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Abstract. We show that the reduced motive of a smooth affine
quadric is invertible as an object of the triangulated category of mo-
tives DM(k,Z[1/e]) (where k is a perfect field of exponential charac-
teristic e). We also establish a motivic version of the conjectures of
Po Hu on products of certain affine Pfister quadrics. Both of these
results are obtained by studying a novel conservative functor on (a
subcategory of) DM(k,Z[1/e]), the construction of which constitutes
the main part of this work.
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1 Introduction

For a perfect field k, Voevodsky has constructed a triangulated categoryDM(k)
containing the classical category Chow(k) of Chow motives [20]. Like Chow(k),
DM(k) is a tensor category. We denote the tensor product by ⊗ = ⊗DM(k)

and the unit by 1 = 1DM(k). As in any tensor category, we have the notion of
invertible objects : an object E ∈ DM(k) is called invertible if there exists an
object F ∈ DM(k) and an isomorphism E ⊗ F ≈ 1. The set of isomorphism
classes of invertible objects forms an abelian group under ⊗ and is called the
Picard group. We denote it Pic(DM(k)).
Po Hu [12] was the first to construct interesting elements in Pic(DM(k)),
related to certain low-dimensional quadrics. In this direction we prove the
following result (see Theorem 33 in Section 5).

Theorem. Let k be a perfect field of exponential characteristic e not two,
φ(t1, . . . , tn) a non-degenerate quadratic form over k and a ∈ k×. Write Xa

φ

for the affine quadric defined by the equation φ(t1, . . . , tn) = a.
Then the reduced motive M̃(Xa

φ) ∈ DM(k,Z[1/e]) is invertible.

Documenta Mathematica 22 (2017) 363–395



364 Tom Bachmann

This result has a number of predecessors. Work of Voevodsky can be used to
show that reduced versions of the Rost motives [19] are invertible. As observed
by Hu-Kriz [13, Proposition 5.5], the reduced Rost motives are reduced motives
of affine Pfister quadrics. They go further and explore analogies with the Hopf
invariant one problem. In [12] this culminates in certain conjectures about
smash products of affine Pfister quadrics implying their invertibility. Moreover
the conjectures are proven in low dimensions.

The best method the author knows of attacking the study of Picard groups of
tensor categories (to the extent that it even deserves the name “method”) is
to construct “realisation functors” F : DM(k) → C. If F is a tensor functor,
it induces a homomorphism Pic(DM(k)) → Pic(C). If F is sufficiently nice,
and C sufficiently simple, one may hope to compute Pic(C) and relate it to
Pic(DM(k)). We mention in passing that a good test for the “niceness” of F
seems to be conservativity (i.e. the property that F detects isomorphisms).
This will be illustrated later.

There are well known realisation functors out of DM(k), but none of them
seem helpful to our problem. If k ⊂ C there is the Hodge realisation, but this
factors through the natural functor DM(k) → DM(C) and hence provides
no interesting information about quadrics (which over C are distinguished by
only their dimension). There is also étale realisation, but this factors through
DM(k) → DMet(k). In DMet(k) our problem turns out to be very simple
and not indicative of the complexity encountered in DM(k) (i.e. in the Nis-
nevich topology). What we propose in this work is to construct purpose-built
realisation functors DM(k) → C into big but easy to understand categories.
(Actually we do not quite achieve this; limitations will be explained later.) To
motivate our constructions, we explain two analogous but simpler problems
obtained by replacing DM(k) by another category.

First let G be a finite group. There exists the stable G-equivariant homotopy
category SH(G) [15]. Its objects (called genuine G-spectra) are roughly pointed
G-spaces, where maps inducing weak equivalences on all fixed point sets have
been turned into isomorphisms, and all representation spheres are invertible
objects. If H ≤ G is a subgroup, the set of cosets G/H can naturally be turned
into a pointed G-space (adding a base point ∗ with trivial action). We denote
the associated spectrum by Σ∞G/H+. The objects Σ

∞G/H+ generate SH(G).
There is a functor, called geometric fixed points functor, and denoted Φ = ΦG :
SH(G) → SH (where SH = SH({e}) is the classical stable homotopy category)
which turns out to be very useful. It is a tensor functor with the property
that ΦG(Σ∞G/G+) = S (the sphere spectrum), whereas ΦG(Σ∞G/H+) = 0
for any proper subgroup H < G. There are also natural functors SH(G) →
SH(H) (treating G-spaces as H-spaces) allowing us to construct the more
general geometric fixed points functors ΦH : SH(G) → SH(H) → SH. As it
turns out the collection {ΦH}H (with H ranging over all subgroups of G) is as
nice as one may ask (in particular conservative). Consequently these functors
were used in [10] to study Pic(SH(G)).

We now come to a second, more algebraic, example. Let R be a (commutative
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unital) ring. Suppose we want to study Pic(D(R)), the Picard group of the
derived category of R-modules. Let m be a maximal ideal of R. Recalling that
D(R) can be identified with a subcategory of K(P (R)), the homotopy category
of chain complexes of projective R-modules, it is easy to construct a functor
Φm : D(R) → D(R/m) with the propetry that Φm(R[0]) = R/m[0]. (This
is just ⊗LRR/m.) It turns out that the collection {Φm}m (where m ranges
over all maximal ideals) is as nice as one needs (at least when restricted to
subcategories of sufficiently small objects in D(R)). Moreover the categories
D(R/m) are easy to understand. Consequently, these functors have implicitly
been used by Fausk in his study of the Picard group of derived categories [9].
Our construction for DMgm(k) uses a conglomerate of these ideas. The tech-
nical notion of weight structures is the glue that holds our constructions to-
gether. We proceed roughly as follows. Recall that DMgm(k) is generated
as a triangulated category by the Chow motives. Let S be the triangulated
subcategory generated by those Chow motives not affording a (non-vanishing)
Tate summand. The basic idea is to consider the (Verdier Quotient) func-
tor ϕk0 : DMgm(k) → DMgm(k)/S. The right hand side does not seem
initially easier to understand, but it is at least clear that it is generated by
the images of Tate motives. Using weight structure theory one obtains a
functor t : DMgm(k)/S → Kb(Tate), where Tate is the category of (pure)
Tate motives, and Kb means bounded chain homotopy category.1 Combined
with base change to arbitrary fields, we thus obtain a collection of functors
Φl : DMgm(k) → DMgm(l) → DMgm(l)/S → Kb(Tate). We not that if
T ∈ Tate is a Tate motive then Φk(T ) = T . If instead M ∈ Chow affords no
(non-zero) Tate summands, then Φk(M) = 0. This is rather similar to the geo-
metric fixed points functor ΦG from stable equivariant homotopy theory. Since
the general Φl are obtained from Φk by base change, just as ΦH is obtained
from the ΦG construction by base change (restriction to a subgroup), we will
call the functors Φl “generalized geometric fixed points functors.”
A natural question is when these functors have good properties. For our pur-
poses we definitely need tensor functors, which is to say we need S to be a
tensor ideal. This is just not true in general. However, if instead of looking
at the full DMgm(k) we look at the subcategory DQMgm(k) generated by
the (products of) smooth projective quadrics, and use coefficients modulo two,
then we can show that S is a tensor ideal. Moreover, using more properties of
weight structures, we prove the collection of generalized fixed points functors to
be conservative and Pic-injective (i.e. inducing an injection on Picard groups;
see Theorem 31 in Section 5):

Theorem. Let k be a perfect field of exponential characteristic e not two, and
Φl : DQMgm(k,F2) → Tate(F2) the functors constructed above.
Then {Φl}l, as l ranges over finitely generated extensions of k, forms a con-
servative, Pic-injective family of tensor triangulated functors.

1Actually for this to be true we need to consider DM
gm(k,F) where F is a field. This is

not really a problem.
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It is then not hard to use general properties of base change and change
of coefficients for DM to build a conservative and Pic-injective family
for DQMgm(k,Z[1/e]). It turns out that one additional functor Ψ :
DQM(k,Z[1/e]) → Tate(Z[1/e]) suffices. (It is related to geometric base
change.)
In more detail, the paper is organised as follows. In Section 2 we introduce our
notations regarding Chow motives and collect some results. The main idea is
to use the absence of degree one zero-cycles in a variety to conclude that it is
free of Tate summands in a strong sense. This observation is what will allow
us in a later section to establish that our “geometric fixed points functors” Φl

are tensor.
In Section 3 we review in some detail the categories DM(k,A) (triangulated
motives over the perfect field k with coefficients in the commutative ring A)
and their behaviour under change of coefficients and base. All the material is
well known, but sometimes hard to source. We then construct a convenient
conservative and Pic-injective collection on DM(k,A). The targets are always
DM(k′, A′) with either k simplified (e.g. k′ separably closed) or A simplified
(e.g. A′ a field).
Section 4 constitutes the technical heart of our work. We first rapidly review
Bondarko’s theory of weight structures. After that we carry out the programme
outlined above, of constructing a conservative and Pic-injective family of func-
tors {Φl}l : DQMgm(k,F2) → Kb(Tate(F2)).
The remaining sections contain applications. In Section 5 we prove that all
affine quadrics have invertible motives. This is rather satisfying, since affine
quadrics are fairly natural “generalised spheres.” Also the result has been
known in the étale topology for a long time. Compare the beginning of this
introduction for a history of this problem.
Section 6 contains the second set of applications. In [12, Conjecture 1.4] Po
Hu has stated certain conjectures about the motivic spectra of affine Pfister
quadrics, namely certain formulas they should satisfy under smash product.
We establish the analogues (or “images”) of these formulas in DM(k) by an
easy computation involving our fixed points functors.
The list of applications of our methods does not end here, but the amount of
material we want to stuff into one article does. As directions of future work,
let us mention the following possibilities. The structure of Pic(DQM(k)) can
be investigated. One may replace the set of projective quadrics by projective
homogeneous varieties for a fixed group G. Also using (almost) the same meth-
ods, it is possible to study DATM(k), the subcategory of DM(k) generated
by M(Spec(l)){i} for l/k finite separable and i ∈ Z, i.e. Artin-Tate motives.
This will be treated in forthcoming work.
We also note that our results for DM have applications to the study of the
stable motivic homotopy category SH(k). In forthcoming work [1] we show
that if k is a field of finite 2-étale cohomological dimension, then the functor
SH(k) → DM(k) is conservative and Pic-injective, when restricted to com-
pact spectra. Consequently the suspension spectral of affine quadrics are also
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invertible, and the Hu conjectures hold for spectra (over such fields).
Whenever we talk about quadrics or quadratic forms, we shall assume that the
base field has characteristic different from two. This will be restated with the
most important theorems.
Our results are stated over perfect base fields, because this is when DM(k)
is best understood. However actually everything goes through over arbitrary
base fields, using [7].
Throughout this text, we will omit brackets around the arguments of functors
whenever convenient. For example MX means the same thing as M(X).
The author wishes to thank Fabien Morel for suggesting this topic of inves-
tigation and for providing many helpful insights, and Mikhail Bondarko for
comments on a draft of this paper. He also wishes to thank an anonymous
referee for many helpful comments and suggestions.

2 Some Results about Chow Motives

We begin with some notation. We take for granted the notion of an additive
category. An additive category C is called Karoubi-closed if every idempotent
endomorphism of an object of C corresponds to a direct sum decomposition.
By a tensor category we mean an additive category provided with a suitably
compatible symmetric monoidal structure [8, Section 1]. In particular this
means that the monoidal operation is bi-additive. We shall always denote the
monoidal operation by ⊗ = ⊗C and call it tensor product. The tensor unit is
generically denoted 1 = 1C .
Now our conventions regarding Chow motives. By SmProj(k) we denote the
category of smooth projective varieties over the field k. It is a symmetric
monoidal category using cartesian product as monoidal product. We shall as-
sume understood the existence and functoriality properties of the Chow ring
A∗(X). Grading is by codimension and the equivalence relation we use is ratio-
nal equivalence. Lower index means grading by dimension. For convenience if
F is any coefficient ring, we put A∗(X,F) = A∗(X)⊗Z F. It is then possible to
construct a Karoubi-closed tensor category Chow(k,F) together with a covari-
ant symmetric monoidal functor M = MF : SmProj(k) → Chow(k,F) which
has the following properties. The unit object is 1Chow(k,F) = 1 =M(Spec(k)).
There exists an object 1{1} such that M(P1) ≈ 1 ⊕ 1{1}. We call 1{1} the
Lefschetz motive. It is invertible. For any n ∈ Z andM ∈ Chow(k,F) we write
M{n} :=M ⊗ 1{1}⊗n. For any X,Y ∈ SmProj(k) and i, j ∈ Z we have

HomChow(k,F)(M(X){i},M(Y ){j}) = AdimX+i−j(X × Y ).

In particular we have Hom(MX,1{i}) = Ai(X,F) and Hom(1{i},MX) =
Ai(X,F). Composition is by the usual push-pull convolution.
In the remainder of this section we collect some results about Chow motives
which we will need throughout the article. None of them are hard, so probably
most of this is well known.
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Recall first that if l/k is a field extension then the functor SmProj(k) →
SmProj(l), X 7→ Xl induces a functor Chow(k,F) → Chow(l,F) called base
change and denoted M 7→ Ml. We need to know something about this in the
inseparable case.

Lemma 1. Let l/k be a purely inseparable extension of fields of characteristic p
and F a coefficient ring in which (the image of) p is invertible. Then the base
change Chow(k,F) → Chow(l,F) is fully faithful.

Proof. It suffices to prove that for X ∈ SmProj(k) we have A∗(X,F) =
A∗(Xl,F). By the definition of rational equivalence as in [11, Section 1.6]
it is enough to show that Z∗(X,F) → Z∗(Xl,F) is an isomorphism for all X .

Let Z ⊂ X be a reduced closed subscheme and |Zl| the reduced closed sub-
scheme underlying Zl. Then the image of [Z] under Z∗(X,F) → Z∗(Xl,F) is
n[|Zl|], where n is the multiplicity of Zl. This is easily seen to be a power of p,
whence Z∗(X,F) → Z∗(Xl,F) is injective. It is also surjective since Xl → X is
a homeomerphism on underlying spaces. This concludes the proof.

We now investigate “Tate summands”. Denote by Tate(k,F) ⊂ Chow(k,F)
the smallest (strictly) full Karoubi-closed additive subcategory containing 1{i}
for all i. This is independent up to equivalence of k and we will just write
Tate(F) if no confusion can arise. (It is a tensor category.)

We say M ∈ Chow(k,F) is Tate-free if whenever M ≈ T ⊕ M ′ with T ∈
Tate(k,F), then T ≈ 0. The next proposition holds in much greater generality,
but this version is all we need.

Proposition 2. Let F be a finite ring and M ∈ Chow(k,F). Then there exist
T ∈ Tate(F) and M ′ ∈ Chow(k,F) with M ′ Tate-free and M ≈ T ⊕M ′.

Proof. Splitting off Tate summands inductively, the only problem which could
occur is that M might afford arbitrarily large Tate summands. The impossi-
bility of this follows (for example) from the finiteness of étale cohomology of
complete varieties [17, Corollary VI.2.8].

Lemma 3. Let F be a field. Then if M,N ∈ Chow(k,F) are Tate-free so is
M ⊕N .

Proof. A motive with F-coefficients is Tate-free if and only if it affords no
summand of the form 1{n} for any n.

Let i : 1{n} → M ⊕N and p : M ⊕N → 1{n} be inclusion of and projection
to a summand, for M,N arbitrary. Write i = (iM , iN)

T and p = (pM , pN).
Then id = pi = pM iM + pN iN . Since Hom(1{n},1{n}) = F 6= 0 we must have
pM iM 6= 0 or pN iN 6= 0. Suppose the former holds. Then since F is a field
we may replace iM by a multiple ciM such that pM (ciM ) = 1. Thus 1{n} is a
summand ofM . Similarly in the other case. This establishes the contrapositive
of the lemma.
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Lemma 4. Let F be a field. Then any morphism in Tate(k,F) factoring through
a Tate-free object is zero.

Proof. Since F is a field any Tate motive is a sum of 1{n} for various n, so
it suffices to consider a morphism 1{n} → 1{m} factoring through a Tate-
free object. Since Hom(1{n},1{m}) = 0 for n 6= m we may assume n = m.
Consider a ∈ Hom(1{n},M) and b ∈ Hom(M,1{n}). If ba 6= 0 then there
exists c ∈ F such that (cb)a = id. It follows that (cb), a present 1{n} as a
summand of M . This establishes the contrapositive.

We need tools to recognise Tate-free motives. To do so, we introduce some more
notation. For X ∈ SmProj(k) there exists the degree map deg : A0(X,F) →
F (corresponding to pushforward along the structure map Hom(1,MX) →
Hom(1,1)). Write IF(X) = deg(A0(X,F)) for the image of the degree map.
This is the ideal inside F generated by the degrees of closed points. The utility
of this notion is as follows.

Lemma 5. Let F be a field and suppose IF(X) 6= F. Then MX is Tate-free.

Proof. As beforeMX is Tate-free if and only if it affords no summand 1{N} for
any N . Given i ∈ Hom(1{N},MX) = AN (X,F) and p ∈ Hom(MX,1{N}) =
AN (X,F), the composite pi ∈ Hom(1{N},1{N}) = F is obtained by push-pull
convolution. In this case it is just deg(p∩ i) and so is contained in IF(X). Thus
pi 6= 1 and (p, i) is not a presentation of 1{N} as a summand of X .

Lemma 6. Let X,Y ∈ SmProj(k). Then IF(X × Y ) ⊂ IF(X) ∩ IF(Y ).

Proof. We recall that IF(X×Y ) is just the ideal generated by degrees of closed
points. So let z ∈ X × Y be a closed point. Then z → X × Y corresponds to
morphisms z → X and z → Y . It follows that deg(z) ∈ IF(X) and similarly
deg(z) ∈ IF(Y ). This implies the result.

Suppose S ⊂ SmProj(k) is a set of smooth projective varieties. We write

〈S〉⊗,TChow(k,F) for the smallest strictly full, additive, Karoubi-closed, tensor sub-

category of Chow(k,F) containing all Tate motives and also MX for each

X ∈ S. Assuming F is a field, this means that a general object of 〈S〉⊗,TChow(k,F)

is (isomorphic to) a summand of

T ⊕M(X
(1)
1 × · · · ×X(1)

n1
){i1} ⊕ · · · ⊕M(X

(m)
1 × · · · ×X(m)

nm
){im},

with T ∈ Tate(F) and X
(j)
i ∈ S, ir ∈ Z.

The following proposition (or rather its failure to generalise) is the basic reason
why in the construction of fixed point functors we will need to restrict to
subcategories.

Proposition 7. Let F be a finite field and S ⊂ SmProj(k) be such that
IF(X) = 0 for all X ∈ S (i.e. such that all closed points of X have degree
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divisible by the characteristic of F). Then any object M ∈ 〈S〉⊗,TChow(k,F) can be

written as T ⊕M ′, where T ∈ Tate(F) and M ′ is (isomorphic to) a summand
of

M(X
(1)
1 × · · · ×X(1)

n1
){i1} ⊕ · · · ⊕M(X

(m)
1 × · · · ×X(m)

nm
){im},

for some X
(j)
i ∈ S, ir ∈ Z. Moreover any such M ′ is Tate-free.

Proof. By Lemma 6 we know that IF(X
(j)
1 × . . .X

(j)
nj ) = 0 and thus by Lemmas

5 and 3 we conclude that anyM ′ as displayed is indeed Tate-free. So it suffices
to establish the first part.
By definition we may write

M ⊕M ′′ ≈ T ⊕M(X
(1)
1 ⊗ · · · ⊗X(1)

n1
){i1} ⊕ · · · ⊕M(X

(m)
1 ⊗ · · · ⊗X(m)

nm
){im},

with T ∈ Tate(F) and X
(j)
i ∈ S. Using Proposition 2 we write M ⊕M ′′ ≈

M ′ ⊕ M ′′′ ⊕ T ′, where M ′,M ′′ are maximal Tate-free summands in M,M ′′

respectively and T ′ is Tate. Writing out the inverse isomorphisms M ′ ⊕M ′′′ ⊕

T ′
⇆ T ⊕M(X

(1)
1 . . . ) ⊕ . . . in matrix form and using Lemma 4 we conclude

that T ′ ≈ T via the induced map. The Lemma below yields that M ′ ⊕M ′′ ≈

M(X
(1)
1 . . . )⊕ . . . . This finishes the proof.

Lemma 8. Let C be an additive category and let U, T,X, T ′ ∈ C be four objects.
Suppose we are given an isomorphism φ : U ⊕ T → X ⊕ T ′ such that the
component T → T ′ is also an isomorphism. Then there is an isomorphism
φ̃ : U → X.

Proof. Let us write

φ =

(

α a
b f

)

ψ =

(

β a′

b′ g

)

,

where ψ is the inverse of φ. By assumption f is an isomorphism. Writing out
φψ = idX⊕T and ψφ = idU⊕T ′ one obtains

bβ = −fb′ βa = −a′f αβ + ab′ = idU βα+ a′b = idX .

Put α̃ = α − af−1b : U → X . Then the above relations imply that α̃ is an
isomorphism with inverse β.

3 Review of Voevodsky Motives

In this section we collect some facts about DM(k,A) that we will need for the
applications. Most of this is well-known, but in some cases we were unable to
locate adequate references. We will assume throughout that k is a perfect field,
and re-state this assumption with each theorem.
Fix a ring A. We follow the construction of DM(k,A) and DMeff(k,A) in [5].
Write Sm(k) for the symmetric monoidal category of smooth schemes over k
(monoidal operation being cartesian product) and Cor(k) for the symmetric
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monoidal category with same objects as Sm(k) but morphisms given by finite
correspondences. There is a natural monoidal functor Sm(k) → Cor(k). Write
Shvtr(k,A) for the abelian category of Nisnevich sheaves of A-modules on
Cor(k), i.e. (additive) presheaves Cor(k)op → A-Mod such that the restriction
Sm(k)op → Cor(k) → A-Mod is a sheaf in the Nisnevich topology. There is a
functor Atr• : Sm(k) → Shvtr(k,A) sending X ∈ Sm(k) to the presheaf with
transfers it represents (which turns out to be a sheaf). The category Shvtr(k,A)
carries a right exact tensor structure making Atr a monoidal functor.
The category DMeff(k,A) is then the A1-local derived category of Shvtr(k,A)
[5, Example 3.15]. We write LA1 : D(Shvtr(k,A)) → DMeff(k,A) ⊂
D(Shvtr(k,A)) for the localisation functor and denote the composite

Sm(k)
Atr−−→ Shvtr(k,A) → DMeff(k,A) by M eff

A or M eff if no confusion

can arise. The category DMeff(k,A) is compactly generated, and the subcat-
egory of compact objects DMeff,gm(k,A) is the thick subcategory generated
by M eff

A (X) for X ∈ Sm(k) [5, Example 5.5]. The category DMeff(k,A)

carries a symmetric monoidal structure making M eff
A : Sm(k) → DMeff(k,A)

a monoidal functor [5, Example 2.4].
If X ∈ Sm(k) then we write M̃ effX for the homotopy fibre of M effX →
M effSpec(k) = 1. This is the reduced (effective) motive of X . If (X, x) is
a pointed scheme then there is a canonical isomorphism M effX ≃ M̃ effX ⊕
M effx = M̃ effX ⊕1. In this situation we will write M eff(X, x) for M̃ effX , with
this direct sum decomposition understood.
Throughout this text, we write Gm for the pointed scheme (A1 \ 0, 1).
The next step is to stabilise DMeff(k,A) by inverting M effGm in the monoidal
structure. Here we depart slightly from the notation of [5] and write
Sp(Shvtr(k,A)) for the abelian category of symmetric spectra in Shvtr(k,A)
[5, Section 6]. This is in keeping with the notation in [6, Section 5.3]. Then
DM(k,A) is the Ω−A1-local derived category of Sp(Shvtr(k,A)) [5, Example
6.25]. There is an adjunction Σ∞ : Shvtr(k,A) ⇆ Sp(Shvtr(k,A)) extending
to an adjunction

Σ∞ : DMeff(k,A) ⇆ DM(k,A) : Ω∞.

We write M = MA : Sm(k) → DM(k,A) for the evident composite, and call
MX for X ∈ Sm(k) the motive of X . Similarly for the reduced motive M̃X .
As before, DM(k,A) is a compactly generated tensor triangulated category.
The subcategory DMgm(k,A) of compact objects is the thick triangulated
subcategory generated by the objects of the form MX ⊗ (MGm)

⊗i for X ∈
Sm(k) and i ∈ Z.
So far all of this is very formal and the base k did not really enter. Since k is
perfect, we have Voevodsky’s remarkable results at hand. Firstly, a bounded
above complex in D(Shvtr(k,A)) is A1-local if and only if its homology sheaves
are [16, Proposition 14.8]. Moreover a model for LA1 is given by the A1-chain
complex C∗ [16, Corollary 14.9].
Next there is the cancellation theorem: for E,F ∈ DMeff(k,A) we have
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Hom(E ⊗MGm, F ⊗MGm) = Hom(E,F ) [21, Corollary 4.10]. (Voevodsky
only states this for E,F bounded above, but the general case follows using
compact generation and taking limits: Let C1 ⊂ DMeff(k,A) be the class of
objects F such that Hom(MX [i], F ) = Hom(MX [i] ⊗MGm, F ⊗MGm) for
all X ∈ Sm(k). Then C1 is closed under cones (by the five lemma), shifts, iso-
morphisms and arbitrary sums (because theMX are compact) and contains all
bounded above complexes, hence C1 = DMeff(k,A). Next let C2 ⊂ DMeff(k,A)
be the class of objects E such that Hom(E,F ) = Hom(E ⊗MGm, F ⊗MGm)
for all F ∈ DMeff(k,A). Then C2 is closed under shifts, cones (by the
five lemma) isomorphisms and arbitrary sums, and contains DMgm(k,A)
(since C1 = DMeff(k,A)) and hence C2 = DMeff(k,A).) This implies that
Σ∞ : DMeff(k,A) → DM(k,A) is fully faithful. Indeed if E ∈ D(Shvtr(k,A))
is A1-local then Σ∞E ∈ D(Sp(Shvtr(k,A))) is an Ω-spectrum by cancellation
(i.e. E ≃ RHom(MGm, E ⊗MGm)).
Finally there are the homotopy t-structures: the category DMeff(k,A) has
a non-degenerate t-structure with heart the category of homotopy invariant
sheaves with transfers, andDM(k,A) affords a non-degenerate t-structure with
heart the category of homotopy modules with transfers. The functor Ω∞ is t-
exact and hence Σ∞ is right-t-exact.
We will now discuss functoriality of DM(k,A) in k and A. The tool to do this
is [5, Proposition 3.11], which implies that if f∗ : Shvtr(k,A) → Shvtr(l, B)
is a functor which preserves colimits, coverings, and multiplication by A1 and
Gm, then there are induced adjunctions

Lf∗ : DMeff(k,A) ⇆ DMeff(l, B) : Rf∗

Lf∗ : DM(k,A) ⇆ DM(l, B) : Rf∗.

Here Lf∗ commutes with Σ∞ and Rf∗ commutes with Ω∞. If the functor f∗

we started with was monoidal then so is the extended functor Lf∗.
We now specialise to base change. For this, let f : Spec(l) → Spec(k) be an
extension of (perfect) fields. Then f∗ : Shvtr(k,A) → Shvtr(l, A) satisfies the
requirements outlined above and so we get Lf∗ : DM(k,A) ⇆ DM(l, A) :
Rf∗, and similarly for DMeff. If f is finite separable then f# : Sm(l) →
Sm(k) induces f# : Shvtr(l, A) → Shvtr(k,A) and then Lf# : DM(l, A) ⇆

DM(k,A) : Rf∗. See also [5, Example 6.25] again. In this situation we have
Rf∗ = f∗ = Lf∗.
The following result is surely well-known, but we could not find a reference, so
include the easy proof.

Proposition 9. Let f : Spec(l) → Spec(k) be an algebraic (separable) exten-
sion of the perfect field k. Then Lf∗ : DM(k,A) → DM(l, A) is t-exact.
Suppose that A is a ring such that for each finite subextension l/l′/k, the (image
of the) integer [l′ : k] is a unit in A.
Then Lf∗ : DM(k,A) → DM(l, A) is conservative and t-exact.

Thus we shall write Lf∗ = f∗ also in this situation.
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Proof. Since f∗ : Shvtr(k,A) → Shvtr(l, A) preserves homotopy invariant
sheaves, it follows that Lf∗ : D(Sp(Shvtr(k,A))) → D(Sp(Shvtr(k,A))) pre-
serves A1-local objects. Since f∗ : Shvtr(k,A) → Shvtr(l, A) preserves contrac-
tions, Lf∗ : D(Sp(Shvtr(k,A))) → D(Sp(Shvtr(l, A))) preserves A1 − Ω-local
objects. Thus t-exactness of Lf∗ : D(Sp(Shvtr(k,A))) → D(Sp(Shvtr(l, A)))
implies t-exactness of Lf∗ : DM(k,A) → DM(l, A).

It thus remains to show: if F ∈ Shvtr(k,A) and f∗F = 0, then F = 0. Let X ∈
Sm(k), x ∈ F (X). It suffices to show that x = 0. By [17, Proposition II.2.2
and Lemma II.3.3] we have 0 = f∗x ∈ F (X⊗k l) = coliml/l′/k F (X⊗k l′), where
the colimit is over finite subextensions. Thus there exists a finite subextension
l/l′/k with (l′/k)∗(x) = 0. But then by a transfer argument one finds that
[l′ : k]x = 0, whence x = 0 since [l′ : k] is a unit in A by assumption.

Next we consider change of coefficients. The construction and basic properties
must be well known, but again we could not find convenient references. Let
α : A→ B be a ring homomorphism. There is a natural adjoint functor pair

α# : Shvtr(k,A) ⇄ Shvtr(k,B) : α∗.

Here α#F is the sheaf associated to X 7→ F (X) ⊗A B and α∗F (X) = F (X),
viewed as an A-module. In particular α# is monoidal and preserves colimits,
so [5, Proposition 3.11] applies to give us adjunctions

Lα# : DMeff(k,A) → DMeff(k,B) : Rα#

Lα# : DM(k,A) → DM(k,B) : Rα#.

In order to manipulate these functors efficiently, we need a standard result.

Lemma 10. Any object E ∈ DM(k,A) is a filtered homotopy colimit of objects
of the form E′ ⊗G

⊗i
m with E′ ∈ DMeff(k,A) bounded above and i ∈ Z.

Proof. Let DMeff(k,A) be a model for DM(k,A). Then we may alternatively
model DM(k,A) via SptΣ(DMeff(k,A),MGm), i.e. via (symmetric) MGm-
spectra in DMeff(k,A).

Let E ∈ DM(k,A) = Ho(SptΣ(DMeff(k,A),MGm)) have fibrant replacement
(E1, E2, . . . ). Then E ≃ hocolimi(Ei)≥−i ⊗G⊗−i

m , as one sees immediately by
computing the homotopy sheaves on both sides.

In order to use this, recall that any left adjoint functor of triangulated categories
(assumed to have all countable coproducts) commutes with filtered homotopy
colimits (by filtered we always mean ω-filtered, i.e. with a countable indexing
set) and if it additionally preserves a compact generating set, then its right
adjoint also commutes with filtered homotopy colimits. Thus essentially all our
functors commute with filtered homotopy colimits. In particularRα∗ commutes
with filtered homotopy colimits.

Documenta Mathematica 22 (2017) 363–395



374 Tom Bachmann

Lemma 11. Let k be perfect and α : A → B a ring homomorphism. Then
the functors Rα∗ commute with Σ∞. In fact for E ∈ DMeff(k,B) we have
Rα∗(E ⊗Gm) ≃ Rα∗(E)⊗Gm.

Of course Lα# always commutes with Σ∞, for formal reasons.

Proof. Let E ∈ DMeff(k,B). Then Σ∞E ≃ (E,E ⊗Gm, E ⊗G⊗2
m , . . . ). (Here

by E ⊗ Gm we mean the derived tensor product in DMeff, in particular this
notation implies an A1-local object.) By the cancellation theorem, this is an
Ω-spectrum. It follows that Rα∗Σ∞E = (Rα∗E,Rα∗(E⊗Gm), . . . ). It is thus
enough to show that Rα∗(E ⊗Gm) ≃ Rα∗(E)⊗Gm.
Since Lα# is symmetric monoidal Rα∗ is lax symmetric monoidal and there

is a natural comparison map. Since DMeff(k,B) is generated as a localising
subcategory byMX for X ∈ Sm(k) and ⊗, Rα∗ commute with arbitrary sums,
we may assume E =MX . In this case a fibrant model of E ⊗Gm is given by
C∗Btr(X+ ∧Gm). Resolving B freely as an A-module, it follows that Rα∗E ∈
DMeff(k,A)⊗Gm. A calculation using adjunction and the cancellation theorem
allows us to conclude by the Yoneda lemma.

Proposition 12. Let k be perfect, α : A → B be flat, E ∈ DMgm(k,A) and
F ∈ DM(k,A). Then

Hom(E,F )⊗A B ≈ Hom(Lα#E,Lα#F ).

Proof. By Lemma 10 (and twisting E), we may assume that F ∈ DMeff(k,A)
and is bounded above. Then by the cancellation theorem we may assume that
E ∈ DMgm,eff(k,A) as well.
There is a natural map from the left hand side to the right hand side. Using the
5-lemma and the fact that DMgm,eff(k,A) is generated byMX forX ∈ Sm(k),
we may reduce to E =MX (shifting F if necessary). In this case Hom(MX,F )
is given by the hypercohomology H0(X,F •). Since ⊗AB is exact it commutes
with hypercohomology and preserves A1-invariance of cohomology sheaves, so
we have H0(X,F •)⊗A B = H0(X,F • ⊗A B) = H0(X, (Lα#F )

•).

Proposition 13. Let k be perfect, A a ring, a ∈ A a non zero divisor and
α : A → A/(a) the natural map. Then for E ∈ DM(k,A) there is a natural
distinguished triangle

E
·a
−→ E → Rα∗Lα#E.

This triangle yields the typical Bockstein sequences one expects for reduction
of coefficients.

Proof. By Lemmas 10 and 11 we may assume that E ∈ DMeff(k,A) and is
bounded above.
In this case Rα∗Lα#E is computed by resolving E by a complex of repre-
sentable sheaves C• and then C•/(a) is a model for Rα∗Lα#E. (Note that
since C• has homotopy invariant cohomology, so does α#C

• = C•/(a), by
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considering the (ordinary) Bockstein sequence. Hence we may apply α∗ imme-
diately to α#C

• instead of having to A1-localise first.) Since a is not a zero
divisor the sequence 0 → C• → C• → C•/(a) → 0 is exact and yields the
desired triangle.

With this preparation out of the way, we can prove our conservativity and
Pic-injectivity theorem. Recall that HomDM(k,A)(1,1[i]) = A if i = 0 and = 0
else.

Theorem 14. Let k be a perfect field and A a PID of characteristic zero. Let
f : Spec(ks) → Spec(k) be a separable closure.

The collection of functors {f∗} ∪ {Lαπ#}π is conservative. If A has primes
of arbitrary large characteristic, the collection is also Pic-injective (both on
DM(k,A)). Here απ : A→ A/(π) runs through the primes of A.

We could prove essentially the same theorem with A replaced by a Dedekind
domain (of characteristic zero) with only slightly more work.

Proof. We first show conservativity. Let E ∈ DM(k,A) with Lαπ#E = 0 for
all π and f∗E = 0. We must show that E = 0. Let T ∈ DMgm(k,A). It suffices
to prove that Hom(T,E) = 0. Now by Proposition 13 we have the triangle

E
π
−→ E → Rα∗

πLαπ#E = 0. Thus multiplication by π is an isomorphism on
Hom(T,E). LetK = Frac(A). Since π was arbitrary it follows that Hom(T,E)
is a K-vector space. Since K ⊗A K 6= 0 we concude that Hom(T,E) = 0
provided that Hom(T,E)⊗AK = 0. Let α0 : A→ K be the (flat) localisation.
By proposition 12 we know that Hom(T,E) ⊗A K = Hom(Lα0#T, Lα0#E),
so it suffices to show that Lα0#E = 0. But K is of characteristic zero, so by
proposition 9 it is enough to show that f∗Lα0#E = 0. Since Lα0# and f∗

“commute”, this follows from the assumption that f∗E = 0.

Now we prove Pic-injectivity. Let E ∈ DM(k,A) be such that f∗E ≈ 1ks and
Lαπ#E ≈ 1A/(π). As a first step, I claim that there exists a finite extension
k ⊂ l ⊂ ks such that g∗E ≈ 1l, where g : Spec(l) → Spec(k). As in the proof
of Proposition 9 we find that Hom(1ks , f

∗E) = colimk⊂l⊂ks Hom(1l, (l/k)
∗E),

where the colimit is over finite subextensions. Hence there exist l and an
element t ∈ Hom(1l, g

∗E) such that (ks/l)∗(t) is an isomorphism. The com-
mutative diagram

Hom(1l, g
∗E) −−−−→ Hom(1ks , f

∗E) ≈ A




y





y

Hom(1l,A/(π), Lαπ#g
∗E)

≈
−−−−→ Hom(1ks,A/(π), Lαπ#f

∗E) ≈ A/(π)

shows that Lαπ#(t) is an isomorphism. Thus by the first part (conservativity),
t is an isomorphism.
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Now we consider Hom(1k, E). From the Bockstein triangles and the assumption
Lαπ# ≈ 1A/(π) we get the exact sequences

Hom(1A/(π), Lαπ#E[−1]) = 0 → Hom(1k, E)
π
−→ Hom(1k, E)

→ Hom(1A/(π), Lαπ#E) ≈ A/(π) → Hom(1k, E[1])

It follows that Hom(1k, E) is a torsion-free A-module (hence abelian group).
Thus by transfer it follows that Hom(1k, E) → Hom(1l, g

∗E) ≈ A is injective.
Let us denote the image by I ⊂ A. This is a free A-module (of rank zero or
one).

Since Hom(1l, g
∗(E)[1]) = 0 it follows by transfer that Hom(1k, E[1]) is [l : k]-

torsion. Choosing π of sufficiently large characteristic, we find that A/(π) →
Hom(1k, E[1]) is the zero map. Thus I = Hom(1k, E) 6= 0, i.e. I ≈ A. It
follows that Hom(1k, E) → Hom(1A/(π), Lαπ#E) ≈ A/(π) is surjective for
each π.

Consider the commutative diagram

Hom(1k, E) −−−−→ Hom(1l, g
∗E) ≈ A

(∗)





y
(∗∗)





y

Hom(1A/(π), Lαπ#E)
≈

−−−−→ Hom(1l,A/(π), Lαπ#g
∗E) ≈ A/(π)

The map (**) is the natural surjection and (*) is surjective as we just proved.
It follows that I + (π) = A for each π and so I = A. Thus there exists
t′ ∈ Hom(1k, E) with g∗(t′) = t an isomorphism. Considering the diagram
again one finds that Lαπ#(t

′) is also an isomorphism. Thus t′ is an isomorphism
(by the first part, again) and we are done.

We need two more auxiliary results. For the first, let f : Spec(l) → Spec(k)
be a Galois extension with group G. If M ∈ DMgm(k,A) then the A-
module Hom(1, f∗M) ≈ Hom(M(Spec(l)),M) has a natural action by G (com-
ing from automorphisms of Spec(l)). We denote this action by κM : G →
Aut(Hom(1, f∗M)).

Proposition 15. Let f : Spec(l) → Spec(k) be (finite) Galois and [l : k]
invertible in A. Then the above construction yields an injective homomorphism

κ : Ker(f∗ : Pic(DMgm(k,A)) → Pic(DMgm(l, A))) → Hom(Gal(l/k), A×).

Proof. Suppose that M ∈ Pic(DMgm(k,A)), f∗M ≃ 1 and let us show that
M ≃ 1 if and only if the action is trivial. Necessity is clear, we show sufficiency.

Independent of the assumptions on [l : k] and M I claim we have the fol-
lowing: if t : 1L → f∗M is any morphism, then f∗(tr(t)) : 1L → f∗M
is the sum of the conjugates under the G-action. Indeed the action on
HomL(1L, f

∗M) ≈ Homk(1L,M) comes from premultiplication by elements
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of Homk(1L,1L), whereas transfer comes from premultiplication with the ad-
junction morphism. Thus to prove the claim we may assume that M = 1 and
t = id, in which case the result follows from [16, Exercise 1.11].
Thus reinstating our assumptions, let t : 1L → f∗M be an isomorphism and as-
sume that the G-action is trivial. Then tr(t/[l : k]) : 1 →M is an isomorphism
since f∗(tr(t/[l : k])) = t is, by Proposition 9.
Finally we have to prove that κ is a homomorphism, i.e. that κM⊗N = κMκN .
For this let us denote the adjunction isomorphism HomDM(k,A)(M(l), T ) →
HomDM(l,A)(1, f

∗T ) generically by ad. One checks that given f ∈
Hom(M(l),M), g ∈ Hom(M(l), N) then ad(f)⊗ad(g) = ad((f ⊗ g)◦α), where
α : M(l) → M(l) ⊗M(l) is the map corresponding to l ⊗ l → l, a ⊗ b → ab.
Next observe that α is G-equivariant if G acts diagonally on M(l)⊗M(l). The
result follows.

For the statement of the next result, we need DM(l, A) even if l is not perfect.
It is explained in the next section what we mean by that. Under our assump-
tions on A, it is equivalent to DM(lp, A), where lp is the perfect closure of
l.

Lemma 16. Let k be a perfect field, X/k a smooth variety, A a ring in which
the exponential characteristic of k is invertible, and M ∈ DM(k,A).
If for all n ∈ Z and all x ∈ X (not necessarily closed) we have
that HomDM(x,A)(1{n},Mx) = 0, then also for all n ∈ Z we have
HomDM(k,A)(MX{n},M) = 0.

Proof. We will prove the result by induction on dimX . Thus in order to prove
it for X we may assume that HomDM(k,A)(MX ′{n′},M) = 0 for every smooth,
locally closed X ′ ⊂ X with dimX ′ < dimX , and every n′ ∈ Z (because the
residue fields of X ′ form a subset of those of X). If dimX = 0 then X is a
disjoint union of spectra of fields, and the result is clear.
To prove the general case, we may assume that X is connected. Let n ∈ Z

and α ∈ Hom(MX{n},M). It suffices to show that α = 0. By considering the
generic point and using continuity [7, Example 2.6(2)] we conclude that there
exists a non-empty open subvariety U ⊂ X such that α|U = 0. Let Z = X \U .
If Z is empty there is nothing to do. Otherwise there exists a non-empty,
smooth, connected open subvariety U1 ⊂ Z, since k is perfect.
Let Z ′ = Z \ U1, U

′ = U ∪ U1 = X \ Z ′. Then U ′ is smooth open in X and
we have X \ U ′ = Z ′, which is strictly smaller than Z. We shall prove that
α|U ′ = 0. By repeating this argument with U replaced by U ′ (i.e. Noetherian
induction on Z) it will follow that α = 0.
Note that U1 = U ′ \ U is closed in U ′, say of codimension c. Thus we get the
distinguished Gysin triangle

MU{n} →MU ′{n} →MU1{n− c}.

Now Hom(MU1{n − c},M) = 0 by the induction on dimension. Thus
Hom(MU ′{n},M) → Hom(MU{n},M) is injective. But (α|U ′)|U = α|U = 0
by assumption, so α|U ′ = 0.
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4 Weight Structures and the Geometric Fixed Points Functors

In this section, we will use Bondarko’s theory of weight structures to construct
“generalised geometric fixed points functors” and prove that they have good
properties. We shall fix a coefficient ring F on which an integer e is invertible,
and only work with fields of exponential characteristic e.
We shall have to deal with DM(k,F) for k an imperfect field. There is now
a fairly complete theory of DM(X,F) for Noetherian schemes over a field of
exponential characteristic e (assumed invertible in F) [7]. It satisfies the six
functors formalism, in particular continuity. We recall that if k is an imperfect
field with perfect closure kp, then the pullback DM(k,F) → DM(kp,F) is an
equivalence of categories [7, Proposition 8.1 (d)]. This means that essentially
all properties known over perfect fields hold over imperfect fields as well. We
also mention that all of the categories DM(X,F) afford DG-enhancements.
(This is well known if k is a perfect field and hence holds for k any field by
the previous remark, and this is all we need. But it is actually clear that the
constructions in [7] all yield DG categories.)
We shall work extensively in this section with weight structures [2], which we
now review rapidly. Recall that given a category C and a full subcategory
D ⊂ C, we call D Karoubi-closed in C if D is closed under retracts [2, p. 11]. In
other words whenever X ∈ C and idX factorises through an object of D, then
X ∈ D. For example, if C is Karoubi-closed itself, then D is Karoubi-closed in
C if and only if D is a Karoubi-closed category, and strictly full in C.
Similarly, given a category C and a full subcategory D ⊂ C, by the Karoubi-
closure of D in C we mean the full subcategory of C spanned by all the objects
which are retracts of objects of D. For example, if D ⊂ C is strictly full and D
is a Karoubi-closed category, then D is Karoubi-closed in C.

Definition. Let C be a triangulated category and Cw≥0, Cw≤0 ⊂ C two classes
of objects. We call this a weight structure if the following hold:

(i) Cw≥0, Cw≤0 are additive and Karoubi-closed in C.

(ii) Cw≥0 ⊂ Cw≥0[1], Cw≤0[1] ⊂ Cw≤0

(iii) For X ∈ Cw≥0, Y ∈ Cw≤0 we have Hom(X,Y [1]) = 0.

(iv) For each X ∈ C there is a distinguished triangle

B[−1] → X → A

with B ∈ Cw≥0 and A ∈ Cw≤0.

These axioms look quite similar to those of a t-structure, but in practice weight
structures behave rather differently. We call a decomposition as in (iv) a weight
decomposition. It is usually far from being unique. We put Cw≥n = Cw≥0[−n]
and Cw≤n = Cw≤0[−n]. We also write Cw>n = Cw≥n+1 etc. The intersection
Cw=0 := Cw≥0 ∩ Cw≤0 is called the heart of the weight structure.
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A weight structure is called non-degenerate if ∩nCw≥n = 0 = ∩nCw≤n. It is
called bounded if ∪nCw≥n = C = ∪nCw≤n

A functor F : C → D between categories with weight structures is called w-
exact if F (Cw≤0) ⊂ Dw≤0 and F (Cw≥0) ⊂ Dw≥0. It is called w-conservative if
given X ∈ C with F (X) ∈ Dw≤0 we have X ∈ Cw≤0, and similarly for w ≥ 0.
Note that a w-conservative functor on a non-degenerate weight structure is
conservative.

In the following proposition we summarise properties of weight structures we
use.

Proposition 17. (1) Cw≤0 and Cw≥0 are extension-stable: if A→ B → C is
a distinguished triangle and A,C ∈ Cw≤0 (respectively A,C ∈ Cw≥0) then
B ∈ Cw≤0 (respectively B ∈ Cw≥0).

Moreover X ∈ Cw≥0 if and only if Hom(X,Y ) = 0 for all Y ∈ Cw<0, and
similarly X ∈ Cw≤0 if and only if Hom(Y,X) = 0 for all Y ∈ Cw>0.

(2) Bounded weight structures are non-degenerate.

(3) If C admits a DG-enhancement and the weight structure is bounded, then
there exists a w-exact, w-conservative triangulated functor

t : C → Kb(Cw=0)

called the weight complex. Its restriction to Cw=0 is the natural inclusion.

(4) If the weight structure is bounded and Cw=0 is Karoubi-closed then so is C.

(5) If H ⊂ C is a negative subcategory of a triangulated category (i.e. for
X,Y ∈ H we have Hom(X,Y [n]) = 0 for n > 0) generating it as a
thick subcategory, then there exists a unique weight structure on C with
H ⊂ Cw=0. Moreover Cw≤0 is the smallest extension-stable Karoubi-closed
subcategory of C containing ∪n≥0H [n], and similarly for Cw≥0. The weight
structure is bounded and Cw=0 is the Karoubi-closure of H in C.

(6) If D ⊂ C is a triangulated subcategory such that Dw≤0 := D ∩ Cw≤0 and
Dw≥0 := D ∩ Cw≥0 define a weight structure on D (we say the weight
structure restricts to D) then the Verdier quotient C/D affords a weight
structure with (C/D)w≤0 the Karoubi-closure of the image of Cw≤0 in C/D,
and similarly for (C/D)w≥0, (C/D)w=0.

The natural “quotient” functor Q : C → C/D is w-exact. If X,Y ∈ Cw=0

then

Hom(QX,QY ) = Hom(X,Y )/ΣZ∈Dw=0 Hom(Z, Y ) ◦Hom(X,Z).

The weight structure on C/D is bounded if the one on C is.
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Proof. (1) [2, Proposition 1.3.3 (1-3)]. (2) [2, Proposition 1.3.6 (3) and com-
ment after proof]. (3) [2, Proposition 3.3.1 (I), (IV) and Section 6.3]. (4) [2,
Lemma 5.2.1]. (5) [2, Theorem 4.3.2 (II) and its proof], [4, Remark 2.1.2].
(6) [2, Proposition 8.1.1]. Weight exactness holds by definition of the weight
structure on C/D.

We shall call a triangulated category with a fixed weight structure a w-category.

Lemma 18. Let C be a w-category with heart H, and H ′ ⊂ H an additive
subcategory. Let C′ be the thick triangulated subcategory generated by H ′ inside
C.
Then the weight structure of C restricts to C′. In particular, if X ∈ C′ then
we may choose a weight decomposition A → X → X ′ (i.e. A ∈ Cw≥0 and
X ′ ∈ Cw<0) with A,X ′ ∈ C′.

Proof. This is just Proposition 17 (5) which says that C′, being negatively
generated by H ′, carries a natural unique weight structure. By the description
provided we find C′w≤0 ⊂ Cw≤0, C′w≥0 ⊂ Cw≥0. Hence a weight decomposition
in C′ is also a weight decomposition in C. The rest follows from the definitions.
(It follows from the orthogonality characterisation that C′w≤0 = Cw≤0∩C′, but
we do not need this.)

Lemma 19. Let F : C → D be a triangulated functor of w-categories, and
assume that the weight structure on C is bounded. Then F is w-exact if and
only if F (Cw=0) ⊂ Dw=0.

Proof. Necessity is clear, we show sufficiency. We find by induction that the
thick subcategory of C generated by Cw=0 contains Cw≤n∩Cw≥−n for all n, and
hence all of C by boundedness. It follows that the weight structure on C is the
one described in Proposition 17 (5), i.e. Cw≥0, Cw≤0 are obtained as extension
closures of

⋃

n≥0 C
w=n,

⋃

n≤0 C
w=n. The result follows since Dw≥0,Dw≤0 are

extension-stable.

Lemma 20. Let C be a w-category which is also a tensor category. Assume that
1C ∈ Cw=0 and that tensoring is weight-bi-exact, i.e. that Cw≤0⊗Cw≤0 ⊂ Cw≤0

and similarly for Cw≥0.
Then the weight complex functor is tensor whenever C affords a tensor DG-
enhancement and Pic-injective whenever additionally the weight structure is
bounded.
If moreover C is rigid then the dualisation D : Cop → C is w-exact (i.e.
D(Cw≥0) ⊂ Cw≤0 and vice versa).

Proof. If D is a negative DG tensor category, then H0(D) is tensor in a natural
way and the weight complex functor t manifestly respects the tensor structure.
If C is a tensor DG category with the property that Hn(Hom(X,Y )) = 0 for
all X,Y ∈ D and n > 0 then the good truncation τ≤0D is tensor in a natural
way, and the quasi-equivalence τ≤0D → D is a tensor equivalence.
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Hence the weight complex functor is tensor as soon as there is any tensor DG
enhancement of Cw=0. Moreover by Proposition 17 (3) if the weight structure
is bounded then t is w-conservative. Since it induces an isomorphism on hearts
it is a fortiori Pic-injective. This proves the first part.
For the second part, let X ∈ C. The category C being rigid means that there
exists an object DX such that ⊗DX is both right and left adjoint to ⊗X .
If X ∈ Cw≥0 and Y ∈ Cw>0 then Hom(Y,DX) = Hom(Y ⊗X,1) = 0 because
Y ⊗X ∈ Cw>0 whereas 1 ∈ Cw=0. It follows that DX ∈ Cw≤0 by Proposition
17 (1). The case of X ∈ Cw≤0 is similar.

We point out that for any field k, the category DMgm(k,F) carries a canonical
weight structure [3]. (Note that the perfectness assumption in that article can
be dispensed with by passing to the equivalent category DMgm(kp,F).) It
is bounded and DMgm(k,F) is also a rigid tensor category with the tensor
structure satisfying the assumptions of Lemma 20. The base change functors
f∗ : DMgm(l,F) → DMgm(l′,F) for f : Spec(l′) → Spec(l) are w-exact by
Lemma 19. The heart of the weight structure is Chow(kp,F) which contains
Chow(k,F) as a full subcategory by Lemma 1.
In the remainder of this section we will be dealing with the following situation.
The coefficient ring F is a finite field of characteristic p (necessarily p 6= e,
where e is the exponential characteristic of the ground field k). For every
extension l/k we are given a set Sl ⊂ SmProj(l) such that for all closed points

x ∈ X ∈ Sl we have p|deg(x). Recall the categories 〈Sl〉
⊗,T
Chow(l,F) of Section 2.

We will assume that they are stable by base change, i.e. that for X ∈ Sl and
l′/l another extension we have MXl′ ∈ 〈Sl′〉

⊗,T
Chow(l′,F).

We write D〈S〉TM(l,F) for the thick triangulated subcategory of DM(l,F)

generated by 〈Sl〉
⊗,T
Chow(l,F) ⊂ Chow(l,F) ⊂ DM(l,F)w=0. It is tensor. The

categories D〈S〉TM(l,F) are also stable by base change in the sense that
if f : Spec(l′) → Spec(l) is a field extension then f∗(D〈S〉TM(l,F)) ⊂
D〈S〉TM(l′,F). By Proposition 17 (5) the weight structure on DMgm(l,F)

restricts to D〈S〉TM(l,F), and the heart is 〈Sl〉
⊗,T
Chow(l,F).

We write 〈Sl〉
⊗
Chow(l,F) for the Karoubi-closed tensor subcategory of Chow(l,F)

generated by Tate twists of motives of varieties in Sl (i.e. this is 〈Sl〉
⊗,T
Chow(l,F)

“without the Tate motives”). By Proposition 7 this subcategory consists of
Tate-free objects. Let 〈Sl〉tri ⊂ D〈S〉TM(l,F) be the thick triangulated sub-
category generated by 〈Sl〉

⊗
Chow(l,F). As before, the weight structure restricts to

〈Sl〉
tri. We write ϕl0 : D〈S〉TM(l,F) → D〈S〉TM(l,F)/〈S〉tri for the Verdier

quotient.

Proposition 21. The category D〈S〉TM(l,F)/〈S〉tri carries natural weight
and tensor structures, and ϕl0 is a w-exact tensor functor. The composite

Tate(F) → D〈S〉TM(l,F) → D〈S〉TM(l,F)/〈S〉tri

is a full embedding with essential image
(

D〈S〉TM(l,F)/〈S〉tri
)w=0

.
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Proof. The existence of the weight structure and weight exactness is Propo-

sition 17 (6). This also says that
(

D〈S〉TM(l,F)/〈S〉tri
)w=0

is gener-

ated as a Karoubi-closed subcategory by ϕl0
(

D〈S〉TM(l,F)w=0
)

. If M ∈

D〈S〉TM(l,F)w=0 = 〈Sl〉
⊗,T
Chow(l,F) then we may write M ≈ M ′ ⊕ T with T

a Tate and M ′ ∈ 〈Sl〉
⊗
Chow(l,F), by Proposition 7. Thus ϕl0(M) ≈ ϕl0(T )

and so ϕl0 : Tate(F) →
(

D〈S〉TM(l,F)/〈S〉tri
)w=0

is essentially surjective
up to (relative) Karoubi-closing. We shall show it is fully faithful whence
its essential image is (absolutely) Karoubi-closed and so ϕl0 : Tate(F) →
(

D〈S〉TM(l,F)/〈S〉tri
)w=0

will be an equivalence. But by the description in
Proposition 17 (6) it suffices to prove that any morphism between Tate objects
factoring through 〈Sl〉

⊗
Chow(l,F) is zero. This follows from Lemma 4.

For the existence of the tensor structure we need 〈S〉tri ⊗ D〈S〉TM(l,F) ⊂
〈S〉tri; then ϕl0 is automatically tensor. Considering generators, it suffices

to show that 〈Sl〉
⊗
Chow(l,F) ⊗ 〈Sl〉

⊗,T
Chow(l,F) ⊂ 〈Sl〉

⊗
Chow(l,F). This follows from

Proposition 7.

Let l/k be any extension. We write Φl : D〈S〉TM(k,F) → Kb(Tate(F)) for
the composite

Φl : D〈S〉TM(k,F) → D〈S〉TM(l,F) → D〈S〉TM(l,F)/〈Sl〉
tri

t
−→ Kb

(

(

D〈S〉TM(l,F)/〈S〉tri
)w=0

)

≈ Kb(Tate(F))

of base change, the Verdier quotient functor ϕl0, and the weight complex t. It
is a w-exact triangulated tensor functor. We can now state the main theorem
of this section.

Theorem 22. Let k be a ground field of exponential characteristic e, F a finite
field of characteristic p 6= e. Suppose given for each field extension l/k a set
Sl ⊂ SmProj(l) and a function ex = exl : Sl → N. Assume that the following
hold (for all fields l/k):

(1) For x ∈ X ∈ Sl closed, p|deg(x).

(2) If l′/l is a field extension and X ∈ Sl has no rational point over l′, then
Xl′ is isomorphic to an object of Sl′ and ex(Xl′) ≤ ex(X).

(3) If l′/l is a field extension and X ∈ Sl has a rational point over l′, then
MXl′ is a summand of a motive of the form

T ⊕M(X
(1)
1 ⊗ · · · ⊗X(1)

n1
){i1} ⊕ · · · ⊕M(X

(m)
1 ⊗ · · · ⊗X(m)

nm
){im},

with T ∈ Tate(F), X
(j)
i ∈ Sl′ and ex(X

(j)
i ) < ex(X) for all i, j.

Then the family {Φl}l, as l runs through finitely generated extensions of k, is
w-conservative (so in particular conservative) and Pic-injective.
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We note that (2) and (3) imply that 〈Sl〉
⊗,T
Chow(l,F) are stable by base change,

i.e. we are in the situation we have been discussing. Also (1) implies that none
of the X ∈ Sl have rational points over l. The somewhat obscure functions exl
are necessary to make an induction step in the proof work. We will always use
ex = dim in applications.

Before proving the result we explain how to compute Φl in the case that k is
perfect (but l need not be).

Proposition 23. Assume in addition that k is perfect. Let l/k be a field
extension.

There exists an essentially unique additive functor Φl0 : 〈Sl〉
⊗,T
Chow(l,F) →

Tate(l,F) such that Φl0|Tate(l,F) = id and Φl0(M) = 0 if M is Tate-free. It
is tensor and the following diagram commutes (up to natural isomorphism; the
lower horizontal arrow is base change of Chow motives):

D〈S〉TM(k,F)
Φl

−−−−→ Kb(Tate(F))

t





y
Φl

0

x





Kb
(

〈Sk〉
⊗,T
Chow(k,F)

)

−−−−→ Kb
(

〈Sl〉
⊗,T
Chow(l,F)

)

Proof. Certainly Φl0 is essentially unique, using e.g. Proposition 7. The functor
t◦ϕl0 satisfies the required properties, so Φl0 exists. It is tensor by construction.

To establish the commutativity claim, consider the diagram

D〈S〉TM(k,F)
t

−−−−→ Kb
(

〈Sk〉
⊗,T
Chow(k,F)

)





y





y

D〈S〉TM(l,F)
t

−−−−→ Kb
(

〈Sl〉
⊗,T
Chow(k,F)

)

ϕl
0





y
Φl

0





y

D〈S〉TM(l,F)/〈Sl〉tri
t

−−−−→ Kb(Tate(F)).

It suffices to prove that the two squares commute (up to natural isomorphism).
This is most readily seen using DG-enhancements: let D(r) be a functorial

negative DG-enhancement of 〈Sr〉
⊗,T
Chow(r,F) ⊂ D〈S〉TM(r,F), for fields r/k.

(In other words D(r) is a DG-category with the same objects as 〈Sr〉
⊗,T
Chow(r,F)

and mapping complexes concentrated in non-positive degrees, such that these
mapping complexes compute morphisms in D〈S〉TM(r,F). Finally we ask
that when varying r, the assignment r 7→ D(r) is a (pseudo-)functor and
H∗(D(r)) → D〈S〉TM(r,F) is a (pseudo-)natural transformation.) Then it
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suffices to establish strict commutativity of the diagram

D(k) −−−−→ D(k)0




y





y

D(l) −−−−→ D(l)0 ≈ 〈Sl〉
⊗,T
Chow(l,F)





y
Φl

0





y

D(l)/〈Sl〉tri −−−−→ (D(l)/〈Sl〉tri)0 ≈ Tate(F),

where D0 for a negative DG-category means zero-truncation. (Indeed the pre-
vious diagram is obtained by passing to Ho(Pre-Tr(•)).) The upper square
commutes by definition and the lower square commutes if and only if it com-
mutes on degree zero morphisms, which is true essentially by definition of
Φl0.

We establish Theorem 22 through a series of lemmas.

Lemma 24. Let C be a w-category, X ∈ Cw≤0. Suppose given weight decom-
positions A → X → X ′ and B[1] → X ′ → X ′′ (i.e. A,B ∈ Cw≥0, X ′ ∈ Cw<0

and X ′′ ∈ Cw<−1).

Then A,B ∈ Cw=0 and for T ∈ Cw=0 there is a natural exact sequence

Hom(T,B) → Hom(T,A) → Hom(T,X) → 0.

Proof. We have A,B ∈ Cw=0 by (the dual of) [2, Proposition 1.3.3 (6)]. There
is an exact sequence

Hom(T,X ′[−1]) → Hom(T,A) → Hom(T,X) → Hom(T,X ′) = 0

where the last term is zero because T ∈ Cw≥0, X ′ ∈ Cw<0. In particu-
lar Hom(T,A) → Hom(T,X) is surjective. Applying the same reasoning to
Hom(T,X ′[−1]) we find that Hom(T,B) → Hom(T,X ′[−1]) is surjective and
hence

Hom(T,B) → Hom(T,A) → Hom(T,X) → 0

is exact. This concludes the proof.

Corollary 25. Let X ∈ D〈S〉TM(k,F)w≤0 have a weight decomposition T →
X → X ′ with T ∈ Tate(F) (and X ′ ∈ D〈S〉TM(k,F)w<0). Suppose that

ϕk(X) ∈
(

D〈S〉TM(k,F)/〈Sk〉tri
)w<0

.

Then for T ′ ∈ Tate(F) we have Hom(T ′, X) = 0.

Proof. Let B[1] → X ′ → X ′′ be a further weight decomposition. Naturality in
the above lemma yields the following commutative diagram with exact rows
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Hom(T ′, B)
γ
−→ Hom(T ′, T ) −→ Hom(T ′, X) −→ 0

α





y
β





y





y

Hom(ϕk(T ′), ϕk(B))
δ
−→ Hom(ϕk(T ′), ϕk(T )) −→ Hom(ϕk(T ′), ϕk(X)) −→ 0.

Since ϕk is weight exact we have Hom(ϕk(T ′), ϕk(X)) = 0 and so δ is surjective.
The construction of ϕk (in particular Proposition 21) implies that α is surjective
and β is an isomorphism. It follows that γ is surjective, whence Hom(T ′, X) =
0. This concludes the proof.

The main work in proving our theorem is the following lemma. We let
ϕl : D〈S〉TM(k,F) → D〈S〉TM(l,F)/〈Sl〉tri be the composite of ϕl0 and base
change.

Lemma 26. Let X ∈ D〈S〉TM(k,F)w≤0 and suppose that for all l/k

finitely generated, ϕl(X) ∈
(

D〈S〉TM(l,F)/〈Sl〉
tri

)w<0
. Then X ∈

D〈S〉TM(k,F)w<0.

Proof. We begin by pointing out that Lemma 16 also applies if k is not perfect.
Indeed if kp/k is the perfect closure then Xkp is homeomorphic to X , so has
the same set of points, and the residue field extensions of Xkp → X are purely
inseparable, so induce equivalences on DM(?,F). Thus the Lemma holds over
k if and only if it holds over kp.
Let R be the set of finite multi-subsets of N (i.e. the set of finite non-
increasing sequences in N). It is well-ordered lexicographically and so can be
used for induction. We extend ex to a function exl : D〈S〉TM(l,F) → R.
First, for X1, . . . , Xn ∈ Sl put ex(X1, . . . , Xn) = {{ex(X1), . . . , ex(Xn)}}.
Next, if Y ∈ D〈S〉TM(l,F) then there exist X1, . . . , Xn ∈ Sl such that
Y ∈ 〈Tate(F), X1, . . . , Xn〉tri, i.e. Y is in the thick tensor triangulated sub-
category generated by the MXi and the Tate motives. We let ex(Y ) be
the minimum of ex(X1, . . . , Xn) such that this holds. We shall abuse no-
tation and write ex(Y ) = ex(X1, . . . , Xn) to additionally mean that Y ∈
〈Tate(F), X1, . . . , Xn〉tri.
Let us observe that if ex(Y ) = ex(X1, . . . , Xn) and l′/l is an extension in
which one of the Xi acquires a rational point, then ex(Yl′) < ex(Yl), using
assumptions (2) and (3).
We shall prove the result by induction on ex(X). Note that is suffices to

prove that there is a weight decomposition A
α
−→ X → X ′ (i.e. A ∈

D〈S〉TM(k,F)w=0 and X ′ ∈ D〈S〉TM(k,F)w<0) with α = 0 (because then
X ′ ≈ X⊕A[1] and so X ∈ D〈S〉TM(k,F)w<0, the latter being Karoubi-closed
by definition).
If ex(X) = ∅ then X must must be Tate. By Lemma 18 we may choose a

weight decomposition T
α
−→ X → X ′ with T ∈ Tate(F). By the corollary above
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(applied to T ′ = T ) we find that α = 0. This finishes the base case of our
induction.

Suppose now ex(X) = ex(X1, . . . , Xn) > ∅. If l/k is any extension such
that one of the X1, . . . , Xn acquires a rational point over l, then we may
assume the lemma proved over l by induction, so Xl ∈ D〈S〉TM(l,F)w<0.

Let A
α
−→ X → X ′ be a weight decomposition; as before way may choose

A ∈ 〈{X1, . . . , Xn}〉
⊗,T
Chow(k,F). Write A ≈ T ⊕ A′ as in Proposition 7. I claim

that α|A′ = 0. It is enough to show that if Y is a product of the Xi then
Hom(MY {n}, X) = 0 for all n. By Lemma 16, it is enough to show that
for all n ∈ Z and p ∈ Y we have that HomDM(p,F)(1{n}, Xp) = 0. But ev-
ery variety has a rational point after base change to any one of its points, so
Xp ∈ D〈S〉TM(p,F)w<0 by induction. This proves the claim.

We thus have a weight decomposition T ⊕A′ (α,0)T

−−−−→ X → X ′. Let Y be a cone
on α : T → X . We find that X ′ ≈ Y ⊕A′[1] and hence Y ∈ D〈S〉TM(k,F)w<0.

Thus T
α
−→ X → Y is a weight decomposition. Using the corollary again we

get Hom(T,X) = 0 and so α = 0. This finishes the induction step.

The rest of Theorem 22 is relatively easy to establish now. We begin with the
following.

Lemma 27. Let C,D be w-categories with bi-w-exact tensor structures. Suppose
that C is rigid and its weight structure is bounded.

Let φ : C → D be a w-exact tensor functor such that whenever X ∈ Cw≤0 and
φ(X) ∈ Dw<0 then X ∈ Cw<0.

Then φ is w-conservative.

Proof. Let X ∈ C. If φ(X) ∈ Dw≤0 then also X ∈ Cw≤0. Indeed since the
weight structure on C is bounded we have X ∈ Cw≤N for some N . If N > 0
then the assumptions imply that X ∈ Cw≤N−1, and so on.

Suppose now instead that φ(X) ∈ Dw≥0. We need to show that X ∈ Cw≥0.
But X ∈ Cw≥0 if and only if DX ∈ Cw≤0 by Lemma 20 (use that X ≈ D(DX)),
and φ commutes with taking duals (since C is rigid). Thus φ(DX) = Dφ(X) ∈
Dw≤0, so DX ∈ Cw≤0 and we are done.

It follows from Lemmas 26 and 27 that {ϕl}l is a w-conservative family. But
all our weight structures are bounded so the weight complex functors are w-
conservative, and thus {Φl}l is also a w-conservative family.

Finally for Pic-injectivity, let X ∈ D〈S〉TM(k,F) be invertible with Φl(X) ≈
1 for all l. Since 1 ∈ Kb(Tate(F))w=0, w-conservativity implies that X ∈

D〈S〉TM(k,F)w=0 = 〈Sk〉
⊗,T
Chow(k,F). Write X ≈ T ⊕X ′, with T Tate and X ′

Tate-free. Then 1 ≈ Φk(X) = T and so T ≈ 1. It follows that Φl(X) =
1⊕Φl(X ′) ∈ Tate(F). For this to be invertible we need Φl(X ′) = 0. Since this
is true for all l, conservativity implies that X ′ = 0. This finishes the proof of
Theorem 22.
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5 Application 1: Invertibililty of Affine Quadrics

We now begin to reap in the benefits of the work of the previous sections. First
we construct the conservative and Pic-injective collection of functors we shall
use in the remainder of this work. After that we study invertibility of affine
quadrics.
We will be dealing with quadratic forms. If l is a field and φ is a non-degenerate
quadratic form over l, we write Yφ = Proj(φ = 0) for the projective quadric.
This does not really make sense if dimφ = 1 in which case we put Yφ = ∅ by
convention. Given a ∈ l× we put Y aφ = Proj(φ = aZ2) and Xa

φ = Spec(φ = a).
All of these varieties are smooth.
Fix a perfect field k of exponential characteristic e 6= 2 and coefficient ring A
containing 1/e. We denote byQM(k,A) the Karoubi-closed tensor subcategory
of Chow(k,A) generated by the (motives of) smooth projective quadrics over
k, and the Tate motives.
By [16, Property (14.5.6)] the category Chow(k,A) embeds into DMgm(k,A).
We writeDQMgm(k,A) for the thick triangulated subcategory ofDMgm(k,A)
generated by QM(k,A). This is a tensor category.
We writeQM(k) = QM(k,Z[1/e]) andDQMgm(k) = DQMgm(k,Z[1/e]). As
promised, these categories contain the motives of all (smooth) affine quadrics.

Lemma 28. If φ is a non-degenerate quadratic form over the perfect field k
of characteristic not two, and a ∈ k×, then the affine quadric Xa

φ satisfies
M(Xa

φ) ∈ DQMgm(k,A).

Proof. We have Xa
φ = Y aφ \ Yφ and M(Y aφ ),M(Yφ),1{1} ∈ DQMgm(k,A), so

the result follows from the Gysin triangle.

We recall the following result.

Lemma 29 ((Rost)). Let φ be an isotropic non-degenerate quadratic form.
Then there exists a non-degenerate form ψ such that

M(Yφ) ≈ 1⊕M(Yψ){1} ⊕ 1{dimYφ}.

Moreover for a ∈ k× the natural “inclusion” M(Yφ) →M(Y aφ )
is given by




id 0 0
0 0 0
0 s{1} i{1}



 : 1⊕ 1{dimYφ}⊕M(Yψ){1} → 1⊕ 1{dimYφ +1}⊕M(Y a
ψ ){1},

where i : M(Yψ) → M(Y aψ ) is the natural “inclusion” and s : 1{dimY aψ } →
M(Y aψ ) is the fundamental class (dual of the structure map).

Proof. This is a result about Chow motives.
It is basically [19, Proposition 2]. Rost starts with φ = H ⊥ ψ, but this is
equivalent to φ having a rational point.
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For the explicit form of the “inclusion”, note first that all matrix entries shown
as zero have to be so for dimensional reasons. The entries “id” and “i{1}”
follow from naturality of Rost’s construction. For the final entry, we can argue
as follows. Note that Z = CH0(Y aψ ) = Hom(1{dimY aψ + 1},MY aψ {1}) ≈

Hom(1{dimY aψ +1},MYφ) = CH1(Yφ). The induced map we are interested in
corresponds under this identification to the cycle class of the closed subvariety
Yφ ⊂ Y aφ . So up to verifying a sign (which is irrelevant for all our applications),
it is enough to show that this class is a generator, which one sees for example
by considering the embedding into ambient projective space.

Lemma 30. For a field extension l/k let Sl be the set of anisotropic projective
smooth quadrics over l, and let exl : Sl → N be the dimension function ex(X) =
dimX. Then Theorem 22 applies, with F = F2.

We note that D〈S〉TM(k,F2) = DQMgm(k,F2), in the notation of the Theo-
rem.

Proof. Points on an anisotropic quadric have degree divisible by two by
Springer’s theorem [14, Chapter 7, Theorem 2.3], hence condition (1) holds.
Condition (2) is satisfied essentially by definition. Finally condition (3) follows
from Lemma 29.

It follows from Lemma 29 that motives of quadrics are geometrically Tate. Let
f : Spec(ks) → Spec(k) be a separable closure. It follows that the weight
complex functor t : DQMgm(ks) → Kb(Chow(ks,Z[1/e])) takes values in
Kb(Tate(Z[1/e])). We write Ψ for the composite

Ψ : DQMgm(k)
f∗

−→ DQMgm(ks)
t
−→ Kb(Tate(Z[1/e])).

Let g : Spec(l) → Spec(k) be any field extension and α : Z[1/e] → F2 be
the natural surjection. Via Lemma 30 and Theorem 22 we obtain functors
Φl : DQMgm(k,F2) → Kb(Tate(F2)). We abuse notation and denote the

composite with change of coefficients DQMgm(k)
Lα#

−−−→ DQMgm(k,F2) →
Kb(Tate(F2)) also by Φl.

Theorem 31. The functors Ψ,Φl are tensor triangulated. Together (as l
ranges over all finitely generated extensions of k) they are conservative and
Pic-injective.

Proof. The functors are composites of tensor triangulated functors, so are ten-
sor triangulated.
By Theorem 14 the collection f∗, {Lαp#}p (where p ranges over all primes) is
conservative and Pic-injective. Since all weight complex functors are conserva-
tive and Pic-injective by Lemma 20, the collection tf∗, {tLαp#}p is conservative
and Pic-injective. We have tf∗ = Ψ. By Theorem 22 we may replace tLα2# in
our collection by {Φl}l.
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It remains to deal with Lαp# at odd p. Let M ∈ DQMgm(k,Z[1/e]). By
repeated application of Lemma 29 we can find an extension L/k (which we
may assume Galois) of degree a power of 2, such that ML is in the triangu-
lated subcategory generated by the Tate motives. In particular t(Lαp#ML) ≈
Lαp#Ψ(M) (as complexes of Tate motives). Since [L : k] is a power of two,
base change along L/k is conservative in odd characteristic by Proposition 9.
Thus if Ψ(M) ≃ 0 then also Lαp#M ≃ 0 and our collection is conservative.
We need to work a bit harder for Pic-injectivity. Let M ∈ DQMgm(k,Z[1/e])
be invertible with Φl(M) ≃ 1[0] for all l/k and Ψ(M) ≃ 1[0]. Then we know
that Lα2#(M) ≃ 1 by Theorem 22. We also have t(ML) = Ψ(M) ≃ 1, so
ML ≃ 1 by Lemma 20. Consider the mod 2 Bockstein sequence

Hom(1, Lα2#M [−1]) = 0 → Hom(1,M)
2
−→ Hom(1,M) →

→ Hom(1, Lα2#M) → Hom(1,M [1])
2
−→ Hom(1,M [1]) →

→ Hom(1, Lα2#M [1]) = 0.

The extremal terms are zero because Lα2#M ≃ 1, and for the same rea-
son we have that Hom(1, Lα2#M) ≈ F2. Thus Hom(1,M) has no 2-torsion,
whereas Hom(1,M [1]) has no 2-cotorsion. The composite M → ML → M
of base change and transfer is multiplication by [L : k] = 2N . We conclude
that Hom(1,M) injects into HomL(1L,ML) ≈ Z[1/e] and that the kernel of
Hom(1,M [1]) → HomL(1L,ML[1]) = 0 (i.e. the whole group) is contained in
the 2N -torsion. But multiplication by 2 is surjective on Hom(1,M [1]), whence
so is multiplication by 2N , and we conclude that Hom(1,M [1]) = 0. Con-
sequently we have Hom(1,M) ≈ Z[1/e] (since it is an ideal of Z[1/e] with a
non-vanishing quotient, i.e. F2).
We shall now apply Proposition 15. As we have seen ML ≃ 1, so we obtain a
G = Gal(L/k)-action on Hom(1,ML) ≈ Z[1/e], i.e. a group homomorphism
κM : G → Z[1/e]×. Since e is prime we have Z[1/e]× = {±1} × {ek|k ∈ Z}
and since G is finite the image of κM must be contained in {±1}. Note that
if κM = 1 then M ≃ 1 and we are done. Indeed it suffices by Theorem 14
to show that Lαp#M ≃ 1 for odd p. Since (Lαp#M)L ≃ 1, by Proposition
15 this happens if and only if an appropriate Galois action is trivial, but this
action is just the reduction G

κM−−→ Z[1/e]× → (Z/p)×. So assume now that
κM is non-trivial.

Let β : Z[1/e] → Z[1/(2e)] be the natural map. Note that κM : G→ {±1} has
a kernel index 2, i.e. corresponds to a quadratic subextension k ⊂ k2 ⊂ L. I
claim that Lβ#M ≃ Lβ#M̃Spec(k2). Indeed this follows from Proposition 15
applied to A = Z[1/(2e)], where f∗ becomes conservative, and the observation
that κM̃Spec(k2)

= κM .

In particular we must have Hom(1, Lβ#M̃Spec(k2)) ≈ Hom(1,M) ⊗Z[1/e]

Z[1/(2e)] = Z[1/(2e)], by Proposition 12 and our previous computation. But
one may compute easily that Hom(1, Lβ#M̃Spec(k2)) = 0. This contradiction
concludes the proof.
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Note that if A is a PID, then Pic(Kb(Tate(A))) = Z ⊕ Z. Consequently we
have the following corollary.

Corollary 32. The abelian group Pic(DQMgm(k,Z[1/e])) is torsion-free
(where k is a perfect field of exponential characteristic e 6= 2).

As the proof of the theorem shows, this is completely false with Z[1/(2e)]
coefficients (or in the étale topology), where we have Pic = Z ⊕ Z ⊕ F where
F is an F2-vector space.
We can now prove that affine quadrics are invertible.

Theorem 33. Let k be a perfect field of characteristic not two, φ a non-
degenerate quadratic form over k and a ∈ k×. Then M̃(Xa

φ) is invertible in
DMgm(k,Z[1/e]).

Proof. We have M̃Xa
φ ∈ DQMgm(k) by Lemma 28 and so we can use Theo-

rem 31. Since the category DQMgm(k) is generated by rigid objects (Chow
motives) it is rigid and so conservative tensor functors detect invertibility, by
standard arguments. We thus need to show that Ψ(M̃Xa

φ) is invertible and

that for each l/k, Φl(M̃Xa
φ) is invertible.

Let d+2 = dimφ. Let us put V aφ = D(MXa
φ){d+1} and Ṽ aφ = D(M̃Xa

φ){d+1}.

Then M̃Xa
φ is invertible if and only if Ṽ aφ is. From the closed inclusion i : Yφ →

Y aφ with complement Xa
φ we get the dual Gysin triangle

MYφ
i
−→MY aφ → V aφ .

It follows that t(V aφ ) = [MYφ
i
−→ ṀY aφ ]. Here the dot is used to indicate the

term of degree zero in the chain complex. Dualising the defining triangle of
M̃Xa

φ we obtain

1{d+ 1}
s
−→ V aφ → Ṽ aφ ,

where s is the fundamental class (dual of the structure map). Hence we finally
obtain

t(Ṽ aφ ) = [MYφ ⊕ 1{d+ 1}
(i,s)
−−−→ ṀY aφ ] =: C(φ).

The functor Ψ is computed by first applying geometric base change, so φ be-
comes completely split. In particular it has to be isotropic. An induction on
dimension using Lemma 34 below shows that we may reduce to dim φ = 1 or
2, i.e. {x2 = 1} or {xy = 1} (recall that completely split quadrics are charac-
terised by their dimension, so we can choose any non-degenerate model quadric
of the correct dimension). But M̃({x2 = 1}) = 1 and M̃({xy = 1}) = M̃(Gm)
are both invertible.
Dealing with Φl is a bit harder.
The expression C(φ) ∈ Kb(QM(k)) makes sense even if k is not perfect. Using
Proposition 23 it suffices to prove: if l/k is any field extension, then Φl0C(φl) is
invertible. We drop the subscript zero from now on. We may as well prove: if k
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is any field and φ is any non-degenerate quadratic form over k, then Φk(C(φ))
is invertible. By Lemma 34 below, if φ ≈ ψ ⊥ H then C(φ) ≃ C(ψ){1}. We
may thus assume that either φ is anisotropic, or φ = H, or φ is of dimension
one.
If φ = H then Yφ ≈ Spec(k × k), Y aφ ≈ P

1 and the result follows easily. If φ is
of dimension one then MYφ = 0 and either MY aφ = 1 ⊕ 1 or MY aφ = M(k′),
where k′/k is a quadratic extension. Again the result follows easily.
So we may assume that φ is anisotropic. There are three cases. If φ ⊥ 〈−a〉 is
also anisotropic, then none of MYφ,MY aφ afford Tate summands, by Proposi-

tion 7. Thus Φk(C(φ)) = 1{d+ 1}[1] is invertible.
If φ ⊥ 〈−a〉 is isotropic, then φ ⊥ 〈−a〉 = ψ ⊥ H. Suppose that ψ has
dimension greater than one. Then by (the contrapositive of) Lemma 35 below,
ψ is anisotropic. It follows that MY aφ ≈ 1⊕ 1{d+1}⊕MY aψ and Φk(C(φ)) =

[1{d+ 1} → 1̇⊕ 1{d+ 1}]. The component 1{d+ 1} → 1{d+ 1}] comes from
the fundamental class of Ma

ψ and so is an isomorphism. Thus Φk(C(φ)) ≃ 1 is
invertible.
Finally it might be that ψ has dimension one. Then Y aφ ≈ P1 whereas MYφ
affords no Tate summands, and the result follows as in the case of dimension
greater than one. This concludes the proof.

Lemma 34. Notation as in the theorem. If φ = ψ ⊥ H then C(φ) ≃ C(ψ){1}.

Proof. Using the explicit form for the inclusion MYφ → MY aφ from Lemma 29
we find that

C(φ) = [(1⊕ 1{d} ⊕MYψ{1})⊕ 1{d+ 1}
α
−→ 1̇⊕ 1{d+ 1} ⊕MY aψ {1}],

where α is given by the matrix





id 0 0 0
0 0 0 f
0 s{1} i{1} 0



 .

Here f comes from the fundamental class and so is an isomorphism. It follows
that C(φ) ≈ C(ψ){1} ⊕ cone(id

1

)[−1]⊕ cone(id
1{d+1})[−1] ≃ C(ψ){1}. This

is the desired result.

Lemma 35. If φ ⊥ 〈a〉 ≈ ψ ⊥ H ⊥ H, then φ is isotropic.

Proof. Let X = Y〈a〉⊥φ. Then Yφ = X ∩ {X0 = 0}. Since 〈a〉 ⊥ φ ≈ ψ ⊥
H ⊥ H, we find that YH⊥H ⊂ X . Then Yφ ∩ YH⊥H = YH⊥H ∩ {X0 = 0}
(intersecting inside X). Now we know that after a linear change of coordinates
(X0 : · · · : Xr) 7→ (T0 : · · · : Tr) the subvariety YH⊥H of X is given by the
equations T0T1 + T2T3 = 0, Ti = 0 for i > 3. Thus Yφ ∩ YH⊥H is obtained by
adding a further linear constraint in the T0, T1, T2, T3. It is easy to see that
there must be a rational, non-zero solution, so Yφ has a rational point. This
was to be shown.
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6 Application 2: Po Hu’s Conjectures for Motives

In this final section we prove a version for motives of Po Hu’s conjectures [12,
Conjecture 1.4]. We retain notation from the previous section.
For a = (a1, . . . , an) ∈ (k×)n, b ∈ k× let us put

U ba = Xb
〈〈a1,...,an〉〉

,

where 〈〈a1, . . . , an〉〉 is the n-fold Pfister quadric associated with the symbol a.
We use notation such as a, a′ = (a1, . . . , an, a

′) ∈ (k×)n+1 for concatenation of
tuples.

Theorem 36. Let k be a perfect field of characteristic not two, and a ∈
(k×)n, b ∈ k×.
In DMgm(k) there is an isomorphism

M̃(U1
a,b)⊗ M̃(U ba)[1] ≈ M̃(U1

a ){2
n}. (6.1)

To prove this, we have to recall some facts about Rost motives. If a ∈ (k×)n,
then there is the associated Rost motive Ra ∈ QM(k). Recall that one has
H1
et(k,F2) = k×/2, and hence cup product yields a natural map ∂ = ∂k :

(k×)n → Hn
et(k,Z/2). The Rost motives have the remarkable property that Ra

is irreducible if and only if ∂(a) 6= 0. In fact there are canonical maps

1{2n−1 − 1} → Ra → 1 (6.2)

(which we call structure maps) and if ∂(a) = 0 then this is a splitting distin-
guished triangle. The same statements hold true with F2 coefficients. These
results follow from the work of a number of people, see [18] for an overview.
The relationship between Rost motives and U ba is encapsulated in the following
proposition.

Proposition 37. For a ∈ (k×)n, b ∈ k× there is a distinguished triangle

M̃(U ba) → Ra,b → Ra{2
n−1} ⊕ 1.

Here Ra,b → 1 is the structure map, and the composite

1{2n − 1} → Ra,b → Ra{2
n−1}

is the {2n−1} twist of the structure map 1{2n−1 − 1} → Ra.

Proof. This is essentially [13, proof of Proposition 5.5].
We know that U := U ba is the complement of X := Y〈〈a〉〉 in Y := Y b〈〈a〉〉. By the

work of Rost [19, Theorem 17 and Proposition 19], if we put Rn := Ra,b and
Rn−1 = Ra, then

M(Y ) = Rn ⊕
2n−1−1
⊕

k=1

Rn−1{k} := Rn ⊕R′,

M(X) =

2n−1−1
⊕

k=0

Rn−1{k} := Rn−1 ⊕R′
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and the natural map M(X) → M(Y ) is the identity on R′.
The localisation triangle M c(X) = M(X) → M c(Y ) = M(Y ) → M c(U) fits
into the following commutative diagram of (distinguished) triangles:

R′ R′





y





y

M(X) −−−−→ M(Y ) −−−−→ M c(U)




y





y

Rn−1 Rn

An application of the octahedral axiom yields a distinguished triangle Rn−1 →
Rn → M c(U). Noting that DM c(U) =M(U){−(2n − 1)}, DRn = Rn{−(2n −
1)} and DRn−1 = Rn−1{−(2n−1 − 1}, by dualising and twisting the triangle,
we find a distinguished triangle M(U) → Rn → Rn−1{2n−1}. Adding in the
copy of 1 implied in M̃(U), we get the claimed triangle with the correct map
Rn → 1.
To see the second claim about the differential, the important point is that in
the triangle Rn−1 → Rn → M c(U) the map Rn−1 → Rn is induced from the
inclusion M(X) →M(Y ) by passing to the appropriate summands. It follows
that Rn−1 → Rn → 1 is the structure map of Rn−1 → 1. The desired result
now follows by dualising.

Proof of Theorem 36. By Lemma 28, we have M̃(U ba) ∈ DQMgm(k), etc. We
also know by Theorem 33 that both sides of equation (6.1) are invertible. Hence
if F : DQMgm(k) → C is a Pic-injective functor, it suffices to prove that
F (LHS) ≈ F (RHS).
Of course we use the Pic-injective collection from Theorem 31.
¿From Proposition 37 we know that

t(M̃(U ba) = [Ṙa,b → Ra{2
n} ⊕ 1],

and we also know certain things about the differential. To compute Ψ, we
have to consider geometric base change, where the triangle (6.2) is splitting
distinguished. One obtains

Ψ(M̃(U ba)) = [1̇⊕ 1{2n − 1} → 1{2n−1} ⊕ 1{2n − 1} ⊕ 1]

and from the information about the differential given in proposition 37 we
deduce that Ψ(M̃(U ba) ≃ 1{2n−1}[−1]. Thus Ψ(LHS) ≈ Ψ(RHS) reads

1{2n}[−1]⊗ 1{2n−1}[−1][1] ≈ 1{2n−1}[−1]{2n},

which is certainly true.
Now let l/k be an arbitrary field extension. We need to prove Φl(LHS) ≈
Φl(RHS). This involves Ra, Ra,b, Ra,1 and Ra,b,1. Depending on l these may
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Table 1: Terms needed to compute Φl.
∂l(a, b) 6= 0 ∂l(a, b) = 0 but ∂l(a) 6= 0

Φl(U1
a,b) [1̇⊕ 1{2n+1 − 1} → 1] [1̇⊕ 1{2n+1 − 1} → . . .

· · · → 1{2n} ⊕ 1{2n+1 − 1} ⊕ 1]
Φl(U ba) [0̇ → 1] [1̇⊕ 1{2n − 1} → 1]

Φl(U1
a ) [1̇⊕ 1{2n − 1} → 1] [1̇⊕ 1{2n − 1} → 1]

Table 2: Terms needed to compute Φl, simplified form.
∂l(a, b) 6= 0 ∂l(a, b) = 0 but ∂l(a) 6= 0

Φl(U1
a,b) 1{2n+1 − 1} 1{2n}[−1]

Φl(U ba) 1[−1] 1{2n − 1}
Φl(U1

a ) 1{2n − 1} 1{2n − 1}

or may not split into Tate motives, so may or may not survive Φ. We see that
Ra,1 and Ra,b,1 always split (because ∂l(1) = 0), and that Ra,b splits whenever
Ra splits (because ∂(a, b) = ∂(a) ∪ ∂(b)).
If Ra splits then everything is split and Φl is just mod two reduction of Ψ,
so we know the equation is satisfied. Thus there are just two cases and three
things in each to compute, which we gather in Table 1.

The differentials can again be figured out using Proposition 37. Using these
one can simplify the expressions. We have gathered the results in Table 2.

To complete the proof, we check that Φl(LHS) ≈ Φl(RHS) in both cases. This
is easy.
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