choice of F'. This follows from the fact that its
Poincaré dual is characterised as the unique cohomology class £ € HY(X1;Z)
mapping each meridian u to &(u) = 1.

The boundary of F' C S3\vL is a collection of embedded curves in the bound-
ary tori that we refer to as the attaching curves. The attaching curves together
with the meridians determine a framing of each boundary torus of X. Also,
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this framing depends solely on [F], since the connecting homomorphism of the
pair (Xr,0X1) maps O[F] = [0F].

With respect to this framing, we can consider the Dehn filling of slope zero,
resulting in the closed 3-manifold My. By definition, to obtain M) attach
a disc to each of the attaching curves, and then afterwards fill each of the
resulting boundary spheres with a 3-ball.

DEFINITION 5.1. The framing of the boundary tori of X constructed above
is called the Seifert framing. The Seifert surgery on L is the 3-manifold M,
constructed above.

Remark 5.2. For links there is no reason for this framing to agree with the
zero-framing of each individual component.

Collapsing the complement of a tubular neighbourhood of the Seifert surface F'
gives rise to map S3\vL — S' = BZ, which extends to a map from the
Seifert surgery ¢: My — BZ. To see this in more detail, parametrise a regular
neighbourhood of F' as F' x [—1,1], with F' as F' x {0}. The intersection of
this parametrised neighbourhood with each component of OF determines a
parametrised subset S! x [-1,1] € S! x S' C OF. Extend this to a subset
D? x [-1,1] € D? x S! for each of the Dehn filling solid tori D? x S* in Mj,.
Now define
¢: M, — S'=BZ

= e x=(ft)e (FUlJ"D?) x [-1,1]
T
-1 otherwise.

The map ¢ classifies the image of the fundamental class of the capped-off Seifert
surface in My, in the sense that [¢] maps to [F U | |™ D?] under [My,S] =»
HY(Mp;Z) = Hy(Mp;Z). Recall that the homology class [F U | |™ D?] €
Hy(Mjp,;Z) only depends on the isotopy class of L and so also the homotopy
class of ¢ does not depend on the Seifert surface F'. The manifold M}, together
with the map ¢ defines an element [(My, ¢)] € Q3(BZ), where Q(X) denotes
the bordism group of oriented, topological k-dimensional manifolds with a map
to X. Recall that cobordism is a generalised homology theory fulfilling the
suspension axiom, see e.g. [tD08, Chapter 21] and [May99, Section 14.4]. As a
consequence, we obtain

Q3(BZ) = Q3(S1) = Q3(25°) = Q5(S°) = Qu(pt) = 0.
Thus Q3(BZ) = Q3(pt) = 0 [Roh53].
The group Q3(BZ) = Q3 @ Q2 = 06 0 = 0 is trivial, and we can make use of
this fact to define a signature defect invariant, as follows.
For any oriented 3-manifold M with a map ¢: M — BZ, we will define an
integer for each complex number z € S*. Since Q3(BZ) = 0, there exists a
4-manifold W with boundary M and a map ®: W — BZ extending the map
M — BZ on the boundary. Similarly to before, an element z € S* determines
a representation

a: Zm(W)] 2 z[z] £25 C.
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Consider the twisted homology H;(W;C%), and consider the intersection form
Aa (W) on the quotient Ho(W; C*)/im Ho(M; C*). Define the promised integer

o(M,p,z) :=c(Aa(W)) — a(W),

where o(W) is the ordinary signature of the intersection form on W.

The proof of the following proposition is known for the coefficient system Q(t),
e.g. [Pow16]. For the convenience of the reader, we sketch the key steps for an
adaptation to C®.

PROPOSITION 5.3.

(i) The intersection form Ao, (W) is nonsingular.
(i) The signature defect o(M,¢,z) is independent of the choice of 4-
manifold W .

Proof. The long exact sequence of the pair (W, 0W) = (W, M) gives rise to the
following commutative diagram

e H2(8W;(Ca) - HQ(W;(CG‘) - HQ(W, 8W;(Ca) ..

-1
\LPDW

H*(W;C®)

.
(Ha(W5 )",

where for a C-module P we denote its dual module by PV := Homc(P,C).
Since Poincaré-Lefschetz duality PDy, and the Kronecker pairing « are isomor-
phisms, we obtain an injective map Ho(W; C*)/im Ho(M;C®) — Ho(W;C*)V.
This map descends to

Aot Ho(W;C%)/im Ho(M;C®) — (Hy(W;C%)/im Hy(OW;C*))" ,
so that the diagram below commutes:

HQ(W; (CO‘)/lm HQ(M; Ca)% HQ(W; (Ca)v

(Hy(W;C®)/im Hy(OW;C*))" .

Consequently, the form )\, is nondegenerate, and so it is nonsingular since it
is a form over the field C.

We proceed with the second statement of the proposition, namely independence
of (M, ¢, z) on the choice of W. Suppose that we are given two 4-manifolds
W+, W, both with boundary 9W* = M, and a map ®*: W+ — BZ extend-
ing ¢: M — BZ. Temporarily, define the signature defects arising from the
two choices to be

oc(WE, 0%, 2) := o(Ae(WTF)) — o(WF).
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We will show that o(WT,®% 2) = o(W~,®7, 2), and thus that o(M, ¢, z) is
a well-defined integer, so our original notation was justified.

Glue W+ and W~ together along M, to obtain a closed manifold U, together
with a map ®: U — BZ. By Novikov additivity, we learn that

0. (U,®) :=0(\o(U)) —0(U) =c(WT, @, 2) —ac(W~,®7, 2).

This defect o, (U, ®) can be promoted to a bordism invariant o, : Q4(BZ) — Z,
see e.g. [Powl6, Proof of Lemma 3.2] and replace Q(t) coefficients with C*
coefficients.

Claim. The map o,: Q4(BZ) — Z is the zero map.

Let U be a closed 4-manifold together with a map ®: U — S, representing an
element of Q4(BZ). By the axioms of generalised homology theories, we have

Qu(8) = Q4(25°) 22 Q5(5°) = Q3(pt) = 0.

Thus an inclusion pt — S! induced an isomorphism Q4(pt) — 24(S?). So
(U, ®) is bordant over S! to a 4-manifold U’ with a null-homotopic map @' to
S1. In this case the local coefficient system C® is just the trivial representa-
tion C. Consequently, we have A\ (U’) = A(U’), so ¢,(U’,®’) = 0. By bordism
invariance, o, (U, ®) = 0, which completes the proof of the claim.

Now the independence of o(M, ®, z) on the choice of W follows from

0=0,(U®) =W, & 2)—a(W,®, 2).
O
Now that we have constructed an invariant, we need to relate it to the Levine-
Tristram signatures. Recall that L is an oriented link, that My, is the Seifert

surgery, and that we constructed a canonical map ¢: My — S', well-defined
up to homotopy.

LEMMA 5.4. Suppose that z € S*~{1} and let ¢: My — S* be the map defined
at the beginning of this section. Then we have

o(Myp,¢,z) =or(2).

Proof. Construct a 4-manifold with boundary My, as follows. Let F' be a con-
nected Seifert surface for L. Push the Seifert surface into D* and consider
its complement Vr := D*\vF. Note that if we cap F off with m 2-discs, we
obtain a closed surface. Let H be a 3-dimensional handlebody whose boundary
is this surface. Note that OV = X1 U F x S'. Then define
Wrp :=VrUpyxst H X St

Note that OWp = My. By [Ko89, pp. 538-9] and [COT04, Lemma 5.4], we
have that o(Wg) = 0 and \,(Wr) = (1 — 2)V + (1 — 2)VT. Therefore

o(A:(Wp)) —o(Wr)=0c((1—-2)V 4+ (1 - E)VT) = o(B(z)).
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6. CONCORDANCE INVARIANCE OF THE SIGNATURE

We start with a straightforward lemma, then we prove the final part of the
main theorem. Recall that the complement X and the Seifert surgery My, are
both equipped with a homotopy class of a map to S, or equivalently with a
cohomology class. For the link complement X, this class &, € HY(X;Z) is
characterised by the property that it sends each oriented meridian to 1.

LEMMA 6.1. Let L and J be concordant links. Their Seifert surgeries My, and
My are homology bordant over S*.

Proof. Denote the maps to S by ¢r,: My, — S* and ¢;: My — S', and denote
the corresponding cohomology classes by £, € HY(Mp,;Z) and &5 € HY (M ;7).
Define X, := S3~\vL and X; := S3\vJ. Let A C S3 x I be an embedding of
a disjoint union of annuli giving a concordance between L and J.

Fix a tubular neighbourhood vA = A x D? of the annulus A with a trivialisa-
tion. Denote Wy := 52 x I~vA, whose boundary consists of the union of X7,
X7, and a piece identified with the total space of the unit sphere bundle 4 x S!
of vA. As usual, we refer to a representative {pt} x S! for the S! factor in
A x St as a meridian of A. Note that the inclusions X; C W4 and X; C Wy
map the meridians in the link complements to the meridians in Wy4.

Claim. There exists a cohomology class €4 € H'(W4;Z) mapping each merid-
ian pa of A to 1.

This can be seen by the Mayer-Vietoris sequence
H'(vA;Z) © H (Wa; Z) — HY (OvA;Z) — H?*(S® x I Z) = 0,

in which the map H'(vA;Z) = Z™ — HY(OvA;Z) = (Z & Z)™ is given by
1~ (1,0) on each of the m summands. That is, the homology classes of the
meridians of 9vA = A x S! do not lie in the image of this surjective map,
so they must lie in the image of H'(W4;Z). This completes the proof of the
claim.

It follows that £4 is pulled back to the unique classes £ and &; that map
the meridians in the link complements to 1. Using the natural isomorphism
between the functors [—, S'] and H'(—;Z), find a map ¢w: Wa — S! that
restricts to the prescribed map ¢y U¢y: Xr LU X7 — S on the boundary.

Up to isotopy, there is a unique product structure on an annulus A = S x I.
Having fixed such a structure, we consider the manifold

m

Y = WaUaxs | [(D* x 8" x 1.

The gluing is done in such a way as to restrict on | | S* x St x {i}, for i = 0, 1,
to the gluing of the Seifert surgery on X, and X ;. By construction, this gives
a bordism between My and M.

Note that the map ¢y and the projection A x S — S glue together to give a
map ¢y : Y — S. Equipped with this map, (Y, ¢y ) is an S'-bordism between
(My,¢r) and (M, ).
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Finally, we assert that Y is a homology bordism. To see this, first observe,
as in the proof of Theorem 4.2, that W4 is a homology bordism from Xj to
X ;. Flagrantly, A x S! is a homology bordism from S* x S! to itself, and
L™(D? x S x I) is a homology bordism from | | D? x S! to itself. Gluing
two homology bordisms together along a homology bordism, with the same
maps on homology induced by the gluings for My, M; and Y, it follows easily
from the Mayer-Vietoris sequence and the five lemma that Y is a homology
bordism. O

THEOREM 6.2. Suppose that oriented m-component links L and J are concor-
dant and that z € S*~{1} is not a Knotennullstelle. Then or(z) = 0(z).

Proof. As in the statement of the theorem, suppose that z € S\ {1} is not a
Knotennullstelle. Let W, ; be a homology bordism between the Seifert surgeries
My and M;, whose existence is guaranteed by Lemma 6.1. Let W; be a 4-
manifold that gives a nullbordism of M ; over BZ, and define W, := Wr; U,
Wy.

The signature of the intersection form on Hy(Wp;C*)/Ha(Mp;C*), together
with the ordinary signature over Z, determines the signature o (z) by Sec-
tion 5. Similarly, the signature of the intersection form on the quotient
Hy(Wy; C*)/Hy(My; C*) and the ordinary signature of W determine the sig-
nature o;(z). By Lemma 3.1, we have homology isomorphisms

HQ(ML;(CQ) i) HQ(WL‘];(CO‘) and HQ(MJ;(CQ) i HQ(WLJ;(CQ).
It follows that every class in Ho(Wp; C*) has a representative in W, that
Hy(Wpr;C")/Ho(Mp; C*) = Ho(Wy; C*)/Ho(My; C*),

and that this isomorphism induces an isometry of the intersection forms. Thus
the twisted signatures of both intersection forms are equal. We needed that
z is not a Knotennullstelle in order to apply Lemma 3.1 in the preceding ar-
gument. The same argument over Z implies that the ordinary signatures also
coincide, that is o(Wr) = o(W;). Therefore o(My, ¢r1,,2) = o(My, ds, z), and
so or(z) = 05(z) by Lemma 5.4. Thus the Levine-Tristram signature at z is a
concordance invariant, as desired. O
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