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Abstract. We show that an irreducible ordinary differential equa-
tion on the projective line has a Frobenius structure for a power of
some prime p if it is rigid in the sense of Katz and satisfies some other
reasonable (and necessary) conditions relative to the prime p.
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Introduction

The purpose of this note is show that an irreducible rigid differential equation
on an open subset of P1 with regular singularities and rational exponents has,
with reasonable local assumptions relative a prime p, a Frobenius structure
relative to some power of p.
Katz showed that any irreducible rigid local system on an open subset P1

can be built up by repeated tensor product and convolution operations of a
suitable sort from local systems of rank one [8]. One therefore expects that if
the corresponding regular singular differential equation is defined, say, over Q
and has rational exponents, it should have a Frobenius structure for almost all
p. What we show in this paper, in effect, is that if the differential equation
has rational exponents, defines an overconvergent isocrystal for some prime p
and satisfies a few other reasonable local conditions, it will have a Frobenius
structure for that particular p. It is well known that the existence of a Frobenius
structure implies that the equation comes from a convergent isocrystals, and
overconvergence then follows from the other assumptions. We remark that
when the equation is irreducible, this Frobenius structure is unique up to a
scalar multiple, as was shown by Dwork [7].
Katz used the theory of algebraic D-modules in [8]; Berthelot’s theory of arith-
metic D-modules is not a priori applicable here since it relies heavily on the
existence of a Frobenius structure (it is not known how to define “holonomic”
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without one). On the other hand, once an overconvergent isocrystal is known
to have a Frobenius structure, its direct image by specialization is to be a holo-
nomic D†-module to which the methods of [8] could be applied. The present
approach is elementary in that it uses only the cohomological criterion for
rigidity, together with a p-adic analogue (theorem 1 below) in terms of rigid
cohomology. The main point is that if a regular singular differental equation
on an open subset of P1 is rigid and irreducible, and defines an overconvergent
isocrystal, then that isocrystal is p-adically rigid (theorem 2). The existence of
a Frobenius structure follows from this, assuming rational exponents and other
suitable conditions (theorem 3).

Acknowledgements. I would like to thank Francesco Baldassarri for some use-
ful discussions, and Shishir Agrawal for correcting some misprints in an early
manuscript. I am grateful to the referee for pointing out further misprints and
making a number of helpful suggestions.

1 Classical and p-adic Rigidity

Let U be a nonempty Zariski open subset of P1
C, with analytification Uan.

We recall that a local system V on Uan is rigid if any other local system on
Uan with the same local monodromy as V is isomorphic to V . Denote by
j : Uan → P1 the natural inclusion, and set S = P1 \ U . Katz shows that an
irreducible V is rigid if and only if H1(P1, j∗End(V )) = 0, or equivalently if
χ(P1, j∗End(V )) = 2. That this condition is sufficient is relatively easy, and
we will see that it can be extends to the case of p-adic differential equations.

A p-adic analogue of the rigidity condition can be formulated for the category
of overconvergent isocrystals on an open subset P1 over a p-adic base. We will
assume that the reader is familiar with this theory, but it will be useful to recall
a few basic constructions.

Fix a complete discrete valuation ring V of mixed characteristic p, with fraction
field K and residue field k. Let P1

V be the projective line considered as a formal
V-scheme, U ⊂ P1 a nonempty formal affine subscheme with closed fiber Uk.
The complement S = P1 \Uk is then a finite set of points. As usual, Uan ⊂ P1

K

will denote the corresponding affinoid space; it is the same as the tube ]U [=]Uk[
(c.f. [2]). Recall that in this setting, an overconvergent isocrystal on U can be
identified with a locally free module with an overconvergent connection (M,∇)
over the dagger-algebra

A† = lim
−→
W

Γ(W,OW ) (1.1)

where W runs over the directed system of strict neighborhoods of Uan, i.e.
a rigid-analytic open neighborhoods W of Uan such that {W,P1 \ Uan} is an
admissible cover of P1. We will usually abbreviate (M,∇) by M .

If s is a point of S and W is a strict neighborhood of Uan, the open set W∩]s[

Documenta Mathematica 22 (2017) 287–296



Rigidity and Frobenius Structure 289

is isomorphic to a rigid-analytic annulus, and we denote by Rs the direct limit

Rs = lim
−→
W

Γ(W∩]s[,OW ) (1.2)

of the function algebras of these annuli; this is the Robba ring at s. If x is
a local parameter of P1

V at s (i.e. reduces to a local parameter of P1
k at s)

then Rs ≃ R where R is the “standard” Robba ring, i.e. the ring of formal
Laurent series in x converging in some annulus r < |x| <. If s is a point of
S, the natural inclusions W∩]s[→֒ W induce injective ring homomorphisms
Γ(W,OW ) →֒ Γ(W∩]s[,OW ), whence a continuous ring homomorphism A† →֒
Rs for all s ∈ S. If (M,∇) is an overconvergent isocrystal on U , we set

Ms = lim
−→
W

Γ(W∩]s[,M)

which, since M is a a coherent OW -module, is a Rs-module of finite presenta-
tion. The connection on the Rs-module Ms induced by ∇ will be denoted ∇s,
and finally the pair (Ms,∇s) will be also denoted by Ms; it is an “overconver-
gent isocrystal on Rs” that represents the mondromy of M about s.
We therefore make the following definition. An overconvergent isocrystal M
on U is p-adically rigid if it has the following property: if N is another over-
convergent isocrystal on U such that Ms ≃ Ns for all s ∈ S, then M ≃ N . As
in the classical case we do not make a definition in the case of curves of higher
genus, or varieties of higher dimension (although for curves of higher genus,
the definition of “weakly rigid” extends in an obvious way).
To formulate a cohomological condition for the p-adic rigidity of an overcon-
vergent isocrystal (M,∇), we recall that for a complex local system V on an
open U ⊆ P1

C, H
1(P1

C, j∗V ) is the same as the parabolic cohomology H1
p (U, V ),

i.e. the image of the forget supports map H1
c (U, V ) → H1(U, V ). In fact the

long exact sequences arising from the exact triangles

j!V → j∗V →
⊕

s∈S

(j∗V )s
+1
−−→

j∗V → Rj∗V →
⊕

s∈S

(R1j∗V )s[−1]
+1
−−→

(1.3)

reduce to exact sequences

0 → H0(U, V ) →
⊕

s∈S

(j∗V )s → H1
c (U, j∗V ) → H1(P1, j∗V ) → 0

0 → H1(P1, j∗V ) → H1(U, V ) →
⊕

s∈S

(R1j∗V )s → H2(P1, j∗V ) → 0
(1.4)

and an isomorphism

H2
c (U, V ) ≃ H2(P1, j∗V ). (1.5)
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The assertion follows from this, given that H1
c (U, V ) → H1(U, V ) is induced

by the composite j!V → j∗V → Rj∗V . From the definitions and 1.5 we get
equalities

χ(P1, j∗V ) = dimH0(U, V )− dimH1(P1, j∗V ) + dimH2
c (U, V )

= χc(U, V ) +
∑

s∈S

dim Vs.
(1.6)

The p-adic analogue is straightforward, using rigid cohomology (see [2] for the
general definition, and [6] for the case of an affine curve). The first fact we
need is the existence of a six-term exact sequence

0 → H0(U,M) →
⊕

s∈S

H0
DR(Ms) → H1

c (U,M) →

∂
−→ H1(U,M) →

⊕

s∈S

H1
DR(Ms) → H2

c (U,M) → 0
(1.7)

for any overconvergent isocrystal M on U [6, 9.5.2]. In 1.7 the “local cohomol-
ogy” Hi

DR(Ms) is just the ordinary de Rham cohomology of Ms = (Ms,∇s).
We then define the parabolic cohomology H1

p (U,M) by

H1
p (U,M) = Im(∂ : H1

c (U,M) → H1(U,M)). (1.8)

From this we see that 1.7 is the p-adic analogue of the result of gluing together
the exact sequences 1.4 at the term H1(P1, j∗V ).
When H1

p (U,M) has finite dimension, we can define the “parabolic” Euler
characteristic of M by analogy with the first part of 1.6

χp(M) = dimH0(U,M)− dimH1
p (U, V ) + dimH2

c (U,M) (1.9)

and from 1.7 and 1.9 we get the equality

χp(U,M) = χc(M) +
∑

s∈S

dimH0
DR(Ms) (1.10)

analogous to second part of 1.6.
The space H1

p (U,M) will of course have finite dimension if either of H1(U,M)
or H1

c (U,M). The finite-dimensionality of these latter spaces depends on the
behavior of M at the points of S. The next proposition extends slightly the
main result of [6]:

1 Proposition Let M be an overconvergent isocrystal on U . If H1
DR(Ms) has

finite dimension for every s ∈ S, the K-vector spaces H1(U,M), H1
c (U,M) and

H1
p (U,M) have finite dimension and there are canonical duality isomorphisms

Hi(U,M)∨ ≃ H2−i
c (U,M∨)

H1
p (U,M)∨ ≃ H1

p (U,M
∨)

(1.11)

for 0 ≤ i ≤ 2.
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Proof. By theorem 9.5 of [6] it suffices to show that for all s ∈ Uk the K-linear
map ∇s : Ms → Ms ⊗ Ω1 is a strict morphism of topological vector spaces.
Since Ms and Ms ⊗ Ω1 are LF-spaces this follows from the next lemma.

In fact this is standard but I do not know a convenient reference:

1 Lemma Suppose u : V → W is a continuous map of LF-spaces such that

Coker(u) has finite dimension. Then u is strict.

Proof. There is a subspace H ⊂ W of finite dimension that is an algebraic
supplement to u(V ). Since H is separated, its topology is the unique separated
topology of a finite-dimensional vector space, and H ⊕ V is an LF-space. The
natural map f : H ⊕ V → W is surjective and therefore open by the open
mapping theorem [10, Prop. 8.8]. Suppose now A ⊂ V is open; then H ⊕
A ⊂ H ⊕ V is open and consequently f(H ⊕ A) = H + u(A) is open. Since
u(V ) ∩ (H + u(A)) = u(A), u(A) is open in u(V ).

The condition that dim(H1
DR(Ms)) < ∞ in proposition 1 is a consequence of

the “NL property” of Christol and Mebkhout. The definition is rather involved
and we refer the reader to [4] and the references therein. The one consequence
of this condition we need is the following: if as before M is an overconvergent
isocrystal of rank d on U and satisfies condition NL at every point of S, then

χc(U,M) = dχc(U)−
∑

s∈S

Irr(Ms) (1.12)

where Irr(Ms) is the irregularity of the isocrystal Ms, defined in [4]. In par-
ticular, χc(U,M) only depends on U , the rank of M and the irregularities
Irr(Ms).
We can now state:

1 Theorem Suppose M is an irreducible overconvergent isocrystal on U ⊂ P1

such that End(M) satisfies condition NL at every point of S. If χp(End(M)) =
2 then M is p-adically rigid.

Proof. The argument is the same as in [8]. Suppose that N is an overconvergent
isocrystal such that Ms ≃ Ns for all s ∈ S; in particular M and N have the
same rank. Since Hom(M,N)s ≃ End(M)s for all s ∈ S, Hom(M,N) satisfies
condition NL at every s. Then it follows from χp(End(M)) = 2 and the index
formula 1.12 that χp(Hom(M,N)) = 2, and therefore

dimH0(P1, Hom(M,N)) + dimH2
c (P

1, Hom(M,N)) ≥ 2.

On the other hand Hom(M,N) and Hom(N,M) are dual, so the duality 1.11
yields

dimH0(P1, Hom(M,N)) + dimH0(P1, Hom(N,M)) ≥ 2.

and we conclude that one ofHom(M,N), Hom(N,M) is nonzero. SinceM and
N have the same rank and M is irreducible, we conclude that M ≃ N .
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We note that since End(M) is canonically self-dual, the irreducibility of M
implies that either χp(M) = 2 or χp(M) ≤ 0, so that χp(M) = 2 in this case
is equivalent to H1

p (U,End(M)) = 0. As in the classical case we can think of
dimH1

p (U,End(M)) as the number of “accessory parameters” of M (see [8], p.
5). I do not know if there is a converse to theorem 1, as is the case over C; it
would be of interest to settle this question.

2 Comparison Theorems

Suppose M is a module with a connection with regular singularites on, say,
an open subset U of P1

Q, and denote by V the corresponding local system on
Uan
C . The aim of this section is to show, under a few (necessary) assumptions,

that if V is rigid, the p-adic completion of M is p-adically rigid (one condition,
obviously, is that this p-adic completion defines an overconvergent isocrystal).
We need not, however, restrict ourselves to the case where M is defined over
Q, or over a number field. In fact, the condition that V be rigid is essentially
an algebraic condition on M :

2 Lemma Suppose M is a module with a connection with regular singularities

on some open subset of P1
K , where K is a field of characteristic zero embeddable

into C. If the local system (M ⊗K,ι C)
an is rigid for one choice of embedding

ι : K → C, it is rigid for any other choice.

Proof. By Katz’s criterion, it suffices to show that χp((M ⊗K,ιC)
an) = 2 if and

only if χp(M) = 2 (with the latter defined, say by algebraic D-module theory),
but this is just a special case of the Riemann-Hilbert correspondence.

IfK is any field of characteristic zero andM is a module with regular connection
on P1

K , we can say that M is rigid if there is an absolutely finitely generated
subfield K0 ⊂ K over which M has a model M0, and an embedding ι : K0 → C

such that ι(M0)
an is a rigid local system; this is evidently independent of the

choice of model, and, by the lemma, of ι. We remark that a model over an
absolutely finitely generated subfield always exists.
Now in fact one could give a purely algebraic definition of rigidity, analogous to
the definition for local systems, and with this definition one could prove that
χp(M) = 2 implies that M is rigid. The converse, however, would not be avail-
able without the above comparison lemma, since it requires a transcendental
argument.
Suppose now V is a complete discrete valuation ring of mixed characteristic p,
with fraction field K and residue field k. Let S ⊂ P1

V be a closed subscheme
that finite, flat and integral over V and set U = P1 \ S. The U and S that
appeared in the last section are now Û (the p-adic completion) and Sk. As
before, Uan is the affinoid space associated to Û . Finally we denote by UK ,
SK the fibers of U and S over K. Note that SK can be identified with a finite
subset of the tube ]Sk[, and in fact every point of SK is contained in exactly
one disk ]s[ with s ∈ Sk.
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Suppose now that (M,∇) (as before, usually referred to as M) is a coherent
OU -module with (integrable) connection. We denote by MK the corresponding
module with connection on UK . If the formal horizontal sections of MK have
radius of convergence equal to 1 at every point of UK , then MK defines an
overconvergent isocrystal on Û which we denote by M †. We are interested in
comparing various properties of MK and M †, subject to a number of assump-
tions. The first is purely geometrical:

C1 For all s ∈ Sk, the disk ]s[ contains exactly one point of SK , which is a
K-rational point.

Thus each disk contains at most one singular point of MK . The remaining
conditions refer specifically to M . Recall that a ∈ Zp is p-adic Liouville if for
every positive real r < 1, |a− n| < r|n| has infinitely many solutions n ∈ Z.

C2 M defines an overconvergent isocrystal M † on Û .

C3 MK is regular singular, and the exponents of End(MK) belong to Zp and
are not p-adic Liouville numbers (in particular the exponents of MK itself
do not differ by p-adic Liouville numbers).

In the next theorem and further on we will need a consequence of Christol’s
transfer theorem [3, thm. 1], which can be stated as follows. First, if A is any
n × n matrix A with entries in K, we denote by MA the free R-module Rn

with connection given by

∇(u) = du +Au⊗
dx

x
(2.1)

where x is the parameter of R. Recall finally that for s ∈ Sk, a local parameter
of P1

V at s fixes an identification Rs = R.

3 Lemma Suppose (M,∇) satisfies C2-C3. If s ∈ Sk, M
†
s is isomorphic as an

isocrystal on R to MA for some n× n matrix A with entries in V.

In fact Christol’s theorem is a purely local statement and we refer the reader
to [5, thm. 3.6] for an explanation of how the lemma follows from [3, thm. 1].

2 Theorem Suppose M satisfies conditions C1-C3. If MK is irreducible as a

module with connection, M † is irreducible as an overconvergent isocrystal. If

in addition MK is rigid, M † is p-adically rigid.

Proof. The first part follows from theorem 2.5 of [5], which asserts that the
differential galois group of MK is isomorphic to the differential galois group (in
the category of overconvergent isocrystals) of M †. Thus if MK corresponds to
an irreducible representation of its differential galois group, so does M †.
If MK is rigid, then χ(UK , j∗End(MK)) = 2, where as before j : UK → P1

K is
the inclusion (and MK is now regarded as a local system on UK). By theorem
1 it suffices to show that χp(End(M †)) = 2.
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By C3, End(M †) satisfies condition NL at every point of Sk, and furthermore
Irrs(End(M †)) = 0 for all s ∈ Sk. Thus

χc(End(M †)) = dχc(U) = χc(End(MK))

where d is the rank of End(MK). One can also deduce this equality from the
comparison theorem of Baldassarri-Chiarellotto [1].
To show that χp(End(M †)) = χp(End(MK)) = 2, it thus suffices to show that
(j∗MK)s and M †

s have the same dimension for all s ∈ Sk. Suppose t is a local
parameter of P1

V such that t = 0 defines a point of SK in P1
K , and its reduction in

P1
k. Then (j∗MK)s and M †

s are the spaces horizontal sections of the connection
in respectively in the ring of formal Laurent series K((t)), and in the ring of
elements of Rs convergent for 0 < |t| < 1. Since the exponents of End(MK)
are not p-adic Liouville, lemma 3 implies that M †

s is isomorphic, as Rs-module
with connection, to a free Rs-module with connection given by the matrix of
1-forms A ⊗K dt/t, where A is a constant matrix. The verification that these
spaces have the same dimension is then straightforward (see [5, Lemma 3.4] for
the case of M †).

3 Frobenius Structure

We now apply theorem 2 to the question of Frobenius structures. To the
assumptions already made we add:

C4 The exponents of MK are rational.

It is known that if M satisfies C1-C3 and has a Frobenius structure, then C4

holds as well.
If q = pf is a power of p, we denote by φ : Û → Û a lifting of the qth-power
Frobenius of Uk. If t is a global parameter on P1

V , we could of course take
φ(t) = tq; the theorem in this section allows more general choices. We denote
by σ : V → V the restriction of φ.
The main theorem of this section follows from the following local-to-global
principle:

4 Lemma Suppose MK is an irreducible module with connection satisfying C3.

If MK is rigid and φ∗M †
s ≃ M †

s for all s ∈ Sk, M
† has a qth-power Frobenius

structure.

Proof. By theorem 2 we know that M † is irreducible and p-adically rigid, and
the assertion follows from the definition.

We denote by N the least common multiple of the denominators of the expo-
nents of MK at all points of Sk.

3 Theorem Suppose M satisfies conditions C1-C4. If MK is irreducible and

rigid, then M † has a qth-power Frobenius structure for any q = pf such that

q ≡ 1 (mod N).
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We remarked in the introduction that the Frobenius structure is unique up to
scalar multiples.
Proof. Fix an s ∈ Sk and a local parameter x of the Robba ring Rs. By
lemma 3 there is an isomorphism Ms ≃ MA (depending on the choice of x,
i.e. on the identification Rs ≃ R) for some A with rational, p-adically integral
eigenvalues. In view of lemma 4 we must show that φ∗MA ≃ MA.
We first remark that MA ≃ MqA for q as above. This is elementary: we
can assume A is in Jordan normal form, since the eigenvalues are rational. We
reduce immediately to the case when A is a single Jordan block with eigenvalue
λ; then qA is similar to a block with eigenvalue qλ, say A′, and it suffices to
show that MA ≃ MA′ . Since q ≡ 1 (mod N) we can write qλ = λ + k with
k ∈ Z, and the map Rn → Rn given by u 7→ xku is the desired isomorphism.
To conclude we show that φ∗MA ≃ MqA. We give two arguments, an elemen-
tary one that needs restrictions on V and a second, less elementary one with
no restrictions.

First method. Let π be a uniformizer of V and let e be its absolute ramification
index. For this proof we assume that e < p − 1 (note that this excludes
p = 2). Before going on we recall that in general, if ∇ and ∇′ are connections
on Rn given by n × n matrices of 1-forms B and B′, then an isomorphism
(Rn,∇) ≃ (Rn,∇′) is a matrix C ∈ GLn(R) such that

dC · C−1 = CBC−1 −B′. (3.1)

In particular if B, B′ are conjugate by a constant matrix, that matrix also
yields an isomorphism (Rn,∇) ≃ (Rn,∇′).
Now

φ∗

(

A⊗
dx

x

)

= A⊗
dφ(x)

φ(x)
= qA⊗

dx

x
+A⊗

dh(x)

h(x)
(3.2)

with h(x) = x−qφ(x). We need a C satisfying 3.1, whereB is the right hand side
of 3.2 and B′ = qA⊗ dx/x. We will find one that commutes with B, in which
case 3.1 reduces to dC ·C−1 = A⊗dh/h. If we denote by R0 the integral Robba
ring, i.e. the subring ofR with coefficients in V , then h(x) ≡ 1 (mod πR0). We
may then define log h(x) by the usual power series, and log h(x) ≡ 1 (mod πR0)
as well. Since e < p− 1 the exponential C(x) = exp(A⊗ log h(x)) converges to
an element of GLn(R

0). Since C(x) commutes with A, the change of basis by
C(x) is the desired isomorphism φ∗MA ≃ MqA.

Second method. Let t be a global parameter on P1
V . If s ∈ Sk corresponds to t =

a we set x = t−a, which is a local parameter at s. We denote by φx the lifting of
the qth power Frobenius toRs defined by φx(x) = xq. For this particular lifting
it is evident from 3.1 that φ∗

xMA ≃ MqA, so we must show that φ∗Ms ≃ φ∗
xMs.

Because of our choice of x, φx extends to a lifting of Frobenius on all of P1
V ,

namely φx(t) = aσ + (t− a)q. Then there is an isomorphism φ∗M † ≃ φ∗
xM

† if
overconvergent isocrystals on U ; this is the standard “independence of lifting”
property of overconvergent isocrystals. More specifically it follows from [9,
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Prop. 7.1.6] with Y = Y ′ = P1
k, X = X ′ = U , P = P ′ = P1

V , u1 = φ and
u2 = φx. Restricting the isomorphism φ∗M † ≃ φ∗

xM
† to the tube ]s[ yields

φ∗Ms ≃ φ∗
xMs.
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