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Abstract. We prove several results concerning the existence of po-
tentially crystalline lifts of prescribed Hodge–Tate weights and inertial
types of a given representation r : GK → GLn(Fp), where K/Qp is
a finite extension. Some of these results are proved by purely local
methods, and are expected to be useful in the application of auto-
morphy lifting theorems. The proofs of the other results are global,
making use of automorphy lifting theorems.

1. Introduction

Let p be a prime, let K/Qp be a finite extension, and let r : GK → GLn(Fp) be
a continuous representation. For many reasons, it is a natural and important
question to study the lifts of r to de Rham representations r : GK → GLn(Zp);
for example, the de Rham lifts of fixed Hodge and inertial types are param-
eterised by a universal (framed) deformation ring thanks to [Kis08], and the
study of these deformation rings is an important step in proving automorphy
lifting theorems, going back to Wiles’ proof of Fermat’s Last Theorem, which
made use of Ramakrishna’s work on flat deformations [Ram02].
It is therefore slightly vexing that (as far as we are aware) it is currently an
open problem to prove that for a general choice of r, a single such lift r ex-
ists (equivalently, to show for each r that at least one of Kisin’s deformation
rings is nonzero). Some results in this direction can be found in the Ph.D.
thesis of Alain Muller [Mul13]. This note sheds little further light on this
question, but rather investigates the question of congruences between de Rham
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1406926 The fourth author was partially supported by NSF grant DMS-0901049 and NSF
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representations of different Hodge and inertial types; that is, in many of our
results we suppose the existence of a single lift, and see what other lifts (of
differing Hodge and inertial types) we can produce from this. The existence
of congruences between representations of differing such types is conjecturally
governed by the (generalised) Breuil–Mézard conjecture (at least for regular
Hodge types; see [EG14]). This conjecture is almost completely open beyond
the case of GL2 /Qp, so it is of interest to prove unconditional results.
We prove several such results in this paper, by a variety of different methods.
Some of our results make use of the notion of a potentially diagonalisable Galois
representation, which was introduced in [BLGGT14], and is very important in
automorphy lifting theorems. It is expected ([EG14, Conj. A.3]) that every r
admits a potentially diagonalisable lift of regular weight2, but this is at present
known only if n ≤ 3 or r is semisimple; see for example [CEG+16, Lem. 2.2],
and the proof of [Mul13, Prop. 2.5.7] for the case n = 3. It seems plausible
that these arguments could be extended to cover other small dimensions, but
the case of general n seems to be surprisingly difficult.
We recall that an n-dimensional de Rham representation of GK is said to have
Hodge type 0 if for any continuous embedding K →֒ Qp the corresponding
Hodge–Tate weights are 0, 1, . . . , n−1; while ifK/Qp is unramified, a crystalline
representation of GK is said to be Fontaine–Laffaille if for each continuous
embedding K →֒ Qp the corresponding Hodge–Tate weights are all contained
in an interval of the form [i, i + p − 2]. We remark that we will normalise
Hodge–Tate weights so that the cyclotomic character ε has Hodge–Tate weight
−1.
Our first result is the following theorem, which will be used in forthcoming
work of Arias de Reyna and Dieulefait.

Theorem A. (Cor. 2.3.4) Suppose that K/Qp is unramified, and fix an integer

n ≥ 1. Then there is a finite extension K ′/K, depending only on n and K,

with the following property: if r : GK → GLn(Fp) has a Fontaine–Laffaille lift,

then it also has a potentially diagonalisable lift r : GK → GLn(Zp) of Hodge

type 0 with the property that r|GK′
is crystalline.

In fact this is a special case of a result (Cor. 2.1.11) that holds for a more general
class of representations r that we call peu ramifiée, and with no assumption
that the finite extension K/Qp is unramified. We expect that this result should
even be true without the assumption that r is peu ramifiée, but we do not know
how to prove this; indeed, as mentioned above, we do not know how to produce
a single de Rham lift in general!
To explain why this result is reasonable, and to give some indication of the
proof, we focus on the case that K = Qp and n = 2. Assume for simplicity
in the following discussion that p > 2. One way to see that we should expect
the result to be true (at least if we remove “potentially diagonalisable” from
the statement) is that it is then the local Galois analogue of the well-known

2Recall that a de Rham representation of GK is said to have regular weight if for any
continuous embedding K →֒ Qp, the corresponding Hodge–Tate weights are all distinct.
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statement that every modular eigenform of level prime to p is congruent to one
of weight 2 and bounded level at p. Indeed, via the mechanism of modularity
lifting theorems and potential modularity, it is possible to turn this analogy
into a proof. (See Theorem C below. Since all potentially Barsotti–Tate rep-
resentations are known to be potentially diagonalisable, this literally proves
Theorem A in this case, but this deduction cannot be made if n > 2.)
Since these global methods are (at least at present) unable to handle the case
n > 2, a local approach is needed, which we again motivate via the caseK = Qp
and n = 2. The possible r : GQp

→ GL2(Fp) are well-understood; they are ei-
ther irreducible representations, in which case they are induced from characters
of the unramified quadratic extension Qp2 of Qp, or they are reducible, and are
extensions of unramified twists of powers of the mod p cyclotomic character ω.
In the first case, the representations are induced from characters of GQ

p2
which

become unramified after restriction to any totally ramified extension of degree
p2− 1, and it is straightforward to produce the required lifts by considering in-
ductions of potentially crystalline characters of GQ

p2
which become crystalline

over such an extension; see Lemma 2.1.12. Such representations are automat-
ically potentially diagonalisable, as after restriction to some finite extension
they are even a direct sum of crystalline characters.
This leaves the case that r is reducible. After twisting, we may assume that r
is an extension of an unramified twist of ω−i by the trivial character, for some
0 ≤ i ≤ p − 2. Then the natural way to lift to characteristic zero and Hodge
type 0 is to try to lift to an extension of an unramified twist of ε−1ω̃1−i by the
trivial character, where ω̃ is the Teichmüller lift of ω; this is promising because
any such extension is at least potentially semistable, and becomes semistable
over Qp(ζp) (which is in particular independent of the specific reducible r under
consideration), and if it is potentially crystalline, then it is also potentially
diagonalisable (as it is known that any successive extension of characters which
is potentially crystalline is also potentially diagonalisable).
The problem of producing such lifts is one of Galois cohomology, and Tate’s
duality theorems show that when i 6= 1 there is no obstruction to lifting.3 It
is also easy to check that in this case the lifts are automatically potentially
crystalline. However, when i = 1 the situation is more complicated. Then
one can check that très ramifiée extensions of ω−1 by the trivial character do
not lift to extensions of a non-trivial unramified twist of ε−1 by the trivial
character, but only lift to semistable non-crystalline extensions of ε−1 by the
trivial character. However, this is the only obstruction to carrying out the
strategy in this case; and in fact, since très ramifiée representations do not
have Fontaine–Laffaille lifts, the result also follows in the case i = 1.
We prove Theorem A by a generalisation of this strategy: we write r as an
extension of irreducible representations, lift the irreducible representations as

3This is true even for the ramified self-extensions of the trivial character in the case i = 0,
which are not Fontaine–Laffaille, although they are peu ramifiée in the sense of this paper
(Definition 2.1.3).
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inductions of crystalline characters, and then lift the extension classes. How-
ever, the issues that arose in the previous paragraph in the case i = 1 are more
complicated in general. To address this, we make use of the following observa-
tion: in the case considered in the previous paragraphs (that is, K = Qp, n = 2,
and r has a trivial subrepresentation), if r is not très ramifiée then it admits
“many” reducible crystalline lifts; indeed, it can be lifted as an extension by
the trivial character of any unramified twist of ε−i that lifts the corresponding
character mod p.
This freedom to twist by unramified characters is in marked contrast to the
behaviour in the très ramifiée case, and can be exploited in the Galois coho-
mology calculations used to produce the potentially crystalline lifts of Hodge
type 0. Motivated by these observations, we introduce a generalisation (Defini-
tion 2.1.3) of the classical notion of peu ramifiée representations, and we prove
by direct Galois cohomology arguments that the peu ramifiée condition allows
great flexibility in the production of lifts to varying reducible representations
(see Theorem 2.1.8 and Corollary 2.1.11).
Conversely, every representation that admits enough lifts of the sort promised
by Theorem 2.1.8 must in fact be peu ramifiée (see Proposition 2.2.4 for a
precise statement); such a representation is said to admit “highly twisted lifts.”
We show that representations that admit Fontaine–Laffaille lifts also admit
highly twisted lifts (Proposition 2.3.1), and so deduce that Corollary 2.1.11
applies whenever the residual representation is Fontaine–Laffaille. Theorem A
follows.
Using roughly the same purely local methods, we additionally prove the fol-
lowing.

Theorem B. (Cor. 2.1.13) Suppose that r : GK → GLn(Fp) is peu ramifiée.

Then r has a crystalline lift of some Serre weight (in the sense of Section 1.2.4).

In contrast to these relatively concrete local arguments, in Section 3 we
use global methods, and in particular the potential automorphy machinery
of [BLGGT14]. Our first result is the following, which takes as input a po-
tentially crystalline lift that could have highly ramified inertial type, or highly
spread out Hodge–Tate weights, and produces a crystalline lift of small Hodge–
Tate weights.

Theorem C. (Thm. 3.1.2) Suppose that p ∤ 2n, and that r : GK → GLn(Fp)
has a potentially diagonalisable lift of some regular weight. Then the following

hold.

(1) There exists a finite extension K ′/K (depending only on n and K, and

not on r) such that r has a lift r : GK → GLn(Zp) of Hodge type 0 that

becomes crystalline over K ′.

(2) r has a crystalline lift of some Serre weight.

The first part of this result should be contrasted with Theorem A above, while
the second part should be contrasted with Theorem B. For instance, we re-
mark that it follows from Theorem A (or more precisely, from its more general
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statement for peu ramifiée representations) that every peu ramifiée representa-
tion r admits a potentially diagonalisable lift of some regular weight, whereas
this latter condition on r is an input to Theorem C.
If K/Qp is unramified and r admits a lift of extended FL weight (see Sec-
tion 1.2.4 for this terminology), we also show the following “weak Breuil–
Mézard result”.

Theorem D. (Thm. 3.1.5) Suppose that p 6= n, that K/Qp is unramified, and

that r : GK → GLn(Fp) has a crystalline lift of some extended FL weight F . If
F is a Jordan–Hölder factor of σ(λ, τ) for some λ, τ , then r has a potentially

crystalline lift of type (λ, τ).

Since there is no restriction on λ or τ , this result seems to be well beyond
anything that can currently be proved directly using integral p-adic Hodge
theory.
If we knew that all potentially crystalline lifts were potentially diagonalisable,
then the special case of Theorem A in which the given Fontaine–Laffaille lift is
regular would be an easy consequence of part (1) of Theorem C (note that the
existence of a regular Fontaine–Laffaille lift implies that p > n). However, we
do not know how to prove that general potentially crystalline representations
are potentially diagonalisable (and we do not have any strong evidence that it
should be true).

1.1. Acknowledgements. We would like to thank Luis Dieulefait for asking
a question which led to us writing this paper, as well as Alain Muller for
valuable discussions.

1.2. Notation and conventions. Fix a prime p, and let K/Qp be a finite
extension with ring of integers OK . Write GK for the absolute Galois group
of K, IK for the inertia subgroup of GK , and FrobK ∈ GK for a choice of
geometric Frobenius. All representations of GK are assumed without further
comment to be continuous. Write vK for the p-adic valuation on K taking
the value 1 on a uniformiser of K, as well as for the unique extension of this
valuation to any algebraic extension of K.

1.2.1. Inertial types. An inertial type is a representation τ : IK → GLn(Qp)
with open kernel which extends to the Weil groupWK . We say that a de Rham
representation r : GK → GLn(Qp) has inertial type τ if the restriction to IK
of the Weil–Deligne representation WD(r) associated to r is equivalent to τ .
Given an inertial type τ , there is a (not necessarily unique) finite-dimensional
smooth irreducible Qp-representation σ(τ) of GLn(OK) associated to τ by the
“inertial local Langlands correspondence”, which we normalise as in [EG14,
Conj. 4.1.3]. (Note that there is an unfortunate difference in conventions be-
tween this and that of [EG14, Thm. 4.1.5], but it is this normalisation that is
used in the remainder of [EG14].) We can and do suppose that σ(τ) is defined
over Zp.
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1.2.2. Hodge–Tate weights and Hodge types. If W is a de Rham representation
of GK over Qp, and κ : K →֒ Qp, then we will write HTκ(W ) for the multiset
of Hodge–Tate weights of W with respect to κ. By definition, the multiset

HTκ(W ) contains i with multiplicity dim
Qp

(W ⊗κ,K K̂(i))GK . Thus for exam-

ple if ε denotes the p-adic cyclotomic character of GK , then HTκ(ε) = {−1}
for all κ.
We say that W has regular Hodge–Tate weights if for each κ, the elements of
HTκ(W ) are pairwise distinct. Let Zn+ denote the set of tuples (λ1, . . . , λn) of
integers with λ1 ≥ λ2 ≥ · · · ≥ λn. Then if W has regular Hodge–Tate weights,

there is a unique λ = (λκ,i) ∈ (Zn+)
HomQp (K,Qp) such that for each κ : K →֒ Qp,

HTκ(W ) = {λκ,1 + n− 1, λκ,2 + n− 2, . . . , λκ,n},

and we say that W is regular of Hodge type λ.

1.2.3. Representations of GLn and Serre weights. For any λ ∈ Zn+, view λ as
a dominant weight (with respect to the upper triangular Borel subgroup) of
the algebraic group GLn in the usual way, and let M ′

λ be the algebraic OK-
representation of GLn given by

M ′
λ := IndGLn

Bn
(w0λ)/OK

where Bn is the Borel subgroup of upper-triangular matrices of GLn, and w0

is the longest element of the Weyl group (see [Jan03] for more details of these
notions, and note that M ′

λ has highest weight λ). Write Mλ for the OK-
representation of GLn(OK) obtained by evaluating M ′

λ on OK . For any λ ∈

(Zn+)
HomQp (K,Qp) we write Lλ for the Zp-representation of GLn(OK) defined by

Lλ := ⊗κ:K →֒Qp
Mλκ

⊗OK,κ Zp.

Let k be the residue field of K. We call isomorphism classes of irreducible Fp-
representations of GLn(k) Serre weights ; they can be parameterised as follows.
We say that an element (ai) of Zn+ is p-restricted if p − 1 ≥ ai − ai+1 for all

1 ≤ i ≤ n−1, and we write X
(n)
1 for the set of p-restricted elements. Given any

a ∈ X
(n)
1 , we define the k-representation Pa of GLn(k) to be the representation

obtained by evaluating IndGLn

Bn
(w0a)/k on k, and let Na be the irreducible

sub-k-representation of Pa generated by the highest weight vector (that this
is indeed irreducible follows from the analogous result for the algebraic group
GLn, cf. II.2.2–II.2.6 in [Jan03], and the appendix to [Her09]).

If a = (aκ,i) ∈ (X
(n)
1 )Hom(k,Fp), write aκ for the component of a indexed by

κ ∈ Hom(k,Fp). If a ∈ (X
(n)
1 )Hom(k,Fp) then we define an irreducible Fp-

representation Fa of GLn(k) by

Fa := ⊗κ∈Hom(k,Fp)
Naκ ⊗k,κ Fp.

The representations Fa are irreducible, and every Serre weight is (isomorphic
to one) of the form Fa for some a. The choice of a is not unique: one has
Fa ∼= Fa′ if and only if there exist integers xκ such that aκ,i − a′κ,i = xκ for all

Documenta Mathematica 22 (2017) 397–422



Potentially Crystalline Lifts of . . . 403

κ, i and, for any labeling κj of the elements of Hom(k,Fp) such that κpj = κj+1

we have
∑f−1
j=0 p

jxκj
≡ 0 (mod pf − 1), where f = [k : Fp]. In this case we

write a ∼ a′.
We remark that if K/Qp is unramified and a ∈ (X

(n)
1 )Hom(k,Fp) satisfies aκ,1 −

aκ,n ≤ p − (n − 1) for each κ, then La ⊗
Zp

Fp ∼= Fa as representations of

GLn(OK). The reason is that Pb = Nb whenever b ∈ Zn+ satisfies b1 − bn ≤
p− (n− 1) (cf. [Jan03, II.5.6]).

1.2.4. Potentially crystalline representations. An element λ ∈ (Zn+)
HomQp (K,Qp)

is said to be a lift of an element a ∈ (X
(n)
1 )Hom(k,Fp) if for each κ ∈ Hom(k,Fp)

there exists κκ ∈ HomQp
(K,Qp) lifting κ such that λκκ

= aκ, and λκ′ = 0 for

all other κ′ 6= κκ in HomQp
(K,Qp) lifting κ. If λ is a lift of a, then Fa is a

Jordan–Hölder factor of Lλ ⊗ Fp.
Given a pair (λ, τ), we say that a potentially crystalline representation W
of GK over Qp has type (λ, τ) if it is regular of Hodge type λ, and has inertial

type τ . Write σ(λ, τ) for Lλ ⊗Zp
σ(τ), a Zp-representation of GLn(OK), and

write σ(λ, τ) for the semisimplification of σ(λ, τ) ⊗Zp
Fp. Then the action

of GLn(OK) on σ(λ, τ) factors through GLn(k), so that the Jordan–Hölder
factors of σ(λ, τ) are Serre weights.
If r : GK → GLn(Fp) has a crystalline lift W of type (λ, 1) (that is, W is

crystalline of Hodge type λ), and λ is a lift of some a ∈ (X
(n)
1 )Hom(k,Fp), then

we say that r has a crystalline lift of Serre weight Fa. This terminology is
sensible because the existence of a crystalline lift of Hodge type λ for some lift
λ of a does not depend on the choice of the element a in its equivalence class
under the equivalence relation ∼ (cf. [GHS15, Lem. 7.1.1]).
If furthermore K/Qp is unramified, and aκ,1 − aκ,n ≤ p− 1− n for all κ, then
we say that a (or Fa) is an FL weight, and that r has a crystalline lift of FL

weight Fa. If instead aκ,1 − aκ,n ≤ p − n for all κ, then we say that a (or
Fa) is an extended FL weight, and that r has a crystalline lift of extended FL

weight Fa.

1.2.5. Potential diagonalisability. Following [BLGGT14], we say that a poten-
tially crystalline representation r : GK → GLn(Zp) with distinct Hodge–Tate
weights is potentially diagonalisable if for some finite extension K ′/K, r|GK′

is crystalline, and the corresponding Qp point of the corresponding crystalline
deformation ring lies on the same irreducible component as some direct sum of
crystalline characters. (For example, it follows from the main theorem of [GL14]
that any crystalline representation of extended FL weight is potentially diago-
nalisable.)

2. Local existence of lifts in the residually Fontaine–Laffaille

case
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2.1. Peu ramifiée representations. Recall that for any discrete GK-
module X , the space H1

ur(GK , X) of unramified classes in H1(GK , X) is the
kernel of the restriction map H1(GK , X) → H1(IK , X); by the inflation-
restriction sequence, this is the same as the image of the inflation map
H1(GK/IK , X

IK ) →֒ H1(GK , X). We will make use of the following well-
known fact.

Lemma 2.1.1. Suppose that X is a discrete GK-module that is moreover a

finite-dimensional vector space over a field F. Then

dimFH
1
ur(GK , X) = dimFH

0(GK , X).

Proof. We have

dimFH
1(GK/IK , X

IK ) = dimFH
0(GK/IK , X

IK ) = dimFH
0(GK , X),

the first equality coming from the fact that Hi(GK/IK , X
IK ) for i = 0, 1 are,

respectively, the invariants and co-invariants of XIK under FrobK − 1. �

Definition 2.1.2. Suppose that K/Qp is a finite extension and F is a field

of characteristic p. Consider a representation r : GK → GLn(F), let V be
the underlying F[GK ]-module of r, and suppose that 0 = U0 ⊂ U1 ⊂ · · · ⊂
U ℓ = V is an increasing filtration on V by F[GK ]-submodules. Write V i :=
U i/U i−1. We say that r is peu ramifiée with respect to the filtration {U i} if
for all 1 ≤ i ≤ ℓ the class in H1(GK ,HomF(V i, U i−1)) defined by U i (regarded
as an extension of V i by U i−1) is annihilated under Tate local duality by
H1

ur(GK ,HomF(U i−1, V i(1))).

Since group cohomology is compatible with base change for field extensions, so
is Definition 2.1.2: that is, if F′/F is any field extension, then r is peu ramifiée
with respect to some filtration {U i} if and only if r ⊗F F

′ is peu ramifiée with
respect to the filtration {U i ⊗F F

′}.
Definition 2.1.2 is most interesting in the case where the filtration {U i} is
saturated, i.e., where the graded pieces V i are irreducible. (For instance, any r
will trivially be peu ramifiée with respect to the one-step filtration 0 = U0 ⊂
U1 = V .) This motivates the following further definition.

Definition 2.1.3. We say that r is peu ramifiée if there exists a saturated
filtration {U i} with respect to which r is peu ramifiée as in Definition 2.1.2.

Examples 2.1.4.

(1) If n = 2 and r ∼=

(
χω ∗
0 χ

)
for some character χ, then Definition 2.1.3

coincides with the usual definition of peu ramifiée. (Recall that ω
denotes the mod p cyclotomic character.) Indeed, the duality pair-
ing H1(GK ,Fp(1)) ×H1(GK ,Fp) → Qp/Zp can be identified (via the
Kummer and Artin maps) with the evaluation map

K×/(K×)p ×Hom(K×,Fp) → Fp →֒ Qp/Zp,
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from which it is immediate that the classes in H1(GK ,Fp(1)) that are
annihilated by H1

ur(GK ,Fp) are precisely those which are identified
with O×

K/(O
×
K)p by the Kummer map.

(2) If r is semisimple then trivially r is peu ramifiée.
(3) If there are no nontrivial GK-maps U i−1 → V i(1) for any i (e.g. if one

has V j 6∼= V i(1) for all j < i) then r is necessarily peu ramifiée because

by Lemma 2.1.1 we have H1
ur(GK ,HomF(U i−1, V i(1))) = 0.

(4) Suppose K/Qp is unramified. We will prove in Section 2.3 that
Fontaine–Laffaille representations are peu ramifiée, so that all of the
main results in this section will apply to Fontaine–Laffaille representa-
tions.

Example 2.1.5. If r is peu ramifiée, it is natural to ask whether r is peu ramifiée
with respect to every (saturated) filtration on r. This is not the case. Suppose,
for instance, that K does not contain the p-th roots of unity (so ω 6= 1) and

r ∼=



ω ∗1 ∗2

1 0
1




where the class of the cocycle ∗1 is nontrivial and peu ramifiée, and the cocycle
∗2 is très ramifiée. For the filtration on r in which U i is the span of the first
i vectors giving rise to the above matrix representation (so that the action
of GQp

on U i is given by the upper-left i × i block), the representation r is
peu ramifiée. This is clear at the first two steps in the filtration, and for the
third step one notes (as in Example 2.1.4(3)) that there are no nontrivial maps
U2 → V 3(1).
On the other hand, if one defines a new filtration on r by replacing U2 with
the span of the first and third basis vectors giving rise to the above matrix
representation, then r is not peu ramifiée with respect to the new filtration,
because the new U2 is très ramifiée.

Remark 2.1.6. One consequence of the preceding example is that the collection
of peu ramifiée representations is not closed under taking arbitrary subquo-
tients. On the other hand, if r is peu ramifiée with respect to the filtration
{U i}, then for any a ≤ b it is not difficult to check that U b/Ua is peu ramifiée
with respect to the induced filtration {Ua+i/Ua}0≤i≤b−a.
Using the preceding example one can similarly see that the collection of peu
ramifiée representations is not closed under contragredients.

Remark 2.1.7. In some sense we are making an arbitrary choice by demanding
that we first lift U1, then to U2, then to U3, and so forth. One could equally
well lift in other orders, and as Example 2.1.5 shows, this can make a difference.
However, since Definition 2.1.2 will suffice for our purposes, we do not elaborate
further on this point.

We say that a Zp-lift of an Fp[GK ]-module V is a Zp[GK ]-module V that is free

as a Zp-module, together with a Fp[GK ]-isomorphism V ⊗Zp
Fp ∼= V . We have
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introduced the notion of a peu ramifiée representation (Definition 2.1.2) in order
to prove the following result, to the effect that peu ramifiée representations have
many Zp-lifts.

Theorem 2.1.8. Suppose that K/Qp is a finite extension. Consider a repre-

sentation r : GK → GLn(Fp) that is peu ramifiée with respect to the increasing

filtration {U i}, so that r may be written as

r =



V 1 . . . ∗

. . .
...

V ℓ


 ,

where the V i := U i/U i−1 are the graded pieces of the filtration.

For each i, suppose that we are given a Zp-representation Vi of GK lifting V i.
Then there exist unramified characters ψ1, . . . , ψℓ with trivial reduction such

that r may be lifted to a representation r of the form

r =



V1 ⊗ ψ1 . . . ∗

. . .
...

Vℓ ⊗ ψℓ


 .

More precisely, r is equipped with an increasing filtration {Ui} by Zp-direct

summands such that Ui/Ui−1
∼= Vi⊗ψi and r⊗Zp

Fp ∼= r induces Ui⊗Zp
Fp ∼= U i,

for each 1 ≤ i ≤ ℓ.
In fact, there are infinitely many choices of characters (ψ1, . . . , ψℓ) for which

this is true, in the strong sense that for any 1 ≤ i ≤ ℓ, if (ψ1, . . . , ψi−1) can

be extended to an ℓ-tuple of characters for which such a lift exists, then there

are infinitely many choices of ψi such that (ψ1, . . . , ψi) can also be extended to

such an ℓ-tuple.

Proof. We proceed by induction on ℓ, the case ℓ = 1 being trivial. From the
induction hypothesis, we can find ψ1, . . . , ψℓ−1 so that U := U ℓ−1 can be lifted
to some

U :=



V1 ⊗ ψ1 . . . ∗

. . .
...

Vℓ−1 ⊗ ψℓ−1


 .

as in the statement of the theorem. It suffices to prove that for each such choice
of ψ1, . . . , ψℓ−1, there exist infinitely many choices of ψℓ for which r lifts to an
extension of Vℓ ⊗ ψℓ by U as in the statement of the theorem.
Choose the field E/Qp large enough so that U and Vℓ are realisable over OE ,
and so that r is realisable over the residue field of E. Suppose that F/E is a
finite extension with ramification degree e(F/E) > (dimV ℓ)(dimU), write O
for the integers of F and F for its residue field, and let ψ : GK → O× be an
unramified character such that 0 < vE(ψ(FrobK) − 1) < 1/(dimV ℓ)(dimU).
In the remainder of this argument, when we write U and Vℓ we will mean
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their (chosen) realisations over O, and similarly U and V ℓ will mean their
realisations over F obtained by reduction from U and Vℓ.
Extensions of Vℓ⊗ψ by U correspond to elements ofH1(GK ,HomO(Vℓ⊗ψ,U)),
while r corresponds to an element c of Ext1F[GK ](V ℓ, U), which we identify with

H1(GK ,HomF(V ℓ, U)). By hypothesis (together with the remark about base
change immediately following Definition 2.1.2) the class c is annihilated by
H1

ur(GK ,HomF(U, V ℓ(1))) under Tate local duality. Taking the cohomology of
the exact sequence

0 → HomO(Vℓ ⊗O ψ,U)
̟
→ HomO(Vℓ ⊗O ψ,U) → HomF(V ℓ, U),

we have in particular an exact sequence

H1(GK ,HomO(Vℓ ⊗O ψ,U)) → H1(GK ,HomF(V ℓ, U))
δ
→

δ
→ H2(GK ,HomO(Vℓ ⊗O ψ,U)),

so it is enough to check that that c ∈ ker(δ) except for finitely many choices of
ψ.
From Tate duality, we have the dual map

H0(GK ,HomO(U, Vℓ(1)⊗O ψ)⊗ F/O)
δ∨
→ H1(GK ,HomF(U, V ℓ(1)).

As ker(δ)⊥ = im(δ∨), it is enough to show that im(δ∨) is contained in
H1

ur(GK ,HomF(U, V ℓ(1))) except, again, for possibly finitely many choices of
ψ. Letting X = HomO(U, Vℓ(1)), we first claim that (X ⊗O O(ψ))GK = 0 for
all but finitely many choices of ψ. Indeed, if

(X ⊗O O(ψ))GK = HomO[GK ](U, Vℓ(1)⊗O ψ) 6= 0

then we must haveW ∼= Z(1)⊗Oψ for some Jordan–Hölder factor W of U and
Z of Vℓ. This can happen for only finitely many choices of ψ (by determinant
considerations applied to each of the finitely many pairs W,Z). Now we are
done by the following proposition. �

Proposition 2.1.9. Let F/Qp be a finite extension with ring of integers O and

residue field F. Let X be an O[GK ]-module that is free of finite rank as an O-

module. Suppose that there is a field lying E lying between F and Qp such that

X is realisable over OE and with ramification index e(F/E) > rankO(X). Let

ψ : GK → O× be an unramified character such that 0 < vE(ψ(FrobK) − 1) <
1/ rankO(X).
Assume further that (X ⊗O O(ψ))GK = 0. Then the image of

δ∨ : H0(GK , (X ⊗O O(ψ)) ⊗O F/O) → H1(GK , X ⊗O F)

is equal to the subspace of unramified classes, and in particular depends only

on X ⊗O F, and not on X, F , or ψ.

Proof. The statement is unchanged upon replacing E with the maximal un-
ramified extension Eur of E contained in F . We are therefore reduced to the
case where F/E is totally ramified (so that in particular F is also the residue
field of E).

Documenta Mathematica 22 (2017) 397–422



408 T. Gee, F. Herzig, T. Liu, D. Savitt

Let XOE
be a realisation of X over OE . Write X = XOE

⊗OE
F = X⊗O F and

Xψ = XOE
⊗OE

O(ψ). The inclusion ι : XOE
→֒ Xψ sending x 7→ x ⊗ 1 is a

map of OE-modules inducing an isomorphism of F[GK ]-modules X ∼= Xψ⊗OF.
Moreover for any g ∈ GK and x ∈ XOE

we have g · ι(x) = ψ(g)(ι(g · x)), so
that the map ι is at least IK-linear.

Define α = ψ(FrobK)−1−1 and write N = FrobK−1, which acts on X
IK

with

kernel ker(N) = X
GK

. We have an isomorphism

H1(GK/IK , X
IK

) ∼= X
IK
/NX

IK

induced by evaluation at FrobK . Note that any class in this quotient space
has a representative in ∪∞

i=0 ker(N
i), as can be seen for example by writing

X
IK

= Y ⊕ Z with N nilpotent on Y and invertible on Z. Hence to see
that the image of δ∨ contains all unramified classes, it suffices to exhibit for
f ∈ ∪∞

i=0 ker(N
i) an element ef ∈ (Xψ ⊗O F/O)GK such that δ∨(ef ) = [f ] in

H1(GK/IK , X
IK

).

Suppose then that f ∈ ∪∞
i=0 ker(N

i) is nonzero. Let i ≥ 0 be the largest integer

such that N if 6= 0, and let f i := f . For each 0 ≤ j ≤ i let fj ∈ XOE
be a lift

of N i−jf i, and define

f∗ =
i∑

j=0

αj · ι(fj) ∈ Xψ.

Since f j ∈ X
IK

, it follows that for g ∈ IK we have g(fj) ≡ fj (mod ̟EXOE
)

with ̟E ∈ OE a uniformiser, and so also g(f∗) ≡ f∗ (mod ̟EXψ).
Now let us compute (FrobK − 1)(f∗). Noting that (FrobK − 1)fj ≡ fj−1

(mod ̟EXOE
), with f−1 := 0, and recalling that (1 + α)(FrobK · ι(x)) =

ι(FrobK · x), we have

(1 + α)(FrobK(f∗)− f∗) =

i∑

j=0

αjι(FrobK(fj))− (1 + α)

i∑

j=0

αjι(fj)

=

i∑

j=0

αjι((FrobK − 1)fj)−

i∑

j=0

αj+1ι(fj)

≡
i∑

j=0

αjι(fj−1)−
i∑

j=0

αj+1ι(fj) (mod ̟EXψ)

≡ −αi+1ι(fi) (mod ̟EXψ).

Note that N i+1f i = 0 and N if i 6= 0, so that i + 1 ≤ dimFX
IK

≤ rankOX .
Therefore vE(α

i+1) < 1, and we deduce that g(f∗) ≡ f∗ (mod αi+1Xψ) for all
g ∈ GK , or in other words f∗ ⊗ α−i−1 ∈ (Xψ ⊗ F/O)GK .

Furthermore, if cf := δ∨(f∗ ⊗ α−i−1) ∈ H1(GK , X), then cf (g) is by def-

inition the image in X of α−i−1(g(f∗) − f∗). So on the one hand cf is

unramified (because vE(α
i+1) < vE(̟E) = 1), while on the other hand
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cf (FrobK) = −f i. Thus we can take ef := −f∗ ⊗ α−i−1, and we have shown

that H1(GK/IK , X
IK

) ⊂ im δ∨.

On the other hand, since XGK

ψ is assumed to be trivial, we have that (Xψ ⊗

F/O)GK is of finite length; so if ̟F is a uniformiser of F , then

dim(im δ∨) = dim((Xψ ⊗ F/O)GK/̟F )

= dim((Xψ ⊗ F/O)GK [̟F ]) = dimX
GK

= dim(kerN).

On the other hand dim(kerN) = dim(cokerN) = dimH1(GK/IK , X
IK

), and
the result follows. �

Theorem 2.1.8 implies the following result on the existence of certain potentially
crystalline Galois representations.

Proposition 2.1.10. Suppose that K/Qp is a finite extension. Consider a

representation r : GK → GLn(Fp) that is peu ramifiée with respect to the

increasing filtration {U i}, so that r may be written as

r =



V 1 . . . ∗

. . .
...

V ℓ


 ,

where the V i := U i/U i−1 are the graded pieces of the filtration.

For each i, suppose that we are given a Zp-representation Vi of GK lifting V i
such that:

• each Vi is potentially crystalline, and

• for each 1 ≤ i < ℓ and each κ : K →֒ Qp, every element of HTκ(Vi+1)
is strictly greater than every element of HTκ(Vi).

Then r may be lifted to a potentially crystalline representation r of the form

r =



V1 ⊗ ψ1 . . . ∗

. . .
...

Vℓ ⊗ ψℓ


 ,

where each ψi is an unramified character with trivial reduction, and if K ′/K
is a finite extension such that each Vi|GK′

is crystalline, then r|GK′
is also

crystalline.

In fact, there are infinitely many choices of characters (ψ1, . . . , ψℓ) for which

this is true, in the strong sense that for any 1 ≤ i ≤ ℓ, if (ψ1, . . . , ψi−1) can

be extended to an ℓ-tuple of characters for which such a lift exists, then there

are infinitely many choices of ψi such that (ψ1, . . . , ψi) can also be extended to

such an ℓ-tuple.

Proof. This follows from Theorem 2.1.8 along with standard facts about ex-
tensions of de Rham representations. Indeed, by [Nek93, Prop. 1.28(2)] and
our assumption on the Hodge–Tate weights of the Vi, the representation r|GK′

is semistable for any r as in Theorem 2.1.8 and any K ′ as above. Then by
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repeated application of the third part of [Nek93, Prop. 1.24(2)], as well as
[Nek93, Prop. 1.26], this semistable representation is guaranteed to be crys-
talline as long as there is no GK′-equivariant surjection (Vj ⊗V ∗

i )(ψjψ
−1
i ) ։ ε

for any j < i. Once ψ1, . . . , ψi−1 have been determined, this can be arranged
by avoiding finitely many possibilities for ψi. �

We give two sample applications of Proposition 2.1.10. The following Corollary
will be used in forthcoming work of Arias de Reyna and Dieulefait (in the special
case where r is Fontaine–Laffaille and the Hodge type λ is 0).

Corollary 2.1.11. Fix an integer n ≥ 1. Then there is a finite extension

K ′/K, depending only on n, with the following property: if r : GK → GLn(Fp)

is peu ramifiée and λ = (λκ,i) ∈ (Zn+)
HomQp (K,Qp), then r has a potentially

diagonalisable lift r : GK → GLn(Zp) that is regular of Hodge type λ, with the

property that r|GK′
is crystalline.

Proof. Write r as in Proposition 2.1.10 with V i irreducible for all i, and set
di = dim

Fp
U i. By Proposition 2.1.10 and [BLGGT14, Lem. 1.4.3], it is enough

to show that there is a finite extension K ′/K depending only on n, with the
property that we may lift each V i to a potentially crystalline representation Vi,
such that for all i, κ the set HTκ(Vi) is equal to {λκ,n−j + j : j ∈ [di−1, di −
1]}, with the additional property that Vi|GK′

is isomorphic to a direct sum of
crystalline characters. This is immediate from Lemma 2.1.12 below. �

Lemma 2.1.12. Let d ≥ 1 be an integer. Let Kd be the unramified extension

of K of degree d, and define L to be any totally ramified extension of Kd of

degree |k×d |, where kd is the residue field of Kd. Let r : GK → GLd(Fp) be an

irreducible representation. Then for any collection of multisets of d integers

{hκ,1, . . . , hκ,d}, one for each continuous embedding κ : K →֒ Qp, there is a

lift of r to a representation r : GK → GLd(Zp), such that r|GL
is isomorphic

to a direct sum of crystalline characters, and for each κ we have HTκ(r) =
{hκ,1, . . . , hκ,d}.

Proof. Since r is irreducible, we can write r ∼= IndGK

GKd

ψ, and ψ : GKd
→ F

×

p is

a character. Choose a crystalline character χ : GKd
→ Q

×

p with the property

that for each continuous embedding κ : K →֒ Qp we have

⋃

κ̃|K=κ

HTκ̃(χ) = {hκ,1, . . . , hκ,d},

where the union is taken as multisets. (That such a character exists is well-

known; see e.g. [Ser79, §2.3, Cor. 2].) If we let θ : GKd
→ Z

×

p be the Teichmüller

lift of ψχ−1, then we may take r := IndGK

GKd

χθ, which has the correct Hodge–

Tate weights by [GHS15, Cor. 7.1.3]. (Note that gθ|GL
is unramified for any

g ∈ GK .) �
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As a second application of Proposition 2.1.10, we show that each peu ramifié
representation has a crystalline lift of some Serre weight.

Corollary 2.1.13. Suppose that K/Qp is a finite extension, and that r :

GK → GLn(Fp) is peu ramifiée. Then r has a crystalline lift of some Serre

weight.

Proof. When r is irreducible, this is straightforward from [GHS15, Thm B.1.1].
(One only has to note that when r is irreducible, an obvious lift of r in the
terminology of [GHS15, §7] is always an unramified twist of a true lift of r.)
In the general case, suppose that r is peu ramifiée with respect to the filtration
{U i}, and as usual set V i := U i/U i−1. By the previous paragraph, for each V i
we are able to choose a crystalline lift Vi of some Serre weight. By an argument
as in the fourth paragraph of the proof of [GHS15, Thm B.1.1] it is possible to
arrange that every element of HTκ(Vi+1) is strictly greater than every element
of HTκ(Vi), and that ⊕iVi is a crystalline lift of ⊕iV i of some Serre weight.
(This is just a matter of replacing each Vi with a twist by a suitably-chosen
crystalline character of trivial reduction.) Now the Corollary follows directly
from Proposition 2.1.10 (with K ′ = K). �

2.2. Highly twisted lifts. In this section we give a criterion (Proposi-
tion 2.2.4) for checking that a representation is peu ramifiée, which we will
apply to show in Section 2.3 that Fontaine–Laffaille representations are peu
ramifiée.

Definition 2.2.1. Suppose that K/Qp is a finite extension. Consider a rep-

resentation r : GK → GLn(Fp), let V be the underlying Fp[GK ]-module of r,

and suppose that 0 = U0 ⊂ U1 ⊂ · · · ⊂ U ℓ = V is an increasing filtration on
V by Fp[GK ]-submodules. Denote V i := U i/U i−1 for 1 ≤ i ≤ ℓ, the graded
pieces of the filtration.
We say that r admits highly twisted lifts with respect to the filtration {U i}
if there exist Zp-lifts Vi of the V i, and a family of Zp-lifts V (ψ1, . . . , ψℓ) of V

indexed by a nonempty set Ψ of ℓ-tuples of unramified characters ψi : GK → Z
×

p

with trivial reduction modulo m
Zp
, having the following additional properties:

• Each V (ψ1, . . . , ψℓ) is equipped with an increasing filtration
{U(ψ1, . . . , ψℓ)i} by Zp[GK ]-submodules that are Zp-direct summands.

• We have U(ψ1, . . . , ψℓ)i/U(ψ1, . . . , ψℓ)i−1
∼= Vi ⊗ψi for each 1 ≤ i ≤ ℓ.

• The isomorphism V (ψ1, . . . , ψℓ) ⊗Zp
Fp ∼= V induces isomorphisms

U(ψ1, . . . , ψℓ)i ⊗Zp
Fp ∼= U i for each 1 ≤ i ≤ ℓ.

• U(ψ1, . . . , ψℓ)i depends up to isomorphism only on ψ1, . . . , ψi (that is,
it does not depend on ψi+1, . . . , ψℓ).

• For each (ψ1, . . . , ψi) that extends to an element of Ψ and for each
ǫ > 0, there exists ψi+1 such that (ψ1, . . . , ψi+1) extends to an element
of Ψ, with the further property that 0 < vQp

(ψi+1(FrobK)− 1) < ǫ.
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If moreover the set Ψ can be taken to be the set of all ℓ-tuples of unramified

characters ψi : GK → Z
×

p with trivial reduction modulo mZp
, we say that r

admits universally twisted lifts with respect to the filtration {U i}.

As with Definition 2.1.2, the preceding definition is most interesting in the case
where the filtration {U i} is saturated, and so we make the following further
definition.

Definition 2.2.2. We say that r admits highly (resp. universally) twisted lifts

if it admits highly (resp. universally) twisted lifts as in Definition 2.2.1 with
respect to some saturated filtration.

Remark 2.2.3. It is natural to ask whether, if r admits highly (resp. universally)
twisted lifts with respect to some saturated filtration as in Definition 2.2.2, it
admits highly (resp. universally) twisted lifts with respect to any such filtration.
Proposition 2.2.4 below, in combination with Example 2.1.5, gives a negative
answer to this question in the highly twisted case.
In fact, Example 2.1.5 also shows that the above question has a negative answer
in the universally twisted case. Suppose for simplicity that K/Qp is unramified
and that p > 2. Then r in Example 2.1.5 admits universally twisted lifts for
the first filtration considered there. To see this, we first note that the first

block U2 =

(
ω ∗1

1

)
admits universally twisted lifts for V1 = ε and V2 = 1

by Proposition 2.3.1 below, because U2 is Fontaine–Laffaille. Since there is
no nontrivial map U2 → V 3(1), one easily checks that r̄ admits universally
twisted lifts for this filtration. However, r does not admit universally twisted
lifts for the second filtration considered in Example 2.1.5. This is because the

first block U
′

2 =

(
ω ∗2

1

)
does not admit universally twisted lifts (e.g. by

Proposition 2.2.4).

Proposition 2.2.4. Let K/Qp be a finite extension, and let {U i} be an in-

creasing filtration on the representation r : GK → GLn(Fp). Then r is peu

ramifiée with respect to {U i} if and only if it admits highly twisted lifts with

respect to {U i}.

Proof. An inspection of the proof of Theorem 2.1.8 already gives the “only if”
implication (for any choice of Vi’s lifting V i).
For the other direction, we assume that r admits highly twisted lifts with re-
spect to the filtration {U i} and some Zp-lifts Vi of the V i. We proceed by
induction on ℓ, the length of the filtration. By the induction hypothesis we
may assume that for all i < ℓ the class in H1(GK ,HomF(V i, U i−1)) defined by
U i is annihilated under Tate local duality byH1

ur(GK ,HomF(U i−1, V i(1))), and
it remains to prove this for i = ℓ. Choose any (ψ1, . . . , ψℓ−1) that extends to an
element of the set Ψ (as in Definition 2.2.1 for r), and let U := U(ψ1, . . . , ψℓ)ℓ−1

(where ψℓ is any character such that (ψ1, . . . , ψℓ) ∈ Ψ); note that this is inde-
pendent of ψℓ.
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Let S be the set of characters ψ : GK → Z
×

p such that (Hom
Zp
(U, Vℓ(1)) ⊗Zp

Zp(ψ))
GK 6= 0. As in the proof of Theorem 2.1.8 we see that S is finite. Let

E/Qp be a finite extension such that U and Vℓ are realisable over OE . It
follows from the highly twisted lift condition on r that there exists ψℓ having
the following properties:

(i) (ψ1, . . . , ψℓ) ∈ Ψ,
(ii) ψℓ 6∈ S, and
(iii) 0 < vE(ψℓ(FrobK)− 1) < 1/(dimU ℓ−1)(dim V ℓ).

Let F/E be a finite extension over which ψℓ and V (ψ1, . . . , ψℓ) are both real-
isable. Write O for the ring of integers of F , and F for its residue field. For
the remainder of this proof, when we write U , Vℓ, ψℓ we will mean their chosen
realisations over F , and similarly for U , V ℓ over F (obtained by reduction).
Set X = HomO(U, Vℓ(1)). As in the proof of Theorem 2.1.8, write δ for the
connection map

H1(GK ,HomF(V ℓ, U))
δ
→ H2(GK ,HomO(Vℓ ⊗O ψℓ, U)).

The existence of the lift V (ψ1, . . . , ψℓ) (i.e. the property (i) of ψℓ) shows that the
class c ∈ H1(GK ,HomF(V ℓ, U)) defining r lies in ker(δ). On the other hand,
the properties (ii) and (iii) of ψℓ mean that Proposition 2.1.9 applies (with ψℓ
playing the role of ψ) to show that the dual map δ∨ has imageH1

ur(GK , X⊗OF).
Since c ∈ ker(δ) it is annihilated under Tate local duality by this image, and
we deduce that r is peu ramifiée. �

Corollary 2.2.5. Suppose that r admits highly twisted lifts with respect to the

filtration {U i}. Then r satisfies the definition of admitting highly twisted lifts

with respect to the filtration {U i} for any lifts Vi of the V i.

Proof. This is immediate from Proposition 2.2.4 along with the first sentence
of its proof. �

Remark 2.2.6. The above corollary fails if we replace ‘highly twisted’ with
‘universally twisted’. For instance, consider Example 2.1.4(1) with K/Qp un-
ramified, the extension class ∗ peu ramifiée, and χ = 1. It admits universally
twisted lifts if we set V1 = ε and V2 = 1. (This will follow from Proposi-
tion 2.3.1 below.) But it does not admit universally twisted lifts for V1 = εp

and V2 = 1.

Remark 2.2.7. We do not know whether there exist representations that admit
highly twisted lifts but not universally twisted lifts.

2.3. Fontaine–Laffaille representations. In this section we will prove
that representations which admit a Fontaine–Laffaille lift also admit univer-
sally twisted lifts, and so by Proposition 2.2.4 are peu ramifiée. We begin
by recalling the formulation of unipotent Fontaine–Laffaille theory in [DFG04,
§1.1.2]. Throughout this section let K/Qp be a finite unramified extension with
integer ring OK , and write Frobp for the absolute geometric Frobenius on K.
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Let O be the ring of integers in E, a finite extension of Qp with residue field F.
We assume that E is sufficiently large as to contain the image of some (hence
any) continuous embedding of K into an algebraic closure of E. Fix an integer

0 ≤ h ≤ p−1, and letMFh
O denote the category of finitely generatedOK⊗Zp

O-
modules M together with

• a decreasing filtration FilsM by OK ⊗Zp
O-submodules which are OK-

direct summands with Fil0M =M and Filh+1M = {0};

• and Frob−1
p ⊗1-linear maps Φs : FilsM → M with Φs|Fils+1M = pΦs+1

and
∑

sΦ
s(FilsM) =M .

We say that an object M of MFp−1
O is étale if Filp−1M = M , and define

MFp−1,u
O to be the full subcategory of MFp−1

O consisting of objects with no
nonzero étale quotients. Such objects are said to be unipotent. Note that
MFp−2

O is a subcategory of MFp−1,u
O .

In the following paragraphs, let MFO denote either MFh
O (for 0 ≤ h ≤ p− 2)

or MFp−1,u
O (for h = p − 1). Let RepO(GK) denote the category of finitely

generated O-modules with a continuous GK-action. There is an exact, fully
faithful, covariant functor of O-linear categories TK : MFO → RepO(GK).
This is the functor denoted V in [DFG04, §1.1.2]. The essential image of TK is
closed under taking subquotients. If M is an object of MFO, then the length
of M as an O-module is [K : Qp] times the length of TK(M) as an O-module.
Let MFF denote the full subcategory of MFO consisting of objects killed
by the maximal ideal of O and let RepF(GK) denote the category of finite
F-modules with a continuous GK-action. Then TK restricts to a functor
MFF → RepF(GK). If M is an object of MFF and κ is a continuous em-
bedding K →֒ Qp, we let FLκ(M) denote the multiset of integers i such

that gr iM ⊗OK⊗ZpO,κ⊗1 O 6= {0} and i is counted with multiplicity equal
to the F-dimension of this space. If M is a p-torsion free object of MFO then
TK(M)⊗Zp

Qp is crystalline and for every continuous embedding κ : K →֒ Qp
we have

HTκ(TK(M)⊗Zp
Qp) = FLκ(M ⊗O F).

Moreover, if Λ is a GK-invariant lattice in a crystalline representation V of GK
with all its Hodge–Tate numbers in the range [0, h], having (when h = p − 1)
no nontrivial quotient isomorphic to a twist of an unramified representation by
ε−(p−1), then Λ is in the essential image of TK . If some twist of r : GK →
GLn(F) lies in the essential image of TK on MFp−2

O , we say that r admits a

Fontaine–Laffaille lift, while if some twist of r lies in the essential image of TK
on MFp−1,u

O we say that it admits a unipotent extended Fontaine–Laffaille lift.
The proof of the following result is essentially the same as that of [BLGGT14,
Lem. 1.4.2]. (We remark that [BLGGT14, §1.4] uses the formulation of
Fontaine–Laffaille theory as [CHT08, §2.4.1], which in fact is equivalent to

that of [DFG04, §1.1.2] (at least on MFp−2
O ), although this equivalence is not

needed for the following argument.)
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Proposition 2.3.1. Let K/Qp be unramified. Consider a representation r :

GK → GLn(Fp) with an increasing filtration {U i} such that U0 = 0 and U ℓ =
r, so that r may be written as

r =



V 1 . . . ∗

. . .
...

V ℓ


 ,

where the V i = U i/U i−1 are the graded pieces of the filtration.

Suppose that r admits a Fontaine–Laffaille (resp. unipotent extended Fontaine–

Laffaille) lift. Then r admits universally twisted lifts with respect to the filtra-

tion {U i}; indeed, it admits universally twisted Fontaine–Laffaille (resp. unipo-
tent extended Fontaine–Laffaille) lifts. In either case r is peu ramifiée.

Remark 2.3.2. By duality, the same result holds when r admits a nilpotent

extended Fontaine–Laffaille lift, i.e., if some twist of r lies in the essential image
of TK on MFp−1,n

O , the full subcategory of MFp−1
O whose objects admit no

nonzero subobject M with Fil1M = 0. We refer the reader to [GL14] for a
further discussion of nilpotent Fontaine–Laffaille theory.
Similar arguments (which we omit to keep the paper at a reasonable length) can
be used to show that the same result holds when r is finite flat (for arbitrary
K/Qp; in this case the argument uses Kisin modules).

Proof of Proposition 2.3.1. Since the truth of this proposition for r evidently
implies its truth for any twist of r (using the fact that every character of GK
admits a crystalline lift), we reduce to the case that r lies in the essential image

of TK on MFp−2
O (or on MFp−1,u

O , in the unipotent extended case).

The case that each V i is one-dimensional is essentially found in [BLGGT14,
Lem. 1.4.2] and, as previously remarked, we will follow the proof of that result
closely. We can and do suppose that r is defined over some finite field F, and
we fix a finite extension E of Qp with ring of integers O and residue field F.

Let V be the underlying F-vector space of r, and let M denote the object
of MFF corresponding to V , which exists by our assumption that r has a
(possibly unipotent extended) Fontaine–Laffaille lift. Then we have a filtration

M =M ℓ ⊃M ℓ−1 ⊃ · · · ⊃M1 ⊃M0 = (0)

by MFF-subobjects such that M i corresponds to U i and so M i/M i−1 corre-
sponds to V i. Then we claim that we can find an object M of MFO which is
p-torsion free together with a filtration by MFO-subobjects

M =Mℓ ⊃Mℓ−1 ⊃ · · · ⊃M1 ⊃M0 = (0)

and an isomorphism

M ⊗O F ∼=M

under which Mi ⊗O F maps isomorphically to M i for all i.
Write di := dim V i. We note first that M has an F-basis ei,κ for i = 1, . . . , n

and κ ∈ HomQp
(K,Qp) such that
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• the residue field k of K acts on ei,κ via κ;

• M j is spanned over F by the ei,κ for i ≤ d1 + · · ·+ dj ;

• and for each j, s there is a subset Ωj,s ⊂ {1, . . . , n} × HomQp
(K,Qp)

such that M j ∩ FilsM is spanned over F by the ei,κ for (i, κ) ∈ Ωj,s.

(Such a basis is easily constructed recursively in j. The case j = 1 is trivial,
and it is straightforward to extend a basis of this kind forM j−1 to one forM j .)
We put Ωs := Ωℓ,s.
Then we define M to be the free O-module with basis ei,κ for i = 1, . . . , n and

κ ∈ HomQp
(K,Qp).

• We let OK act on ei,κ via κ;
• we define Mj to be the O-submodule generated by the ei,κ with i ≤
d1 + · · ·+ dj ;

• and we define FilsM to be the O-submodule spanned by the ei,κ for
(i, κ) ∈ Ωs.

We define Φs : FilsM → M by reverse induction on s. If we have defined Φs+1

we define Φs as follows:

• If (i, κ) ∈ Ωs+1 then Φsei,κ = pΦs+1ei,κ.

• If (i, κ) ∈ Ωs − Ωs+1 then Φsei,κ is chosen to be any lift of Φ
s
ei,κ in∑

i′≤d1+···+dj
O·ei′,κ◦Frobp

, where j is minimal such that i ≤ d1+ · · ·+

dj .

It follows from Nakayama’s lemma that M is an object of MFh
O. When h =

p−1, suppose thatM →M ′ is a nontrivial étale quotient ofM . We can without
loss of generality replace M ′ with M ′ ⊗O F; but then the map M →M ′ would
factor through M , contradicting the assumption that M is an object of MFO

(and not just MFp−1
O ). It follows that M is also an object of MFO. In the

same way we see that {Mi} is an increasing filtration of subobjects of M in
MFO.
It is immediate that M verifies the desired property that Mi ⊗O F maps iso-
morphically to M i under the isomorphism M ⊗O F ∼=M .
Set Vi := TK(Mi/Mi−1)⊗O Zp. We claim that for this choice of Vi, the condi-
tions of Definition 2.2.1 are satisfied. Since Fontaine–Laffaille theory is compat-
ible in an obvious fashion with extension of scalars from E to a finite extension
of E, we can and do suppose that the characters ψi are valued in O×. Then the
objects of MFO corresponding to the desired lifts V (ψ1, . . . , ψℓ) are obtained
from M by rescaling the maps Φs. More precisely, if we let M(ψ1, . . . , ψℓ) be
defined from M by rescaling Φsei,κ by ψj(FrobK) for (i, κ) ∈ Ωj,s \ Ωj−1,s,

then one can take V (ψ1, . . . , ψℓ) = TK(M(ψ1, . . . , ψℓ)) ⊗O Zp. (To establish
the second bullet point in Definition 2.2.1, note from [DFG04, p. 670] that
TK is compatible with tensor products, and use (1) of loc. cit. to compute the
Fontaine–Laffaille module corresponding to each ψi.) �
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Corollary 2.3.3. Suppose that r admits a (possibly unipotent extended)
Fontaine–Laffaille lift. Then the conclusions of Theorem 2.1.8 and Propo-

sition 2.1.10 hold for r with respect to any separated, exhaustive increasing

filtration {U i} on r.

Corollary 2.3.4. Suppose that r admits a (possibly unipotent extended)
Fontaine–Laffaille lift. Then the conclusion of Corollary 2.1.11 holds for r.

The following result will be used in [GHS15].

Corollary 2.3.5. Suppose that r : GQp
→ GLn(Fp) admits a (possibly unipo-

tent extended) Fontaine–Laffaille lift. Suppose also that

r =



χ1 . . . ∗

. . .
...

χn


 .

Suppose that h1 > · · · > hn are integers such that χi|IQp
= ωhi . Then r has a

crystalline lift of the form

r =



χ1 . . . ∗

. . .
...

χn


 ,

where χi|IQp
= εhi .

Proof. This is immediate from Corollary 2.3.3, taking the Vi to be appropriate
unramified twists of εhi . �

3. de Rham lifts by global methods

3.1. Potential automorphy and globalisation. In this section, we make
use of (global) potential automorphy techniques to produce potentially crys-
talline lifts. Ultimately, these results rely on those of [BLGGT14], but the
actual global results we need are those of [EG14, App. A].
The key idea is as follows: by the methods of [BLGGT14] and [Cal12], we
can often realise r : GK → GLn(Fp) as the restriction to a decomposition
group of ρ, the reduction mod p of the p-adic Galois representation associated
to an automorphic representation on some unitary group. Then the existence
of congruences between automorphic representations of different weights and
types produces lifts of r of the corresponding Hodge and inertial types.
To keep this paper from becoming longer than necessary, and to avoid obscuring
the relatively simple arguments that we need to make, we will not recall the
precise definitions of the spaces of automorphic forms that we work with; the
details may be found in [EG14] (and the papers referenced therein). Suppose
from now until the end of Lemma 3.1.1 that:

• p ∤ 2n, and
• r has a potentially diagonalisable lift of some type (λr , τr).
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Then in particular Conjecture A.3 of [EG14] holds for r, so that by [EG14,
Cor. A.7], there is a CM field F with maximal totally real field F+, and an
irreducible representation ρ : GF+ → Gn(Fp) (where Gn is the algebraic group
defined in [CHT08, §2.1]) which is automorphic in the sense of [EG14, Def.
5.3.1], and which globalises r in the sense that for each place v | p of F+ we
have that v splits in F and that there is a place ṽ of F lying over v such that
Fṽ ∼= K and ρ|GFṽ

∼= r. The above data will remain fixed throughout this
section.
Suppose that for each place v | p of F+ we fix a representation of GLn(OK)
on a finite Zp-module Wv. Via the isomorphisms ιṽ of [EG14, §5.2], we can
regard W := ⊗Zp,v|p

Wv as a representation of G(OF+,p), where G is a certain

unitary group. Then there is a space of algebraic modular forms S(U,W ), as
in [EG14, §5.2]. (In fact, [EG14] works with coefficients in the ring of integers
of some finite extension of Qp, rather than with Zp-coefficients, but this makes
no difference for the arguments we are making here.)
In particular, for any (λv, τv)v|p a space of automorphic forms Sλ,τ (U,Zp) is
defined in [EG14, §5.2] for certain sufficiently small compact open subgroups
U ⊂ G(A∞

F+) which are hyperspecial at p, corresponding to taking each Wv

to be σ(λv , τv). Examining the proof of [EG14, Cor. A.7], we see that in fact
we have Sλr ,τr(U,Zp)m 6= 0, where m is as in [EG14, Def. 5.3.1], and in a
mild abuse of notation we write (λr,v, τr,v) = (λr, τr) for all v | p. (This says
that there is an automorphic representation π of weight λr and type τr, whose
associated p-adic Galois representation ρπ lifts ρ; this representation ρπ is the
representation ρ constructed in [EG14, Lem. A.5].)

Lemma 3.1.1. Keep the notation and assumptions of the preceding discussion.

(1) If for some choice of (λv, τv)v|p we have Sλ,τ (U,Zp)m 6= 0, then for each

v | p, r has a potentially crystalline lift of type (λv, τv).
(2) Sλ,τ (U,Zp)m 6= 0 if and only if there are Serre weights Fv of GLn(k) such

that

• S(U,⊗
Fp,v|p

Fv)m 6= 0, and

• for all v | p, Fv is a Jordan–Hölder factor of σ(λv, τv).

Proof. (1) is immediate from [EG14, Prop. 5.3.2]. (We remind the reader that
Sλ,τ (U,Zp) is torsion-free.) In the case that τ is trivial, (2) is [BLGG15, Lem.
2.1.6], and the proof goes over unchanged to the general case. �

Theorem 3.1.2. Suppose that p ∤ 2n, and that r has a potentially diagonalisable

lift of some regular weight. Then the following hold.

(1) There exists a finite extension K ′/K (depending only on n and K, and

not on r) such that r has a lift r : GK → GLn(Zp) of Hodge type 0 that

becomes crystalline over K ′.

(2) The representation r has a crystalline lift of some Serre weight.

Proof. We begin with the proof of (2), since the argument is much shorter.
Let r be the given potentially diagonalisable lift, and as above, write (λr , τr)
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for the type of r. By Lemma 3.1.1(2), there are Jordan–Hölder factors Fav of
σ(λr, τr) (possibly varying with v) such that S(U,⊗Fp,v|p

Fav )m 6= 0. Let λv be

a lift of av for each v, and let τv be trivial for each v. Applying Lemma 3.1.1(2)
again, we see that Sλ,1(U,Zp)m 6= 0. By Lemma 3.1.1(1), r has a crystalline
lift of Hodge type λv for each v | p; any such lift will do.
Turn now to (1). As in the previous part we get S(U, V )m 6= 0 for some
irreducible representation V = ⊗v|pVv of G(OF+ ⊗ Zp) over Fp. Let T ⊂
B ⊂ GLn denote the subgroups of diagonal and upper-triangular matrices, as
algebraic groups over Z. Consider Vv as a representation of GLn(OFṽ

) =: Kv

via ιṽ. Let Iv ⊂ Kv denote the preimage of B(kṽ) ⊂ GLn(kṽ). Then we can

choose a character χv : Iv → F
×

p such that Vv|Iv ։ χv.

Let q := #k. We claim that for any s ≥ 1 such that qs−1 ≥ n, we can find

a (smooth) lift χv = χ1,v ⊗ · · · ⊗ χn,v : T (OFṽ
) → Z

×

p of χv|T (OFṽ
) = χ1,v ⊗

· · · ⊗ χn,v such that the {χi,v}
n
i=1 are pairwise distinct and χi,v|1+̟s

ṽ
OFṽ

= 1

for all i. Indeed, recalling that Fṽ ∼= K, write O×
Fṽ
/(1 + ̟s

ṽOFṽ
) ∼= k× × H

(via the Teichmüller splitting), where H is abelian of order qs−1. Then each

χi,v|k× lifts uniquely to Z
×

p , whereas χi,v|H = 1 and can be lifted arbitrarily

to Z
×

p . Hence it is enough to note that #Hom(H,Z
×

p ) = #H = qs−1 ≥ n, and
this proves the claim. For the rest of the proof, we fix such a choice of s and
χv.
Now, [Roc98, §3] (applied with a standard Chevalley basis such that Uα,0 =
Uα∩GLn(OFṽ

) for all roots α) provides a pair (Jχv
, ρχv

) consisting of a compact
open subgroup Jχv

⊂ Iv that contains T (OFṽ
) and a smooth character ρχv

:

Jχv
→ Z

×

p such that ρχv
|T (OFṽ

) = χv. By construction, ρχv
is the restriction

of χv to Jχv
, so by Frobenius reciprocity we get a Kv-equivariant map Vv →֒

IndKv

Jχv
(ρχv

).

In particular, S
(
U,⊗v|p

(
IndKv

Jχv
ρχv

))
m

6= 0. Using Deligne–Serre lifting we

get an automorphic representation π of G(AF+) with associated Galois rep-
resentation ρπ lifting ρ|GF

: GF → GLn(Fp) such that (i) π∞ ∼= 1 and (ii)

HomKv
(IndKv

Jχv
ρ−1
χv
, πv) 6= 0 (again via ιṽ) for any v | p. Applying [Roc98,

Thm 7.7] (noting there are no restrictions on p, cf. [CHT08, Lem. 3.1.6]), we

deduce that πv is a subquotient of Ind
G(Fṽ)
B(Fṽ)

(χ̃−1
v ) for some χ̃v : T (Fṽ) → Q

×

p

extending χv. (Note that Jχv
= Jχ−1

v
.) Since the characters {χi,v}

n
i=1 are

pairwise distinct, the Bernstein–Zelevinsky irreducibility criterion implies that

πv ∼= Ind
G(Fṽ)
B(Fṽ)

(χ̃−1
v ).

It follows that rec(πv) has N = 0 and on inertia is of the form χ−1
1,v ⊕ · · ·⊕χ−1

n,v

via the local Artin map, where rec denotes the local Langlands correspondence,
normalised as in [EG14] (i.e., as in [HT01]). Using Lemma 3.1.4 below there
exists a finite extensionK ′/K depending only on n andK such that rec(πv)|IK′

is trivial. Applying local-global compatibility at p to ρπ, we deduce that for
any v | p, the representation ρπ|GFṽ

provides a desired lift of ρ|GFṽ

∼= r. �
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Remark 3.1.3. The argument in the proof above shows that if χi,v : O×
Fv

→ Q
×

p

are pairwise distinct smooth characters of O×
Fv

(or equivalently of IFv
), then

IndKv

Jχv
ρχv

is a Kv-type corresponding to ⊕ni=1χi,v under the inertial Langlands

correspondence, i.e. [EG14, Conj. 4.1.3] holds with σ(⊕ni=1χi,v)
∼= IndKv

Jχv
ρ−1
χv

.

Lemma 3.1.4. Suppose K/Qp is a finite extension and s ≥ 1. Then there exists

a finite extension L/K such that any smooth character χ : WK → C× that is

trivial on the ramification subgroup GsK satisfies χ|IL = 1.

Proof. By local class field theory there exists a finite extension Ms/K
nr that

is independent of χ such that χ|GMs
= 1. (We can take Ms/K abelian such

that Kab/M has Galois group 1 + ̟s
KOK , with ̟K a uniformiser of K.)

Then we choose L/K finite such that Ms is contained in L ·Knr = Lnr. This
implies χ|IL = 1. In fact, this argument shows that we can take L/K of degree
qs−1(q − 1), where q = #k. �

Our final result may be viewed as a “weak Breuil–Mézard”-type statement.

Theorem 3.1.5. Suppose that p 6= n, that K/Qp is unramified, and that r has

a crystalline lift of weight F for some extended FL weight F . If F is a Jordan–

Hölder factor of σ(λ, τ) for some λ, τ , then r has a potentially crystalline lift

of type (λ, τ).

Proof. Choose a ∈ (X
(n)
1 )Hom(k,Fp) such that F ∼= Fa. The conditions that

p 6= n and r has a crystalline lift of weight Fa with a an extended FL weight
imply that p > n; so either p ∤ 2n, as we have assumed throughout this section,
or else p = 2 and n = 1.
First suppose that p ∤ 2n. By the main result of [GL14] any crystalline repre-
sentation of extended FL weight is potentially diagonalisable. Let λ′ be the lift
of a (uniquely defined, asK/Qp is unramified). Since aκ,1−aκ,n ≤ p−(n−1) for

each κ, Fa = La⊗Zp
Fp (see §1.2.3). By hypothesis, we can apply the construc-

tions from the paragraphs preceding Lemma 3.1.1 with λr = λ′ and τr = 1 to
deduce that Sλ′,1(U,Zp)m 6= 0. By Lemma 3.1.1(2), S(U,⊗

Fp,v|p
Fa)m 6= 0.

Applying Lemma 3.1.1(2) with (λv, τv) = (λ, τ) for each v, we see that
Sλ,τ (U,Zp)m 6= 0, and the result follows from Lemma 3.1.1(1).
On the other hand, the case n = 1 is an easy consequence of local class field
theory: σ(τ)∨ is obtained from τ by local class field theory, so that the locally
algebraic characters ofK× extending σ(λ, τ) correspond to de Rham characters
of type (λ, τ), while r|IK corresponds to Fa. �
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Breuil-Mézard conjecture, J. Inst. Math. Jussieu 13 (2014), no. 1,
183–223.

[GHS15] Toby Gee, Florian Herzig, and David Savitt, General Serre weight

conjectures, preprint, 2015.
[GL14] Hui Gao and Tong Liu, A note on potential diagonalizability of crys-

talline representations, Math. Ann. 360 (2014), no. 1-2, 481–487.
[Her09] Florian Herzig, The weight in a Serre-type conjecture for tame

n-dimensional Galois representations, Duke Math. J. 149 (2009),
no. 1, 37–116.

[HT01] Michael Harris and Richard Taylor, The geometry and cohomology

of some simple Shimura varieties, Annals of Mathematics Studies,
vol. 151, Princeton University Press, Princeton, NJ, 2001, With an
appendix by Vladimir G. Berkovich.

[Jan03] Jens Carsten Jantzen, Representations of algebraic groups, second
ed., Mathematical Surveys and Monographs, vol. 107, American
Mathematical Society, Providence, RI, 2003.

[Kis08] Mark Kisin, Potentially semi-stable deformation rings, J. Amer.
Math. Soc. 21 (2008), no. 2, 513–546.
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