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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. MILNOR FIBRATION AND MONODROMY. The complemenM of a degreen
complex hypersurface i@', {f = 0}, and the associated Milnor fibratioh,: M —

C*, first analysed by Milnor in his seminal bookd], attracted a lot of attention over
the years. Multiplication by exM) induces the geometric monodromy action on
the associateMilnor fiber F = f~1(1), h: F — F, and thealgebraic monodromy
action {h; : Hi(F,Q) — Hi(F,Q)}.

Computingh; is a major problem in the field, wheinhas a non-isolated singularity at
0. Even for the defining polynomial of a (central) complex égglane arrangement
Ain C' andi = 1, the answer is far from being clear. This case was tackleden
recent literature by many authors, who used a variety obtaale for instance’[)] for

a brief survey. In this paper, we focus mflection arrangementgassociated to finite
complex reflection groups.

It is well-known that every arrangement complemiht has the homotopy type of a
connected, finite CW-complex with torsion-free homologlipse first integral homol-
ogy groupHi1(M4,Z) = Z", comes endowed with a natural basis, given by meridian
loops around the hyperplanes.

It is also well-known that, for an arbitrary arrangemehth; induces &[Z]-module
decomposition,

(1) Hi(F4.Q) = D(Q[t]/®q(t))*,

d
where®y is thed-th cyclotomic polynomialgy(A) = 0if d f n, ande;(A) =n— 1.
See for instancell, (1.1)].
A pleasant feature of hyperplane arrangements is the rictbowtorial structure en-
coded by the associated intersection latti€e(.A), whose elements are the intersec-
tions of hyperplanes fromd, ranked by codimension and ordered by inclusion. In
this context, the open monodromy action problem takes thewimg more precise
form: are the multiplicitie®y(.4) combinatorial? If so, give a formula involving only
L.(A).

1.2. CHARACTERISTIC AND RESONANCE VARIETIES. Our approach to decompo-
sition (1) is topological, based on two types of jump loci, associée@W-complexes
having the properties recalled fdt4, and the interplay between them.

The complex characteristic varier(M), sitting inside the character tordg(M) :=
Hom(H1(M,Z),C*) = (C*)" is the locus of thosep € T(M) for which
dime Hi(M, C,) > g, whereC,, denotes the associated rank 1 local systerivion
Note that HoniH;(M, Z),C) = HY(M,C) = C", and denote by exp H'(M,C) —»
T(M) the natural exponential map. For an integee 1, letpg € T(M) be the
exponential of the diagonal cohomology class equa?’—téz, with respect to the
distinguishedz-basis. WherM = M4 is an arbitrary arrangement complement and
d > 1, itis well-known that

(2) ei(A) = dimg Hi(M4,C,,) .
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MODULAR EQUALITIES FOR REFLECTION ARRANGEMENTS 137

See for instancell, §2.3], and also §, Theorem 2.5 and Corollary 6.4] for more
general results of this type.

The resonance variet%(M,k) over a fieldk, sitting insideH*(M, k), is the locus

of thoseo € HY(M, k) for which dim. H'(H* (M, k), o) > g, whereo = denotes the
left multiplication byo in the cohomology ring. Wheh is the prime fieldF,, denote

by o, € H(M,Fp) the diagonal cohomology class equal to 1, with respect to the
distinguishedz-basis, and define the modutoAomoto-Betti numbéyy

3) Bp(M) = dimz, HY(H* (M, Fp), o7p#)

WhenM = M, is an arrangement complement, we will replddeby A in the
notation.

By a celebrated theorem of Orlik and Solomdri][ the cohomology ring oM 4 is

combinatorial. More preciselg,(A) may be computed fronf <>(.A), as well as
Z4(A, k), for all g andk.

1.3. MODULAR BOUNDS. It follows from Theorem 11.3in19] that

4) eps(A) < Bp(A),forall s> 1,

when A is an arbitrary arrangement.

Actually, the above modular bound holds for all CW-compkegensidered i§1.2,
with the multiplicity replaced by the value from equali)(and is in general strict,
in the broader context. Our first main result says that theutamdbound {) becomes
an equality, for reflection arrangements and 1.

THEOREM 1.1 Let. A be a complex reflection arrangement. Thgfué) = Bp(A),
for all primes p. In particular, g(A) is determined by <»(A).

1.4. AOMOTO-BETTI NUMBERS FOR REFLECTION ARRANGEMENTS. Reflection
arrangements have a distinguished history, going backrassfdordan’s work from
1878 on the symmetry group of the famous Hessian configuratforelated open
problem is whether thélessian arrangemeris the only arrangement supporting a
4-net. In Theoreni.2(2) below, we solve this problem for reflection arrangements.
Finite complex reflection groups have been classified by Bdreband Todd]”] (see
also [7], [17]). Each such groufs gives rise to the complex reflection arrangement
A(G), consisting of the fixed points of all reflections@ Among them, we have
the monomial arrangementdé(m m1) in C' (I > 2), with defining polynomials
Mi<i<j<i ("=2") (m = 1), and full monomial arrangement(m, 1,1) in c(1=2),
defined byz ...z - h<i<j< (" —2Z") (M > 2). We may now state our second main
result.

THEOREM 1.2 For a complex reflection arrangemeptt of rank at least, the fol-
lowing hold.
(1) If p > 3, thenBp(A) = 0.
(2) B2(A) # 0 « B2(A) = 2 « A supports ad-net< A is the Hessian
arrangement.
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138 A.D. MAciNic, S. Parabpima, C.R. POPESCU

(3) The only cases whefy(.A) # 0 are: A(m, 1, 3) with m= 1 (mod3), where
Bs = 1, A(mm, 3) with m > 2, wheregz = 1if m # 0 (mod 3) and
otherwise3; = 2; . A(m, m, 4), wheregs = 1.

(4) In particular, Bp(A) < 2, for all primes p.

We imposed the rank condition since the Aomoto-Betti nuralb@r arrangements of
rank at most 2 are known (see for instan€]]. Moreover, whend = A(m m,2)
with m = 0 (mod p) it is easy to see tha,(A) = m— 2. Thus, the conclusion of
Theoreml.2(4) no longer holds, fom > 4.

The resonance varietiﬁ(}(.A, C) are quite well-understood, due to work by Falk,
Libgober, Marco-Buzunariz and Yuzvinsky; see]], [13]. There are results in pos-
itive characteristic which show afé&rent qualitative behaviour of resonance in this
case; see for instance Fal{y[ The complete picture ovéft, largely remains a mys-
tery. Our Theorem§.2and1.1, together with recent vanishing results due to Dimca
and Sticlaru (], [7]), verify the strong modular conjecture from(]], for the impor-
tant class of complex reflection arrangements.

1.5. A COMBINATORIAL NON-TRIVIALITY TEST. Dimca, Ibadula and Macinic
asked in ] the following natural question: il > 1 andey(A) # 0, does this
imply thatpgq € exp #;(A,C)? A positive answer (for alif) would imply that the
non-triviality of h; is combinatorial, since the converse implication is knofen all
values ofd.

THEOREM 1.3. If A is a complex reflection arrangement, then the above question
has a positive answer, f@& < d < 4.

We derive Theorem.3and Theorem..1from Theoreml.2with the aid of a general
result (proved in Theorem.3) that relates combinatorial structures on arrangements
satisfying the key multinet axiom introduced by Falk-Yuzsky in [L0] to the al-
gebraic monodromy action and the Aomoto-Betti numbers chrmangement. The
tools from our paper also enable us to give a complete, coattduiial description in
Proposition4.4for the monodromy action oH; (F 4, Q), in the case of full monomial
arrangements of rank 3 and 4. Related results may be fouridjiafd [20]. By The-
oremsl.1, 1.2and [5, 7], this complete, combinatorial description holds for &nduy
complex reflection arrangements.

2. NON-EXCEPTIONAL REFLECTION ARRANGEMENTS

We first compute the Aomoto-Betti numbers of monomial antmfdnomial arrange-
ments.

2.1. THE CLASSIFICATION. (cf. [22],[2], [17])

A finite reflection groufis decomposes as a product of irreducible factors of the same
kind. At the level of arrangementsi(G x G’) is the product4(G) x A(G'), and

the corresponding complements satisfyG x G') = M(G) x M(G’). (Whenever
convenient, we will abbreviate notation and replat&) by G, when speaking about
associated objects.)
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The irreducible reflection arrangements of rank at least rBpse the monomial
and full monomial arrangementgl(m,m,l) (m > 2,1 > 3orm = 1,1 > 4) and
A(m, 1,1) (I > 3), plus the exceptional arrangememtéG,z) — A(Gs7). The Hessian
arrangement isA(Gzs). See for instancel[7] for the notations.

2.2. VANISHING CRITERIA. Given an arbitrary arrangemept and anr—flat X e
Li(A), setAx = {H € A|H 2 X}, and define the multiplicity oX to be equal to

| Ax|.

Using the distinguishe@-basis, we identify an elemente H(M4, Fp) with the
family {nu € Fp}rea. We denote byZ,(A) € HY(M 4, F,) the kernel ofrp .

Definition (3) implies thaiBy(A) = dimg, Z,(A) — 1. Our computations are based on
the following well-known result (see e.g2(]).

LEMMA 2.1 An elemeny belongs to g(.A) if and only if, for any Xe £(.A),

DHea M =0 if |Ax|=0 (mod p)
nH = T]HI,V H, H' e .Ax if |Ax| $é 0 (mod p)

Clearly,Bp(A) = 0if and only ifp € Zy(.A) implies thaty is constant. A first useful
vanishing criterion is due to Yuzvinsky.

LEmMMA 2.2 ([29]) If | A| # 0(mod p), therBp(A) = 0.
A second convenient situation is the following.

LEMMA 2.3 Assume thatd = A; x As.
(1) Hi(M4,C,,) =0, foralld > 1.
(2) Bp(A) = 0, for all primes p.

Proof. Assuming the contrary, we infer fromL§, Proposition 13.1] thapy €
VMg, x Moy,) = {1} x P11 (My,) U 1 (My,) x {1}, respectivelyrp € 23 (M4, x
M,,Fp) = {0} x Z1(Ma,, Fp) U Z1(My,,Fp) x {0}, in contradiction with the fact

that all coordinates qdq (respectivelyry) are diterent from 1 (respectively 0). O

By Lemma2.3(2), we only need to compufé,(G) for an irreducible complex reflec-
tion groupG.

To state the third vanishing criterion, we need to introdoedain simple graphs,
associated to an arrangemehtand an integek > 2, with vertex setd. The edges
of T'k(A) are defined by the conditiopdn~n/| # 0 (modk), for k > 2, and by
| An~t| is either odd or equal to 2, fde = 2. The defining property foF (.A)
is |An~n/| = k. Note thatl',)(A) is a subgraph of,(A), for all primesp. The
equivalence relation ad associated to the edge pathd'efA), respectively' () (A),
will be denoted by~ respectively~ ).

ExaMPLE 2.4. Let A = A(1,1,1) be the braid arrangement@, with hyperplanes
labeled by the two-element subsets{@f...,I}. Forij # st the multiplicity of the
2—flat determined by the hyperplarges= z; andzs = z is 2if |{i, j, s t}| = 4 and 3 if
l{i, ], s t}| = 3. Letp be a prime. It follows from the above definition tHg{(.A) is a
complete graph (with full edge set)if# 3. Forp = 3,ij andstare connected by an
edge ofl'3(A) ifand only if |{i, j, s, t}| = 4. We infer that the graphz(.A) is discrete
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(with no edges) wheh< 3, has 3 connected components when4 (see the picture
of the corresponding graph below), and is connected wheBb.

34 24 23

I'3(A(1,1,4)):

12 13 14
We obtain the following immediate consequences of Lerria

LeEMmMA 2.5, Each of the properties below implies thf(A) = 0.

(1) The graphy(.A) is connected.
(2) The graphl(;)(A) is connected.
(3) Forall X e Lo(A), pt |.Ax|

2.3. INTERSECTION LATTICES. The Aomoto-Betti numbers ford(1,1,1) were
computed in {4]. They verify all statements from Theoremis? and1.1. Hence,
we may suppose from now on that> 2.

We need to describ€<,(.A). It will be convenient to label the various hyperplanes as
follows. Setw = exp(z”%’_l), (Hi)z =0forall1<i < I, and(Hij~) z —w®z; = 0,
for1 <i < j <lande € Z/mz. We go on by listing the 2-flats (identified with the
corresponding subarrangemestg).

Case I: A(m1,1),1>4:

la: {Hi, Hj, Hije (@ € Z/mZ)}, with multiplicity m+ 2;

lp: {Hija, ij/;, Hixe+s}, with multiplicity 3;

lc: {Hije, Hire}, with multiplicity 2;

la: {Hi, Hje}, with multiplicity 2.

Casg Il: A(mm1),| > 4 :types } and k, plus{Hij« (@ € Z/mZ)}, with multi-
plicity m.

Cask lll: A(m,1,3) : types k, Ip and k.

CAsE IV: A(mm,3) : types |, and II.

2.4. Bp-VANISHING. We will use Lemma2.5to treat the cases wheh(.A) = 0 in
the non-exceptional families. To simplify things, we suggeH from notation and
identify the hyperplanes with their labelsandij®.

We claim that, forA = A(m, 11) with | > 4,T,(A) is connected. Indeed, given
i < jwe may finch < kwithi, j, h, kdistinct. Hencei ~ ) hi° ~(2) Jandij® ~) kK,
which proves connectivity. Similar arguments lead to thieofang conclusions. If
A = Am 1,1) with | = 3 andp # 3, thenI',(A) is connected; fop = 3 and
m # 1 (mod 3,T3(.A) is connected. The remaining full monomial Aomoto-Betti
numbersps(m, 1, 3) with m= 1 (mod 3), will be computed later on.

If A = A(mm]l) with| > 5, thenl'(3(A) is connected. For = 3,4 andp #
3,T'p(A) is connected. So, for monomial arrangements, @hlyn ranks 3 and 4
remains to be calculated.
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2.5. THE REMAINING NON-EXCEPTIONAL CASES. A mod 3 cocycle; € Z3(A) is
a family of elements o3, 77 andz;j-, satisfying the equations from Lemrgel, for
anyX e Ly(A).

Case A = A(m, 1,3) with m= 1(mod 3.

The equations coming from 2-flats of typeday thaty. = n;, wherei is the third
element of{1, 2, 3}. The equations of typg become equivalent tg; + n» + 13 = 0,
while type k equations say thaf + n; + mp = 0, for alli # j # k. We infer that
B3(m, 1,3) = 1, as asserted in Theorei?.

Case A = A(m,m, 4).

The equations of type kay thatyij. = nij, andnss = 112,124 = M13, 723 = M14. TYpE
I, equations reduce then t@, + 1713 + 714 = 0, while type Il conditions follow from
nije = mij. Again,Bz(m m,4) = 1, as claimed.

Case A = A(m,m, 3) with m = 0(mod 3.

The equations of type Il say thaf. = nij, and the typed conditions then reduce to
n12 + n23 + mz = 0. This shows thggs(m, m, 3) = 1, as asserted.

Case A = A(m m, 3) with m = 3n.

Setnix = @y, 723 = by, ma = C,. With this notation, the equations of typgdre
equivalent to the system

(5) ay +bs+Cuyp=0,Ya,BeZ/MZ,

while the conditions of type Il read

(6) da,=>b=>c =0

We first solve the systenb), as follows. It implies that, + b = a, + b, if
a+B = o’ +p, in particulaa, —ag = b,—bo = d,, forall e, andd, +ds = d, +dg, if
a+p = o +p. We infer thatd, = ad;, for all . Hencea, = ag+ady, b, = bg+ad;
andc, = —ap— by — ad;, which solves the systerd); In particular, its solution space
is 3-dimensional.

Finally, it is an easy matter to check th&) (= (6), sincem = 3n. Therefore,
B3(3n,3n,3) = 2, as asserted.

This proves Theorerh.2for non-exceptional reflection arrangements.

3. EXCEPTIONAL REFLECTION ARRANGEMENTS

We finish the proof of Theorerh.2, by computing the Aomoto-Betti numbers of the
exceptional complex reflection arrangements of rank at Ba3,3 — G37.

3.1. THE GROUPS Gg1, Gzp, Ggzs. CasE A = A(Ggzy). The hyperplanes ofl live
in C*. Their defining equations are as follows (se€]]. Setw = exp(z”Tﬁ). The
hyperplanes ofd are:

e (H)z=0(1<i<4);

o (Hijs) z —dPzy=0(1<i<|<4 BeZ/Az);
o (Ha) z1 + Dosics 0"z = 0 (@ = (@2, 03,04) € (Z/AZ)% 02+ a3+ a4 =
0 (mod 2).
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By Lemma2.52), itis enough to show thdt;)(Gs;) is connected. This can be seen
as follows. Clearly, the 2-flatly n Hjjs has multiplicity 2, when # j # k. This
implies thati ~ ;) j ~( kif, forall1<i<j<4,1<k<h<4andgeZ/4Z.
Given anyHg, it is not hard to see that the multiplicity &f; n Hix, is 2. This proves
connectivity, as claimed.

CasE A = A(Gzp). Setw = exp(z”‘?{jl). The arrangemen#l consists of the
following hyperplanes it (see P4)):

(H)z=0(1<i<4);

(His) 22 + w23 + P74 = 0;

(How) 21 + w23 — P74 = 0;

(Haw) 21 — w2 + P24 = 0;

(Hg) 21 + 02 — P23 = 0 (0, B € Z/3Z).

Clearly, the 2-flatd; n H; (i # j) andH; n Hi,s have multiplicity 2. This shows that
I'(2)(Gs2) is connected and we are done.

Case A = A(Gs3). Here,w = exp(z”‘,o{__l) and the hyperplanes (i) are as
follows (see P, 21]):

o (Hip)z —fzj=0(1<i< <4 BeZ/3Z)

. (Hg) lei<4wai25+25+26 =0 (5 = (a/l,ag, as, (1’4) € (Z/3Z)4, Zai = 0)
Plainly,ijf ~ ) kh® ~ ) ij#’, for all g, 8" (wherei # j # k # h). Like in the Case
G = Gz, it can be checked thidz n H;js has multiplicity 2, if3 = «j — a;. We infer
thatT’ ;) (Gzs) is connected, and we are done.

3.2. MORE VANISHING CRITERIA. We will no longer need defining equations to
settle the remaining cases. We will use instead a couplevaf/aaishing arguments.
For the beginning, let us recall from{, pp. 224-225] the following very useful prop-
erties of reflection groups and arrangements, derived frd@yaesult of Steinberg
[23]. For any complex reflection group and anyX € L, (A(G)), the fixer subgroup
Gx = {ge G| gx = X, Vxe X} is a reflection group, and (G)x = .A(Gx) is again

a reflection arrangement, of rank By the construction of4(G), the groupG acts
on the arrangemed(G), hence on the intersection lattick (G). Let us denote by
Oy theG-orbit of X € L(G). Let TypgX) be the isomorphism type of the reflection
groupGy. It follows from [17, Lemma 6.88] that the type is constant on each orbit
Ox. Moreover, Table C from1[7] gives|.A(G)| and the orbit partition o, (G) for

all exceptional groups, in terms of types of orbits.

This leads to the quick computation of the sets

Z(G) ;= {pprime| 3 X e L(G) such thai.A(Gx)| = 0 (mod p)}

In particular,Z(G) < {2, 3,5}, for every exceptional arrangement of rank at least 3.
We infer from Lemma2.5(3) thatB,(G) = 0, if p > 5. Hence, we may suppose from
now on thatp < 5.

For an arbitrary arrangemest, H € .4 and a primep, we define

7) mp(H) =1+ ) (| Ax| - 1).
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where the sum is taken over thoses £5(.A) such thatX < H and|.Ax| # 0 (mod

p)-

The numbers fromq) may be extracted from Table C ifiv{], for exceptional reflection
arrangements of rank at least 3. This is based on the foltp\fant, valid for an
arbitrary reflection grou. ForX,Y € £L(G), letu(X, Y) be the number o € L(G)
such thatz € Oy andZ < X. Clearly, this number depends only @ and Oy.
The valuesu(H, X) may be found in Table C, for all orbit types corresponding to
H e £1(G) andX € L,(G).

LeEMMA 3.1. For an arrangementd and a prime p, the following hold.

(1) Ifmp(H) > \A;I forallH € A, theng,(A) = 0.

(2) If mp(H) > |—“3‘,” for all H € A and.4 has no rank 2 flats of multiplicity pr
with r > 1, thengp(A) = 0.

Proof. If Bp(A) # 0, there is a non-constant functigre ]F“,j‘ satisfying all equations
from Lemma2.1 Fix H € A and setyy = . We claim thatj{n = a}| > mp(H).
Indeed, ifX € L£5(.A) is contained inH and|.Ax| # 0 (mod p), theny must have
the constant value on Ax. An easy count of all these hyperplanes gives the claimed
inequality.

In Part (1), this implies that; must be constant, a contradiction. In P&t (ve infer
thatn has only two distinct values. By adding constant functiomd maultiplying by
non-zero elements ifp,, we may assume that these valuesmgre= 0 andny: = 1.

By LemmaZ2.], the flatX = H n H’ has multiplicity p - r, imposing the condition

Y kea, M = 0. Since necessarily= 1, we arrive again at a contradiction. m]

3.3. INDUCTION ON RANK. We start with a couple of general considerations. A
subarrangemertf < A is calledline-closed inA (see the first definition from3]
Definition 1.1]) if Bx = Ax, for all X € L,(B). This property implies that the
restriction map]F;)“ — ]Fff, sendsZ,(A) into Zy(B). Clearly, Ay is line-closed in
A, foranyY e L(A).

LeEMmMA 3.2. Let G be a complex reflection group. Assume thatr < rankA(G))
and Bp(A(G’')) = 0, for all irreducible groups G e TypeL:(A(G))). Then
Bp(A(G)) = 0.

Proof. Assuming the contrary, there exigte Z,(G) andH;, H, € A(G) such that

nH, # NMH,. From our assumption on we may findHs, ..., H; € A(G) such that

X =HinHy---nH € L;/(G). SetB = A(G)x = A(Gx). We deduce that
Bp(Gx) # 0. If Gx is reducible, this contradicts Lemn2a3. Otherwise, our second
assumption is violated. m|

3.4. THE RANK 3 CASE. The rank 3 exceptional groups arl, G4, G2s, G2 and
Gy7. Table C from [L7] provides the following information on each group:

o Z(G) =1{2,3,5}; {2,3}; {2}; {2,5}; {2,3,5};
e |A(G)| = 15;21;12; 21; 45.
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By Lemma2.2and Lemma.5(3), the only primesp which might give8,(G) # 0 are
as follows:

3,5 (Hs); 3(G24); 2(Ggzs); — (Gze); 3,5 (Gar).
Using Lemma3.1(1), we obtaings(Hs) = B3(G24) = B3(Gz7) = B5(G27) = 0, and
Lemma3.1(2) givesps(Hs) = 0. Finally,82(G2s) = 2, cf. [20]. Thus, Theoreni.2
is proved in this case. Indeed, the Hessian arrangesi@Bis) supports a 4-net (see
e.g. [26]). This implies thai, # 0, by [2(]; the other implications from Theorem
1.2(2) are obvious.
Applying Lemma3.2for r = 3 andp = 5, we also infer that Theorefh2(1) holds
for all complex reflection arrangements of rank at least 3isTkve only need to show
thatB,(G) = B3(G) = 0, whenG is exceptional of rank at least 4, in order to complete
the proof of Theorem.2

3.5. THE REMAINING CASES. The only rank 5 exceptional arrangemenGig, for
which we know from§3.1that all3, vanish. By the computations from Sectidsthe
same thing happens for non-exceptional irreducible ararants of rank 5. Lemma
3.2, applied forr = 5, guarantees then that we may reduce our proof to the rank 4
case. Here, the list & = F4, Gy, Ha, G31, Gs2, and the last two groups were treated
in §3.1

CASE G = F4. The irreducible rank 3 types are listed in Table C frami{ B; and
Cs; in both cases, the arrangeme#itG’) is A(2, 1, 3), for which all g, vanish, cf.
Section2. We may conclude by resorting to Lem@2forr = 3.

CASE G = Gyg. The list of irreducible rank 3 types i€’ = Ag, B3, G(4, 4, 3). Taking

r = 3andp = 2 in Lemma3.2, we deduce from SectiohthatB,(Gz9) = 0. Since

| A(Gz9)| = 40,B3(Gz29) = 0, by Lemma2.2.

CASE G = Hy. The irreducible types of 3(G) are: G’ = Ag, Hz. Again by Lemma
3.2 and previous computations;(Hs) = 0. Finally,83(H4) = 0, as follows from
Lemma3.1(1).

The proof of Theorem..2is complete.

4. MULTINETS AND JUMP LOCI

In this section we prove Theorerisl and1.3. Along the way, we establish a useful
general result that relates combinatorial structures @mgements satisfying the main
multinet axiom to the algebraic monodromy of its Milnor fiboa and its Aomoto-
Betti numbers.

4.1. MULTINETS AND WEIGHTED PARTITIONS. The work of Falk and Yuzvin-
sky from [L(] gives, among other things, a description of the resonaaciety of
an arrangement, %3 (.A,C), in terms ofmultinetson the associated matroid. A
k—multinetonl<,(A) is a partitionlI with k > 3 non-empty blocksA = | |, Ao
together with a functionn : A — Z., satisfying certain axioms. The most impor-
tant is the following:

For anyH € A, andH’ € Az with  # 8, and every € [K],

(8) Ny = Z mg

KE.AY ﬁAx

DOCUMENTA MATHEMATICA 22 (2017) 135-150



MODULAR EQUALITIES FOR REFLECTION ARRANGEMENTS 145

is independent of, whereX = H n H' € L,(A).
LetII be a partition of4 with k > 3 non-empty blocks, as above. Let: A — Z be
an assignment of arbitrary integer weights to the hypegdari.A.

DEFINITION 4.1 The pair.#” = (I, m) is aweighted k-partitionif axiom (8) is
satisfied. We will say that” is h-reducedh > 1) if mkx = 1(modh), forall K € A.

The underlying partition of &-multinet, together with its positive weight function, is
a weighted-partition. Moreover, the usual notion of reduced multic@tresponds to
h=1.

We will need a result from/(] related to axiom&). To recollect it, we start with a few
notations. SeH 4 = Hi(M_4,Z) and denote byay }ne 4 the distinguishe@-basis.
Let S beCP\{k points and setHs = H1(S,Z) = Z — sparc,|a € [K])/ 2ae[K] Cos
wherec, is the class of a small loop i& around the poind.

Let uyg : A*HY(M4 Z) — HZ(M4, Z) be the cup product. Recalling from ]
thatH*® (M, Z) has no torsion, we denote By, : Ho(M4,Z) — AZ?H theZ-dual
comultiplication map.

The next result improves Theorem 2.4 froi]], in several ways. The hypothesis of
Proposition4.2is reduced to the key axiofiii ) from [10, Definition 2.1]. The weight
functionm may take arbitrary integer values, while in(] positivity plays a crucial
role. The conclusion inl[(] is that im(¢ ®k)* < H(M4,k) is an isotropic subspace,
for a characteristic O fiel# (in positive characteristic, an additional conditionraris
needed in J0]), while Propositiord.2 gives the conclusion ové&. For the reader’s
convenience, we include the proof.

PROPOSITION 4.2 ([2(]). Let.#" = (I, m) be a weighted k-partition. TheA?¢ o
V4 = 0, where¢ : H4y — Hs sends g to myc,, for H € A,. Therefore,u 4 o
A?¢* = 0, by takingz-duals.

Proof. Leth(.A) be thez-form of the holonomy Lie algebra o4, appearing in Propo-
sition 5.2 from p(]. By definition, this is the graded-Lie algebra quotient of the free
Z-Lie algebra generated by 4, L*(H_4), graded by bracket length, by the graded Lie
ideal generated by iV 4) = A?H4, where A?H_4 is identified withL.2(H ) via
the Lie bracket. LeL*(¢) : L*(H4) — L°*(Hs) be the graded-Lie algebra map
extendingp. Our claim says that* (¢) factors througty(.A).

To check this, we recall fron?[), (30)] that the defining Lie relations 9f.A) are:

>l la.a], for XeLp(A) and Le Ax.
KE.AX

Thus, we have to show thgY, . 4 ¢(ak).#(aL)] = 0 € L?(Hs).

There are two cases to consider. Whéis mono-coloured, i.e Ax < A, for some
a € [K], by constructions(ax) € Z - ¢,, for all K € Ax, and we are done. Other-
wise, X = H n H’, with H € A,, H € Az ande # B. Again by construction,
Dikedy D(ak) = 2epg (Zikea, ~a, MK )Ty, Which equalsix(3,¢pq Cy), by axiom @).
This implies tha . 4 ¢#(ak) = 0 € L*(Hs), by the definition ofHs, which com-
pletes the proof. m|
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4.2. RELATING WEIGHTED PARTITIONS TO JUMP LOCI. We are now ready to
state our result, keeping the previous notation.

THEOREM 4.3 Assume thaty” = (I1, m) is a k-reduced weighted k-partition. Then
the following hold, for all divisors [ of k with p prime and &> 1.

(1) pa(A) € exp Z}(A,C), in particular g;(A) > 0.

(2) Bp(A) #0.

Proof. Part @). Since the weighted partition isreduced ang|k, ¢ ®k is surjective,

by construction, folk = F, andC. It follows from Proposition4.2 that im¢ ®
k)* € HY(M4,k) is a(k — 1)-dimensional subspace, isotropic with respect to the cup
product. The linear map sending eaghto 1 € F, defines an element ¢1(S, F,),
denotedr,(S). Clearly,¢*(op(S)) = op(A), since.s is in particularp-reduced.
By definition (3), Bp(.A) # 0 as claimed, sincke > 3.

Part (). Note thaty : H4 — Hs induces homomorphisms® : T(S) — T(My4)
and¢* : HY(S,C) — H(My, C), compatible with the surjective exponential maps
of S andM_4. The map sending eaat) to exqz”T‘/’_l) defines an element of the
character torugek(S) € T(S). Plainly, ¢*(ok(S)) = pk(A), since./" is k-reduced.
We also havepx)¥d = pq, for bothS and A, since we assumed thdtdividesk.
Hence ¢*(pda(S)) = pa(A) € exp ¢*(HL(S,C)) < exp #1(A,C), where the last
inclusion follows from the argument in Pag)( Indeed, we know thag* (H(S, C))

is an isotropic subspace (M, C), of dimension at least 2, and we may simply use
the definition of#}. The conclusiores(.4) > 0 is a direct consequence of equality
(2), since it is well-known that exp#1(A,C) < 7} (My4); see e.g. §, Theorem D]
for a more general result. m|

4.3. REDUCED WEIGHTED PARTITIONS ON COMPLEX REFLECTION ARRANGE-
MENTS. We begin the proof of Theoreh.3. Let A be a complex reflection ar-
rangement and assuneg(.4) > 0, with 2 < d < 4. We will show thatpy(A) €
exp %%(A, C) with the aid of Theorerd.3(1), which requires the existence of a cer-
tain weighted partition od.

An easy preliminary remark is that the question frefdlways has a positive answer,
for any arrangementl of rank at most 2. To see this, note first that the assumption
es(A) # 0is equivalent tpg € #;1(M4), by equality ). When rankA) < 2, it

is known that/;}(M4) = exp %3 (A,C), so the conclusion follows trivially. Conse-
quently, we may also suppose that the rank is at least 3. Qotllee handey(.A) > 0
andd = p® together imply, via the modular bound)( thatB,(.4) > 0. Therefore,

A must be either the Hessian arrangement, or one of the amreerge from Theorem
1.2(3). To apply Theorerd.3(1), we need to describe suitable weighted partitions on
these arrangements, in each case.

The Hessian arrangement supports a reduced 4-multinag{ct 4-net). The mono-
mial arrangemen# (m, m, 3) has a reduced 3-multinet (in fact, a 3-net), as noted in
(10

A (non-reduced) 3-multinet on the full monomial arrangemdiim, 1, 3) was con-
structed in [L0]. It is immediate to check that the weighted partition agsed to this
multinet is 3-reduced, whem = 1(mod 3).
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The last case isA = A(m m 4), with hyperplanegHij.) z — w*z; = 0, where

1<i< <4 pueZ/Mandw = exp(z”T‘/’_l). We define a partitiofil with three

blocks,{Hij«, Hkw | 1, v € Z/mz}, and setn = 1 on A. Itis straightforward to verify
axiom (8) by using the description of 2-flats given§@.3. (Actually, this is a 3-net on
L<2(A).)

4.4. PROOF OF THEOREM 1.3 COMPLETED. In caseAd = A(Gys), d must be
2 or 4. We may takd& = 4 in Theorem4.3to obtain the desired conclusion. The
remaining cases, described in Theor&riA3), lead tod = 3. Takingk = 3, we
conclude as before. O

4.5. PROOF OF THEOREM 1.1. We may suppose that rafik) > 3, since oth-
erwise the conclusion is known (se®&4[ p. 773]). By the modular bound!Y and
Theoreml.2, e;(A) = Bp(A), when A is not A(Gys) or one of the arrangements
listed in Theoreni.2(3). Moreover, we have to verify the conclusion only foe= 2
(in caseA(Ggs)) or for p = 3 (in the remaining cases).

The equalityex(Gas) = B2(Gas) = 2 is well-known (see e.g.2[]). When A is not
A(m,m, 3) with m = 0 (mod 3), we know tha3;(.4) = 1. In these cases, we may
use the 3-reduced weighted 3-partitions fr§n3, for d = k = 3, exactly as ir§4.4,
to obtain thaies(.4) > 0. Now we are done, since the modular boud)dfplies that
es(A) < 1.

The last cased = .A(m,m, 3) with m = 3nandp = 3, whengz(A) = 2, requires a
more careful treatment.

The (relabeled) hyperplanesdfare{Hix, Hyy, His— | @, B,y € Z/mZ}. We recall
from §2.3the two types of 2-flats{H;j. | @ € Z/mZ} and{H1», Hyz, His—} with
a+pB+y=0.

We have to show thas(.A) > 2, in order to finish the proof. To this end, we need
two reduced weighted 3-partitions oh The first one,/", is constructed inl[(]. The
blocks of the partitiorII are given by{Hij« | « € Z/mMZ}1<i<j<3. The blocks of the
second one,/”, are defined by{Hij. | 1 <i < j < 3, = r(mod 3},cr,, With
replaced by-a when{i, j} = {1, 3}.

Let us check axiomq) for .4”". The 2-flatsX appearing in axiomd) clearly coincide
with thoseAx that contain two hyperplanes withfirent colours with respect 1@
ForX = {Hij-| @ € Z/mZ} we find thathx = n. ForX = {Hi», Hyz, Hiz—} with
a + B +vy = 0, the condition on colours translatesat@ 8 # y(mod 3), and implies
thatny = 1. Hencdl’ defines a reduced weighted 3-partition?’.

Consider the two (surjective) homomorphisms from Propmsi¢.2, ¢,¢" : Hq —
Hs. Clearly,¢*T(S) = exp ¢*H(S,C) is a positive dimensional subtorus®fM 4),
and similarly forg’. Moreoverg*T(S) < ¥;}(M.), sincep*H(S,C) € H(M 4, C)
is isotropic of dimension 2, hence contained#(A, C), and likewise fok’. There-
fore, we may find two irreducible components 6f(M,), W and W', such that
¢*T(S) € W and¢™*T(S) € W'. On the other handy3(A) € W n W, by the
argument from the proof of Theorefn3(1).
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In this situation, it follows from a result of Artal Bartol&;ogolludo and Matei ],
Proposition 6.9] thaps(A) € 7,H(My), if W = W'. Hencegs(A) > 2, by equality
(2), and we are done.

Suppose then thav = W’. We know from [L(] that actuallyW = ¢*T(S), since
¢ comes from a 3-net. Taking tangent spaces at the origriT{M 4), we infer that
#'*H(S,C) € ¢*H(S,C).

We identify HY(M 4, C) with C4, using the distinguishe@-basis. In this way, the
subspace*H(S, C) (respectivelyy’*H(S, C)) is identified with the subset of those
elementsg) e CA (respectively;’ e C4) taking the constant valuesb, ¢ (respectively
a, b/, ¢’) on the blocks ofT1 (respectivelfT’), wherea+b+c = & +b'+¢’ = 0. Now,
it is an easy matter to check thatH(S, C) n ¢"*H1(S,C) = 0. This contradiction
finishes the proof of Theorem 1 O

4.6. FULL MONODROMY ACTION. It follows from decomposition) that the char-
acteristic polynomiah 4(t) = (t — 1)~ _g,®q(t)%) encodes the full mon-
odromy action orH; (F 4, Q).

The approach via modular bounds works only for prime powenodoomy multi-
plicities, eps(.A). One way to avoid this inconvenience is to impose restrigtion
multiplicities of 2-flats, like in (] for instance, to arrive at full monodromy com-
putations. Unfortunately, as we saw §8.3 arbitrarily high flat multiplicities may
appear for non-exceptional complex reflection arrangesaent

Even in this kind of situation, there is hope related to tHe®@ng well-known van-
ishing criterion (see e.g.1f]): if d t | Ax| for any X € £3(.A), theney(A) = 0.
It turns out that this works for full monomial arrangementsmall rank. The result
below verifies in particular the strong form of the conjeettrom [20].

PROPOSITION 4.4 For A = A(m 1,1), with 1 = 30r4, Ag(t) = (t — )Mt +
t+ 1), ifl = 3and m= 1(mod3), andA4(t) = (t — 1)I-1, otherwise.

Proof. We have to computey(.A) for all divisorsd > 1 of | A|. If dis prime, this was
done in Theorem.1and Theoreni.2 It follows from §2.3that the 2-flats of4 have
multiplicities 2 3orm+2, | A| = 3(m+1) forl = 3and|.A| = 2(3m+2) forl = 4. Ifd

is not prime anay(A) # 0, the vanishing criterion forces = —2 (mod d). Writing
that|A| = 0 (mod d), we obtain forl = 3 that 3= 0 (mod d), a contradiction,
and 8= 0 (mod d), forl = 4. In the second case, the modular bound implies that
B2(A) > 0, contradicting Theorerh.2(2). o
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