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Introduction

Limit linear series were introduced by Eisenbud and Harris [EH86] in the early
eighties and have since been used extensively as a very effective tool in dealing
with a variety of problems related to moduli spaces of curves and Jacobians.
This theory is applicable to any curve of compact type, which, by definition,
is a curve whose dual graph has no loops or, equivalently, whose Jacobian is
compact. Shortly after the introduction of limit linear series, Welters pointed
out in [Wel85] that chains of elliptic curves are very well behaved in terms of
their limit linear series. Welters remarked that, even in positive characteristic,
chains of elliptic curves provide straightforward proofs of the basic results in
Brill-Noether theory (see [CT, Section 2] for a proof of the Gieseker-Petri The-
orem using these curves). Since then, chains of elliptic curves have been used
mostly to tackle problems in higher rank Brill-Noether theory — an account
can be found in [Tei11] — and more recently again on the classical theory (see,
for instance, [Pfl]).
In this paper we do the following:

(1) We show that, for a chain of elliptic curves, the Brill-Noether locus is
reducible with components explicitly described and in correspondence with
fillings of a certain Young Tableaux.
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(2) We show that, for a chain of loops, the tropical Brill-Noether locus is
reducible with components corresponding to fillings of a certain Young
Tableaux.

(3) We define effective limit linear series and show they are equivalent, in the
refined case, to the traditional limit linear series.

(4) We establish a comparison between the limit linear series point of view and
the tropical point of view.

Our results on (1) (see Section 1) reduce many algebro-geometric problems
to combinatorial questions and can be used in explicit computations. In fact,
in collaboration with Chan and Pflueger ([CLPT]), we used this approach to
compute the genus of a Brill-noether locus when the dimension of this locus is
one (see also [CLT]). Among the potential applications are the computation
of the Euler-Poincaré characterisitic of the Brill-Noether locus. Some of the
applications may require to extend the description to the space of limit series
themselves and not just its image in the Jacobian. We will be considering this
extension in forthcoming work.
The results in (2) were known only in the case when the tropical Brill-Noether
locus is finite (see [CDPR12]). In Section 2, we show that the result extends to
arbitrary dimension ρ with points in the Brill-Noether locus in the case ρ = 0
being replaced by sub-chains of loops from the original chain for arbitrary ρ.
The concept of effective linear series (Section 3) is a variation of the concept
of limit linear series in [EH86]: instead of successively concentrating all of the
degree in one component, we leave just enough of it behind so that a line bundle
would have a section on each component but still the dimension of the space of
sections on the chosen component is the dimension of the limit linear series. It
is based on the insight that limit linear series should not be thought of as made
up of unrelated pieces on each component of the reducible curve but should
rather be considered as line bundles and sections defined globally. This point of
view is useful in a number of questions. It is currently being used to deal with
the maximal rank conjecture (see [LOTZ]). We expect it will find applications
to a number of other questions related to generation, like the study of kernels
of evaluation maps and their impact on syzygies.
Finally, the comparison between the tropical and the limit linear series ap-
proach shows the equivalence of the two methods and should facilitate more
fruitful conversations among researchers coming from the two different back-
grounds. Our strategy is to show that the orders of vanishing at the nodes
of the effective linear series agree with the tropical orders of vanishing (see
Remark 3.6). The proof of the Brill-Noether theorem is based, in both cases,
in the use of these orders of vanishing, so the proofs in the two set ups run in
parallel. We include both proofs here presented in a way that illustrates the
similarities between them.
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1. Limit linear series on chains of elliptic curves

Limit linear series were introduced by Eisenbud and Harris and they model the
behavior of a linear series when an irreducible curve degenerates to a reducible
nodal curve of compact type. Assume that we have a one dimensional family
of curves in which all fibers but one are irreducible while the special fiber is
a nodal curve. Under good conditions for the total space of the family, each
of the components of the special fiber corresponds to a divisor on the total
space. Given a line bundle on the family, one can modify it by tensoring with
line bundles with support on the central fiber. This will leave the restriction of
the line bundle to the generic fiber unchanged while redistributing the degrees
among the components of the central fiber. Limit linear series isolate the data
of the restrictions of these line bundles when the degree (and therefore the
space of sections) is concentrated on a single component:

Definition 1.1. Let C be a nodal curve of compact type (that is, whose
dual graph has no loops). A limit linear series of degree d and (projective)
dimension r on C consists of the data of a line bundle Li of degree d on each
component Ci of C and a space of sections Vi of H

0(Ci, Li) of dimension r+1
satisfying the following condition: Assume that Pj1(α) ∈ Cj1(α) is identified to
Pj2(α) ∈ Cj2(α) to form a node Pα of C. Consider the r + 1 distinct orders
of vanishing u0(j1) > · · · > ur(j1) at Pj1 of the sections in Vj1 and the r + 1
distinct orders of vanishing u0(j2) > · · · > ur(j2) at Pj2 of the sections in
Vj2 . Then, ut(j1) + ur−t(j2) ≥ d, t = 0, . . . , r. The series is called refined if
ut(j1) + ur−t(j2) = d, t = 0, . . . , r for all nodes.

As we mentioned above, the definition of limit linear series is inspired by what
would appear as the limit of a linear series when the degree of the limit line
bundle is concentrated successively in the various components. The relationship
among the vanishing on the two components gluing at a node reflect the way
these limit bundles are related to each other: With the notation above, C −
{Pα} is the union of the two connected components Xj1 , Xj2 that contain
Cj1 − {Pj1}, Cj2 − {Pj2}, respectively. Assume that Li is the line bundle on
the family whose restriction to Cji has degree d and whose restriction to any
other component has degree zero. Then, one can check that L2 = L1(−dX2).
If a section σ of L1 vanishes with order k on Xj2 and t is an equation of C
on the family, then td−kσ is a section of Lj2 and vanishes on Xj1 to order
d − k. Therefore, it vanishes at Pj1 to order at least d − k. This is what the
relationship among the orders of vanishing reflects.

Definition 1.2. Let C1, . . . , Cg be elliptic curves, Pi, Qi ∈ Ci such that Pi−Qi

is not a torsion point of Ci. Glue Qi to Pi+1, i = 1, . . . , g − 1 to form a node.
The resulting curve will be called a general chain of elliptic curves (of genus
g).

A general chain of elliptic curves is Brill-Noether general. We describe here
the image in the jacobian of the space of limit linear series of a fixed degree
and dimension on such a curve. We first need to understand what goes on on
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a single elliptic component. As the canonical (dualizing) sheaf on an elliptic
curve is trivial, the Riemann-Roch Theorem on elliptic curves is particularly
simple.

Lemma 1.3 (Riemann-Roch Theorem). Given a line bundle L of degree d on
an elliptic curve, then

· If d < 0, then h0(L) = 0.
· If d > 0, then h0(L) = d.
· If d = 0, then h0(L) = 1 if L = O and h0(L) = 0 otherwise.

The next two lemmas have been used repeatedly in Brill-Noether questions for
vector bundles (see, for instance, [Tei05] Lemma 2.2 and [Tei08] Lemma 2.2)
and exploit Lemma 1.3, especially the third point. We include them here for
the convenience of the reader.

Lemma 1.4. Consider an elliptic curve C and two points P,Q ∈ C such that
P −Q is not a torsion point in the group structure of C. Let L be a line bundle
of degree d on C and V a space of sections of L of dimension r + 1 ≤ d. Let
the orders of vanishing of the sections of V at P and Q be, respectively,

u0(P ) > · · · > ur(P ) and u0(Q) > · · · > ur(Q).

Then ut(P ) + ur−t(Q) ≤ d and ut(P ) + ur−t(Q) = d for, at most, one value t.

Proof. Note that, by definition, the dimension of the space of sections of V that
vanish to order ut at P , dimV (−ut(P )P ) = t + 1 and dimV (−ur−t(Q)Q) =
r − t+ 1. Therefore,

dim[V (−ut(P )P ) ∩ V (−ur−t(Q)Q)] ≥ t+ 1+ r + 1− t− dimV = 1.

There is then a section vanishing to order ut(P ) at P and ur−t(Q) at Q. As the
degree of the line bundle is d, this requires that ut(P )+ur−t(Q) ≤ d. Moreover,
if ut(P ) + ur−t(Q) = d, then L = O(ut(P )P + ur−t(Q)Q). If there were
another value t′ such that ut′(P ) + ur−t′(Q) = d, then also L = O(ut′(P )P +
ur−t′(Q)Q). This implies that ut(P ) − ut′(P ) = ur−t′(Q) − ur−t(Q). Hence,
(ut(P )−ut′(P ))(P−Q) ≡ 0 contradicting the assumptions about the generality
of P,Q. �

Lemma 1.5. Given an elliptic curve C, two points P,Q ∈ C such that P −Q

is not a torsion point, and integers d ≥ u0 > · · · > ur ≥ 0.

i. There exists then a one-dimensional family of line bundles L of degree
d on C and, for each of them, a unique space of sections V of L of
dimension r+1 with orders of vanishing at P and Q being, respectively,

d− ur, . . . , d− u0 and u0 − 1, . . . , ur − 1

if and only if ur > 0.
ii. There exists a unique line bundle L of degree d on C and space of

sections V of L of dimension r + 1 with orders of vanishing at P and
Q being, respectively,

d− ur, . . . , d− u0 and u0 − 1, . . . , ut0−1 − 1, ut0, ut0+1 − 1, . . . ur − 1
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if and only if ut0 + 1 < ut0−1 when t0 6= 0 and ur > 0 when t0 6= r.

Proof. i. The condition is necessary by definition, as an order of vanishing
must be at least 0.

Conversely, choose an arbitrary line bundle L of degree d on C.
Then, h0(L(−(d− ut)P − (ut − 1)Q)) = 1. Therefore, there is a unique
section st of L that vanishes at P to order at least d − ut and at Q
to order at least ut − 1. Moreover, unless L = O((d − ut)P + utQ)
or L = O((d − ut + 1)P + (ut − 1)Q), this section vanishes to order
precisely d − ut at P and ut − 1 at Q. For a given value of t, the two
exceptions listed completely determine the line bundle. There is a finite
number of possible values of t and therefore a finite number of possibly
exceptional line bundles L. If the identity occurred for two different
values t, t′ and the same line bundle, P − Q would be a torsion point
against our assumptions.

Assume that we are not in one of the exceptional situations. Then,
the sections si have different orders of vanishing at P and are therefore
independent. Define V the space generated by these sections. Then the
pair (L, V ) is completely determined by these conditions.

ii. The condition imposed on the ut is equivalent to saying that the num-
bers u0 − 1, . . . , ut0−1 − 1, ut0, ut0+1 − 1, . . . , ur − 1 are all different and
non-negative. From the proof of Lemma 1.4, the only line bundle for
which these orders of vanishing are possible is L = O((d−ut0)P+ut0Q).
This line bundle has a space of sections with the given vanishing if and
only if one can find independent sections st, 0 ≤ t ≤ r vanishing at P,Q
with precisely the given orders. In particular, this requires that

h0(L(−(d− ut)P − (ut − 1)Q)) ≥ 1, t 6= t0, and

h0(L(−(d− ut0)P − ut0Q)) ≥ 1.

From the definition of L, these inequalities are in fact equalities.
Therefore, we can choose unique sections of L that vanish at P,Q with
the given orders. From the generality of the pair of points P,Q, only
one section of the line bundle vanishes at P,Q with orders adding up
to d. Hence, the order of vanishing at the two points cannot be larger
than what is specified. As the orders of vanishing at one of the points
are all different, the sections are independent.

�

Denote by ρ(g, d, r) the Brill-Noether number that gives the expected dimension
of the locus of line bundles of degree d which have at least r+1 = k independent
sections. For simplicity of notation, we write k̄ = g − 1− d+ k the dimension
of the adjoint linear series to a linear series of degree d and dimension k. With
this notation, ρ = g−kk̄. Denote by c(k, k̄) the number of rectangular standard
Young tableaux with k = r + 1 columns numbered 0, . . . , r and k̄ = g − d + r

rows numbered 1, . . . , g− d+ r. From the hook length formula, this number is
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given by (assuming k̄ ≤ k)

c(k, k̄) =

=
(kk̄)!

(k + k̄ − 1)((k + k̄ − 2))2 . . . (k)k̄((k − 1))k̄ . . . (k̄))k̄(k̄ − 1))k̄−1 . . . (2)21
.

Theorem 1.6. The image in the Jacobian of the scheme of limit linear series
of degree d and dimension k on a general chain of elliptic curves is reducible
with

(

g

ρ

)

c(k, k̄)

components corresponding to the c(k, k̄) fillings of the k × k̄ Young diagram
with g − ρ = kk̄ numbers from the set 1, 2, . . . , g. Each of these components
is birationally equivalent to a product of ρ of the elliptic curves among the
irreducible components in C (the ones whose indices do not appear in the
corresponding tableau).

Proof. (Compare, for instance, with the proof of [Tei04, Thm 1.1] or the proof
of [Tei08, Thm 1.1]). The orders of vanishing at P1 (resp. Qg) of an r + 1-
dimensional space of sections of a line bundle of degree d on the curve C1 (resp.
Cg) are at least (r, r − 1, . . . , 0). From the definition of limit linear series, the
sum of the orders of vanishing at Qi, Pi+1, i = 1, . . . , g − 1 of the sections of a
linear series is at least (r + 1)d. Therefore, the sum of all the vanishing at the
points Pi, Qi, i = 1, . . . , g is at least (g − 1)(r + 1)d+ r(r + 1).
On the other hand, from Lemmas 1.4 and 1.5, the sum of the orders of vanishing
at Pi, Qi is at most (r + 1)(d − 1) for a general choice of line bundle and
(r + 1)(d − 1) + 1 if the line bundle in this component is of the form O((d −
ut(i))Pi + ut(i)Qi). In the latter case, the line bundle is completely determined
by the vanishing at Pi and the choice of one index t(i) which must satisfy the
condition ut(i) +1 < ut(i)−1. Write α for the number of components where the
line bundle is generic. The sum of the vanishing orders at all Pi, Qi is at most
g(r + 1)(d− 1) + g − α. Putting together the two inequalities, we obtain

(g − 1)(r + 1)d+ r(r + 1) ≤ g(r + 1)(d− 1) + g − α,

which can be written as

α ≤ g − (r + 1)(g − d+ r) = g − (r + 1)k̄ = ρ.

The line bundles on the elliptic curves Ci can take a finite number of val-
ues when they have been chosen to be special and can move on the (one-
dimensional) Jacobian of Ci otherwise. So α gives a bound for the dimension
of the space of limit series. This shows that the dimension of any component
of the scheme of limit linear series is at most ρ. On the other hand, it is known
from the construction of a space of limit linear series that every component
has dimension at least ρ. Therefore, every component has dimension precisely
ρ. Note also that a component of dimension ρ corresponds to the choice of ρ
components Ci of C where the line bundles Li are free to vary and the choice on
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each of the remaining components Cj of an order of vanishing at Pj satisfying
the condition in Lemma 1.5 (ii).
Let us see how this choice can be carried out. A component of dimension ρ of
the space of limit linear series, corresponds to the data above so that all the
inequalities are equalities. We will denote by u0(i) > · · · > ur(i) the orders of
vanishing of the sections at Qi. As the inequalities are equalities, the orders of
vanishing at Pi must be (d− ur(i − 1), . . . , d− u0(i − 1)).
When a line bundle is chosen generically, Lemma 1.5 (i) states that each van-
ishing order at Qi is one less than at Qi−1, while for a special line bundle
one of the vanishing orders stays the same while the rest decrease in one unit,
therefore at a generic point of a component of the set of limit linear series:

(a) The vanishing at P1, Qg is (r, r − 1, . . . , 0).
(b) On ρ of the components Ci, the line bundle is generic and then

(u0(i), . . . , ur(i)) = (u0(i − 1)− 1, . . . , ur(i − 1)− 1).

(c) On g−ρ of the components Ci, there is a t(i) with ut(i)(i−1)+1 < ut(i)−1(i−
1), the line bundle is of the form O((d−ut(i)(i− 1))Pi+ut(i)(i− 1)Qi) and
then

(u0(i), . . . , ur(i)) =

= (u0(i−1)−1, . . . , ut(i)−1(i−1)−1, ut(i)(i−1), ut(i)+1(i−1)−1, . . . , ur(i−1)−1).

In keeping with (a) for P1 and our other conventions, we write

(u0(0), . . . , ur(0)) = (d, d− 1, . . . , d− r).

From this description, we can compute the orders of vanishing at any point Qi

in terms of the values of the t(j) for j ≤ i as follows: condition (a) says that (d−
ur(0), . . . , d−u0(0)) = (r, r− 1, . . . , 0). Hence, us(0) = d− s. As the vanishing
us goes down by a unit on each component us(i) = us(i − 1) − 1 except if
t(i) = s, writing δa,b = 0, a 6= b, δa,b = 1, a = b, βi,s =

∑

{j≤i : Lj special} δt(j),s,

(1) us(i) = d− s− i+ βi,s.

Recall that s is a suitable candidate for t(i) if and only if us(i − 1) + 1 <

us−1(i − 1). From the formula we just obtained, this is equivalent to

(2) βi−1,s < βi−1,s−1.

We now place the g − ρ = kk̄ indices corresponding to the curves with special
line bundle in a k×k̄ Young tableau. An index i is placed in the first empty spot
in column t(i), 0 ≤ t(i) ≤ k− 1 = r. So it ends up in row βi,t(i), Our definition
guarantees that the indices increase going down the columns, Equation (2)
guarantees that they increase moving along the rows to the right. It remains
to check that each column has heigth k̄ and therefore the indices fill the tableau.
This can be shown as follows: uj(0) = d− j, uj(g) = r− j, uj(i) = uj(i− 1)− 1
if i is not in column j while uj(i) = uj(i−1) if i is in column j. Therefore, there
are g − [(d− i)− (r − i)] = k̄ indices in column j ensuring that 1 ≤ t(i) ≤ k̄.
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Note that in this case, the line bundle of the limit linear series on Ci is

(3) Li = O((t(i) + i− βi,t(i))Pi + (d− t(i)− i+ βi,t(i))Qi).

�

In joint work with M. Chan and N. Pflueger [CLPT], we give a full description

of the scheme Gk,α,β
d (X, p, q) of limit linear series of degree d and dimension k

on a general chain of elliptic curves with prescribed ramification α, respectively
β at a general point p, respectively q when ρ = 1. In the special case when
ρ = 1, Theorem1.6 follows from the result in [CLPT].

Proposition 1.7. The components corresponding to two different Young
tableaux intersect in the Jacobian if and only if the indices that appear in
both appear in boxes (ti,mi), (tj ,mj) with ti −mi = tj −mj . The dimension
of the intersection of two such components equals the number of indices that
do not appear in either tableau.

Proof. The correspondence between components of the locus of limit linear
series and Young tableaux is defined so that on the elliptic curves Ci whose
indices do not appear in the Young tableau, the line bundle is free to vary. For
a component l0 whose index appears in the Young tableau in column t0 and
row x0, the line bundle is completely determined as given in equation (3). If
the index appears in two tableaux that intersect, the line bundle determined by
the tableaux must be the same. This is equivalent to the condition ti −mi =
tj−mj. Conversely, if these conditions are satisfied whenever an index appears
in both tableaux, then the line bundle determined by each of the tableaux on
that component is the same. For components that appear in only one of the
tableaux, the line bundle is determined by the position of the index on that
tableau while line bundles on components whose indices do not appear in either
tableau are free to vary and therefore contribute 1 to the dimension of the
intersection. �

2. The tropical case

In this section we look at the tropical proof of Brill-Noether presented in
[CDPR12] and make use of their techniques to give a description of the Brill-
Noether locus for tropical chains of loops in terms of Young Tableaux (see
Theorem 2.8 ). This presentation extends the results of [CDPR12] Theorem
1.4 that deals with the case of Brill Noether number zero.

Definition 2.1. A tropical curve is a metric graph. The free abelian group on
the points of a tropical curve Γ is called the set of divisors Div(Γ). A function
on the graph is a continuous piecewise linear function whose slope on each
piece of the subdivision is integral. One can associate to such a function ψ the
divisor that at each point of Γ has weight the sum of the incoming slopes on the
edges of Γ to which the point belongs. Two divisors are said to be equivalent
(written as ≡) if they differ in the divisor of a piecewise linear function. The
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group of equivalence classes of divisors is called the Picard group of Γ and is
graded by degree.

Definition 2.2. Let L1, . . . ,Lg,M1, . . . ,Mg be segments of (real) length
l1, . . . , lg,m1, . . .mg. Identify the two ends of Li with the two ends of Mi

to give points Qi−1, Q
′
i. Then identify Q′

i with Qi to form a connected chain
with g loops. The resulting tropical curve will be called a chain of loops (of
genus g). The chain is said to be general if the lengths are generic (which from
the point of view of Brill-Noether theory means that their quotients do not
equal the quotient of two positive integers less than 2g − 2).

We now state some facts about divisors on tropical curves that are similar to
those on sections of line bundles on elliptic curves.

Lemma 2.3 (Tropical Riemann-Roch on a loop). Given a divisor D of degree d
on a single loop, two points P,Q on the loop and (when d ≥ 0) a non-negative
integer a ≤ d, then

(i) If d ≤ 0, then D is not equivalent to an effective divisor unless D = 0.
(ii) If d > 0, a < d, then D is equivalent to a divisor of the form aP +(d−

a− 1)Q+R where R is some point on the loop.
(iii) If P,Q are general, there is a unique equivalence class of divisors such

that D is equivalent to aP + (d− a)Q and then D is not equivalent to
bP + (d− b)Q for any integer b 6= a.

Proof. The proof of this result can be obtained from an easy computation
(compare also with example 2.1 in [CDPR12]). As the divisor of a function has
degree zero, the first point is clear.
Part (ii) can be proved by directly exhibiting a piecewise linear function giving
the equivalence.
For (iii), if aP + (d− a)Q is equivalent to bP + (d− b)Q, then (if, say, b ≥ a),
then (b − a)P is equivalent to (b − a)Q, which is not true for any pair a, b if
P,Q are general. �

Recall that a divisor D on a tropical curve Γ is said to be of rank r if for every
effective divisor D′ of degree r on Γ, D−D′ is equivalent to an effective divisor.
Consider a chain Γ of g generic loops as in Definition 2.2. Denote by Γi the
ith loop and by Qi−1, Qi the points of intersection with Γi−1,Γi+1 respectively.
Using Lemma 2.3, every divisor is equivalent to a divisor whose support outside
a fixed Qj has at most one point on the interior of each Γi.

Lemma 2.4. Let Γ be a general chain of g loops and D a divisor on Γ of rank
at least r. For every k = 1, . . . , g, t = 0, . . . , r, i = 0, . . . , g there exist
indices ǫk, ǫk,t ∈ {0, 1}, points in the loops xk ∈ Γk − {Qk−1}, xk,t ∈ Γk and
integers ut(i), u0(i) > · · · > ur(i) ≥ 0 such that

D ≡ tQ0 +
∑

k≤i

ǫk,txk,t + ut(i)Qi +
∑

k>i

ǫkxk.

Documenta Mathematica 22 (2017) 263–286
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Proof. Using Lemma 2.3 on each of the loops starting with the last one, one
can successively bring most of the degree to Qg−1, Qg−2, . . . , Q0 leaving behind
at most one point on each loop. So, D is equivalent to

uQ0 +
∑

k≥1

ǫkxk,

where u is chosen as large as possible and xk ∈ Γk − {Qk−1}. As D has rank
at least r, there is an effective divisor equivalent to D − rQ0 and u ≥ r.
Define

(u0(0), u1(0), . . . , ur(0)) = (u, u− 1, . . . , u− r).

With this definition,

u0(0) > · · · > ur(0) ≥ 0

and for each t = 0, . . . , r, D is trivially equivalent to tQ0+ut(0)Q0+
∑

k>0 ǫkxk.
Assume now that we found all of the ut(j), ǫj,t, xj,t, j ≤ i− 1, 0 ≤ t ≤ r . Our
goal is to find ǫi,t, xi,t, ut(i), 0 ≤ t ≤ r such that

(∗) tQ0 +
∑

k≤i

ǫk,txk,t + ut(i)Qi +
∑

k>i

ǫkxk ≡ D

and

u0(i) > · · · > ur(i) ≥ 0.

By the prior step,

D ≡ tQ0 +
∑

k≤i−1

ǫk,txk,t + ut(i− 1)Qi−1 + ǫixi +
∑

k>i

ǫkxk.

Using 2.3 on Γi, there exist δi,t ∈ {0, 1}, xi,t ∈ Γi−{Qi}, αt(i) ∈ Z
+ satisfying:

ut(i− 1)Qi−1 + ǫixi ≡ δi,txi,t + αt(i)Qi.

We will choose ǫi,t = δi,t, ut(i) = αt(i) except when ǫi = 1 for a t = t0
ut0(i−1)Qi−1+xi ≡ (ut0(i−1)+1)Qi and ut0(i−1)+1 = ut0−1(i−1). In this
case, we choose ǫi,t0 = 1, xi,t0 = Qi, ut0(i) = ut0(i − 1). With these choices,
condition (*) is satisfied and it remains to check that u0(i) > · · · > ur(i) ≥ 0.

(a) By the genericity of Γi, ut(i − 1)Qi−1 is not equivalent to ut(i − 1)Qi if
ut(i − 1) > 0. Therefore, if ǫi = 0 and ur(i − 1) > 0, then ǫi,t = 1, t =
0, . . . , r and

(u0(i), . . . , ur(i)) = (u0(i− 1)− 1, . . . , ur(i− 1)− 1)

The inequalities among the vanishing orders are then satisfied.
(b) If ǫi = 0 and ur(i − 1) = 0, then ur(i − 1)Qi−1 + ǫixi is identically zero.

Hence, ǫi,r = 0, ǫi,t = 1; t = 0, . . . , r − 1

(u0(i), u1(i), . . . , ur−1(i), ur(i)) =

= (u0(i − 1)− 1, u1(i− 1)− 1, . . . , ur−1(i− 1)− 1, ur(i − 1)).

The inequalities are satisfied if ur−1(i − 1) > 1. As D − (r − 1)Q0 −Qi is
equivalent to an effective divisor, this needs to be the case.
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(c) If ǫi = 1, ut0(i − 1)Qi−1 + xi ≡ (ut0(i − 1) + 1)Qi and ut0(i − 1) + 1 =
ut0−1(i− 1), we have ǫi,t = 1 for all t and

(u0(i), . . . , ur(i)) = (u0(i− 1), . . . , ur(i− 1)), xi,t0 = Qi.

(d) If ǫi = 1, ut0(i − 1)Qi−1 + xi ≡ (ut0(i − 1) + 1)Qi and ut0(i − 1) + 1 <
ut0−1(i− 1), then ǫi,t = 1 for all t 6= t0, ǫi,t0 = 0

(u0(i), . . . , ut0−1(i), ut0(i), ut0+1(i) . . . , ur(i)) =

= (u0(i − 1), . . . , ut0−1(i − 1), ut0(i− 1) + 1, ut0+1(i− 1), . . . , ur(i− 1)).

(e) If ǫi = 1 and ut(i−1)Qi−1+xi is not equivalent to (ut(i−1)+1)Qi for any
t, then (u0(i), . . . , ur(i)) = (u0(i − 1), . . . , ur(i − 1)) and the inequalities
are satisfied.

Note that case (a) can be seen as a special case of (e) when xi = Qi−1 while
case (c) can be seen as a special case of (e) when xi,t0 = Qi. �

Definition 2.5. Let the ut(i) be defined as in Lemma 2.4 , we say that xi is
t0-special if ut0(i − 1)Qi−1 + xi ≡ (ut0(i− 1) + 1)Qi. We then write t(i) = t0.
If xi is t-special for some t, we say that xi is special. If it is not special, we say
it is generic.

For easy future reference, we list the values of the vanishing at Qi depending
on the data on the corresponding loop:

Corollary 2.6. The integers ut(i) defined in Lemma 2.4 satisfy

(a) If ǫi = 0 and ur(i− 1) > 0, then ut(i) = ut(i − 1)− 1, t = 0, . . . , r.
(b) If ǫi = 0 and ur(i−1) = 0, then ut(i) = ut(i−1)−1, t = 0, . . . , r−1, ur(i) =

ur(i− 1).
(c) If xi is t0-special and ut0(i−1)+1 = ut0−1(i−1), then ut(i) = ut(i−1), t =

0, . . . , r.
(d) If ǫi = 1, xi is t0-special and ut0(i − 1) + 1 < ut0−1(i − 1), then ut(i) =

ut(i− 1), t 6= t0, ut0(i) = ut0(i− 1) + 1.
(e) If ǫi = 1 and xi generic, then ut(i) = ut(i − 1), t = 0, . . . , r.

We now show the converse of Lemma 2.4 namely

Lemma 2.7. Let Γ be a general chain of g loops and D a divisor on Γ such
that for every k = 1, . . . , g, t = 0, . . . , r, i = 0, . . . , g there exist indices
ǫk, ǫk,t ∈ {0, 1}, points in the loops xk ∈ Γk − {Qk−1}, xk,t ∈ Γk and integers
ut(i), u0(i) > · · · > ur(i) ≥ 0 such that

D ≡ tQ0 +
∑

k≤i

ǫk,txk,t + ut(i)Qi +
∑

k>i

ǫkxk.

Then D has rank at least r.

Proof. In order to show that D has rank r, it suffices to see that for any divisor
D′ of degree at most r with support at Q0, . . . , Qg, D − D′ is equivalent to
an effective divisor (see Theorem 1.6 in [L]). Write D′ = a0Q0 + · · · + agQg.
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Recall that D is equivalent to a0Q0+ ǫ1,a0
x1,a0

+ua0
(1)Q1 +

∑

i≥2 ǫixi. Then,

D −D′ is equivalent to

ǫ1,a0
x1,a0

+ (ua0
(1)− a1)Q1 +

∑

i≥2

ǫixi −
∑

j≥2

ajQj .

As u0(1) > u1(1) > · · · > ur(1), ua0
(1) − a1 ≥ ua0+a1

(1). So, it suffices to
check that

ǫ1,a0
x1,a0

+ (ua0+a1
(1))Q1 +

∑

i≥2

ǫixi −
∑

j≥2

ajQj

is effective. This divisor is equivalent to

ǫ1,a0
x1,a0

+ ǫ2,a0+a1
x2,a0+a1

+ (ua0+a1
(2)− a2)Q2 +

∑

i≥3

ǫixi −
∑

j≥2

ajQj .

As ua0+a1
(2)− a2 ≥ ua0+a1+a2

(2), it suffices to check that

(ua0+a1+a2
(2))Q2 +

∑

i≥3

ǫixi −
∑

j≥3

ajQj

is effective. Repeating the argument above g − 1 times, it will suffice to show
that

∑

i=1,...,g

ǫi,a0+···+ai−1
xi,a0+···+ai−1

+ (ua0+a1+···+ag−1
(g)− ag)Qg

is effective. As ua0+a1+···+ag−1(g) − ag ≥ ua0+a1+···+ag
(g) and by assump-

tion a0 + a1 + · · · + ag ≤ r, then ua0+a1+···+ag
(g) ≥ ur(g) ≥ 0 therefore

ua0+a1+···+ag
(g) is well defined and greater than or equal to 0. �

Theorem 2.8. The Brill-Noether locus of degree d and rank r = k − 1 on a
general chain of g loops is a union of

(

g

ρ

)

c(k, k̄)

products of ρ loops corresponding to the c(k, k̄) fillings of the k × k̄ Young
diagram with g−ρ = kk̄ numbers from the set 1, 2, . . . , g. The loops appearing
in the product are the ones whose indices do not appear in the corresponding
tableau.

Proof. Recall that D is equivalent to a divisor of the form uQ0+
∑

ǫixi where
u = ur(0). The orders of vanishing at Q0 were defined as (u0(0), . . . , ur(0)) =
(u− 0, . . . , u− r) . Hence,

∑

t ut(0) = (r + 1)u− (1 + · · ·+ r) .
As the divisor D has degree d and is equivalent to uQ0 +

∑

ǫixi,

u+

g
∑

i=1

ǫi = d.

So
∑g

i=1 ǫi = d− u and there are g − d+ u loops Γi where the ǫi = 0. Write α
for the number of loops where ǫi = 1 and xi is generic. There remain d−u−α
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loops where ǫi = 1 and the xi is special. It follows from Corollary 2.6 that
r

∑

t=0

ut(g) ≤

r
∑

t=0

ut(0)− r(g − d+ u) + d− u− α

= (r + 1)u− (1 + · · ·+ r)− r(g − d+ u) + d− u− α

with equality when(with the notation in Corollary 2.6 ) the loops with ǫi = 0
correspond to case (b) and those with ǫi = 1, xi special correspond to case (d).
On the other hand, as u0(g) > · · · > ur(g), the orders of vanishing at Qg are
at least r, . . . , 0. Hence,

r + · · ·+ 1 ≤

r
∑

t=0

ut(g).

The two inequalities together give

r + · · ·+ 1 ≤ (r + 1)u− (1 + · · ·+ r) − r(g − d+ u) + d− u− α,

which gives rise to

α ≤ (r + 1)u− (1 + · · ·+ r)− r(g − d+ u) + d− u− (r + · · ·+ 1) = ρ.

Equality in the above inequality is achieved when the vanishing at both Q0, Qg

are (r, . . . , 0) and on intermediate components the ǫi, xi correspond to choices
(with notations as in Corollary 2.6 ) of type (b),(d), (e). In situation (b), ǫi = 0
and there are no further choices to make. In situation (d), ǫi = 1, there is a
t0 = t(i) such that ut(i)(i− 1)+1 < ut(i)−1(i− 1). The xi is determined by the
ut(i)(i−1), so the only choice is that of the index t(i). There are no restrictions
on when to make a choice of type (e) and then on how to choose xi. As α gives
the number of loops on which the point is free to vary, optimal choices as in (b),
(d) and (e) give rise to a product of ρ loops. On the other hand, we pointed
out that cases (a) and (c) can be seen as limiting cases of (e). Therefore, our
loci are products of ρ loops.
As ur(g) = 0 and in cases (b), (d), (e) , ur(i) ≥ ur(i − 1) it follows that
ur(i) = 0, i = 0, . . . , g for a generic point on each such loop.
As us(0)−us−1(0) = 1 for all s, and a choice of type (d) requires ut(i)(i−1)+1 <

ut(i)−1(i − 1), we can only choose t(i) in a type (d) choice for the nth time if
each of 0, . . . , t(i) − 1 have already been chosen at least n times. Similarly, a
choice of type (b) can only be made for the nth time if choices of type (d) have
been made at least n times for each of the vanishings 0, . . . , r − 1.
Now construct a Young tableau associated to a component as follows. We
number the columns of the tableau from 0 to r. The component determines ρ
loops where the xi will be generic. These ρ loops can be any of the g loops of
Γ . Assign the indices of the remaining loops successively to one spot of the
tableau. An index i will be placed in the first empty spot in the column t(i)
for a choice of type (d) corresponding to the vanishing ut(i). An index i will be
placed in the first empty spot in the column r if it corresponds to a choice of
type (b). By construction, the filling in the columns increase as you go down.
Our arguments show that the fillings increase as you move right on a row. As in
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the limit linear series case, we need to show that each column has height k̄. Note
that ut(0) = u− t, ut(g) = r− t, u+

∑

ǫi = d. Moreover, ut(i) = ut(i−1)−1 if
ǫi = 0. If ǫi = 1, ut(i) = ut(i− 1) if i is not t-special while ut(i) = ut(i− 1)+ 1
if i is t-special. Therefore, r − t = ut(g) = u− t− (g −

∑

ǫi) + αt with αt the
height of column t. It follows that αt = k̄ for all t.
Conversely, if we start with a Young tableau, we can construct a component
of the Brill-Noether locus as the product of the loops whose indices do not
appear in the tableau. If i appears in column t0, write t(i) = t0. Denote by
βi,t =

∑

{j≤i } δt(j),t. Before defining the divisor corresponding to a point in

the component, we need to say what we want as the ǫi and the vanishing at the
Qi. Start with (u0(0), . . . , ur(0)) = (r, . . . , 0). If an index i does not appear on
the tableau, take ǫi = 1 and indices

(u0(i), . . . , ur(i)) = (u0(i − 1), . . . , ur(i − 1)).

If t(i) < r, take ǫi = 1 and indices

(u0(i), u1(i), . . . , ut(i)(i), . . . , ur(i)) =

= (u0(i− 1), u1(i− 1), . . . , ut(i)(i − 1) + 1, . . . , ur(i − 1)).

If t(i) = r, take ǫi = 0

(u0(i), u1(i), . . . , ur(i)) = (u0(i−1)−1, u1(i−1)−1, . . . , ur−1(i−1)−1, ur(i−1))

Note that with this construction, ur(i) = 0 for all i.
Then, ut(i)(i) = ut(i)(i − 1) + 1 if t(i) = s < r, us(i) = us(i − 1) − 1 if ǫi = 0
and otherwise us(i) = us(i − 1). Therefore,

(4) us(i) = r − s+
∑

j≤i

δs,t(j) −
∑

j≤i

δr,t(j) = r − s+ βi,s − βi,r

In particular, ut(i)(i) = r − t(i) + βi,t(i) − βi,r. As xi is the unique point such
that ut(i)(i − 1)Qi−1 + xi ≡ (ut(i)(i − 1) + 1)Qi, we have

(5) (r − t(i) + βi,t(i) − βi,r − 1)Qi−1 + xi ≡ (r − t(i) + βi,t(i) − βi,r)Qi.

For the components whose indices do not appear in the tableau, choose a generic
point xi. The generic divisor corresponding to the tableau is then of the form
rQ0 +

∑

ǫixi. �

3. Effective limit linear series

We mentioned that the definition of limit linear series comes from concentrating
all of the degree of a line bundle successively on each of the components of a
curve of compact type. The goal of this section is to show that for refined limit
linear series, one can concentrate most of the degree and all of the sections
on one component while allowing the line bundle to still be effective on the
remaining components:

Proposition 3.1. Assume that C is a curve of compact type with irreducible
components Cj , j = 1, . . . ,M . Let {Lj, Vj ⊂ H0(Cj , Lj), j = 1, . . . ,M} be
the data of a limit linear series of degree d and dimension r on C. Choose a
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component Ci of C. For each Cj , let Pj,1, . . . , Pj,kj
be the set of nodes in Cj ,

Xj,1, . . . , Xj,kj
the connected components of C − Cj and

u0(j, l) > · · · > ur(j, l) ≥ 0, j = 1, . . . ,M, l = 1, . . . , kj ,

the orders of vanishing of the sections of Vj at Pj,l. If j 6= i, let Xj,l(j,i)be the
connected component of C − Cj whose closure contains Ci.
Define a line bundle on Cj by

Lj,i = Lj(−u0(j, l(j, i))Pj,l(j,i) −
∑

l 6=l(j,i)

ur(j, l)Pj,l)

Lj,j = Lj(−
∑

l=1,...,kj

ur(j, l)Pj,l)

and let Li be the line bundle obtained by gluing the Lj,i. Note that for j = i,
no component Xj,l contains Ci, so the second equation is compatible with the
first with the understanding that l(i, i) does not exist. Then:

i. The line bundle Li has degree d on C.
ii. The restriction of Li to Ci has a space of sections of dimension r + 1

that correspond naturally with the sections in Vi.
iii. The restriction of Li to Cj has one section.

Proof. Note that, because the curve C is of compact type, a line bundle on
C is completely determined by its restriction to each component. So the line
bundle Li on C is well-defined.
By definition, the restriction Lj,i of L

i to Cj is the subsheaf of sections of Vj
generated by those sections with the highest order of vanishing at the node
closer to Ci and the lowest order of vanishing at the nodes that are further
away from Ci. On the component Ci, we look at sections with the lowest order
of vanishing at all nodes, as none of the closures of the irreducible components
of C − Ci contains Ci.
We now prove our claims:

i. The degree of a line bundle on a reducible curve is the sum of the
degrees of the restriction to each component:

degLi =
∑

j=1,...,M

degLj,i =
∑

j=1,...,M

(d− u0(j, l(j, i))−
∑

l 6=l(j,i)

ur(j, l)).

This sum is ordered with respect to the components Cj of C. We
can reorder it instead with respect to the nodes Pα of C. Every node
Pα, α = 1, . . . ,M − 1, is the intersection of two irreducible components
Cj1(α), Cj2(α) of C. We choose the indices so that Cj1(α) is on the
same connected component of C − Pα as Ci (possibly Cj1(α) = Ci)
and Cj2(α) is not on the same connected component of C − Pα as Ci.
Then, for Cj1(α), either Cj1(α) = Ci or Pα is a node that is far from Ci

(meaning Pα = Pj1(α),lk , lk 6= l(j1(α), i)). In either case, we are using
the vanishing ur in the definition of Lj,i. For Cj2(α), Pα is a node that
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is close to Ci (meaning Pα = Pj1(α),l(j2(α),i)). We rewrite the equation

for the degree of Li as

degLi = d+
∑

α=1,...,M−1

(d− ur(j1(α), l(j1(α, i))) − u0(j2(α), lk)).

If the limit linear series is generic and therefore refined,
ur(j1(α), l(j1(α), i)) + u0(j2(α), lk) = d. Then degLi = d, as claimed.

ii. The sections of Vi vanish at every node Pi,l with vanishing at least
ur(i, l). Therefore, the space of sections of Li restricted to Ci contains
all the sections in Vi when considered as sections of Li

|Ci
and Vi is a

space of dimension r + 1 by assumption.
iii. On a component Cj , j 6= i, we are considering sections that vanish at

one of the nodes with highest order of vanishing. There is one such sec-
tion on Vj and it vanishes at all other nodes with at least the minimum
vanishing. So this section survives in the restriction of Li to Cj .

�

The data we introduced in Proposition 3.1 of the line bundles Li defined on
the whole reducible curve C is redundant. As in the case of limit linear series,
we could minimize the data by considering only the restrictions of the Li to Ci

and the corresponding space of sections on the components Ci only. We give
here a definition and we show that effective linear series are equivalent to the
Eisenbud-Harris limit linear series.

Definition 3.2. An effective linear series of degree d and dimension r on a
curve of compact type C with components Ci, i = 1, . . . ,M , and nodes Pα, α =
1, . . . ,M − 1, consists of the following data:

i. A line bundle Li,i of degree di on Ci, i = 1, . . . ,M .
ii. A space of sections Wi of dimension r + 1 of Li,i.
iii. For each node Pα obtained as the intersection of two irreducible com-

ponents Cj1(α), Cj2(α) of C, an integer aα, r ≤ aα ≤ dji(α)

These data should satisfy the conditions:

(a)
∑

i=1,...,M di −
∑

α=1,...,M−1 aα = d.

(b) For a node Pα, consider the orders of vanishing of the sections of Wj1(α)

at the node (resp the orders of vanishing of the sections of Wj2(α))

w0(j1(α), α) > · · · > wr(j1(α), α) w0(j2(α), α) > · · · > wr(j2(α), α)

Then, wt(j1(α), α) + wr−t(j2(α), α) ≥ aα, t = 0, . . . , r.
(c) For each component Cj and every node Pα on Cj , Wj(−aαPα) has at least

one section

The series will be called refined when there is an equality in the last condition
in (b) for all nodes and all t.

Proposition 3.3. The data of a refined limit linear series and of a refined
effective linear series are equivalent.
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Proof. A limit linear series is defined in terms of line bundles on each of the
components of a reducible curve and spaces of sections on these individual
components. In Proposition 3.1, we saw how a limit linear series gives rise to
line bundles on the whole curve and spaces of sections of these line bundles.
Using that construction and with the notations there, we take then Li,i as
defined on that proposition, namely Li,i = Li(−

∑

l=1,...,ki
ur(i, l)Pi,l). This

line bundle has degree di = d−
∑

l=0,...,ki
ur(i, l).

If Pα is the node formed as the intersection of Cj1(α) and Cj2(α), define

aα = d− ur(j1(α), α) − ur(j2(α), α).

From the conditions on vanishing for a refined limit linear series, ur(j1(α), α)+
u0(j2(α), α) = d. Hence

aα = d− ur(j1(α), α) − ur(j2(α), α) = u0(j2(α), α) − ur(j2(α), α) ≥ r.

Condition (a) for an effective series follows from the definitions.
As all the sections of Vi vanish at Pl with order at least ur(i, l), the space

(6) Wi = Vi(−
∑

l=0,...,ki

ur(i, l)Pi,l).

is a space of sections of Li,i and still has dimension r + 1. Let wt(i, l) be the
order of vanishing of the sections of Wi at Pl, that is

wt(i, l) = ut(i, l)− ur(i, l)

The condition u0(i, l) > · · · > ur(i, l) then implies w0(i, l) > · · · > wr−1(i, l) >
wr(i, l) = 0 which implies the first condition in Definition 3.2 part (b).
As ut(j1(α), α) + ur−t(j2(α), α) = d,

wt(j1(α), α)+wr−t(j2(α), α) =

= ut(j1(α), α) − ur(j1(α), α) + ur−t(j2(α), α) − ur(j2(α), α)

= d− ur(j1(α), α) − ur(j2(α), α) = aα.

which proves the second part of condition (b) for refined series.
Note now that if the irreducible components of C containing the node Pα are
Cj1 , Cj2 with Pα = Pj1,l1 = Pj2,l2 ,

Wj1(−aαPα) ⊇ Vj1(−
∑

m=0,...,kj1

ur(j1,m)Pj1,m − (d− ur(j1, l1)− ur(j2, l2))Pα)

= Vj1(−
∑

m 6=l1

ur(j1,m)Pj1,m − (d− ur(j2, l2))Pα)

⊇ Vj1(−
∑

m 6=l1

ur(j1,m)Pj1,m − u0(j1, l1)Pα),

where we used that u0(j1, l1) + ur(j2, l2) ≥ d. By definition of the orders
of vanishing, this latter space has a section. In particular, this implies that
aα ≤ dji(α).
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Conversely, an effective refined linear series (Li,i,Wi, aα), i = 1, . . . ,M, α =
1, . . . ,M − 1, determines a limit linear series (Li, Vi), i = 1, . . . ,M , as fol-
lows: given a component Cj , let Pj,1, . . . , Pj,kj

be the set of nodes in Cj and
Xj,1, . . . , Xj,kj

the corresponding connected components of C − Cj .
Define

d′j,l =
∑

Cm∈Xj,l

dm −
∑

Pα∈Xj,l

aα, Lj = Lj,j(
∑

l

d′j,lPj,l).

The condition aα ≤ dji(α) in (iii) guarantees that d′j,l ≥ 0. Then,

degLj = dj +
∑

l

∑

Cm∈Xk,l

dm −
∑

Pα∈Xk,l

aα = dj +
∑

l 6=j

dm −
∑

α

aα = d.

Define

Vj =Wj(
∑

l

d′j,lPj,l).

What we mean here is that we take the same spaces of sections Wj with fixed
points of multiplicities d′j,l at Pj,l. Then using the second part of condition (b)
in 3.2

aα+d
′
j1,α

+ d′j2,α

= ut(j1(α), α) + ur−t(j2(α), α)

= aα +
∑

Cm∈Xj1,α

dm −
∑

Pβ∈Xj1,α

aβ +
∑

Cm∈Xj2,α

dm −
∑

Pβ∈Xj2,α

aβ

=
∑

i=1,...,M

di −
∑

β=1,...,M−1

aβ = d

where the last equality comes from condition (a) in 3.2. This concludes the
proof of the fact that (Li, Vi) gives the data of a limit linear series. �

Recall that Young tableaux of dimension (r + 1)(g − d+ r) filled with integers
among 1, . . . , g correspond to generic component of the image in the Jacobian
of the set of limit linear series of degree d and dimension r on a general chain
of elliptic curves. If an index i appears in the tableau on column t0, we write
t0 = t(i). Denote by βi,t =

∑

{j≤i } δt(j),t. In particular, i appears in row

βi,t(i).
From the correspondence between refined limit linear series and refined effective
series, these tableaux correspond also to effective linear series of degree d and
dimension r. We describe the correspondence below.

Lemma 3.4. Let C be a general chain of elliptic curves. Given a Young tableau
of dimension (r + 1)(g − d + r) filled with integers among 1, . . . , g, consider a
general point of the component of the Brill-Noether locus on the chain corre-
sponding to the tableau. This point gives rise to a limit linear series. The line
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bundle L1 defined in 3.1 from this limit linear series is described as follows:

L1
|Ci

=



















OCi
if t(i) = r

OCi
(xi) xi + (r + βi,t(i) − t(i)− βi,r − 1)Pi

≡ (r + βi,t(i) − t(i)− βi,r)Qi if t(i) < r

OCi
(xi) xi generic if i not in tableau.

Proof. From the correspondence between limit linear series and Tableaux, if an
index is not on the tableau, then Li is a general line bundle of degree d. If i
appears in the tableau, then from equation (3),

Li = OCi
((d− ut(i)(i))Pi + ut(i)(i)Qi) =

= O((t(i) + i− βi,t(i))Pi + (d− t(i)− i+ βi,t(i))Qi).

Using equation (1) the orders of vanishing of Vi are written as us(i) = d −
s − i + βi,s. The orders of vanishing vs(i) of the sections at Pi are given by
vs(i) = d− ur−s(i)− 1, s 6= r − t(i); vr−t(i)(i) = d− ut(i)(i)
From the definition in 3.1,

L1,1 = L1(−ur(1)Q1) ,

Li,1 = Li(−(v0(i)Pi − ur(i)Qi)) =

=

{

Li(−(d− ur(i)− 1)Pi − ur(i)Qi), t(i) 6= r,

Li(−(d− ur(i))Pi − ur(i)Qi), t(i) = r.

From Li = O((d− ut(i)(i))Pi + ut(i)(i)Qi), if the index i is on the last column
(t(i) = r), then Li,1 = OCi

.

If t(i) < r, substituting the values of Li, ur(i), we obtain

Li,1 = Li(−(d− ur(i)− 1)Pi − ur(i)Qi) =

= O((t(i) + i− βi,t(i))Pi+

+(d− t(i)− i+βi,t(i))Qi)(−(d− (d− r− i+βi,r −1)Pi− (d− r− i+βi,r)Qi)) =

= O((t(i)− βi,t(i) − r + βi,r + 1)Pi + (r − t(i) + βi,t(i) − βi,r)Qi)

As Li,1 is a line bundle of degree 1 on an elliptic curve, we have Li,1 = OCi
(xi),

where xi satisfies the condition in the statement.
If the index i does not appear in the tableau, Li is a general line bundle of
degree d therefore Li,1 is a general line bundle of degree 1 on Ci and we can
write Li,1 = OCi

(xi) where xi is a generic point of Ci. �

In the previous lemma, we computed the line bundles Li,1. We can similarly
compute the Li,j for other values of j. We can also find the spaces of sectionsWj

of Lj,j. From equation (6), in our situationWi = Vi(−ur(i)Qi−(d−u0(i)−1)Pi)
if t(i) 6= 0 or i is not on the tableau and Wi = Vi(−ur(i)Qi − (d − u0(i))Pi)
if t(i) = 0. It follows that the orders of vanishing of the sections of Wj at Qj

are u0(j) − ur(j), . . . ur−1(j) − ur(j), ur(j) − ur(j) = 0. Using the expression
in equation (1), us(i) = d− s− i+ βi,s, the expression for ws is given by

(7) ws(i) = r − s+ βi,s − βi,r
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Lemma 3.5. Let C be a general chain of loops. Given a Young tableau of
dimension (r+1)(g−d+r) filled with integers among 1, . . . , g, consider a general
point of the component of the Brill-Noether locus on the chain corresponding
to the tableau. This point gives a divisor of the form

rP1 +
∑

k≥1

ǫkxk.



















ǫi = 0 if t(i) = r

ǫi = 1 xi + (r + βi,t(i) − t(i)− βr,i − 1)Pi ≡

≡ (rβi,t(i) − t(i)− βi,r)Qi if t(i) < r

ǫi = 1 xi generic if i not in tableau.

Proof. This is a recap of Section 2. In particular, the description of the divisor
follows from equation (5). �

Remark 3.6. The statements of Lemmas 3.4 and 3.5 give a direct analogy
between effective line bundles in the Brill-Noether locus for a chain of elliptic
curves and divisor on tropical chains of loops. We point out also that the
orders of vanishing of these divisors or line bundles agree (see equations (4)
and (7)). As the proof of the Brill-Noether theorem relies on the positivity of
these vanishing, the tropical or limit linear series proofs run in parallel.

Example 3.7. In this example, we exhibit the analogy and correspondence
between the theory of effective limit linear series on a chain of elliptic curves
and the theory of divisors on a tropical chain of loops. We look at the case
when g = 6, d = 6, and r = 2, and therefore ρ = 0.
Let C be a chain of elliptic curves of genus 6 as in Definition 1.2. Let us consider
the example of Eisenbud-Harris limit linear series on this chain associated to
the Young tableau

1 2 4
3 5 6

The data of this limit is summarized in the table in Figure 1: the ith row cor-
responds to the irreducible component Ci, we give the corresponding degree 6
line bundle on Ci followed by the orders of vanishing of the linearly independent
sections at Pi and Qi, respectively.
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s1i s2i s3i
O(6Q1) 0 1 2

6 4 3

O(2P2 + 4Q2)
0 2 3
5 4 2

O(P3 + 5Q3)
1 2 4
5 3 1

O(5P4 +Q4)
1 3 5
4 2 1

O(4P5 + 2Q5)
2 4 5
3 2 0

O(6P6)
3 4 6
2 1 0

Figure 1. Eisenbud-Harris limit linear series

s1i s2i s3i
O(3Q1) 0 1 2

3 1 0

O(2P2 + 2Q2)
0 2 3
3 2 0

O(4Q3)
0 1 3
4 2 0

O(4P4)
0 2 4
3 1 0

O(2P5 + 2Q5)
0 2 3
3 2 0

O(3P6)
0 1 3
2 1 0

Figure 2. Effective limit linear series

Let us now construct the corresponding effective limit linear series on the chain
of elliptic curves C using the results in Section 3:

· for i = 1, j = 1, we have u0(1, 1) = 2, u1(1, 1) = 1, u2(1, 1) =
0 and u0(1, 2) = 6, u1(1, 2) = 4, u2(1, 2) = 3, and then

L1,1 = L1(−u2(1, 1)P1 − u2(1, 2)Q1) = L1(−0P1 − 3Q1) = OC1
(3Q1);

· for i = 1, j = 2, we have u0(2, 1) = 3, u1(2, 1) = 2, u2(2, 1) =
0 and u0(2, 2) = 5, u1(2, 2) = 4, u2(2, 2) = 2, and then

L2,1 = L2(−u0(2, 1)P2 − u2(2, 2)Q2) = L2(−3P2 − 2Q2) = OC2
(2Q2 − P2);

Documenta Mathematica 22 (2017) 263–286
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· for i = 1, j = 3, we have u0(3, 1) = 4, u1(3, 1) = 2, u2(3, 1) =
1 and u0(3, 2) = 5, u1(3, 2) = 3, u2(3, 2) = 1, and then

L3,1 = L3(−u0(3, 1)P3 − u2(3, 2)Q3) = L3(−4P3 −Q3) = OC3
(4Q3 − 3P3).

Similar computations give

· L4,1 = L4(−u0(4, 1)P4 − u2(4, 2)Q4) = L4(−5P4 −Q4) = OC4
,

· L5,1 = L5(−5P5) = OC5
(2Q5 − P5), and

· L6,1 = L6(−6P6) = OC6
.

A complete description of the bundles Lj,i is shown on the following table where
Oi(a, b) denotes OCi

(aPi + bQi)

L1,1 L2,1 L3,1 L4,1 L5,1 L6,1

O1(0, 3) O1 O1 O1 O1 O1

O2(−1, 2) O2(2, 2) O2(2,−1) O2(2,−1) O2(2,−1) O2(2,−1)
O3(−3, 4) O3(−3, 4) O3(0, 4) O3 O3 O3

O4 O4 O4 O4(4, 0) O4(3,−2) O4(3,−2)
O5(−1, 2) O5(−1, 2) O5(−1, 2) O5(−1, 2) O5(2, 2) O5(2,−1)

O O O O O6 O6(3, 0)

The data for the effective limit linear series is summarized in Figure 2, following
the same conventions as in the Eisenbud-Harris limit.
Let now Γ be a general chain of 6 loops. The divisor corresponding to the
tableau is of the form

2Q0 + x1 + x2 + x3 + x5

where xi is on the ith loop. The points xi satisfy

2Q0 + x1 ≡ 3Q1, Q1 + x2 ≡ 2Q2, 3Q2 + x3 ≡ 4Q3, Q4 + x5 ≡ 2Q5.

(

1

)

2
(

3
)

1

(

2

)

3
(

4
2

) (

3
)

1

(

3
2

) (

2
1

)

Figure 3. The chain Γ with vanishing orders at the nodes.
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