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Abstract. We show that two flat commutative Hopf algebroids are

Morita equivalent if and only if they are weakly equivalent and if and only

if there exists a principal bibundle connecting them. This gives a positive

answer to a conjecture due to Hovey and Strickland. We also prove that

principal (left) bundles lead to a bicategory together with a 2-functor from

flat Hopf algebroids to trivial principal bundles. This turns out to be the

universal solution for 2-functors which send weak equivalences to invert-

ible 1-cells. Our approach can be seen as an algebraic counterpart to Lie

groupoid Morita theory.
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1. Introduction

1.1. Aims and objectives. The two fundamental concepts around which this ar-

ticle is orbiting are those of weak equivalence and Morita equivalence. Recall from,

e.g., [MoeMr, §5] that two Lie groupoids G and G ′ are called weakly equivalent if

there exist weak equivalences φ : H → G and φ′ : H → G ′ for some third Lie

groupoid H (see again op. cit. for the precise definition of a weak equivalence φ).

For instance, the groupoids associated to two atlases of a manifold (or two transverse

atlases of a foliated manifold) are weakly equivalent; each groupoid associated to a

principal bundle of a Lie group G and base manifoldM is weakly equivalent to the

unit Lie groupoid U (M).

As a definition of Morita equivalence of two (Lie) groupoids might serve reversing the

(classical) Morita theorem, that is, the requirement that their categories of representa-

tions (quasi-coherent G -sheaves of k-modules) are equivalent as symmetric monoidal

categories. This leads to a quite general idea of equivalence which can be applied

to any mathematical object that allows for the notion of “representation”, or, more

generally, (co)modules.

That the two notions of weak equivalence and Morita equivalence are essentially the

same and also imply the presence of a principal bibundle (in an appropriate sense)

is a well-known fact for (Lie) groupoids (in fact, the terminology varies and often

Documenta Mathematica 22 (2017) 551–609



Morita Theory for Hopf Algebroids via Principal Bibundles 553

coincides, which adds somewhat to the confusion), see [MuReWi, Hae, Mr1]. Note,

however, that in the first of these references the respective concept of principal bun-

dle slightly differs from the latter two. Taking Lie groupoids as objects, one con-

structs, together with the isomorphism classes of principal bundles (as morphisms,

sometimes called Hilsum-Skandalis maps) and equipped with the tensor product, a

category, sometimes called the Morita category. Moreover, there is a functor from the

category of Lie groupoids to this Morita category which transforms weak equivalences

to isomorphisms that establishes a universal solution for functors having this property.

Roughly speaking, commutative Hopf algebroids can be seen as presheaves of

groupoids on affine schemes: the datum of a flat Hopf algebroid is equivalent to the

datum of a certain stack with a specific presentation [Na, FCh]. In this perspective,

one can establish an equivalence between (right) comodules over a Hopf algebroid

and quasi-coherent sheaves with a groupoid action [Ho, Thm. 2.2].

Hopf algebroids were introduced in algebraic topology (see, e.g., [Ra]) as a

cogroupoid kind of object, which motivates the following definitions taken from

[HoSt, Def. 6.1] resp. [Ho]. For the necessary ingredients and notation used therein

we refer to the main text.

Definition 1.1. Let (A,H) and (B,K) be two flat Hopf algebroids.

(i ) A morphism (A,H)→ (B,K) is said to be a weak equivalence if and only if

the respective induction functor ComodH → ComodK establishes an equiv-

alence of categories. The Hopf algebroids (A,H) and (B,K) are said to be

weakly equivalent if there is a diagram

(C,J)

(A,H)

55❧❧❧❧❧❧
(B,K)

hh❘❘❘❘❘❘

of weak equivalences of Hopf algebroids.

(ii ) Two flat Hopf algebroids are said to be Morita equivalent if their categories

of (right) comodules are equivalent as symmetric monoidal categories.

For instance, the existence of a weak equivalence implies Morita equivalence since

induction functors are always symmetric monoidal functors.

In the context of Hopf algebras, the second part in the above definition appeared in

[Sch3, Def. 3.2.3] baptised monoidal Morita-Takeuchi equivalence therein but also

before in [Sch2, Def. 5.6], where such a property was called monoidal co-Morita

equivalence. Let us also mention that a Morita theory for certain cocommutative Hopf

algebroids (so-called étale Hopf algebroids) was developped in [Mr2] using a different

notion of bundles (called principal bimodules). Furthermore, the idea of describing

Morita theory in the language of bicategories was explained, for example, in [La] for

various contexts, such as rings, C∗-algebras, von Neumann algebras, Lie groupoids,

symplectic groupoids, and Poisson manifolds.

1.2. Main results. Transferring the above statements from Lie groupoids to the

case of commutative Hopf algebroids will be the main task (and result) of this article,

summarised as follows:
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Theorem A. Let (A,H) and (B,K) be two flat Hopf algebroids. The following are

equivalent:

(1) (A,H) and (B,K) are Morita equivalent.

(2) There is a principal bibundle connecting (A,H) and (B,K).

(3) (A,H) and (B,K) are weakly equivalent.

One might be tempted to think that these results can be obtained by simply dualis-

ing the usual techniques in the groupoid case (which we recall in §2, Theorem 2.9)

but things turn out to be more intricate: one of the main obstacles in mimicking the

groupoid case is the construction of orbit spaces which correspond to quotients of

affine schemes, which is a subtle concept with its own challenges. In contrast to that,

our arguments make large use of cotensor products of comodule algebras in corre-

spondence to these quotients of affine schemes, which might seem technical at first

sight but proves useful in this context.
The subsequent picture shows all implications between (1), (2), and (3) in the above
theorem that we will explore in the main text:

(1)

Proposition 7.9

��
(2)

Theorem 7.1

CK

ks
Proposition 7.2

+3 (3)

trivial

em

Figure 1. Paths in the proof of Theorem A

In particular, the step (1) ⇒ (3) in the above Theorem A was conjectured in [HoSt,

Conj. 6.3]: more precisely, Hovey and Strickland conjectured that in case the category

of H-comodules is equivalent to the one of comodules over K , then the two Hopf

algebroids (A,H) and (B,K) are connected by a chain of weak equivalences, and we

show that this chain can be taken to be of length 2.
By a chain of weak equivalences of length n ≥ 2 we mean a zig-zag of weak equiva-
lences in the sense of [Hi, Def. 7.9.1], up to the equivalence transformations given in
[Hi, §14.4]. The key here is Proposition 6.3, which shows that any zig-zag of weak
equivalences of the form • • //oo • can be completed to a diagram of weak
equivalences having the form

◦

•

??⑦
⑦

⑦
•

__❅
❅
❅

•

__❅❅❅❅❅
??⑦⑦⑦⑦⑦

which is commutative up to a 2-isomorphism (a property dual to condition (BF3) in

[Pr, p. 254]).
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In this way, any chain of weak equivalences (in the above sense) between two flat
Hopf algebroids (A,H) and (B,K) can be transformed to one of the form

Zk+2 : (D1,I1 ) (D2 ,I2 ) ·················· (Dk ,Ik ) (Dk+1 ,Ik+1 )

(A,H )

;;✇✇✇
(C1 ,J1)

::ttt
dd❏❏❏

(C2 ,J2)

dd❏❏❏
·················· (Ck−1 ,Jk−1)

88qqqq
(Ck ,Jk )

88qqqq
dd■■■

(B,K )

ee❑❑❑❑

of length 2(k+1), which, in turn, can be completed to the following isosceles triangle

(Ck1 ,Jk1 )

(C(k−1)1 ,J(k−1)1)

77♦♦♦♦♦
(C(k−1)2 ,J(k−1)2)

gg❖❖❖❖❖

(C11 ,J11) ... (C1k ,J1k)

(D1 ,I1 )

99tttt
(D2,I2 )

ggPPPPP
(Dk ,Ik )

77♦♦♦♦♦
(Dk+1 ,Ik+1 )

ff▼▼▼▼▼

(A,H )

;;①①①①
(C1 ,J1 )

dd❏❏❏❏
77♦♦♦♦♦

... (Ck ,Jk)

gg❖❖❖❖❖
88qqqqq

(B,K )

ee❏❏❏❏

of (k+2) vertices on each side. Such a triangle is obtained by constructing k(k + 1)/2

new flat Hopf algebroids being essentially two-sided translation Hopf algebroids built

from trivial principal bundles.

The notion of (quantum) principal bundle that appears as a crucial ingredient in Theo-

rem A is a relatively straightforward extension of the corresponding concept for Hopf

algebras as introduced in [BrzMa], see also [Brz]. In [Sch3, §3.2.4], again in the realm

of Hopf algebras, these objects were called bi-Galois objects and the corresponding

implications (1) ⇔ (2) of Theorem A were shown. As a matter of fact, in many

examples constructing bi-Galois objects or principal bundles has turned out to be a

practicable way to establish monoidal equivalences between comodule categories; as

a concrete illustration, see, for example, [Mas, Bi]. Analogous objects in sheaf theory

are known under the name of (bi)torsors, see [DemGa].

In fact, we gather flat Hopf algebroids and principal bundles along with their mor-

phisms in a bicategory. More precisely, in Proposition 6.5 we prove that the data

given by

• flat Hopf algebroids (as 0-cells),
• left principal bundles (as 1-cells),
• as well as morphisms of left principal bundles (as 2-cells)

define a bicategory, denoted by PBℓ. The bicategories of analogously constructed

right resp. two-sided principal bundles (or bibundles) are denoted by PBr and PBb,

respectively. As in classical situations, for two 0-cells (A,H) and (B,K), the category

PBℓ(H ,K) turns out to be a groupoid. This leads to the structure of a bigroupoid on

the bicategory PBb, and hence to a categorical group (or bigroup) structure on each

category PBb(H ,H), see, for instance, [No].

Applying Theorem A above to a single flat Hopf algebroid yields the following result:

Theorem B. Let (A,H) be a flat Hopf algebroid and denote by U (H) its associ-
ated principal unit bibundle. Then the category

(

Aut⊗(A,H), ◦, idComodH

)

of symmetric

monoidal auto-equivalences of right H-comodules with morphisms given by natural

Documenta Mathematica 22 (2017) 551–609



556 Laiachi El Kaoutit, Niels Kowalzig

tensor transformations forms a categorical group, and the functors
(

Aut⊗(A,H), ◦, idComodH

)

−→
(

PBb(H ,H), �H ,U (H)
)

, F 7−→ F (H)
(

PBb(H ,H), �H ,U (H)
)

−→
(

Aut⊗(A,H), ◦, idComodH

)

, (P, α, β) 7−→ −�H P

establish a monoidal equivalence of categorical groups.

Moreover, it turns out that there is a 2-functor

P : 2-HAlgd −→ PBℓ co

from the 2-category of flat Hopf algebroids to the conjugate of PBℓ, which sends any 1-

cell φ : (A,H)→ (B,K) to its associated trivial left principal bundle P(φ) = H ⊗φ B,

that is, the pull-back of the unit bundle U (H). A 1-cell φ in 2-HAlgd is a weak

equivalence if and only if P(φ) is an invertible 1-cell in PBℓ co, i.e., is part of an

internal equivalence. We then present the pair (PBℓ,P) as the universal solution with

respect to this property:

Theorem C. Let F : 2-HAlgd→ B be a 2-functor which sends weak equivalences

to invertible 1-cells. Then, up to isomorphism (of 2-functors), there is a unique 2-

functor F̃ such that the diagram

2-HAlgd

F ))❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

P // PBℓ co

F̃

��
B

commutes up to an isomorphism of 2-functors.

We finally want to mention that this universality leads to a kind of calculus of fractions

in the 2-category 2-HAlgd with respect to weak equivalences in a sense “dual” to the

approach in [Pr].

Acknowledgements. It is a pleasure to thank Alessandro Ardizzoni, Federica

Galluzzi, and Fabio Gavarini for stimulating discussions and useful comments. We

are also grateful to the referee for careful reading and useful comments.

2. Abstract groupoids and principal bisets revisited

In this section we expose some basic results on abstract groupoids which are going

to serve as a sort of motivation for the forthcoming sections dealing with flat Hopf

algebroids. The exposition we follow here is parallel to [MoeMr] dealing with Lie

groupoids, as well as to [Kao].

2.1. Principal bisets and orbit sets. A groupoid (or abstract groupoid) is

a small category where each morphism is an isomorphism. That is, a pair of sets

G := (G1,G0) with a diagram G1

s //
t // G0
ιoo , where s and t are the source resp. the

target of a given arrow, and where ι assigns to each object its identity arrow; together

with an associative and unital multiplication G2 := G1 s×t G1 → G1 as well as a map

G1 → G1, which associates to each arrow its inverse.

Documenta Mathematica 22 (2017) 551–609



Morita Theory for Hopf Algebroids via Principal Bibundles 557

Recall that for a groupoid G one can define its set of orbits as follows: for any a ∈ G0,

one considers either the set

Oa = t
(

s−1(a)
)

,

or Oa = s
(

t−1(a)
)

. An equivalence relation on G0 is now defined by setting a ∼ b if

and only if Oa = Ob. The set of orbits of G is the quotient set G0/ ∼, which is often

denoted by G0/G . In other words this is the set of all connected components of G .

A more general situation arises when a groupoid acts on a set, which we will refer to

as groupoid-set. Specifically, recall that a left G -action of a groupoid G on a set X

consists of two maps α : X → G0 (the structure map) and λ : G1 s×α X → X, (g, x) 7→

gx (the action map), satisfying

α(gx) = t(g), ια(x) x = x, g′(gx) = (g′g)x.

The pair (X, α) is called a left G -set. In this way, one can define the left translation

groupoid G X X with G1 s×α X as set of arrows and X as set of objects. This is the

so-called semi-direct product groupoid, see [MoeMr, p. 163]. The orbit set X/G of

the left G -set (X, α) is by definition the orbit set of the translation groupoid G X X.

For a given object x ∈ X, the equivalence class, that is, the orbit of x, will be denoted

by OrbG (x).

Morphisms between left G -sets (or G -equivariant maps) are defined in the obvious

way, and the category so-obtained is denoted by G -Sets and called left groupoid-sets.

The category Sets-G of right groupoid-sets is similarly defined. These categories are

in fact symmetric monoidal categories, and one can observe that G -Sets is isomorphic

to Sets-G . Explicitly, the tensor product of two objects (X, α) and (X′, α′) in G -Sets

is given by the object

(X, α) ×
G0

(X′, α′) :=
(

X α×α′ X′, αα′
)

,

where αα′ : X α×α′ X′ → G0, (x, x′) 7→ α(x) = α′(x′). The identity object is the left

G -set (G0, 1G0
) with the action G1 s×α G0 → G0, (g, a) 7→ g. a = t(g). The isomorphism

of categories between left G -sets and right G -sets is obviously constructed by using

the inverse map G1 → G1, g 7→ g−1. Moreover, the forgetful functor O : G -Sets →

Sets/G0
, where the latter denotes the category of objects over G0 (the comma category),

admits a left adjoint functor G1 s×• − : Sets/G0
→ G -Sets, which is defined on objects

as follows. If (M, γ) is an object in Sets/G0
, then (G1 s×γ M, t ◦ pr1) is a left G -set with

action given by the multiplication on the first component.

Consider a left G -set (X, α) and let x ∈ X. Then clearly the pair (OrbG (x), αx), where

αx is the restriction of α, inherits from (X, α) the structure of a left G -set with G -

equivariant monomorphism τx : (OrbG (x), αx) →֒ (X, α), the canonical injection. It

turns out that the disjoint union

(2.1) (X, α) =
⊎

x∈ rep(X/G )

(OrbG (x), αx),

where rep(X/G ) is a set of representatives of the equivalence classes, coincides with

the coproduct of the discrete system {(OrbG (x), αx), τx}x ∈ rep(X/G ) in the category of left

G -sets.
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Let G and H be two groupoids and (X, α, β) a triple consisting of a set X and two maps

α : X → G0 and β : X → H0. The following definitions are abstract formulations of

those given in [MoeMr] for topological and Lie groupoids.

Definition 2.1. The triple (X, α, β) is said to be an (G ,H )-biset if there is a left

G -action λ : G1 s×α X → X and right H -action ρ : X β×t H1 → X such that

(i ) For any x ∈ X, h ∈ H1, and g ∈ G1 with α(x) = s(g) as well as β(x) = t(h),

we have

β(gx) = β(x) and α(xh) = α(x).

(ii ) For any x ∈ X, h ∈ H1, and g ∈ G1 with α(x) = s(g) as well as β(x) = t(h),

we have g(xh) = (gx)h.

Given a (G ,H )-biset (X, α, β), we denote by (Xop, β, α) the so-called opposite biset

of (X, α, β), that is, the (H ,G )-biset whose underlying set is X and whose actions

are interchanged: hxop = (xh−1)op and xopg = (g−1x)op, whenever the action between

parentheses is permitted.

Remark 2.2. For a left resp. right G -set (X, α) and (Y, ϑ) over the same groupoid G ,

the fibred product Y ϑ×α X carries a left G -action given by g(x, y) := (xg−1, gy), and

one can consider its orbit space, i.e., the orbit of the left translation groupoid G X
(

Y ϑ×α X
)

, denoted by Y ⊗G X in [MoeMr, p. 166]. This product can be termed as the

tensor product over the groupoid G . The universal property of this tensor product is

summarised in the following coequaliser:

(2.2) Y ϑ×t G1 s×α X
ρ×1X //

1Y×λ
// Y ϑ×α X // // Y ⊗G X.

Obviously, there are natural isomorphisms G ⊗G X � X and Y ⊗G G � Y in the cat-

egories of left G -sets and that of right G -sets, respectively. Moreover, taking another

two groupoids H and K and assuming Y to be (the underlying set) of an (H ,G )-

biset along ς : Y → H0, and X that of a (G ,K )-biset along β : X → K0. Then

Y ⊗G X inherits, in a canonical way, the structure of an (H ,K )-biset along the maps

ς : Y ⊗G X →H0, y ⊗G x 7→ ς(y) and β : Y ⊗G X → K0, y ⊗G x 7→ β(x).

The two-sided translation groupoid associated to a given (G ,H )-biset (X, α, β) is

defined to be the groupoid G X X Y H whose set of objects is X and whose set of

arrows is given by

G1 s×α X β×s H1 =
{

(g, x, h) ∈ G1 × X ×H1 | s(h) = β(x), s(g) = α(x)
}

.

Its structure maps are as follows. Source and target read as

s(g, x, h) = x, t(g, x, h) = gxh−1 and ιx = (ια(x), x, ιβ(x)),

whereas multiplication and inverse are given by

(g, x, h)(g′, x′, h′) = (gg′, x′, hh′), (g, x, h)−1 = (g−1, gxh−1, h−1).
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Associated to a given (G ,H )-biset (X, α, β), there are two canonical morphisms of

groupoids:

Σ : G X X YH −→H ,
(

(g, x, h), y
)

7−→
(

h, β(y)
)

,(2.3)

Θ : G X X YH −→ G ,
(

(g, x, h), y
)

7−→
(

g, α(y)
)

.(2.4)

The following concept (and its analogue notion of principal bibundles for flat Hopf

algebroids in Definition 4.1) will be the crucial ingredient when it comes to defining

equivalences:

Definition 2.3. Let (X, α, β) be a (G ,H )-biset. We say that (X, α, β) is a left prin-

cipal (G ,H )-biset (or left principal (G ,H )-bundle) if it satisfies the following con-

ditions:

(P-1) β : X →H0 is surjective;

(P-2) the canonical map

(2.5) ∇l : G1 s×α X −→ X β×β X, (g, x) 7−→ (gx, x)

is bijective.

Condition (P-2) allows us to define δl := pr1 ◦ (∇l)−1 : X β×β X → G1. This map clearly

satisfies:

s
(

δl(x, x′)
)

= α(x′)(2.6)

δl(x, x′)x′ = x, for any x, x′ ∈ X with β(x) = β(x′);(2.7)

δl(gx, x) = g, for g ∈ G1, x ∈ X with s(g) = α(x).(2.8)

Equation (2.8) shows that the action is in fact free, that is, gx = x only when g =

ια(x). Left principal bisets can now be characterised as follows: a (G ,H )-biset is left

principal if and only if H0 is, up to a bijection, the left orbit set X/G and the left action

is free.

Right principal bisets are defined in an obvious manner and the corresponding map

from above will be denoted by δr. The following result will turn out to be useful in the

sequel.

Lemma 2.4. Let (Y, ς, ϑ) be a right principal (H ,G )-biset and let (X, α) be any left

G -set. Then there is a natural isomorphism

Y ς×ς

(

Y ⊗G X
)

−→ Y ϑ×α X, (y, y′ ⊗G x) 7−→
(

y, δr(y, y′)x
)

whose inverse is

Y ϑ×α X −→ Y ς×ς
(

Y ⊗G X
)

, (y, x) 7−→ (y, y ⊗G x).

Proof. Straightforward. �

A (G ,H )-biset (X, α, β) is said to be a principal biset (or principal (G ,H )-bibundle)
if it is simultaneously a left and a right principal biset. Thus both α and β are surjective
and the canonical maps

(2.9) ∇l : G1 s×α X → X β×β X, (g, x) 7→ (gx, x); ∇r : X β×t H1 → X α×α X, (x, h) 7→ (x, xh)

are both bijective. It is clear that (G1, t, s) with the canonical action is a principal

(G ,G )-set, and that the pull-back of any principal groupoid-set is also a principal

groupoid-set.
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2.2. Natural isomorphisms and functors between groupoid-sets. Let

(X, α, β) be a triple consisting of a left G -set (X, α) and a map β : X → K0 such that

β(gx) = β(x), for every (g, x) ∈ G1 s×α X. Triples like that form a category (of left G -

sets over K0), which we denote by G -Sets/K0
. Clearly, when K0 is the object set of a

groupoid K , then the category of (G ,K )-bisets is a full subcategory of G -Sets/K0
.

In particular, if K = (K0,K0) is a trivial groupoid, then both categories coincide.

For a functor Φ : G -Sets → H -Sets (which we always assume to transform the

empty set to the empty set and which most of the times we just denote by Φ(X) for

the image of a left G -set (X, α)), we want to next discuss conditions under which Φ

descends to a functor from G -Sets/K0
to H -Sets/K0

.

Lemma 2.5. Let Φ and (X, α, β) be as above.

(i ) Assume that Φ preserves monomorphisms and coproducts. Then there is a

functor Φ′ which makes the following diagram commutative:

G -Sets
Φ // H -Sets

G -Sets/K0

Φ′ //❴❴❴❴❴❴

OO

H -Sets/K0
,

OO

where the vertical functors are the forgetful ones.

(ii ) Assume that Φ(G0) = H0. Then, for any left G -set (X, α), the structure map

of the left H -set Φ(X) = Φ(X, α) is given by Φ(α).

Proof. Part (i): for an object (X, α, β) ∈ G -Sets/K0
, using the decomposition (or strat-

ification) of equation (2.1), we obtain a map:

(2.10) βΦ : Φ(X) =
⊎

x ∈ rep(X/G )

Φ
(

OrbG (x)
) // X

β // K0.

The triple (XΦ, αΦ, βΦ), whereΦ(X, α) := (XΦ, αΦ), is easily shown to be an object in the

category H -Sets/K0
since Φ preserves monomorphisms. This gives the construction

of Φ′ on the objects class; the compatibility of Φ′ with the arrows of G -Sets/K0
is

immediate.

Part (ii): we set as before Φ(X, α) = (XΦ, αΦ), the associated left H -set. Since the

map α : (X, α) → (G0, 1G0
) is a left G -equivariant, its image Φ(α) gives the structure

map of the left H -set (XΦ, αΦ), that is, we have αΦ = Φ(α). �

Consider now an object (X, α, β) in G -Sets/K0
and a functor as in Lemma 2.5. We then

get two functors: the first one is Φ◦ (X β×• −) : Sets/K0
→H -Sets/K0

and the second

Φ(X, α) βΦ×• − : Sets/K0
→ H -Sets/K0

. The subsequent technical lemma shows a

natural isomorphism between these two functors.

Lemma 2.6. Let Φ : G -Sets → H -Sets be as in Lemma 2.5. Then, for any object

(X, α, β) in the category G -Sets/K0
, there is a natural isomorphism

Υ : Φ
(

X β×γ M, α ◦ pr1

)

�
(

Φ(X) βΦ×γ M, αΦ ◦ pr1

)
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for every (M, γ) in Sets/K0
. Furthermore if there is a morphism f : (X, α, β) →

(X′, α′, β′) in the category G -Sets/K0
, then there is a commutative diagram:

Φ
(

X β×γ M, α ◦ pr1

) Υ //

Φ( f×1M )

��

(

Φ(X) βΦ×γ M, αΦ ◦ pr1

)

Φ( f )×1M

��
Φ
(

X′ β′×γ M, α′ ◦ pr1

) Υ′ // (Φ(X′) β′Φ×γ M, α′Φ ◦ pr1

)

.

An important consequence of the previous lemma is:

Proposition 2.7. Let Φ : G -Sets → H -Sets be an equivalence of categories.

Then we have

(i ) For any (G ,K )-biset (X, α, β) the triple (XΦ, αΦ, βΦ) is an (H ,K )-biset,

where XΦ denotes the underlying set of Φ(X).

(ii ) There is a natural isomorphism Φ � Φ(G1) ⊗G − : G -Sets→H -Sets.

Proof. Part (i): let (X, α, β) be a (G ,K )-biset. Using Lemma 2.6, we have a commu-

tative diagram

(

Φ(X) βΦ×t K1, α
Φ ◦ pr1

)

Υ−1

++❲❲❲❲
❲❲❲

❲❲❲
❲❲

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Φ(X)

Φ
(

X β×t K1, α ◦ pr 1

)

Φ(̺)
55❦❦❦❦❦❦❦❦❦❦

The horizontal map leads to a well-defined right K -action on the set (XΦ, βΦ). More-

over, since each stratum in the stratification (2.1) of the left G -set (X, α) is invariant

under the right K -action, the triple (XΦ, αΦ, βΦ) fulfils the conditions of Definition 2.1

for the groupoids H and K . Thus, (XΦ, αΦ, βΦ) is actually an (H ,K )-biset.

Part (ii): by the previous part, the image of (G1, t) under Φ is an (H ,G )-biset since

(G1, t, s) is a (G ,G )-biset. Now, using Remark 2.2, we know that the functorΦ(G1)⊗G

− : G -Sets → H -Sets is well-defined. The claimed natural isomorphism is then

derived from the commutative diagram

Φ(G1) sΦ×t G1 s×α X
//
//

Υ−1

��

Φ(G1) sΦ×α X // //

Υ−1

��

Φ(G1) ⊗G X

�

��
Φ
(

G1 s×t G1 s×α X
) //

// Φ
(

G1 s×α X
) // // Φ

(

G ⊗G X
)

� Φ(X)

as Φ preserves coequalisers. �

2.3. Monoidal equivalence between groupoid-sets versus principal

bisets. Let φ : H → G be a morphism of groupoids. Then the induced morphism

φ∗ : G -Sets→H -Sets which sends any left G -set (X, α) to the left H -set

φ∗(X, α) := (H0 φ0
×α X, α ◦ pr 2 = φ0 ◦ pr1)

with action hx = φ1(h)x, is clearly a symmetric monoidal functor. The morphism φ is

said to be a weak equivalence if the functor between the underlying categories induces

an equivalence of categories, i.e., if φ is a full, faithful, and essentially surjective

Documenta Mathematica 22 (2017) 551–609



562 Laiachi El Kaoutit, Niels Kowalzig

functor. In this way, it is clear that any weak equivalence induces an equivalence of

categories between the categories of left groupoid-sets.

Next, we want to discuss the converse, meaning that any monoidal symmetric equiva-

lence between G -Sets and H -Sets can be reconstructed (although in a noncanonical

way) from some weak equivalence.

Recall that two groupoids G and H are said to be weakly equivalent if there is a third

groupoid K and a diagram

K

ww♥♥♥
♥♥
♥

''❖❖
❖❖

❖❖

H G

of weak equivalences. One can choose an inverse of one of the morphisms in this di-

agram in order to construct a weak equivalence connecting H and G . This is almost

impossible in the case of topological and/or Lie groupoids and also for flat Hopf al-

gebroids as we will see in the forthcoming sections. However, we have the following

lemma analogous to the case of Lie groupoids [MoeMr], and we will later show in

§5.2 its analogue for flat Hopf algebroids.

Lemma 2.8. [Kao, Proposition 2.13] Let G and H be two groupoids and let (X, α, β)

be a principal (G ,H )-biset. Then the canonical morphisms of groupoids

G X X YH
Θ

tt❥❥❥❥
❥❥❥

❥ Σ

**❯❯❯
❯❯❯

❯❯

G H

are weak equivalences, where Θ and Σ are as in (2.3) resp. (2.4). In particular, G and

H are weakly equivalent.

The main motivation behind Theorem A in the Introduction is the following charac-

terisation of weak equivalences between groupoids and principal bisets (see [MoeMr,

Corollary 3.11] for the implication (iii) ⇒ (ii), where groupoid-sets are replaced by

sheaves of étale spaces).

Theorem 2.9. Let G and H be two groupoids. Then the following are equivalent:

(i ) G and H are weakly equivalent.

(ii ) There is a symmetric monoidal equivalence of the categories G -Sets and

H -Sets.

(iii ) There is a principal (H ,G )-biset.

Proof. The proof of (i) ⇒ (ii) is immediate. The implication (iii) ⇒ (i) follows from

Lemma 2.8.

As for the implication (ii)⇒ (iii), let Φ : G -Sets→H -Sets be such an equivalence

of categories and denote by Ψ its inverse functor. We set (P, ς, ϑ) as the image of the

principal (G ,G )-biset (G1, t, s) by the functor Φ from which we know by Proposition

2.7(i) that it is an (H ,G )-biset. Now using the monoidal properties of Φ, we have

from one hand that ς = Φ(t) by Lemma 2.5(i), which is a surjective map, and from the

other hand we have a chain of isomorphisms

P ϑ×t G1 � Φ
(

G1 s×t G1

)

−→ Φ
(

G1 t×t G1

)

� P ς×ς P,
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which turns out to be the canonical map ∇r for P. Therefore, (P, ς, ϑ) is a right princi-

pal (H ,G )-biset.

Similarly, if we denote by (Q, µ, ν) the image of the principal (H ,H )-biset (H1, t, s)

under the functor Ψ, we get a right principal (G ,H )-biset. To conclude, one needs

to check that there is an isomorphism (Pop, ϑ, ς) → (Q, µ, ν) of (G ,H )-bisets, where

(Pop, ϑ, ς) is the biset opposite to (P, ς, ϑ).

To this end, we first apply Lemma 2.4 to (P, ς, ϑ) and (Q, µ) in order to obtain the

isomorphism

γ : P ς×ς

(

P ⊗G Q
)

−→ P ϑ×µ Q, (p, p′ ⊗G q) 7−→
(

p, δr(p, p′)q
)

.

Second, we use the isomorphism χ : H1 → P ⊗G Q of (H ,H )-bisets given by

the natural isomorphism of Proposition 2.7(ii) applied to Φ, in order to construct the

desired isomorphism

Pop −→ Q, p 7−→ pr2

(

γ(p, χ(ις(p))
)

of (G ,H )-bisets. �

3. Hopf algebroids and comodule algebras

All algebras are considered to be commutative k-algebras, where k is a commutative

ground ring. The k-module of all algebra maps from R to C will be denoted by R(C) :=

Alg
k

(

R,C
)

.

3.1. Hopf algebroids. Recall from, e.g., [Ra] that a commutative Hopf algebroid

is a pair (A,H) of two commutative k-algebras together with a diagram A
s //
t // Hεoo

of algebra maps, a structure (sHt,∆, ε) of an A-coring with underlying A-bimodule

AHA = sHt, along with an isomorphism S : sHt → tHs of A-corings that fulfils

S 2 = id, where the codomain is the opposite A-coring of sHt. The map S is called

the antipode ofH . All the previous maps are asked to be compatible in the following

way:

ε ◦ s = idA, ε ◦ t = idA,(3.1)

∆(1H) = 1H ⊗A 1H , ε(1H) = 1A,(3.2)

∆(uv) = u(1)v(1) ⊗A u(2)v(2), ε(uv) = ε(u)ε(v),(3.3)

t(ε(u)) = S (u(1))u(2), s(ε(u)) = u(1)S (u(2)),(3.4)

S (uv) = S (u)S (v), S (1H) = 1H ,(3.5)

for every a ∈ A, u, v ∈ H , where we used Sweedler’s notation for the comultiplication.

As all Hopf algebroids in this article are commutative and flat over the base ring, they

are also faithfully flat since both the source and target are (left) split morphisms of

modules over the base ring.

A morphism φ : (A,H) → (B,K) of Hopf algebroids consists of a pair φ = (φ0, φ1)

of algebra maps φ0 : A → B and φ1 : H → K that are compatible with the structure
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maps of bothH andK in a canonical way. That is, the equalities

φ1 ◦ s = s ◦ φ0, φ1 ◦ t = t ◦ φ0,(3.6)

∆ ◦ φ1 = χ ◦ (φ1 ⊗A φ1) ◦ ∆, ε ◦ φ1 = φ0 ◦ ε,(3.7)

S ◦ φ1 = φ1 ◦S ,(3.8)

hold, where χ is the obvious map χ : K ⊗A K → K ⊗B K , and where no distinction

between the structure maps ofH and K was made.

Example 3.1 (Scalar extension Hopf algebroid). For a Hopf algebroid (A,H) and

an algebra map φ0 : A → B, we can consider the so-called scalar extension Hopf

algebroid (B, B ⊗A H ⊗A B) in a canonical way such that (φ0, φ1) : (A,H) → (B, B ⊗A

H ⊗A B), where φ1(u) = 1B ⊗A u ⊗A 1B, becomes a morphism of Hopf algebroids. In

this way, any morphism φ : (A,H) → (B,K) of Hopf algebroids factors through the

following morphism

(3.9) Φ : (B, B⊗A H ⊗A B)→ (B,K), b ⊗A u ⊗A b′ 7→ s(b)φ1(u)t(b′)

of Hopf algebroids.

Remark 3.2. Notice that the scalar extension Hopf algebroid (B, B ⊗A H ⊗A B) is not

necessarily flat. This happens, for instance, if φ0 is a flat extension or if B is Landweber

exact over (A,H) in the sense of [HoSt, Def. 2.1, Corollary 2.3], which means that

either the extension A → H ⊗A B, a 7→ s(a) ⊗A 1B or A → B ⊗A H , a 7→ 1B ⊗A t(a) is

flat, see also Remark 5.2. Another important situation is whenH is assumed to be flat

as an A ⊗ A-module (i.e., the extension s ⊗ t is flat). This happens, for instance, when

H is geometrically transitive Hopf algebroid in the sense of Deligne and Bruguières

[De, Br], see also [Kao].

3.2. Comodules, bicomodules and cotensor product. This section gath-

ers some standard material on comodules over commutative Hopf algebroids which

will be needed in the sequel, see, e.g., again [Ra] for more information.

A right H-comodule over a Hopf algebroid (A,H) is a pair (M, ρH
M

), where M is an

A-module and ρH
M

: M → M ⊗A sH , m 7→ m(0) ⊗A m(1) is an A-linear map, written in the

usual Sweedler notation, and which satisfies the usual coassociativity and counitary

properties. Here, the A-module structure on M ⊗A sH with respect to which the coac-

tion is A-linear is defined by (m ⊗A u) ◭ a := m ⊗A ut(a). When the context is clear, we

shall also drop sub- and superscripts on ρH
M

that are sometimes needed to distinguish

various coactions.

Morphisms of right H-comodules are defined in an obvious way, and the category

of right H-comodules will be denoted by ComodH , whereas a morphism between

two right H-comodules M and N will be denoted as ComodH (M,N). The category

ComodH is symmetric monoidal, where the coaction on the tensor product is given

by the codiagonal coaction, that is,

(3.10) ρH
M⊗AN

: M ⊗A N → (M ⊗A N) ⊗A sH , m ⊗A n 7→ (m(0) ⊗A n(0)) ⊗A m(1)n(1).

The identity object is given by (A, t) and the symmetry is given by the natural trans-

formation obtained from the tensor flip.
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Remark 3.3. There are situations where the tensor product M ⊗A N of the underlying

modules of two right H-comodules can be endowed with more than one comodule

structure. For distinction, we will from now on denote by M ⊗A N the tensor product

in ComodH endowed then with the coaction of equation (3.10).

To each rightH-comodule (M, ρ) one can define the k-vector space of coinvariants:

McoinvH =
{

m ∈ M | ρ(m) = m ⊗A 1H
}

.

This, in fact, establishes a functor which is naturally isomorphic to the functor

ComodH
(

A,−
)

, that is, we have a natural isomorphism of k-vector spaces:

ComodH
(

A, M
)

� McoinvH .

Analogously, one can define the category HComod of left comodules, and both cate-

gories are isomorphic via the antipode. Explicitly, one can endow a leftH-comodule

(M, λH
M

) with a rightH-comodule structure, denoted by Mo,

(3.11) ρH
Mo : Mo → Mo ⊗A sH , m 7→ m(0) ⊗A S (m(−1)),

and referred to as the opposite comodule of M. Since we always have S 2 = id for

commutative Hopf algebroids, this correspondence obviously establishes an isomor-

phism of symmetric monoidal categories.

For an arbitrary algebra R and a right comodule (N, ρ) whose underlying module is

also an (A,R)-bimodule such that ρ is left R-linear, i.e., ρH
M

(rn) = rn(0) ⊗A n(1), for

r ∈ R, n ∈ N, one can define a functor

(3.12) − ⊗RN : ModR → ComodH , X 7→ (X ⊗R N, X ⊗R ρ).

For two Hopf algebroids (A,H) and (B,K), the category of (H ,K)-bicomodules has

triples (P, λH
P
, ρK

P
) as objects, where P = APB is an (A, B)-bimodule such that (P, λH

P
) is

a left comodule with a right B-linear coaction λH
P

, while (P, ρK
P
) is right comodule with

a left A-linear coaction ρK
P
, and both coactions are compatible in the sense that

(3.13) (H ⊗A ρ
K

P
) ◦ λH

P
= (λH

P
⊗B K) ◦ ρK

P
.

In other words, λH
P

is a morphism of rightK-comodules, and ρK
P

of leftH-comodules,

where the codomains of both maps are comodules according to the functor of equa-

tion (3.12). Morphisms of bicomodules are defined in a canonical way; denote by

HBicomodK the category of (H ,K)-bicomodules.

Next, we recall the definition of the cotensor product. Let (M, ρ) be a right H-

comodule and (N, λ) a leftH-comodule. The cotensor product bifunctor is defined as

the equaliser

0 // M �H N // M ⊗A N
ρ⊗AN //
M⊗Aλ

// M ⊗A H ⊗A N,

which is a bifunctor from the product category ComodH × HComod to ModA. If we

further assume that (N, ρ, λ) is also an (H ,K)-bicomodule, the cotensor product lands

in the category of right K-comodules since our Hopf algebroids are flat. This way, it

is possible to define the bifunctor

(3.14) − �H − : JBicomodH × HBicomodK → JBicomodK .
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One easily checks thatH �H N � N and A�H N � NcoinvH for every rightH-comodule

N.

The associativity of the cotensor products is not always guaranteed unless one makes

more assumptions on the comodules involved. For example, since all our Hopf alge-

broids are assumed to be flat, if M is a flat A-module along with a flat B-module N′,

one has

M �H (N �K N′) ≃ (M �H N)�K N′.

Compare, for example, [BrzWi, §§22.5–22.6] for more situations in which this asso-

ciativity holds true.

Given a morphism φ = (φ0, φ1) : (A,H) → (B,K) of Hopf algebroids, there is a

functor

(3.15) φ∗ := − ⊗φ B : ComodH −→ ComodK ,

called the induction functor, which is defined on objects by sending any right comod-

ule (M, ρH
M

) to a right comodule (M⊗φ B, ρK
M⊗φB

) with underlying B-module M ⊗A B and

coaction

ρK
M⊗φB

: M ⊗φ B→ (M ⊗φ B) ⊗B K , m ⊗A b 7→ (m(0) ⊗A 1B) ⊗B φ1(m(1))t(b).

The image of H with the induction functor is, in fact, an (H ,K)-bicomodule. In a

similar way, we have the induction functor

∗φ := B ⊗φ − : HComod→ KComod,

between left comodules, and B ⊗φ H is now an (K ,H)-bicomodule. The induction

functor has a right adjoint given by

(3.16) − �K (B ⊗φ H) : ComodK → ComodH ,

called the coinduction functor.

3.3. Comodule algebras. Parallel to subsection 2.1, we next want to give the

analogue notion of groupoid-sets in the Hopf algebroids context. To this end, recall

first that a left H-comodule algebra for a Hopf algebroid (A,H) is a commutative

monoid in the symmetric monoidal categoryHComod. That is, a pair (R, σ) consisting

of a commutative A-algebraσ : A→ R which is also a leftH-comodule with coaction

λH
R

: R→ H ⊗A R, satisfying for all x, y ∈ R

(3.17) λH
R

(xy) = x(−1)y(−1) ⊗A x(0)y(0) and λH
R

(1R) = 1H ⊗A 1R.

In others words, the coaction λH
R

is an A-algebra map, where H ⊗A R is seen as an

A-algebra via A→ H⊗A R, a 7→ s(a)⊗A 1R. A morphism of leftH-comodule algebras

is an A-algebra map which is also a left H-comodule morphism. RightH-comodule

algebras are analogously defined.

Note that for a leftH-comodule algebra (R, σ) the k-vector subspace

RcoinvH = {x ∈ R | λH
R

(x) = 1H ⊗A x}

ofH-coinvariant elements is a k-subalgebra of R that does not necessarily contain the

image σ(A), unless one makes more assumptions; for instance, if the source and the

target maps are equal. A trivial example of a comodule algebra is the base algebra A

of a Hopf algebroid (A,H) itself.
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Assume now that γ : B→ R is another algebra map such that λH
R

is right B-linear, that

is,

λH
R

(x γ(b)) = x(−1) ⊗A x(0)γ(b),

for every x ∈ R and b ∈ B. One can easily see that γ(B) ⊆ RcoinvH . In this situation, the

canonical map

(3.18) canH ,R : R ⊗B R→ H ⊗A R, x ⊗B y 7→ x(−1) ⊗A x(0)y

is a B-algebra map, where H ⊗A R is a B-algebra via γ in the second factor. The

canonical map is also leftH-colinear, when R ⊗B R is seen as a left comodule via the

coaction λH
R
⊗B R.

We have the following well-known properties:

Lemma 3.4. Assume that R carries a leftH-comodule algebra structure with under-

lying algebra map σ : A→ R and that γ : B→ R is a morphism of algebras.

(i ) The pair (R,H ⊗A R) is a Hopf algebroid with the following structure maps:

s := λH
R
, t := 1H ⊗A −,

ε(u ⊗A r) := εH(u)r, ∆(u ⊗A r) := (u(1) ⊗A 1R) ⊗R (u(2) ⊗A r),

S (u ⊗A r) := SH (u)r(−1) ⊗A r(0).

(ii ) The map (σ,− ⊗A 1R) : (A,H) → (R,H ⊗A R) is a morphism of Hopf alge-

broids.

(iii ) If λH
R

is right B-linear, where R is seen as an (A, B)-bimodule, then the canon-

ical map of Eq. (3.18) is a morphism of Hopf algebroids as well as a mor-

phism of leftH-comodules.

(iv ) If R is an (H ,K)-bicomodule, then the canonical map

canH ,R : (R⊗BR, ρK
R⊗B R

)→ (H ⊗A R,H ⊗A ρ
K

R
)

is also a morphism of right K-comodules.

Proof. These are routine computations. �

In analogy to groupoid terminology as in §2.1, the Hopf algebroid (R,H ⊗A R) of

Lemma 3.4 is termed the left translation Hopf algebroid of (A,H) along σ. Symmet-

rically, one can define a right translation Hopf algebroid of (A,H) by employing right

comodule algebras.

Remark 3.5. In subsection 2.1, we discussed the notion of orbit set of a given

left G -set over a groupoid G . In the Hopf algebroid context, the analogous no-

tion is given as follows: for a Hopf algebroid (A,H) and any commutative algebra

C, one can consider its underlying presheaf of groupoids, canonically defined by

C → (H (C), A(C)) = (Alg
k
(H ,C),Alg

k
(A,C)) is the groupoid H(C)

//// A(C)oo

defined by reversing the structure maps of (A,H). This leads then to the orbit presheaf

C 7→ O(C) := A(C)/H (C). Clearly, there is a morphism O → Alg
k
(AcoinvH ,−) of

presheaves, where AcoinvH is the coinvariant subalgebra of A, that is, the set of elements

a ∈ A such that s(a) = t(a). Thus, AcoinvH can be thought of as the coordinate ring

of the orbit space. In case of a general left H-comodule algebra (R, α) and for any
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commutative algebra C, the groupoid H (C) acts on R(C) via (g, x) 7→ gx given by

the algebra map

gx : R→ C, r 7→ g(r(−1))x(r(0)).

This determines the presheaf OR : C 7→ R(C)/H (C) of orbits together with a mor-

phism of presheaves OR → Alg
k

(

RcoinvH ,−
)

. So as before, RcoinvH is the coordinate ring

of the orbit space. On the other hand, one can easily check that RcoinvH = Rcoinv(H⊗AR) ,

where (R,H ⊗A R) is the left translation Hopf algebroid as above.

3.4. The coinvariant subalgebra for the tensor product of co-

module algebras. For any two left H-comodule algebras (R, α) and (S , σ),

the comodule tensor product S⊗AR is an A-algebra by means of the algebra map

A→ S ⊗A R, a 7→ σ(a)⊗A 1R = 1R⊗Aα(a). This algebra clearly admits the structure of a

leftH-comodule algebra the coinvariant subalgebra of it can be described as follows:

Lemma 3.6. For any two left H-comodule algebras (R, α) and (S , σ), we have an

isomorphism

(S⊗AR)coinvH � S o
�H R

of algebras, where (S o, σ) is the opposite rightH-comodule algebra of (S , σ).

Proof. For an element s ⊗A r ∈ (S⊗AR)coinvH , the equality

(3.19) 1H ⊗A s ⊗A r = s(−1)r(−1) ⊗A s(0) ⊗A r(0)

holds inH ⊗A S ⊗A R. Applying (idH ⊗mH ⊗ idR) ◦ τ12 ◦ (S ⊗ idS ⊗ λ
R

H
) to both sides,

where τ12 denotes the tensor flip and mH the multiplication inH , we obtain

s ⊗A r(−1) ⊗A r(0) = s(0) ⊗A S (s(−1)r(−2))r(−1) ⊗A r(0)

= s(0) ⊗A S
(

s(−1)

)

t
(

ε(r(−1))
)

⊗A r(0)

= s(0) ⊗A S
(

s(−1)

)

⊗A r,

which shows that s ⊗A r ∈ S o
�H R. The converse is similarly deduced. �

Remark 3.7. Taking Remarks 2.2 and 3.5 into account, Lemma 3.6 describes the ana-

logue of the tensor product over groupoids in the Hopf algebroid context. That is, the

cotensor product of (left and right)H-comodule algebras should be thought of as the

orbit space of their tensor product as comodule algebras.

3.5. Bicomodule algebras and two-sided translation Hopf alge-

broids. In what follows, we give the construction for Hopf algebroids analogous to

the two-sided translation groupoid as expounded in §2, and show some corresponding

results.

For two Hopf algebroids (A,H) and (B,K), consider an (H ,K)-bicomodule P such

that (P, α) is a left H-comodule algebra and (P, β) is a right K-comodule algebra.

We then say that the triple (P, α, β) is an (H ,K)-bicomodule algebra. A morphism

of (H ,K)-bicomodule algebras is a map which is simultaneously a morphism of left

H-comodule algebras and right K-comodule algebras.

Lemma and Definition 3.8. Let (P, α, β) be an (H ,K)-bicomodule algebra. Then

(P,H⊗A P⊗BK) with tensor product defined byH X P Y K := sH⊗A P⊗B sK carries
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a canonical structure of a flat Hopf algebroid the structure maps of which are given

by:

(i ) the source and target are given by

(3.20) s(p) := 1H ⊗A p ⊗B 1K , t(p) := S (p(−1)) ⊗A p(0) ⊗B p(1);

(ii ) the comultiplication and counit are as follows:

∆(u ⊗A p ⊗B w) :=
(

u(1) ⊗A p ⊗B w(1)

)

⊗P

(

u(2) ⊗A 1P ⊗B w(2)

)

,

ε(u ⊗A p ⊗B w) := α
(

ε(u)
)

pβ
(

ε(w)
)

;

(iii ) whereas the antipode is defined as:

S
(

u ⊗A p ⊗B w
)

:= S (up(−1)) ⊗A p(0) ⊗B p(1)S (w).

Furthermore, there is a diagram

(P,H X P Y K)

(A,H)

α=(α, α1)
55❧❧❧❧❧❧❧❧❧

(B,K)

β=(β, β1)
ii❘❘❘❘❘❘❘❘❘

of Hopf algebroids, where α1 and β1 are the maps h 7→ h ⊗A 1P ⊗B 1K and k 7→

1H ⊗A 1P ⊗B k, respectively. This Hopf algebroid will be termed two-sided translation

Hopf algebroid.

Proof. The fact that s : P → sH ⊗A P ⊗B sK is a flat extension is clear since sH and

sK are flat; hence sH ⊗A P ⊗B sK will give a flat Hopf algebroid over P. Using the

source map (3.20), the comultiplication ∆ and the counit ε are obviously left P-linear;

the right P-linearity follows from

ε
(

(u ⊗A p′ ⊗B w)t(p)
)

= ε
(

uS (p(−1)) ⊗A p′p(0) ⊗B p(1)w
) (3.4)
= ε(u ⊗A p′ ⊗B w)p

as well as

∆
(

(u ⊗A p′ ⊗B w) t(p)
)

= ∆
(

uS (p(−1)) ⊗A p′p(0) ⊗B p(1)w
)

=
(

u(1)S (p(−1)) ⊗A p′p(0) ⊗B w(1) p(1)

)

⊗P

(

u(2)S (p(−2)) ⊗A 1P ⊗B w(2) p(2)

)

= (u(1) ⊗A p′ ⊗B w(1)) t(p(0)) ⊗P

(

u(2)S (p(−1)) ⊗A 1P ⊗B w(2) p(1)

)

=
(

u(1) ⊗A p′ ⊗B w(1)

)

⊗P

(

u(2)S (p(−1)) ⊗A p(0) ⊗B w(2) p(1)

)

=
(

u(1) ⊗A p′ ⊗B w(1)

)

⊗P (u(2) ⊗A 1P ⊗B w(2)) t(p).

In order to define a Hopf algebroid, we need these maps to satisfy Eqs. (3.2)–(3.5),

which are either clear from definitions or follow by computations similar to the sub-

sequent one proving (3.4): we have

S (u(1) ⊗A p ⊗B w(1))(u(2) ⊗A 1P ⊗B w(2))

= S (u(1))S (p(−1))u(2) ⊗A p(0) ⊗B p(1)S (w(1))w(2)

= t(ε(u))S (p(−1)) ⊗A p(0) ⊗B p(1)t(ε(w))

= S
(

s(ε(u))p(−1)

)

⊗A p(0) ⊗B p(1)t(b)

= t
(

α(ε(u)) p β(ε(w))
)

= t
(

ε(u ⊗A p ⊗B w)
)

.
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The last statement is easily checked as well. �

Finally note that for a morphism f : (P, α, β) → (P′, α′, β′) of (H ,K)-bicomodule

algebras, Lemma 3.8 leads to a commutative diagram

(3.21) (P,H X P Y K)

(f,H⊗Af⊗BK)

��

(A,H)

α❧❧❧❧❧❧

66❧❧❧❧❧❧

α′
❘❘❘

❘❘

))❘❘
❘❘❘

(B,K)

β❘❘❘❘❘❘

hh❘❘❘❘❘❘

β′❧
❧❧
❧❧

vv❧❧❧
❧❧

(P′,H X P′ Y K)

of flat Hopf algebroids.

Example 3.9. Let (A,H) be a Hopf algebroid, C any algebra, and h : H → C an

algebra morphism. Using φ := h ◦ s : A → C and ψ := h ◦ t : A → C, construct the

scalar extension Hopf algebroids (C,Hφ := C⊗φH⊗φC) resp. (C,Hψ := C⊗ψH⊗ψC),

where we used the notation ⊗φ resp. ⊗ψ to distinguish between the two A-module

structures on C given by either φ or ψ. From [HoSt, Lemma 6.4] we deduce that

(C,Hφ) � (C,Hψ) as Hopf algebroids; indeed, this isomorphism is explicitly given

by:

C ⊗φ H ⊗φ C → C ⊗ψ H ⊗ψ C, c ⊗φ u ⊗φ c′ 7→ c h(u(1)) ⊗ψ u(2) ⊗ψ h
(

S (u(3))
)

c′,

with inverse d ⊗ψ v ⊗ψ d′ 7→ d h
(

S (v(1))
)

⊗φ v(2) ⊗φ h(v(3))d
′.

Now, assume that C is of the form C := B ⊗φ H ⊗ψ B′ for some extensions

B A
φoo ψ // B′ along with the obvious algebra map h : H → C as well as

φ : A → C and ψ : A → C. We can consider (C,φ,ψ) as an (Hφ,Hψ)-bicomodule

algebra in a canonical way; this, in fact, is the bicomodule algebra arising from the

cotensor product algebra Pco
�H P by considering, respectively, P := H ⊗φ B and

P′ := H ⊗ψ B′ as (H ,Hφ)- and (H ,Hψ)-bicomodule algebras with obvious coactions.

Let (C,Hφ X C Y Hψ) be the associated two-sided translation Hopf algebroid. Then

one can show that there is an isomorphism

(C,Hφ) � (C,Hφ X C Y Hψ) � (C,Hψ)

of Hopf algebroids as can be seen by adapting the proof of Proposition 5.3 below.

4. Principal bibundles in the Hopf algebroid context

4.1. General definitions. In this section, we will introduce one of the main

notions in this article. Similar concepts in the framework of Hopf algebras appeared

under the name quantum principal bundle in [BrzMa, Brz] or bi-Galois extension in

[Sch2, Sch3]. In analogy to Definition 2.3, we define principal bundles in the Hopf

algebroid context as follows.

Definition 4.1. A left principal (H ,K)-bundle (P, α, β) for two Hopf algebroids

(A,H) and (B,K) is an (H ,K)-bicomodule algebra as in §3.3, that is, P is equipped

with a left H-comodule algebra and a right K-comodule algebra structures with re-

spect to the algebra maps α : A→ P resp. β : B→ P such that
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(i ) β is a faithfully flat extension;

(ii ) the canonical map

canH , P : P ⊗B P→ H ⊗A P, p ⊗B p′ 7→ p(−1) ⊗A p(0) p′

is bijective.

At times, when the context is clear and hence (we think that) no confusion can arise,

the subscripts in the notation can of the canonical map are dropped.

Maps between principal bundles are defined as follows:

Definition 4.2. A morphism of left principal (H ,K)-bundles (P, α, β) and

(P′, α′, β′) is a map f : P → P′ that is a morphism of (H ,K)-bicomodule alge-

bras, i.e., simultaneously a morphism of A-algebras, B-algebras, and a morphism of

(H ,K)-bicomodules. We will also call such a morphism an equivariant morphism.

An isomorphism of left principal bundles is a bijective morphism of left principal bun-

dles. The category of left principal (H ,K)-bundles will be denoted by PBℓ(H ,K).

Let us denote the inverse of canH , P by a sort of Sweedler type notation,

can−1
H , P

: H ⊗A P→ P ⊗B P, u ⊗A p 7→ u+ ⊗B u−p.

where

(4.1) τP := can−1
H , P

(− ⊗A 1P) : H → P ⊗B P, u 7→ u+ ⊗B u−

denotes the translation map. The following lemma summarises the properties of this

map and its compatibility with the Hopf algebroid structure:

Lemma 4.3. Let (P, α, β) be a left principal (H ,K)-bundle. One has for all a, a′ ∈ A,

u, v ∈ H , and p ∈ P:

(uv)+ ⊗B (uv)− = u+v+ ⊗B v−u−,(4.2)

u+(−1) ⊗A u+(0) ⊗B u− = u(1) ⊗A u(2)+ ⊗B u(2)−,(4.3)

u+u− = α(ε(u)),(4.4)

p(−1)+ ⊗B p(−1)−p(0) = p ⊗B 1P,(4.5)

u+(−1) ⊗A u+(0)u− = u ⊗A 1P,(4.6)

(s(a)t(a′))+ ⊗B (s(a)t(a′))− = α(a) ⊗B α(a′).(4.7)

Furthermore,

u+(0) ⊗B u−(0) ⊗B u+(1)u−(1) = u+ ⊗B u− ⊗B 1K ∈ P ⊗B P ⊗B K ,(4.8)

S (u) ⊗A 1P = u−(−1) ⊗A u−(0)u+,(4.9)

S (u)+ ⊗B S (u)− = u− ⊗B u+,(4.10)

u(1)+ ⊗B u(1)− ⊗A S (u(2)) = u+ ⊗B u−(0) ⊗A u−(−1).(4.11)

Proof. The first six equations are proved along the lines of the proof of [Sch1,

Prop. 3.7], where the special case in which P := H is treated. Eq. (4.8) is obtained

by the fact that the canonical map (and hence its inverse) is a morphism of right K-

comodules, as follows from Lemma 3.4 (iv). Eq. (4.9) is proven as follows: since P is
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a leftH-comodule algebra and the coaction is A-linear, one has

S (u) ⊗A 1P = S (u(1))s(ε(u(2))) ⊗A 1P = S (u(1))
(

α(ε(u(2)))
)

(−1) ⊗A

(

α(ε(u(2)))
)

(0)

(4.4)
= S (u(1))(u(2)+u(2)−)(−1) ⊗A (u(2)+u(2)−)(0)

(4.3)
= S (u(1))u(2)u(3)−(−1) ⊗A u(3)+u(3)−(0)

(3.4)
= t(ε(u(1)))u(2)−(−1) ⊗A u(2)+u(2)−(0)

(4.7)
= u−(−1) ⊗A u−(0)u+.

Eq. (4.10) now follows by simply applying the inverse of the canonical map to both

sides, using (4.5). Finally, Eq. (4.11) is seen by applying (4.3) to the element S (u),

using (4.10) and the fact that the antipode is an anti-coring morphism. �

Right principal bundles use the right K-comodule algebra structure of P and the

canonical map:

canP,K : P ⊗A P→ P ⊗B K , p′ ⊗A p 7→ p′p(0) ⊗B p(1).

In this way, P is said to be a right principal (H ,K)-bundle if α is a faithfully flat

extension and the canonical map canP,K is bijective. The triple (P, α, β) is said to

principal (H ,K)-bibundle provided P is both left and right principal.

Since we will explicitly use principal bibundles, we also need the notation and the

properties for the right translation map. The inverse of canP,K is denoted by

P ⊗B K → P ⊗A P, p ⊗B v 7→ pv− ⊗A v+,

which fulfils the relations

(vw)+ ⊗A (vw)− = v+w+ ⊗A w−v−,(4.12)

v−v+ = β(ε(v)),(4.13)

p(0) p(1)
− ⊗A p(1)

+ = 1P ⊗A p,(4.14)

v−v+(0) ⊗B v+(1) = 1P ⊗B v,(4.15)

v− ⊗A v+(0) ⊗A v+(1) = v(1)
− ⊗A v(1)

+ ⊗A v(2),(4.16)

(s(b)t(b′))− ⊗A (s(b)t(b′))+ = β(b) ⊗A β(b′).(4.17)

With a similar argumentation that lead to (4.8), we have the identity

(4.18) v−(−1)v
+

(−1) ⊗A v−(0) ⊗A v+(0) = 1H ⊗A v− ⊗A v+ ∈ H ⊗A P ⊗A P.

Analogously, one obtains

S (v)− ⊗A S (v)+ = v+ ⊗A v−,

v(2)
− ⊗A v(2)

+ ⊗B S (v(1)) = v− ⊗A v+(0) ⊗B v+(1) ∈ P ⊗A P ⊗B K ,

1P ⊗B S (v) = v+v−(0) ⊗B v−(1).

In a similar way, one can define a morphism between right principal (H ,K)-bundles.

The obtained category will be denoted by PBr(H ,K). Morphisms of principal bibun-

dles are simultaneously morphisms of left and right principal bundles. The category

obtained this way will be denoted by PBb(H ,K).

Remark 4.4.
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(i ) For a morphism f : (P, α, β)→ (P′, α′, β′) in PBℓ(H ,K), we have a commu-

tative diagram:

(4.19) H
τP //

τP′ ((❘❘
❘❘❘

❘❘❘
❘❘

❘❘❘
P ⊗B P

f⊗Bf

��
P′ ⊗B P′,

where τ is the corresponding translation map.

(ii ) The definition above is left-right symmetric: if HPK is a left principal

(H ,K)-bundle, then the opposite bicomodule KPco
H is a right principal

(K ,H)-bundle with respect to the canonical map

Pco ⊗B Pco → Pco ⊗A H , p′ ⊗B p 7→ p′p(0) ⊗A S (p(−1)).

Using (4.10), one immediately verifies that

Pco ⊗A H → Pco ⊗B Pco, p ⊗A h 7→ ph+ ⊗B h−

defines the inverse of this map. If we denote by αco : A → Pco and βco : B→

Pco, respectively, the corresponding algebra maps, then the correspondence

(P, α, β) → (Pco, βco, αco) establishes an isomorphism of categories between

PBℓ(H ,K) and PBr(K ,H). The bundle (Pco, βco, αco) so constructed is called

the opposite bundle of (P, α, β).

(iii ) Since PB is faithfully flat, we know by the faithfully flat descent theory (see,

for instance [KaoGo, Theorem 3.10]) that the subalgebra ofH-coinvariants

is PcoinvH = β(B) as β is injective. Moreover, since α : A → P is a right

H-colinear map, we have the following commutative diagram

AcoinvH
αcoinvH //

_�

��

PcoinvH � B� _

β

��
A

α // P

of algebras. On the other hand, the category of relative left comodules, that

is, the category of left (H ⊗A P)-comodule is (monoidally) equivalent to the

category of B-modules, where (P,H ⊗A P) is the translation Hopf algebroid

along α. Conversely, given an (H ,K)-bicomodule algebra (P, α, β) such

that the functor −⊗B P : ModB → ComodH⊗AP establishes an equivalence of

categories, (P, α, β) carries the structure of a left principal (H ,K)-bundle.

(iv ) For the trivial Hopf algebroid (B,K) := (B, B), a left principal (H , B)-bundle

is a leftH-comodule algebra (P, α) with a faithfully flat extension β : B→ P

whoseH-coaction is a B-linear map and where canH , P : P ⊗B P → H ⊗A P

is bijective.

Example 4.5 (Unit bundles). The underlyingH-bicomodule of any flat Hopf algebroid

(A,H) is a left principal (H ,H)-bundle. More precisely, H is an H-bicomodule

via the algebra maps s, t : A → H and both ring extensions are faithfully flat by

assumption. So, we only need to check (ii) in Definition 4.1. In this case we have

canH ,H : H ⊗A H → H ⊗A H , u ⊗A v 7→ u(1) ⊗A u(2)v,
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where the domain tensor product is defined byHt in both factors, while the codomain

tensor product is the standard one from the coproduct ofH . The inverse of canH ,H is,

as for Hopf algebras,

can−1
H ,H

: H ⊗A H → H ⊗A H , u ⊗A v 7→ u(1) ⊗A S (u(2))v.

This bundle is refereed to as the unit principal bundle and will be denoted by U (H).

Note that U (H) is both a left and a right principal (H ,H)-bundle, and therefore a

principal bibundle.

Example 4.6 (Induced or pull-back bundles). For a morphism ψ = (ψ0, ψ1) : (B,K)→

(C,J) of Hopf algebroids and a left principal (H ,K)-bundle (P, α, β), consider P⊗B C

with the obvious algebra extensions α̃ : A → P ⊗B C and β̃ : C → P ⊗B C. It is clear

that β̃ is a faithfully flat extension and that P ⊗B C is an (H ,J)-bicomodule: its left

coaction is λH
P⊗BC

:= λH
P
⊗B C and its right coaction is defined by the composition

ρJP⊗BC : P ⊗B C
ρK

P
⊗A B

// P ⊗B K ⊗B C
P⊗Bψ1⊗BC // P ⊗B J ⊗B C

P⊗BξJ // (P ⊗B C) ⊗C J ,

where ξJ : J ⊗B C → C ⊗C J , w ⊗B c 7→ 1C ⊗C wt(c). Explicitly, one obtains

ρJ
P⊗BC

(p ⊗B c) = (p(0) ⊗B 1C) ⊗C ψ1(p(1))t(c),

and both coactions are algebra maps. Thus, P ⊗B C is both a leftH-comodule algebra

and a right J-comodule algebra. The canonical map canH , P⊗BC is bijective since, up

to canonical isomorphisms, it is of the form canH , P ⊗B C. Hence, (P ⊗B C, α̃, β̃) is a

left principal (H ,J)-bundle, called the induced bundle of P or pull-back bundle of P,

and denoted ψ∗(P) or ψ∗
(

(P, α, β)
)

. Of course, this establishes a functor PBℓ(H ,K)→

PBℓ(H ,J).

Example 4.7 (Restricted principal bundles). For a left principal (H ,K)-bundle

(P, α, β) and an algebra map τ : B → R, consider the scalar extension Hopf algebroid

(R,KR) := (R,R⊗BK⊗BR), along with the obvious algebra maps αR : A→ P→ PR and

βR : R→ PR, where PR := P⊗B R. It is clear that PR admits the structure of an (H ,KR)-

bicomodule with coactions, up to natural isomorphisms, defined by λH
PR

:= λH
P
⊗B R and

ρ
KR
PR

:= ρK
P
⊗B R. These are clearly algebra maps which convert (PR, λ

H

PR
) and (PR, ρ

KR
PR

)

into comodule algebras. The canonical maps are, up to natural isomorphism, given by

canH , PR
:= canH , P ⊗B R, canPR ,KR

:= R ⊗B canP,K ⊗B R.

Obviously, βR is a faithfully flat extension, hence (PR, αR, βR) is again a left principal

(H ,KR)-bundle, and we have that (PR)coinvH ≃ R. We refer to this construction as the

restricted principal bundle of (P, α, β) with respect to τ. Again, this yields a functor

PBℓ(H ,K)→ PBℓ(H ,KR).

Remark 4.8.

(i ) If we assume that (P, α, β) in Example 4.7 is only an (H ,K)-bicomodule

algebra, then it is possible to compute the coinvariant subalgebra (PR)coinvH

of the restricted (H ,KR)-bicomodule algebra (PR, αR, βR) by means of the

Documenta Mathematica 22 (2017) 551–609



Morita Theory for Hopf Algebroids via Principal Bibundles 575

coinvariant subalgebra PcoinvH provided that τ is a flat extension. One then

has the following chain of algebra isomorphisms:

(PR)coinvH � A�H (P ⊗B R) � (A�H P) ⊗B R � PcoinvH ⊗B R.

(ii ) For a left principal (H ,K)-bundle (P, α, β) and a morphism ψ = (ψ0, ψ1) :

(B,K) → (C,J) of Hopf algebroids, one can consider the induced left

principal (H ,J)-bundle ψ∗((P, α, β)) on the one hand, and the restricted

left principal (C,KC)-bundle (PC, αC , βC) on the other hand. However, us-

ing the canonical morphismΨ of Hopf algebroids associated to ψ as defined

in Eq. (3.9), the bundle (PC, αC, βC) induced by Ψ coincides with ψ∗(P), i.e.,

ψ∗
(

(P, α, β)
)

= Ψ∗
(

(PC, αC, βC)
)

.

Example 4.9 (Trivial Bundles). An example of an induced principal bundle is the

following, which although rather basic will reveal important in subsequent sections;

cf. also Example 3.9. For any morphism (φ0, φ1) : (A,H) → (B,K) of Hopf alge-

broids, consider

(4.20)

P := H ⊗φ B := H ⊗A B = H ⊗k B/span{t(a)u ⊗ b − u ⊗ φ0(a)b | u ∈ H , b ∈ B, a ∈ A},

as a left principal (H ,K)-bundle by pulling back the unit bundle U (H). More pre-

cisely, consider the following algebra maps:

α : A→ P, a 7→ s(a) ⊗A 1B, and β : B→ P, b 7→ 1H ⊗A b.

Obviously, PB is a faithfully flat module, that is, β is a faithfully flat extension. The

algebra P is an (H ,K)-bicomodule with left coaction λH
P

:= ∆H ⊗A B along with the

right coaction

ρK
P

: P→ P ⊗B K , u ⊗A b 7→ (u(1) ⊗A 1B) ⊗B φ1(u(2))t(b).

Both left and right coactions are easily seen to be morphisms of algebras. The canon-

ical map is defined as

canH , P : P ⊗B P→ H ⊗A P, (u ⊗A b) ⊗B (v ⊗A b′) 7→ u(1) ⊗A (u(2)v ⊗A bb′),

which by Example 4.5 is clearly bijective, and the corresponding translation map

reads:

τP : H → P ⊗B P, u 7→ (u(1) ⊗A 1B) ⊗B (S (u(2)) ⊗A 1B).

The fact that the subalgebra ofH-coinvariant elements is isomorphic to B, see Remark

4.4 (ii), can be deduced directly in this case: from the isomorphisms

A�H (H ⊗A B) � (A�HH) ⊗A B � B

one obtains that PcoinvH � A HP � B via β. The second canonical map is in this case

given by

(4.21) canP,K : P⊗A P→ P⊗BK , (u⊗A b)⊗A (v⊗A b′) 7→ (uv(1)⊗A b)⊗B φ1(v(2))t(b
′).

This example motivates the following definition.
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Definition 4.10. We say that a left principal (H ,K)-bundle P is trivial if it is

isomorphic to an induced bundle of the unit bundle U (H) as defined in Example 4.5,

i.e., if there is an isomorphism

P � φ∗(U (H)) := H ⊗φ B

of principal bundles with respect to some Hopf algebroid morphism φ : (A,H) →

(B,K).

Sufficient and necessary conditions under which a left principal bundle is trivial are

given in the subsequent proposition.

Proposition 4.11. Let (P, α, β) be a left principal (H ,K)-bundle. The following

are equivalent:

(i ) (P, α, β) is a trivial principal bundle;

(ii ) β splits as an algebra map, that is, there is an algebra map γ : P → B such

that γ ◦ β = idB.

Proof. Proving (i) ⇒ (ii) is immediate from the definitions. To prove (ii) ⇒ (i), we

first need to construct a Hopf algebroid morphism (φ1, φ0) : (A,H) → (B,K). Here,

the algebra map φ0 : A→ B will be defined as the composition φ0 = γ ◦ α, whereas φ1

is given by

φ1 : H → K , u 7→ s(γ(u+(0)))u+(1)t(γ(u−)),

using the notation in (4.1) for the translation map; a routine computation shows that

φ = (φ0, φ1) is a morphism of Hopf algebroids, indeed. Consider then the trivial left

principal (H ,K)-bundleH ⊗φ B = H ⊗A B as in (4.20). Let us check that

f : H ⊗A B→ P, u ⊗A b 7→ u+β(γ(u−))β(b),

is a bijection whose inverse will be

g : P→ H ⊗A B, p 7→ p(−1) ⊗A γ(p(0)).

For any p ∈ P, we have

f (g(p)) = f
(

p(−1) ⊗A γ(p(0))
)

= p(−1)+β(γ(p(−1)−))β(γ(p(0)))

= p(−1)+β
(

γ(p(−1)−p(0))
)

(4.5)

= pβ(γ(1P)) = p.

On the other hand, for any u ⊗A b ∈ H ⊗A B, one computes

g( f (u ⊗A b)) = g
(

u+β
(

γ(u−)β(b)
)

= u+(−1) ⊗A γ(u+(0))γ(u−)b

= u+(−1) ⊗A γ
(

u+(0)u−
)

b

(4.6)

= u ⊗A γ(1P)b = u ⊗A b.

Thus, f and g are mutually inverse. It is also clear that g is both an A-algebra and B-

algebra map, as well as an (H ,K)-bicomodule map. Therefore, g is an isomorphism

of left principal (H ,K)-bundles. �
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The following lemma is an analogue of the respective statement for Lie groupoids in

[MoeMr, p. 165]. However, the proof given in this context here is direct and does not

rely on local triviality of bundles.

Lemma 4.12. Any morphism between left principal (H ,K)-bundles is an isomor-

phism. In particular, the category of left principal bundles PBℓ(H ,K) is a groupoid.

Proof. Let f : (P, α, β) → (P′, α′, β′) be a morphism between two left principal

(H ,K)-bundles. By definition both β and β′ are faithfully flat extensions; hence,

it suffices to check that either f ⊗B P′ or P ⊗B f is an isomorphism as f is an A-algebra

and B-algebra map. To this end, consider the following chain

P ⊗B P′
� // (P ⊗B P) ⊗P P′

can⊗PP′// (H ⊗A P) ⊗P P′
� // H ⊗A P′

can−1
// P′ ⊗B P′

of isomorphisms, where we have used the fact that canH , P is right P-linear, is explicitly
given by

p⊗B p′ 7−→ (p⊗B 1)⊗P p′ 7−→ p(−1)⊗A p(0)⊗P p′ 7−→ p(−1)⊗A f(p(0))p′ 7−→ p(−1)+⊗B p(−1)−f(p(0))p′

which by equation (4.5) is exactly the map p ⊗B p′ 7→ f(p) ⊗B p′ as f is a comodule

morphism. Therefore, f ⊗B P′ is an isomorphism and so is f. �

4.2. Comments on local triviality of principal bundles. In the Lie

groupoid context, it is well-known that any left principal bundle is locally trivial

[MoeMr, p. 165]. Thus, the study of principal bundles in this context can be done

locally. In the Hopf algebroid framework, the notion of “local triviality” is not so

clear. The perhaps right way to treat local triviality in this context might be to con-

sider the site of all affine schemes over Spec(k) with a certain Grothendieck topology

τ, and say that a left principal bundle (P, α, β) is locally trivial if there is a τ-cover

Spec(B′) → Spec(B) such that the pull-back bundle P ⊗B B′ is a trivial left principal

(H ,KB′)-bundle. However, as we will see below, when τ is the Zariski topology, any

locally trivial left principal bundle is also globally trivial. Also, the local triviality for

the fpqc (faithfully flat quasi-compact) topology is tautologically true since for any

left principal bundle (P, α, β), the map β : B → P is by definition a faithfully flat

extension.

Moreover, the naive approach to local triviality by localisation apparently does not

yield anything new: let (P, α, β) be a left principal (H ,K)-bundle. Denote by Y :=

Spec(B) the underlying topological space of the locally ringed space associated to B,

and byΩ(B) its subspace of maximal ideals. Take a prime ideal y ∈ Y and consider the

localisation By at this point (the stalk) with τy : B → By as the canonical localisation

algebra map. Using the notation βy : By → Py := P ⊗B By and αy : A → P → Py,

we obtain the restricted left principal (H ,Ky)-bundle (Py, αy, βy) with respect to τy as

defined in Example 4.7. In this way, any left principal (H ,K)-bundle (P, α, β) can be

restricted to a “local principal bundle” (Py, αy, βy) for every y ∈ Y . One can say that

(P, α, β) is locally trivial if and only if (Py, αy, βy) is trivial for every y ∈ Y . Hence, by

Proposition 4.11, this happens if and only if βy : By → Py splits as an algebra map for

every y ∈ Y ; if and only if βm : Bm → Pm splits as an algebra map for everym ∈ Ω(B);

if and only if β : B → P splits as an algebra map, see [Bo, p. 111f.]. In this sense, P

would be locally trivial if and only if it is globally so.
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In a different direction, assume that there exists for any y ∈ Y an element f < y such

that β f : B f → P f splits as an algebra map, which by Proposition 4.11 means that

the restricted left principal bundle (P f , α f , β f ) is trivial on the open neighbourhood

Y f := Spec(B f ) of y in Y : there is a section σ f : Y f → Spec(P f ) → Spec(P), that

is, aβ f ◦ σ f = idY f
, where aβ f : Spec(P f ) → Y f is the associate continuous map of

β f : B f → P f . Again, one sees that a left bundle (P, α, β) with this assumption is in

fact a (globally) trivial bundle. Indeed, take a maximal ideal m ∈ Ω(B): under the

assumptions made, there is an h < m such that βh : Bh → Ph splits as an algebra map;

write σh : Ph → Bh for this splitting. Then one can easily check that

Pm = P ⊗B Bm � P ⊗B Bh ⊗Bh
Bm = Ph ⊗Bh

Bm

σh⊗BBh // Bh ⊗Bh
Bm � Bm

is an algebra map which splits βm. Thus, βm splits for every m ∈ Ω(B), and so does β.

Therefore, (P, α, β) is a trivial bundle.

Now assume that the topology τ is the Zariski one. Then, for a locally trivial left

principal bundle (P, α, β) there exists an extension B→ B′ :=
∏

1≤i≤n B fi
for some set

{ fi}1≤i≤n of elements in B such that B =
∑

1≤i≤n B fi and such that P ⊗B B′ is a trivial

bundle. For any maximal ideal m ∈ Ω(B), there must be some f j < m for which the

bundle (P f j
, α f j

, β f j
) is trivial. We then conclude, as above, that (P, α, β) must be also

trivial.

On the other hand, it seems that the local triviality property of a given left principal

(H ,K)-bundle (P, α, β) is already contained in our condition of faithfully flatness of

β. More specifically, since β is a flat extension, βy is also a flat extension for every

y ∈ Y . Therefore, also By → Pz is a flat extension for every y ∈ Y and z ∈ (aβ)−1(y),

where aβ : Spec(P) =: X → Spec(B) = Y is the associated continuous map of β.

In other words, Y is flat over X [Ha, p. 254]; hence, as mentioned in [Pf, Def. 1.2],

this appears to be a good substitute for local triviality, see [Pa, Sec. 3] for a deeper

discussion of this point.

4.3. Natural comodule transformations. In this subsection, we explore

the Hopf algebroid analogue of natural transformations for groupoid-sets as in Lemma

2.4.

Let (P, α, β) be a left principal (H ,K)-bundle. As mentioned before, one can define a

functor

−�H P : ComodH → ComodK

since our Hopf algebroids are all assumed to be flat. We will give some natural trans-

formations involving this functor, which will be useful in the sequel.

Lemma 4.13. One has the following natural transformations:

(i ) for any rightH-comodule M, the map

(4.22) ζM : (M �H P) ⊗B P→ M ⊗A P, (m�H p) ⊗B p′ 7→ m ⊗A pp′

is an isomorphism of rightK-comodules, where the coaction of the left hand

side is the codiagonal one. The inverse of ζM is given by

ζ̄M : m ⊗A p 7→ (m(0) �H m(1)+) ⊗B m(1)−p;
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(ii ) for any rightH-comodule M, the map

(4.23) ηM : M → (M �H P)�K Pco, m 7→ (m(0) �H m(1)+)�K m(1)−

defines a morphism of rightH-comodules.

Proof. To prove (i), we proceed as follows: that (4.22) is a morphism of comodules

follows from the fact that P is a comodule algebra. Moreover, from (4.3) one deduces

that the inverse is well-defined and using the flatness of P over B along with (4.4) and

(4.5), one checks that the given maps are mutually inverse: for example,

ζ̄M ◦ ζM

(

(m�H p) ⊗B p′
)

= (m(0) �H m(1)+) ⊗B m(1)−pp′ =

= (m�H p(−1)+) ⊗B p(−1)−p(0) p
′ (4.5)

= (m�H p) ⊗B p′,

where in the second step we used that m�H p lies in M �H P.

As for (ii), since P is flat over B, the inclusion (M �H P) ⊗B P →֒ M ⊗A P ⊗B P is the

kernel of the map M ⊗A P ⊗B P→ M ⊗A H ⊗A P ⊗B K ⊗B P given by

m ⊗A p ⊗B q 7−→

m(0) ⊗A m(1) ⊗A p(0) ⊗B p(1) ⊗B q − m(0) ⊗A m(1) ⊗A p ⊗B S (q(1)) ⊗B q(0)

−m ⊗A p(−1) ⊗A p(0) ⊗B p(1) ⊗B q + m ⊗A p(−1) ⊗A p(0) ⊗B S (q(1)) ⊗B q(0).

Composing this map with M → M⊗A P⊗B P, m 7→ m(0)⊗A m(1)+⊗B m(1)−, and applying

(4.3) shows that (4.23) is well-defined on the given cotensor products; that it is also a

morphism of comodules follows from (4.11). �

5. Principal bibundles versus weak equivalences

Parallel to Lemma 2.8, we will investigate in this subsection how weak equivalences

arise from principal bundles. We first analyse the particular case of trivial bundles and

then the general case.

As recalled in Definition 1.1, a morphism φ : (A,H)→ (B,K) of flat Hopf algebroids

is said to be a weak equivalence if and only if the induced functor φ∗ : ComodH →

ComodK of Eq. (3.15) establishes an equivalence of categories (which is, in fact, a

monoidal symmetric equivalence).

Let us consider the trivial bundle P = H ⊗φ B associated to a given morphism φ. One

can easily check that the opposite bundle is Pco = B ⊗φ H as defined in Remark 4.4

(ii). The associated functors are, up to natural isomorphisms,

φ∗ � −�H P and ∗φ � −�K Pco.

Moreover, as mentioned before, −�K Pco is a right adjoint to −�H P.

5.1. The case of trivial principal bibundles. Part of the following propo-

sition was shown in [HoSt, Theorem 6.2] by using a different approach, see also [Ho,

Theorem D & 5.5]. In Theorem 7.1 below we give a more general result.

Proposition 5.1. Let φ = (φ0, φ1) : (A,H) → (B,K) be a morphism of flat Hopf

algebroids, and consider the associated trivial bundle P = H ⊗φ B. The following are

equivalent:

(i ) P is a principal (H ,K)-bibundle.
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(ii ) The canonical morphism

Φ : B ⊗AH ⊗A B→ K , b ⊗A u ⊗A b′ 7→ s(b)φ1(u)t(b′)

of Hopf B-algebroids is an isomorphism, and α is a faithfully flat extension.

(iii ) The morphism φ is a weak equivalence.

Proof. To prove (i) ⇒ (ii), we only need to check that Φ is bijective. By assumption,

canP,K is bijective, and denote the translation map here as

τ : K → P ⊗A P, k 7→ (uk ⊗φ bk) ⊗A (vk ⊗φ ck),

which means that for every k ∈ K

1P ⊗B k = (1H ⊗φ 1B) ⊗A k =
(

ukvk
(1) ⊗A bk) ⊗B φ1(v

k
(2))t(c

k),

Applying the counit ofH we obtain

k = s(bk)φ1

(

s(ε(uk))vk)t(ck).

Define now the map

Λ : K → B ⊗A H ⊗A B, k 7→ φ0(ε(uk))bk ⊗A vk ⊗A ck.

Using the previous equality, we easily get that Φ ◦ Λ = id. In the opposite direction,

we have

Λ ◦ Φ(b ⊗A u ⊗A b′) = b ⊗A u ⊗A b′

since k = s(b)φ1(u)t(b′) is uniquely determined by the equation

1P ⊗B k =
(

1H ⊗φ b
)

⊗B φ1(u)t(b′).

In order to prove (ii) ⇒ (iii), we already know by definition that φ∗ = −�H P is a

symmetric monoidal functor. We need to establish natural isomorphisms

(5.1) (−�H P) ◦ (−�K Pco) � idComodK , (−�K Pco) ◦ (−�H P) � idComodH .

First recall that we have a commutative diagram

0 // Pco
�H P

�
��

// Pco ⊗A P

0 // B ⊗A H ⊗A B
B⊗A∆⊗A B // B ⊗A H ⊗A H ⊗A B.

Hence, the canonical injection Pco
�H P →֒ Pco ⊗A P splits in the category of B-

bimodules. For a right K-comodule N, we then have a chain of isomorphisms
(

N �K Pco
)

�H P � N �K
(

Pco
�H P
)

� N �K K � N

of right K-comodules, where we used the fact that Φ is an isomorphism of K-

bicomodules. Clearly, the resulting isomorphism is natural and this gives the first

natural isomorphism in (5.1). To establish the second one, we will use the faithfully

flatness of PA, that is, of α. For a rightH-comodule M define by means of Eq. (4.23)

the following morphism

θM : M →
(

M �H P
)

�K Pco, m 7→
(

m(0) �H (m(1) ⊗φ 1B)
)

�K (1B ⊗φ S (m(2)))

of rightH-comodules. Using the natural isomorphisms ζ of (4.22), one can show that

θM ⊗A P is an isomorphism, and hence that θ is a natural isomorphism. Therefore, φ∗
is an equivalence of categories.
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The step (iii) ⇒ (i) is seen as follows: by Example 4.9, P is a left principal (H ,K)-

bundle. To check that P is also a right principal (H ,K)-bundle, we need to verify that

the canonical map canP,K of Eq. (4.21) is bijective as well as that α is a faithfully flat

extension. Since φ∗ is an equivalence of categories, there is a natural isomorphism

− ⊗A φ∗(H) � φ∗ ◦ (− ⊗A H),

where −⊗AH : ComodH → ComodH is the composition of the forgetful functor with

the functor defined as in (3.12), and where P = φ∗(H) is an A-module via the algebra

map α : A → P, a 7→ s(a) ⊗A 1B. Hence, such a natural isomorphism directly implies

that α is a faithfully flat extension.

Let us then prove that canP,K is bijective. Since the counit of the adjunction φ∗ ⊣
(

− �K ∗φ(H)
)

is a natural isomorphism (see §3.2), we denote by

ξ
K

: K → B ⊗A H ⊗A B, k 7→ bk ⊗A uk ⊗A ck

its inverse at K , with the help of which we can write

k = s(bk)φ1(u
k)t(ck)

for every k ∈ K . Define moreover

Ψ : P ⊗B K � H ⊗A K → P ⊗A P, u ⊗A k 7→
(

uS (vk
(1)) ⊗φ bk) ⊗A

(

vk
(2) ⊗φ ck)

and compute

Ψ ◦ canP,K

(

(u ⊗A b) ⊗A (v ⊗A b′)
)

= Ψ
(

(uv(1) ⊗A b) ⊗B φ1(v(2))t(b
′)
)

= Ψ
(

uv(1) ⊗A s(b)φ1(v(2))t(b
′)
)

= Ψ
(

uv(1) ⊗A Φ
(

b ⊗A v(2) ⊗A b′
))

= uv(1)S (v(2)) ⊗A b ⊗A v(3) ⊗A b′

=
(

us(ε(v(1))) ⊗A b
)

⊗A

(

v(2) ⊗A b′
)

=
(

u ⊗A b
)

⊗A

(

v ⊗A b′
)

,

which shows that Ψ ◦ canP,K = id. The opposite direction is verified as follows:

canP,K ◦ Ψ(u ⊗A k) = canP,K

(

(

uS (vk
(1)) ⊗A bk) ⊗A

(

vk
(2) ⊗A ck)

)

=
(

uS (vk
(1))v

k
(2) ⊗A bk) ⊗B

(

φ1(v
k
(3))t(c

k)
)

=
(

u ⊗A φ0(ε(vk
(1))b

k) ⊗B

(

φ1(v
k
(2))t(c

k)
)

= u ⊗A

(

s
(

φ0(ε(vk
(1))b

k)φ1(v
k
(2))t(c

k)
)

= u ⊗A

(

s(bk)φ1(v
k)t(ck)

)

= u ⊗A k,

which gives the desired equality. �

Remark 5.2. The statement that α is a flat extension is equivalent to saying that B

is Landweber exact over (A,H) in the sense of [HoSt, Def. 2.1], see Lemma 2.2 in

op. cit. This, as mentioned before, implies in particular that (B, B ⊗A H ⊗A B) is a flat

Hopf algebroid.
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5.2. The case of general principal bibundles. Let now (P, α, β) be an

(H ,K)-bicomodule algebra. Consider the two-sided translation Hopf algebroid

(P,H X P Y K) as in Lemma 3.8. Recall that the tensor product H ⊗A P ⊗B K

is defined by using the module structures sH , APB , and sK , and also that there is a

diagram of Hopf algebroids

(P,H X P Y K)

(A,H)

α
55❧❧❧❧❧❧❧❧❧

(B,K)

β
ii❘❘❘❘❘❘❘❘❘

where β and α are the maps as in Lemma 3.8. On the other hand, one can consider
the extended Hopf algebroids (P, P⊗AH ⊗A P) and (P, P⊗AK ⊗A P), together with the
morphisms of Hopf algebroids:

(5.2) P⊗BK⊗B P→ H X P Y K , p′⊗Bw⊗B p 7→ s(p′)β1(w)t(p) = S
(

p(−1)

)

⊗A p(0) p
′⊗B p(1)w,

(5.3) P⊗AH⊗A P→ H X P Y K , p′⊗A u⊗A p 7→ s(p′)α1(u)t(p) = uS
(

p(−1)

)

⊗A p(0) p
′⊗B p(1),

where s and t are the source and the target maps ofH X P Y K given in Lemma 3.8.

The following proposition shows that principal bundles lead to weak equivalences.

Proposition 5.3. We have the following implications:

(i ) If (P, α, β) is a left principal (H ,K)-bundle, then β is a weak equivalence.

(ii ) If (P, α, β) is a right principal (H ,K)-bundle, then α is a weak equivalence.

(iii ) If (P, α, β) is a principal (H ,K)-bibundle, then β and α are weak equiva-

lences. In this case, (A,H) and (B,K) are weakly equivalent, see Definition

1.1.

Proof. Part (iii) is clearly derived from (i) and (ii). We only prove (i) since (ii) is

obtained mutatis mutandum. Using Proposition 5.1, we need to check that the map

B→ K ⊗B P is faithfully flat, which is clear from the assumptions, and that the map in

Eq. (5.2) is bijective. Denote this map by β̃ and by β̃
′

what is going to be its inverse,

given by

β̃
′

: H X P Y K → P ⊗B K ⊗B P, u ⊗A p ⊗B w 7→ pu+ ⊗B S (u−(1))w ⊗B u−(0).

We compute from one hand

β̃ ◦ β̃
′
(u ⊗A p ⊗B w) = β̃(pu+ ⊗B S (u−(1))w ⊗B u−(0))

= S (u−(−1)) ⊗A u−(0)u+p ⊗B u−(1)S (u−(2))w

= S (u−(−1)) ⊗A u−(0)u+p ⊗B w

(4.9)
= u ⊗A p ⊗B w.

From the other hand, to check that also β̃
′
◦ β̃ = id, we first deduce from Eq. (4.5)

(5.4) p(0) ⊗B p(1) ⊗B p(2) ⊗B 1B = p(−1)+(0) ⊗B p(−1)+(1) ⊗B p(1) ⊗B p(−1)−p(0),
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which we use to see that

β̃
′
◦ β̃(p′ ⊗B w ⊗B p) = β̃

′
(S (p(−1)) ⊗B p(0) p

′ ⊗B p(1)w)

(4.10)
= p(0) p(−1)−p′ ⊗B S (p(−1)+(1))p(1)w ⊗B p(−1)+(0)

(5.4)
= p′ ⊗B t(ε(p(1)))w ⊗B p(0)

(3.4)
= p′ ⊗B w ⊗B p,

and this concludes the proof. �

Corollary 5.4. Let f : (P, α, β)→ (P′, α′, β′) be a morphism in PBℓ(H ,K). Then

the associated morphism

(f,H ⊗A f ⊗B K) : (P,H X P Y K)→ (P′,H X P′ Y K)

between the two-sided translation Hopf algebroids (see §3.5) is an isomorphism of

Hopf algebroids and therefore a weak equivalence.

Proof. This directly follows from Lemma 4.12. That this morphism is a weak equiv-

alence can also be deduced from Proposition 5.3 (i) and the commutative diagram

(3.21). �

Remark 5.5. As mentioned in §4.2, in the Lie groupoid context it is well-known

that any morphism between principal bundles is an isomorphism [MoeMr, p. 165],

and hence induces an isomorphism between the associated two-sided translation

groupoids. Corollary 5.4 states an analogous result for the associated two-sided Hopf

algebroids attached to flat Hopf algebroids. As a consequence, any two-stage zigzag

of weak equivalences, as described in the isosceles triangle in the Introduction, is

unique up to an isomorphism.

6. The bicategory of principal bundles as a universal solution

In this section, we introduce the cotensor product of two principal bundles in the Hopf

algebroid context, which is the analogue of the tensor product of principal bundles

in the framework of Lie groupoids [MoeMr, p. 166], where it is defined as the orbit

space of the fibred product of the underlying bundles, see also Remark 2.2 for abstract

groupoids. In the case of Hopf algebroids, the cotensor product leads to the orbit space

(which is the coinvariant subalgebra as mentioned in §3.4) of the tensor product of the

underlying comodule algebras. With this product, principal bundles can be shown

to form a bicategory. It turns out that trivial bundles constitute a 2-functor from the

canonical 2-category of flat Hopf algebroids to this bicategory, which yields a certain

universal solution (or a calculus of fractions with respect to weak equivalences).

6.1. The cotensor product of principal bundles. Consider three flat

Hopf algebroids (A,H), (B,K), and (C,J), and let (P, α, β) be a left principal (H ,K)-

bundle and (Q, σ, θ) a left principal (K ,J)-bundle. Recall from (3.14) that P�K Q

carries the structure of an (H ,J)-bicomodule. Moreover, it is clear from the defini-

tion of a comodule algebra that this is simultaneously an A-algebra and C-algebra via
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the following commutative diagram

(6.1) A
α //

α̃
44

✼

❇
▲

❯ ❪ ❞

P
−⊗B1Q // P ⊗B Q

P�K Q

66♥♥♥♥♥♥♥♥

0

88qqqqqqqq
Q

1P⊗B−

OO

C.
θ̃

PP

❫❳
❖

❇
✸

✯

✩

θ

OO

This structure converts the triple (P�K Q, α̃, θ̃) into an (H ,J)-bicomodule algebra. In

the subsequent lemma we show that this gives in particular a left principal bundle:

Lemma 6.1.

(i ) The correspondence

PBℓ(H ,K) × PBℓ(K ,J) −→ PBℓ(H ,J),
(

(P, α, β), (Q, σ, θ)
)

7−→ (P�K Q, α̃, θ̃),

(F,G) 7−→ F �K G

gives a well-defined functor.

(ii ) The canonical algebra extension P�K Q →֒ P ⊗B Q is faithfully flat.

Proof. Part (i): as we have seen before, the obvious algebra map θ′ : C → Q→ P⊗B Q

factors through

C
θ̃ //

θ′

""❋
❋❋

❋❋
❋❋

❋❋
P�K Q

_�

��
P ⊗B Q,

and θ′ is a faithfully flat extension since β and θ are so. The faithfully flatness of the

map θ̃ : C → P�K Q is seen as follows: one has a chain of C-module isomorphisms

(6.2)

(P�K Q) ⊗C Q
� // P�K (Q ⊗C Q)

�

P�K can // P�K (K ⊗B Q)
� // P ⊗B Q

(p�K q) ⊗C q′
✤ // p�K (q ⊗C q′)

✤ // p�K (q(−1) ⊗B q(0)q
′)
✤ // p ⊗B qq′,

hence (P�K Q)⊗C Q is also faithfully flat over C, and since by assumption Q is so over

C, we deduce that P�K Q is faithfully flat over C. For better distinction, let us denote

the involved translation maps as

τP : H → P ⊗B P, u 7→ u+ ⊗B u−, τQ : K → Q ⊗C Q, w 7→ w[+] ⊗C w[−].

The canonical map that turns the cotensor product into a bundle is given as

can : (P�K Q) ⊗C (P�K Q)→ H ⊗A (P�K Q),

(p�K q) ⊗C (p′ �K q′) 7→ p(−1) ⊗A (p(0) p
′
�K qq′),
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and what is going to be its inverse is defined by

˜can : H ⊗A (P�K Q)→ (P�K Q) ⊗C (P�K Q),

u ⊗A (p�K q) 7→ (u+(0) �K u+(1)[+]) ⊗C (pu− �K qu+(1)[−]),

which are well-defined maps by the A-linearity of the coaction as well as using (4.7).

We then compute

( ˜can ◦ can)
(

(p�K q) ⊗C (p′ �K q′)
)

= ˜can
(

p(−1) ⊗A (p(0) p′ �K qq′)
)

= (p(−1)+(0) �K p(−1)+(1)[+]) ⊗C (p(0) p(−1)−p′ �K qq′p(−1)+(1)[−])

(4.5)
= (p(0) �K p(1)[+]) ⊗C (p′ �K qq′p(1)[−])

= (p�K q(−1)[+]) ⊗C (p′ �K q′q(0)q(−1)[−])

(4.5)
= (p�K q) ⊗C (p′ �K q′),

where we used the definition of the cotensor product in the fourth step. The oppo-

site verification is left to the reader. To prove part (ii), consider the isomorphism of

Eq. (6.2). It is clear that this is an isomorphism of left P�K Q-modules; since Q is a

faithfully flat C-module, (P�K Q)⊗C Q � P⊗B Q is a faithfully flat P�K Q-module as

well. �

Remark 6.2. Of course, the construction of the functor in Lemma 6.1 can be adapted

mutatis mutandum for right principal bundles as well as for principal bibundles.

An example of the cotensor product construction above arises from the following

proposition,

Proposition 6.3. Let (A,H) and (Ci,Ji), i = 1, 2, be flat Hopf algebroids. Then
any diagram of weak equivalences

(C1,J1) (C2,J2)

(A,H)
θ1

gg❖❖❖❖❖❖❖ θ2

77♦♦♦♦♦♦♦

can be completed to the following diagram

(6.3)
(

Pco

1
�H P2,J1 X

(

Pco

1
�H P2

)

Y J2

)

(C1,J1)

ζ1
33❤❤❤❤❤❤❤❤❤❤❤❤❤

(C2,J2),

ζ2
kk❱❱❱❱❱❱❱❱❱❱❱❱❱

(A,H)
θ1

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲ θ2

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

of weak equivalences, where Pi = H ⊗θi
Ci, i = 1, 2, are the respective associated

trivial bundles.

Proof. Since θi is a weak equivalence, Pi is a principal (H ,Ji)-bibundle by Proposi-

tion 5.1. Therefore, by Lemma 6.1 (and its right hand side version, see Remark 6.2),

the cotensor product Pco

1
�H P2 is a principal (J1,J2)-bibundle as well and the proof

is completed using Proposition 5.3 (iii). �
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Example 6.4. A particular situation of Proposition 6.3 is the one considered in Exam-

ple 3.9: let φ : B → A ← B′ : ψ be a diagram of commutative algebras. Assume that

α : A → P := H ⊗φ B, a 7→ s(a) ⊗A 1B, and α′ : A → P′ := H ⊗ψ B′ are faithfully flat

extensions. This, in particular, means that B and B′ are Landweber exact. Consider

the algebra C := B⊗AH⊗A B′ along with the scalar extension Hopf algebroids (C,Hφ)

and (C,Hψ), where φ : A → C ← A : ψ are the obvious maps constructed from φ

resp. ψ as in Example 3.9. Now (B,Hφ)
α

←− (A,H)
α′

−→ (B′,Hψ) is a diagram of weak

equivalences by Proposition 5.1. Applying Proposition 6.3, we get a diagram

(B,Hφ) −→ (C,H φ) � (C,H φ X C Y H ψ) � (C,H φ)←− (B′,Hψ)

of weak equivalences, where the middle isomorphisms are as in Example 3.9. This, in

fact, is part of the proof given in [HoSt, Theorem 6.5].

6.2. The bicategory of principal bundles. In particular, the constructions

in the preceding subsection allow for the main observation in this section:

Proposition 6.5. The data given by

• flat Hopf algebroids (as 0-cells),
• left principal bundles (as 1-cells),
• as well as morphisms of left principal bundles (as 2-cells)

define a bicategory.

Proof. The unit 0-cells in this bicategory are the unit bundles of the form U (H)
as in Example 4.5. The multiplication of two principal bundles (i.e., their cotensor
product) and of their morphisms is given as in Lemma 6.1. The associativity of the
cotensor product is not obvious in this case as it does not follow directly from the
flatness of the involved Hopf algebroids: let (A,H), (B,K), (C,J), and (D,I) be flat
Hopf algebroids, as well as (P, α, β), (Q, σ, θ), and (S , γ, δ) be left principal (H ,K)-,
(K ,J)-, resp. (J ,I)-bundles. First of all, we have the following diagram

P�K (Q�J S )
� � // P ⊗B (Q�J S )� x

**❱❱❱❱
❱❱❱❱

P ⊗B Q ⊗C S ,

(P�K Q)�J S
� � // (P�K Q) ⊗C S

&
�

44❤❤❤❤❤❤❤❤

where the upper injections result from definitions and the flatness of P over B. The

second map of the lower injections follows from the fact that, as in Lemma 6.1 (ii), the

injection P�K Q →֒ P ⊗B Q is faithfully flat. Using the universal property of kernels,

we deduce the desired natural isomorphism

(P�K Q)�J S
≃
−→ P�K (Q�J S ).

The remaining axioms to be verified in a bicategory are left to the reader. �

We denote this bicategory by PBℓ and refer to it as the bicategory of (left) principal

bundles. The category of 1- and 2-cells from (A,H) to (B,K) then is the category

PBℓ(H ,K), see §4.1.

Similarly, we can introduce the bicategory of right principal bundles PBr and also

the bicategory of principal bibundles PBb as mentioned in Remark 6.2. On the other
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hand, by Remark 4.4 (ii) there is an isomorphism PBℓ
� (PBr)o of bicategories, using

Bénabou’s terminology [Be, §3]: for a bicategory B, denote by Bo its transpose

bicategory, obtained from B by reversing 1-cells. On the other hand, its conjugate

bicategory Bco is obtained by reversing 2-cells. We will call a morphism between two

bicategories in the sense of [Be, §4] a 2-functor.

6.3. Invertible 1-cells. Recall that an internal equivalence between two 0-cells

(A,H) and (B,K) in PBℓ is given by two 1-cells (P, α, β) and (Q, σ, θ) in PBℓ(H ,K)

resp. PBℓ(K ,H), such that

P�K Q � U (H), Q�H P � U (K),

holds as 1-cells, respectively, in PBb(H ,H) and PBb(K ,K). Here we are implicitly
assuming the triangle property, that is, we assume the following diagrams

(6.4) Q�HH
� // Q�H

(

P�K Q
)

� w

**❚❚❚
❚❚❚

❚❚❚

�

��

Q

�

88qqqqqqq

� &&▼▼
▼▼

▼▼
▼ Q ⊗A P ⊗B Q

K �K Q
� // (Q�H P

)

�K Q

'
�

44❥❥❥❥❥❥❥❥❥

and

(6.5) P�K K
� // P�K

(

Q�H P
)

� w

**❚❚❚
❚❚❚

❚❚❚

�

��

P

�

88qqqqqqq

� &&▼▼
▼▼

▼▼
▼ P ⊗B Q ⊗A P

H �H P
� // (P�K Q

)

�H P

'
�

44❥❥❥❥❥❥❥❥❥

to be commutative. In this case, we also say that (A,H) and (B,K) are internally

equivalent in PBℓ. Internal equivalences are, up to 2-isomorphisms, uniquely deter-

mined. More precisely, given a 1-cell P in PBℓ, if we assume that there exists Q and

Q′ in PBℓ such that

Q�H P � U (K), P�K Q � U (H),

and

Q′ �H P � U (K), P�K Q′ � U (H),

then we have Q � Q′ as 1-cells. As in the general case, this is an easy consequence

of the associativity of the cotensor product in PBℓ. Such a P is called an invertible left

principal bundle.

Examples of invertible left principal bundles are typically obtained by bibundles:

Proposition 6.6. Let (P, α, β) be a left principal (H ,K)-bundle and let (Q, σ, γ)

be a right principal (K ,H)-bundle.

(i ) The translation map τ : H → P ⊗B P factors through the map

τ′ : H → P�K Pco.

Analogously, the translation map ν : K → Q ⊗A Q factors through

ν′ : K → Q�H Qco.
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(ii ) Assume moreover that (P, α, β) is a principal (H ,K)-bibundle. Then

(Pco, β, α) is a principal (K ,H)-bibundle and the translation maps induce

isomorphisms

U (H)
≃
−→ P�K Pco, U (K)

≃
−→ Pco

�H P

of principal (H ,H)-bibundles resp. of principal (K ,K)-bibundles. Further-

more, (P, α, β) is an invertible 1-cell in PBℓ(H ,K).

Proof. Part (i): to show that the image of the map τ : u 7→ u+ ⊗B u− lands for every

u ∈ H in the cotensor product P�K Pco, we need to show that

u+(0) ⊗B u+(1) ⊗B u− = u+ ⊗B S (u−(1)) ⊗B u−(0) ∈ P ⊗B K ⊗B P,

where we used the coopposite comodule structure given in (3.11). This is done by

applying the map

P ⊗B P ⊗B K → P ⊗B K ⊗B P, p′ ⊗B p ⊗B w 7→ p′ ⊗B wS (p(1)) ⊗B p(0)

to both sides of Eq. (4.8). The situation for right bundles is proven mutatis mutandum.

Part (ii): by Lemma 6.1 the cotensor product carries the structure of a principal bundle.

It is furthermore clear that τ′ is compatible with the source and target maps of H .

The fact that τ′ is left H-colinear follows directly from (4.3). To show that this map

is also right H-colinear one uses (3.11) along with (4.11). To prove that τ′ is an

isomorphism then follows from Lemma 4.12 as it is, by Eq. (4.2), a morphism of

principal (bi)bundles. To check the last statement, one only needs to show the triangle

property (6.4) (notice that here there is, in fact, only one diagram). Using the notation

of §4.1, the commutativity of (6.4) reads in this case:

p(0) ⊗B p(1)
− ⊗A p(1)

+ = p(−1)+ ⊗B p(−1)− ⊗A p(0) ∈ P ⊗B P ⊗A P,

for every p ∈ P. To verify this, one first applies the map P⊗B can−1
P,K

to both terms and

then uses Eq. (4.5) in order to obtain the same element p(0) ⊗B 1P ⊗B p(1) in P ⊗B P ⊗B

K . �

Proposition 6.7.

(i ) Let (P, α, β) be a left principal (H ,K)-bundle. Assume moreover that

(P, α, β) is an invertible 1-cell in PBℓ with inverse (Q, θ, σ) ∈ PBℓ(K ,H).

Then (P, α, β) is a principal (H ,K)-bibundle and (Q, θ, σ) is a principal

(K ,H)-bibundle. Furthermore, we have an isomorphism

Q � Pco

of principal bundles.

(ii ) Let φ : (A,H)→ (B,K) be a morphism of flat Hopf algebroids. Then φ is a

weak equivalence if and only if the trivial bundle P = H⊗φ B is an invertible

1-cell in PBℓ(H ,K).

Proof. For better orientation, we recall here that the algebra diagrams defining P and

Q are

A
α // P B

βoo , A
σ // Q B,

θoo
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where β and σ are faithfully flat, and also that the canonical maps canH , P and canK ,Q
are bijective.

Part (i): by assumption, we have the following 2-isomorphisms

χ : H
≃
−→ P�K Q, u 7−→ pu

�K qu, and ζ : K
≃
−→ Q�H P, w 7−→ qw

�H pw,

where χ is, in particular, a morphism of H-bicomodules and ζ is a morphism of K-

bicomodules. The triangle properties then say that we have, up to a canonical isomor-

phism,

(6.6)
χ(p(−1))�H p(0) = p(0) �K ζ(p(1)) ∈ P ⊗B Q ⊗A P,

ζ(q(−1))�K q(0) = q(0) �H χ(q(1)) ∈ Q ⊗B P ⊗A Q,

for all p ∈ P, q ∈ Q. On the other hand, we also have an isomorphism

(6.7) P ⊗B Q
� // (P�K Q) ⊗A Q

χ−1⊗AQ // H ⊗A Q

of (H ,K)-bicomodules, where the first isomorphism is the natural transformation of

Eq. (4.22). Using this isomorphism, we can easily check that α is a faithful extension.

Indeed, take a morphism f such that f ⊗A P = 0; then f ⊗A H ⊗A Q = 0 which yields

f = 0 since AH and AQ are faithfully flat. Now for a monomorphism i : X → X′ of

A-modules, we obtain, using again the isomorphism (6.7), that ker(i ⊗A P) ⊗B Q = 0,

which by the bijectivity of the canonical map canK ,Q implies that ker(i⊗A P) = 0 since

BK and AQ are faithfully flat. This shows that α is a faithfully flat extension.

We still need to check that the canonical map can : P ⊗A P→ P ⊗B K is bijective. To

this end, we define what is going to be its inverse as

˜can : P ⊗B K → P ⊗A P, p ⊗B w 7→ pg(qw) ⊗A pw,

where g is simultaneously the A-algebra and B-algebra map given explicitly by

g : Q→ P, q 7→ β
(

ε
(

ζ−1(q(0) �H q(1)+)
))

q(1)−.

This map satisfies

(6.8) pug(qu) = α
(

ε(u)
)

, g(qw)pw = β
(

ε(w)
)

,

for every u ∈ H ,w ∈ K , which is seen as follows: as for the second one, we have for

w ∈ K

g(qw)pw = β
(

ε
(

ζ−1(qw
(0) �H qw

(1)+)
))

qw
(1)−pw

= β
(

ε
(

ζ−1(qw
�H pw

(−1)+)
))

pw
(−1)−pw

(0)

(4.6)
= β

(

ε
(

ζ−1(qw
�H pw)

))

= β
(

ε(w)
)

.

As for the first equation in (6.8), by the rightH-colinearity of χ and Eq. (4.3)

pu⊗B (qu
(0) �H qu

(1)+)⊗B qu
(1)− = pu+(−1) ⊗B (qu+(−1) �H u+(0))⊗B u− ∈ P⊗B

(

Q�H P
)

⊗B P,

holds for any u ∈ H , an equation which can be seen in P ⊗B Q ⊗A P ⊗B P since PB is

flat. Therefore,

pug(qu) = pu+(−1)β
(

εζ−1(qu+(−1) �H u+(0)

))

u−.
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On the other hand, by the first equality of Eq. (6.6),

(pu+(−1) �K qu+(−1) )�H u+(0)⊗B u− =
(

χ(u+(−1))�H u+(0)

)

⊗B u− =
(

u+(0) �K ζ(u+(1))
)

⊗B u−,

which implies that

pu+(−1) ⊗B (qu+(−1) �H u+(0)) ⊗B u− = u+(0) ⊗B ζ(u+(1)) ⊗B u−,

from which, in turn, we obtain that

pug(qu) = pu+ (−1)β
(

εζ−1(qu+(−1) �H u+(0)

))

u− = u+(0)β
(

ε(u+(1))
)

u− = u+u−
(4.4)
= α(ε(u)),

as claimed. Using Eqs. (6.8), we now compute from one hand,

can ◦ ˜can(p ⊗B w) = can(p g(qw) ⊗A pw)

= p g(qw)pw

(0) ⊗B pw

(1)

= p g(qw(1))pw(1) ⊗B w(2)

= p β(ε(w(1))) ⊗B w(2)

= p ⊗B w,

and from the other side,

˜can ◦ can(p′ ⊗A p) = ˜can(p′p(0) ⊗B p(1))

= p′p(0)g(qp(1)) ⊗A pp(1)

(6.6)
= p′pp(−1) g(qp(−1)) ⊗A p(0)

= p′α
(

ε(p(−1))
)

⊗A p(0)

= p′ ⊗A p,

which gives the desired bijection, and so (P, α, β) is a principal bibundle. Similarly,

one checks that (Q, θ, σ) is so as well.

To complete the proof of the first part, we also need to check that Q is the opposite

bundle of P. For this, we use the following chain of isomorphisms of k-modules

P ⊗A P � K ⊗B P � (Q�H P) ⊗B P � Q ⊗A P,

where the last isomorphism is given by Eq. (4.22), which leads to an isomorphism

P � Q of A-modules since P is faithfully flat over A (alternatively, one can try to

check that g : P→ Q is a bundle map and hence an isomorphism by Lemma 4.12). In

the same way, using the faithfully flatness of P over B, one shows that this is also an

isomorphism of B-modules, and thus that Q is the opposite bundle of P.

To prove (ii), assume first that φ is a weak equivalence. Then P is a right principal

(H ,K)-bundle by Proposition 5.1, along with the fact that −�H P defines an equiva-

lence of categories with inverse −�K Pco. From this it is clear that P�K Pco ≃ U (H)

and Pco
�H P ≃ U (K), see Example 4.5 for notation. To prove the converse, using

Proposition 5.1 again, we only have to show that P = H ⊗φ B is a bibundle, which is

a direct consequence of (i). �

Recall that a bigroupoid (see, e.g., [No]) is a bicategory in which every 1-cell and

every 2-cell has an inverse (not necessarily in the strict sense for 1-cells).
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Corollary 6.8. For two 0-cells (A,H) and (B,K) (that is, flat Hopf algebroids),

the full subcategory of invertible 1-cells in PBℓ(H ,K) coincides with the full sub-

category PBb(H ,K) of principal bibundles. In particular, the bicategory PBℓ is a

bigroupoid.

The last statement follows from Lemma 4.12

6.4. The 2-functor P and principal bundles as universal solution.

It is well-known that groupoids, functors, and natural transformations form a 2-

category. Adapting this to Hopf algebroids, one can construct a 2-category as ob-

served in [Na, §3.1]. Here, 0-cells are Hopf algebroids (or even flat ones), 1-cells are

morphisms of Hopf algebroids, and for two 1-cells (ζ0, ζ1), (θ0, θ1) : (A,H)→ (B,K),

a 2-cell c : (ζ0, ζ1) → (θ0, θ1) is defined to be an algebra map c : H → B that makes

the diagrams

(6.9) H
c // B

A

ζ0

??⑦⑦⑦⑦⑦⑦⑦⑦
s

OO H
c // B

A

θ0

??⑦⑦⑦⑦⑦⑦⑦⑦
t

OO H
∆ //

∆

��

H ⊗A H

mK (ζ1⊗Atc)

��
H ⊗AH

mK (sc⊗Aθ1)
// K

commutative, where mK denotes the multiplication inK . The identity 2-cell for (ζ0, ζ1)

is given by 1ζ := ζ0 ◦ε. The tensor product (or vertical composition) of 2-cells is given

as

c′ ◦ c : (ζ0, ζ1)
c // (θ0, θ1)

c′ // (ξ0, ξ1),

which yields a map

(6.10) c′ ◦ c : H → B, u 7→ c(u(1))c
′(u(2)).

We denote by 2-HAlgd the 2-category whose 0-cells are flat Hopf algebroids. Exam-

ples of 2-cells in this 2-category are described by the following lemma:

Lemma 6.9. Let φ : (A,H) → (B,K) be a morphism of flat Hopf algebroids. As

in Example 4.9, consider its associated trivial left principal (H ,K)-bundle (P :=

H ⊗φ B, α, β) together with the diagram

(P,H X P Y K)

(A,H)

α=(α, α1)
55❧❧❧❧❧❧❧❧❧

φ
// (B,K)

β=(β, β1)
ii❘❘❘❘❘❘❘❘❘

of Hopf algebroids, where the top is the two-sided translation Hopf algebroid defined

in Lemma 3.8. Then there is a 2-isomorphism α � β ◦ φ, that is, the above diagram is

commutative up to an isomorphism.

Proof. Consider the following two algebra maps

c : H → P, u 7→ u ⊗φ 1B, and c′ : H → P, u 7→ S (u) ⊗φ 1B.
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Let us check that c : α → β ◦ φ and c′ : β ◦ φ → α are 2-cells in 2-HAlgd. To this

end, we need to show the commutativity of the diagrams in Eq. (6.9), corresponding

to c and c′. By definition, it is clear that the triangles

H
c // P

A

α

??⑦⑦⑦⑦⑦⑦⑦⑦
s

OO H
c // P

A

βφ0

??⑦⑦⑦⑦⑦⑦⑦⑦
t

OO H
c′ // P

A

βφ0

??⑦⑦⑦⑦⑦⑦⑦⑦
s

OO H
c′ // P

A

α

??⑦⑦⑦⑦⑦⑦⑦⑦
t

OO

commute. We only show the rectangle in (6.9) for c′ since an analogous proof works

for c. Thus, we want to show that mHXPYK ◦
(

(β1 ◦ φ1) ⊗A (t ◦ c′)
)

◦ ∆ = mHXPYK ◦
(

(s ◦

c′) ⊗A α1

)

◦ ∆, where the target and source t, s are those of H X P Y K . Taking into

account the structure maps of Lemma 3.8, we compute for u ∈ H

mHXPYK ◦
(

(β1 ◦ φ1) ⊗A (t ◦ c′)
)

◦ ∆(u)

=
(

1H ⊗A 1P ⊗B φ1(u(1))
)

t
(

S (u(2)) ⊗φ 1B

)

=
(

1H ⊗A 1P ⊗B φ1(u(1))
)(

u(4) ⊗A (S (u(3)) ⊗φ 1B) ⊗B φ1(S (u(2)))
)

= u(4) ⊗A (S (u(3)) ⊗φ 1B) ⊗B φ1(u(1))φ1(S (u(2)))

= u(3) ⊗A (S (u(2)) ⊗φ 1B) ⊗B s(φ0(ε(u(1))))

= u(3) ⊗A

(

S (u(2)) ⊗φ φ0(ε(u(1)))
)

⊗B 1K

= u(2) ⊗A

(

S (u(1)) ⊗φ 1B

)

⊗B 1K

= mHXPYK ◦
(

(s ◦ c′) ⊗A α1

)

◦ ∆(u).

Finally, using the vertical composition as defined in (6.10), one can easily check that

c ◦ c′ = (βφ0) ◦ ε and that c′ ◦ c = α ◦ ε. Therefore c ◦ c′ = 1β◦φ and c′ ◦ c = 1α, and this

completes the proof. �

For a non necessarily trivial bundle, one has the following property:

Lemma 6.10. Let (P, α, β) be a 1-cell in PBℓ(H ,K), and denote by (P,H X P Y K)

the two-sided translation Hopf algebroid, together with the diagram

(P,H X P Y K)

(A,H)

α=(α, α1)
55❧❧❧❧❧❧❧❧❧

(B,K)

β=(β, β1)
ii❘❘❘❘❘❘❘❘❘

of flat Hopf algebroids. Consider the trivial bundles α∗
(

U (H)
)

= H ⊗α P and

β∗
(

U (K)
)

= K ⊗β P. Then the map

h : (P, α, β) −→
(

α∗
(

U (H)
)

�HXPYK β
∗(

U (K)
)co
, α̃, β̃
)

,

p 7−→
(

p(−1) ⊗α p(0)

)

�HXPYK

(

1P ⊗β p(1)

)

defines an isomorphism of left principal (H ,K)-bundles.

Proof. Recall that a generic element of the form (u⊗α p)⊗P (p′ ⊗β w) ∈ α∗
(

U (H)
)

⊗P

β∗
(

U (K)
)co

belongs to the cotensor product α∗
(

U (H)
)

�HXPYK β
∗(

U (K)
)co

if and
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only if

(6.11)

(u(1)⊗α p)⊗P

(

u(2)⊗A 1P⊗B 1K
)

⊗P (p′⊗β w) = (u⊗α 1P)⊗P

(

1H ⊗A pp′⊗B w(1)

)

⊗P (1P⊗β w(2))

holds true in α∗
(

U (H)
)

⊗P (H X P Y K) ⊗P β
∗(

U (K)
)co

. Hence, in order to check

that h is well-defined, one needs to show this equality for h(p), for all p ∈ P. The left

hand side in (6.11) for h(p) reads as

(p(−2) ⊗α 1P) ⊗P

(

p(−1) ⊗A 1P ⊗B 1K
)

⊗P (p(0) ⊗β p(1)),

while the right hand side becomes

(p(−1) ⊗α 1P) ⊗P

(

1H ⊗A p(0) ⊗B p(1)

)

⊗P (1P ⊗β p(2)).

Using the expression of the target map ofH X P Y K given in Lemma 3.8, we have

that

(p(−2) ⊗α 1P) ⊗P

(

p(−1) ⊗A 1P ⊗B 1K
)

⊗P (p(0) ⊗β p(1))

= (p(−2) ⊗α 1P) ⊗P

(

p(−1) ⊗A 1P ⊗B 1K
)

t(p(0)) ⊗P (1P ⊗β p(1))

= (p(−3) ⊗α 1P) ⊗P

(

p(−2)S (p(−1)) ⊗A p(0) ⊗B p(1)

)

⊗P (1P ⊗β p(2))

(3.4)
= (p(−2) ⊗α 1P) ⊗P

(

s(ε(p(−1))) ⊗A p(0) ⊗B p(1)

)

⊗P (1P ⊗β p(2))

= (p(−1) ⊗α 1P) ⊗P

(

1H ⊗A p(0) ⊗B p(1)

)

⊗P (1P ⊗β p(2)),

which shows that h is a well-defined map. Recall now that the algebra maps α̃ and β̃

are given by

α̃(a) = (s(a) ⊗α 1P)�HXPYK (1P ⊗β 1K); β̃(b) = (1H ⊗α 1P)�HXPYK (1P ⊗β t(b)).

Clearly, h is simultaneously an A-algebra and a B-algebra map, and the fact that h is

an (H ,K)-bicomodule map is also clear from the definitions. Thus, h is a morphism

of left principal bundles, and so an isomorphism by Lemma 4.12. �

Next we give a further property of the Diagram (6.3) that appeared in Proposition 6.3.

Lemma 6.11. Let θi : (A,H) → (Ci,Ji), i = 1, 2, be two weak equivalences. Then

the diagram of weak equivalences (6.3) constructed in Proposition 6.3 is commutative

up to a 2-isomorphism.

Proof. Denote by Pi := H ⊗θi
Ci, i = 1, 2 the respective associated trivial bibundles

of θi. Up to a canonical isomorphism, the bundle Q := Pco

1
�H P2 is of the form

Q = C1 ⊗A H ⊗A C2. So, considering the obvious algebra map c : H → Q, u 7→

1 ⊗A u ⊗A 1 and writing φ := ζ1 ◦ θ1 and ψ := ζ2 ◦ θ2, one can use the definition of

the maps ζ i in Lemma 3.8 to show that the diagrams in (6.9) are commutative, and

that hence c : φ → ψ is a 1-cell in 2-HAlgd. Its inverse is c−1 : H → Q which sends

u 7→ 1 ⊗A S (u) ⊗A 1. �

Denote by PBℓ co the conjugate bicategory of PBℓ, defined by reversing 2-cells.

Proposition 6.12. There is a 2-functor

P : 2-HAlgd −→ PBℓ co,
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which sends any 1-cell φ : (A,H) → (B,K) to its associated trivial left principal

bundle P = H ⊗φ B. Moreover, a 1-cell φ in 2-HAlgd is a weak equivalence if and

only if P(φ) is an invertible 1-cell in PBℓ co.

Proof. Let c : φ→ ψ be a 2-cell in 2-HAlgd. Then its image by P is given by

P(c) : H ⊗ψ B→ H ⊗φ B, u ⊗ψ b 7→ u(1) ⊗φ c(u(2))b,

which is easily shown to be a morphism of left principal bundles. The remaining

axioms which P is required to fulfil are also easily shown and therefore left to the

reader. Nevertheless, notice that for two composable 1-cells φ : (A,H)→ (B,K) and

φ′ : (B,K)→ (C,J) one has

P(φ′ ◦ φ) � P(φ)�K P(φ′),

that is, P is contravariant. The last statement is a direct consequence of Proposition

6.7 (ii). �

The following theorem is Theorem C in the Introduction and is our second main result:

Theorem 6.13. Let F : 2-HAlgd → B be a 2-functor which sends weak equiva-

lences to invertible 1-cells. Then, up to isomorphism (of 2-functors), there is a unique

2-functor F̃ such that the following diagram

(6.12) 2-HAlgd

F ))❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

P // PBℓ co

F̃

��
B

commutes up to an isomorphism of 2-functors.

Proof. For two 0-cells (A,H) and (B,K) and a 1-cell (P, α, β) in PBℓ co(H ,K), from

Proposition 5.3 one obtains that β : (B,K)→ (P,H X P Y K) is a weak equivalence.

Then, by assumption, F (β) is an invertible 1-cell in B
(

F (A,H),F (B,K)
)

; denote

by F (β)−1 ∈ B
(

F (B,K),F (A,H)
)

its inverse. Define furthermore

F̃ (P, α, β) := F (β)−1 ◦F (α),

which gives a 1-cell in B
(

F (A,H),F (B,K)
)

. In particular, the image of the unit

bundle (U (H), s, t) then is, by using Lemma 6.9, of the form

F̃
(

U (H)
)

� F (id(A,H)) = 1F (A,H),

the identity 1-cell of the monoidal category B
(

F (A,H),F (A,H)
)

. Now, the im-

age of a 2-cell f : (P′, α′, β′) → (P, α, β) in PBℓ co(H ,K) by F̃ is going to be a

2-isomorphism: define

F̃ (f) : F̃ (P′, α′, β′) = F (β′)−1 ◦F (α′) −→ F (β)−1 ◦F (α) = F̃ (P, α, β)

as the unique isomorphism in B
(

F (A,H),F (B,K)
)

satisfying

F (β′) ◦ F̃ (f) = 1F (α′) = 1F (f)◦F (α)

since from Diagram (3.21) follows that f◦α = α′ and f◦β = β′ as 2-cells in 2-HAlgd,

where, by abuse of notation, we did not distinguish between the vertical and horizontal

composition in B.
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The fact that F̃ is compatible with both vertical and horizontal compositions of PBℓ co

is shown as follows: first, as seen above, F̃
(

U (H)
)

� 1F (A,H) for every 0-cell (A,H).

Second, for (P, α, β) ∈ PBℓ(H ,K) and (Q, σ, θ) ∈ PBℓ(K ,J) consider their product

(P�K Q, α̃, θ̃) ∈ PBℓ(H X P Y K ,K X Q Y J),

where α̃ and θ̃ are as in Diagram (6.1). Consider the morphismσ : (B,K)→ (Q,K X

Q Y J) of Hopf algebroids as in Lemma 3.8. From the trivial bundles σ∗(U (K)) ∈

PBℓ(K ,K X Q Y J) and β∗(U (K)) ∈ PBℓ(K ,H X P Y K) we can construct their

product β∗(U (K))co
�K σ

∗(U (K)), which belongs to PBℓ(H X P Y K ,K X Q Y

J). On the other hand, an easy verification shows that (P ⊗B K ⊗B Q, γ, δ) is also a

principal bundle in PBℓ(H X P Y K ,K X Q Y J), where

γ : P→ P ⊗B K ⊗B Q, p 7→ p ⊗B 1K ⊗B 1Q;

δ : Q → P ⊗B K ⊗B Q, q 7→ 1P ⊗B 1K ⊗B q,

and using the canonical bicomodule structure given by the coaction

P ⊗B K ⊗B Q→ (H X P Y K) ⊗P (P ⊗B K ⊗B Q),

p ⊗B w ⊗B q 7→ (1H ⊗A p ⊗B w(1)) ⊗P (1P ⊗B w(2) ⊗B q)

as well as

P ⊗B K ⊗B Q→ (P ⊗B K ⊗B Q) ⊗Q (K X Q Y J),

p ⊗B w ⊗B q 7→ (p ⊗B w(1) ⊗B 1Q) ⊗Q (w(2)S (q(−1)) ⊗B q(0) ⊗C q(1)).

Taking into account the canonical isomorphism

β∗(U (K))co
�K σ

∗(U (K)) =
(

P ⊗β K
)

�K

(

K ⊗σ Q
)

� P ⊗B K ⊗B Q

of bicomodule algebras, we can then identify both principal bundles. The two-sided

translation Hopf algebroids associated to (P�K Q, α̃, θ̃) resp. (P ⊗B K ⊗B Q, γ, δ) are

now related via the morphism

µ :
(

P�K Q, H X (P�K Q) Y J
)

→
(

P ⊗B K ⊗B Q, (H X P Y K) X (P ⊗B K ⊗B Q) Y (K X Q Y J)
)

of Hopf algebroids, sending

(p′ �K q′, u ⊗A (p�K q) ⊗B j) 7→
(

p′(0) ⊗B p′(1) ⊗B q′, α̃(u) ⊗P (p(0) ⊗B p(1) ⊗B q) ⊗Q θ̃( j)
)

,

where α̃ and θ̃ are the associated maps to α̃ and θ̃ as in Lemma 3.8, and from which
we deduce the following commutative diagram:

(

P�K Q, HX(P�K Q)YJ

)

µ
��

(

P⊗BK⊗BQ, (HXPYK )X(P⊗BK⊗BQ)Y(KXQYJ)

)

(P,HXPYK )

γ
44❤❤❤❤❤❤❤❤❤❤❤❤

(Q,KXQYJ)

δ
jj❱❱❱❱❱❱❱❱❱❱❱❱

(A,H )

α̃

..

α

88rrrrrr
(B,K )

β

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲ σ

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
(C,J).

θ

ff▼▼▼▼▼▼▼

θ̃

pp
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Applying the functor F to this diagram and taking into account that β, δ, θ, and θ̃ are

weak equivalences by Proposition 5.3 (while α and σ are not necessarily so since P

and Q are just left bundles), we obtain the equality

F (θ̃)−1 ◦F (α̃) = F (θ)−1 ◦F (σ) ◦F (β)−1 ◦F (α),

which means that

F̃ (Q, σ, θ) ◦ F̃ (P, α, β) = F̃ (P�K Q, α̃, θ̃),

that is, F̃ is contravariant (in the proof of Proposition 6.12 we saw that P is also con-

travariant, hence F̃ ◦P is covariant). To show that F̃ is unique up to isomorphism,

one uses Lemma 6.10. Finally, to check that the Diagram (6.12) is commutative up to

2-isomorphism, one makes use of Lemma 6.9. �

7. Principal bibundles andMorita equivalences of categories of comodules

In this section, which contains one of our main results (Theorem A in the Introduc-

tion), we explore the relationship between bibundles and Morita theory motivated by

Theorem 2.9. We remind the reader that, as in Definition 1.1, two flat Hopf algebroids

are said to be Morita equivalent if their categories of (right) comodules are equivalent

as symmetric monoidal categories.

7.1. Principal bibundles versus monoidal equivalence. The result we

want to prove first and which will be part of the main theorem reads as follows:

Theorem 7.1. Let (A,H) and (B,K) be two flat Hopf algebroids and (P, α, β) be a

principal (H ,K)-bibundle. Then the functor

−�H P : ComodH −→ ComodK

induces a symmetric monoidal equivalence of categories.

Proof. Let us first check that the functor is symmetric monoidal: by Remark 4.4 (ii),

there is an algebra isomorphism

A�H P ≃ Pcoinv ≃ B

as β is injective. Second, for two rightH-comodules M and N define the map

δ : (M �H P)⊗B (N �H P)→ (M⊗A N)�H P, (m�H p)⊗B (n�H p′) 7→ (m⊗A n)�H pp′,

which is a morphism of right K-comodules, where the tensor products are those of

comodules as explained in Remark 3.3. In order to show that δ is an isomorphism,

we proceed similarly as before and show that δ ⊗B idP is an isomorphism since P is

faithfully flat over B. Now a straightforward verification proves that the composition

ζM⊗AN ◦ (δ ⊗B idP) :
(

(M �H P) ⊗B (N �H P)
)

⊗B P→ (M ⊗A N) ⊗A P,

using the natural transformation ζ from (4.22), coincides with the following chain

(

(M �H P) ⊗B (N �H P)
)

⊗B P
id⊗BζN

−−−→ (M �H P) ⊗B (N ⊗A P)
≃
−→
(

(M �H P) ⊗B N
)

⊗A P

ζN⊗AidN

−−−→ (M ⊗A P) ⊗A N
≃
−→ (M ⊗A N) ⊗A P
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of isomorphisms, where the last step simply uses the tensor flip and the associativity

of the tensor product. Clearly, δ is a natural transformation and compatible with the

symmetry of the tensor product of comodules.

Now we check that −�H P is an equivalence of categories, using the natural transfor-

mation

ηM : M → (M �H P)�K Pco, m 7→ (m(0) �H m(1)+)�K m(1)−

for any rightH-comodule M from (4.23). As above, one shows that ηM ⊗A P is an iso-

morphism by using the natural transformation ζ− from (4.22). Explicitly, the inverse

of ηM ⊗A P is given by

(

(M �H P)�K Pco
)

⊗A P
ζM �H P // (M �H P) ⊗B P

ζM // M ⊗A P,

where the first ζ corresponds to the left principal bundle Pco while the second one

corresponds to P. One therefore has a natural isomorphism

(−�K Pco) ◦ (−�H P)
≃
−→ idComodH .

Analogously, one obtains a natural isomorphism (−�H P) ◦ (−�K Pco) → idComodK ,

which concludes the proof. �

The converse of Theorem 7.1 will be investigated in the next section; however, we

give here a partial answer when two Hopf algebroids are weakly equivalent.

Proposition 7.2. Two flat Hopf algebroids (A,H) and (B,K) are weakly equiva-

lent if and only if there is a principal bibundle connecting them.

Proof. The implication (⇐) directly follows from part (iii) of Proposition 5.3. As for

the opposite direction (⇒), assume that there is a diagram

(C,J)

(A,H)

ϕ 77♣♣♣♣♣♣♣
(B,K)

ω
ff◆◆◆◆◆◆◆

of flat Hopf algebroids, where ϕ and ω are weak equivalences. Denote the associated

trivial bundles by P := K ⊗ω C and Q := C ⊗ϕ H . As shown in Proposition 5.1 and

explained in Remark 6.2, P ∈ PBb(K ,J) and Q ∈ PBb(J ,H) are trivial bibundles,

and we can form the bundle P�J Q, which is an object in PBb(K ,H), or equivalently

(P�J Q)co ∈ PBb(H ,K), and this finishes the proof. �

7.2. Symmetric monoidal equivalence versus principal bibundles.

Starting with two Morita equivalent flat Hopf algebroids, the aim of this subsection is

to extract from these data a principal bibundle. To this end, let us first recall some ba-

sic facts on monoidal functors, restricting ourselves to the case of monoidal categories

of comodules over flat Hopf algebroids.

Let (A,H) and (B,K) be two flat Hopf algebroids, and assume that there is a symmet-

ric monoidal equivalence

F : ComodH −→ ComodK
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with inverseG in what follows. In particular, this means that there is a natural isomor-

phism

(7.1) φ1

−,− : F (−⊗A−) −→ F (−)⊗BF (−), φ0 : B
�

−→ F (A),

where the latter is an algebra isomorphism, and the notation −⊗A− stands for the ten-

sor product of comodules as was explained in Remark 3.3. Both φ1 and φ0 should

be compatible in a coherent way with the associativity, the commutativity (i.e., the

symmetries), and the unitary property of the tensor products of both ComodH and

ComodK . Notice that, in this case, there also exists a symmetric monoidal equiva-

lence between left comodules.

The inverse natural transformation of φ will be denoted by ψ. It is known that the

functor G is also a symmetric monoidal functor; its associated natural isomorphism

can be computed from that of F by using the natural transformation defining the

equivalence.

Now, let M ∈ T BicomodH , where T is any commutative algebra, i.e., M is a (T, A)-

bimodule and rightH-comodule with left T -linear coaction. Then, we have an algebra

map

λl : T → ComodH (M, M), t 7→ {m 7→ tm},

which is used to get a new algebra map

A
λl // ComodH (M, M)

F // ComodK
(

F (M),F (M)
)

,

from which we obtain that F (M) is a (T, B)-bimodule and that its right coaction ρK
F (M)

is left T -linear, that is, F (M) ∈ T BicomodK . Moreover, F is restricted to the functor

F : T BicomodH → T BicomodK .

Following [BrzWi, §23 & §39.3], since F is right exact and commutes with inductive

limits, there is a natural isomorphism over (right) modules ModT

(7.2) Υ−,M : F (− ⊗T M) −→ − ⊗T F (M),

which is natural on M as well, and where the functor − ⊗T M : ModT → ComodH is

defined as in (3.12). Furthermore,Υ defines morphisms of rightK-comodules. Notice

that ΥT,M : F (M)→ T ⊗T F (M) is just the canonical map sending x 7→ 1T ⊗T x.

For instance, in case M := H with left A-action given by the source s, we obtain an

algebra map

λs : A→ ComodH (H ,H), a 7→ {u 7→ s(a)u}.

The composition

A
λs // ComodH (H ,H)

F // ComodK
(

F (H),F (H)
)

induces on F (H) an (A, B)-bimodule structure with a left A-linear right coaction ρK
F (H)

.

In fact, F (H) becomes an (H ,K)-bicomodule with these actions as follows. The

structure of a leftH-comodule is given by

(7.3) λH
F (H)

: F (H)
F (∆) // F (H ⊗AH)

�

Υ // H ⊗A F (H),
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using the natural isomorphism of Eq. (7.2), which can be shown to be a morphism of

right K-comodules. Similar arguments hold true for G. Furthermore, we have natural

isomorphisms

(7.4) F � −�H F (H), G � −�K G(K).

SinceH is a monoid in ComodH , it follows thatF (H) is a monoid in ComodK . Thus,

F (H) is a right K-comodule algebra with respect to the underlying algebra map

(7.5) β : B
φ0

� F (A)
F (t)
−→ F (H).

Explicitly, the multiplication in F (H) is given by

(7.6) mF (H) : F (H) ⊗B F (H)
ψH ,H // F (H ⊗AH)

F (mH ) // F (H).

Note that F (H) is commutative since φ is so (preserves the symmetries) as well as

H .

Next, we want to endow F (H) with the structure of a leftH-comodule algebra using

the left comodule structure of Eq. (7.3). The A-algebra structure on F (H) is given by

the linear map

(7.7) α : A→ F (H), a 7→ F (λs(a))(1F (H)) = a.1F (H),

where 1F (H) is just the identity element of the rightK-comodule algebra F (H), which

can be identified with F (t) ◦ φ0(1B) = F (t)(1F (A)). We have:

Lemma 7.3. The map α of Eq. (7.7) is an algebra map. That is, there exists a map

which makes the diagram

F (H)⊗F (H) //

��

F (H)⊗AF (H) //❴❴❴❴❴❴ F (H)

F (H)⊗BF (H)
ψ // F (H⊗AH)

F (mH )

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧

commutative.

Proof. It is clear that α(1A) = 1F (H) since F (λs(1A)) = idF (H). Now, for a, a′ ∈ A

compute

mF (H)

(

α(a) ⊗B α(a′)
)

= F (mH) ◦ ψH ,H
(

F (λs(a))(1F (H)) ⊗B F (λs(a′))(1F (H))
)

= F (mH) ◦ ψH ,H ◦
(

F (λs(a)) ⊗B F (λs(a′))
) (

1F (H) ⊗B 1F (H)

)

= F (mH) ◦ F
(

λs(a) ⊗A λs(a′)
)

◦ ψH ,H
(

1F (H) ⊗B 1F (H)

)

= F
(

mH ◦ (λs(a) ⊗A λs(a′))
)

◦ ψH ,H
(

1F (H) ⊗B 1F (H)

)

= F
(

λs(aa′) ◦mH

)

◦ ψH ,H
(

1F (H) ⊗B 1F (H)

)

= F (λs(aa′)) ◦ F (mH) ◦ ψH ,H
(

1F (H) ⊗B 1F (H)

)

= F (λs(aa′)) ◦mF (H)

(

1F (H) ⊗B 1F (H)

)

= F (λs(aa′))
(

1F (H)

)

= α(aa′).

As the last statement is obvious, this finishes the proof. �
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In order to show that the coaction (7.3) is an algebra map with respect to α, we need

to introduce the following natural transformations:

(7.8)
ΩX,Y :

(

X ⊗A F (H)
)

⊗B
(

Y ⊗A F (H)
)

−→ (X ⊗A Y) ⊗A F (H),

(x ⊗A p) ⊗B (y ⊗A q) 7−→ (x ⊗A y) ⊗A pq,

(7.9)
∇X,Y :

(

X ⊗A H
)

⊗A
(

Y ⊗A H
)

−→ (X ⊗A Y) ⊗A H ,

(x ⊗A u) ⊗A (y ⊗A v) 7−→ (x ⊗A y) ⊗A uv,

where X and Y are A-modules and where we used the multiplication in F (H). Using

a functor similar to the one in (3.12), one sees that Ω defines morphisms of right

K-comodules since the right K-coaction of F (H) is left A-linear (with respect to

the A-action given by α). Analogously, ∇ defines morphisms of right H-comodules.

These natural transformations are compatible in the following way:

Proposition 7.4. The diagram

F
(

(X⊗AH )⊗A(Y⊗AH )
) F (∇) // F ((X⊗AY)⊗AH )

Υ

��

F (X⊗AH )⊗BF (Y⊗AH )

Υ⊗BΥ ))❚❚❚
❚❚❚

❚❚❚
❚❚

ψ
55❥❥❥❥❥❥❥❥❥❥❥❥

(

X⊗AF (H )
)

⊗B
(

Y⊗AF (H )
) Ω // (X⊗AY)⊗AF (H )

of right K-comodules commutes.

Proof. First, notice that both Υ◦F (∇)◦ψ andΩ◦(Υ⊗BΥ) are natural transformations

on (X, Y). Now, up to the canonical isomorphisms A ⊗A H � H and A ⊗A F (H) �

F (H), we see that the diagram commutes for X := A and Y := A as this is just the

definition of the multiplication mF (H) defined in (7.6). Using the naturality of both

paths in the diagram, one can also show that the diagram commutes when X and Y are

free A-modules of finite rank. Since the involved functors commute with direct sums,

the same holds true when X and Y are free A-modules. Lastly, since all involved

functors are right exact, one can use free representations of any A-module to complete

the proof. �

Proposition 7.5. The pair (F (H), α) is a leftH-comodule algebra with respect to

the coaction (7.3).

Proof. We need to check that the map λ = Υ ◦ F (∆) in (7.3) is an algebra map. First,
we prove unitality, that is, λ(1F (H)) = λ(α(1A)) = 1H ⊗A 1F (H): this follows from the
commutative diagram

F (A)
F (t) //

F (t)

��

F (A)

F (∆)

��
F (H )

F (t⊗AH ) //

Υ

��

F (H⊗AH )

Υ

��
A⊗AF (H )

t⊗AF (H ) // H⊗AF (H ),
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where the left hand side Υ is just the canonical map y 7→ 1A ⊗A y.
Now we proceed to check that λ is multiplicative. To this end, we show that the
diagram

F (H )⊗F (H )

��

// F (H )⊗AF (H )
m // F (H )

F (∆)

��

F (H )⊗BF (H )

F (∆)⊗BF (∆)

��

ψ // F (H⊗AH )

F (∆⊗A∆)

��

F (ρ)
❘❘❘

❘❘❘

))❘❘❘
❘❘❘

F (m)❢❢❢❢❢❢❢❢❢❢❢❢❢

22❢❢❢❢❢❢❢❢❢❢❢❢❢

F
(

(H⊗AH )⊗AH
)

Υ

��

F (m⊗AH) // F (H⊗AH )

Υ

��

F (H⊗AH )⊗BF (H⊗AH )

Υ⊗BΥ

��

ψ // F
(

(H⊗AH )⊗A(H⊗AH )
)

F (∇)❧❧❧❧❧❧

66❧❧❧❧❧❧

(

H⊗AF (H )
)

⊗B
(

H⊗AF (H )
) Ω // (H⊗AH )⊗AF (H )

m⊗AF (H) // H⊗AF (H )

is commutative, which follows from Lemma 7.3, Proposition 7.4, as well as from the

very definitions of all involved maps and natural transformations. �

Our next aim is to show that F (H) is a principal left (H ,K)-bundle with respect to α

and β. As a start, the subsequent lemma concerns the faithfully flatness.

Lemma 7.6. Assume that there is a symmetric monoidal equivalence

F : ComodH → ComodK

with inverse G. Then, for every right H-comodule M whose underlying A-module is

faithfully flat, F (M) is a faithfully flat B-module.

Proof. One can easily check that there is a natural isomorphism

OK(−) ⊗B F (M)
�

−→ F
(

G(−) ⊗A M
)

,

where OK : ComodK → ModB denotes the forgetful functor. Hence, OK(−) ⊗B F (M)

is a faithful and exact functor. Using the fact that F (M) carries the structure of a left

K-comodule (in fact its opposite comodule), we see that − ⊗B F (M) is a faithful and

exact functor. �

With the help of this lemma we can state:

Proposition 7.7. The triple (F (H), α, β) forms a left principal (H ,K)-bundle.

Proof. From Proposition 7.5 follows that (F (H), α) is a left H-comodule algebra.

Therefore, (F (H), α, β) is an (H ,K)-bicomodule algebra since (F (H), β) is a right

K-comodule algebra.
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As Ht is faithfully flat, F (H)B is, using Lemma 7.6, also faithfully flat and therefore

β is a faithfully flat extension. To complete the proof, we need to check that the

canonical map

canH ,F (H) : F (H) ⊗B F (H)
λ⊗BF (H) // H ⊗A F (H) ⊗B F (H)

H⊗A m // H ⊗A F (H)

is bijective. To this end, using Eqs. (7.3) and (7.6) to express the coaction and the

multiplication in F (H), we write down the map canH ,F (H) in the diagram

F (H)⊗BF (H)

ψ

��

F (∆)⊗BF (H) // F (H⊗AH)⊗BF (H)
Υ⊗BF (H) //

ψ

��

H⊗AF (H)⊗BF (H)

H⊗Aψ

��
F (H⊗AH)

F (∆⊗AH) //

F (canH ,H ) ..

F
(

(H⊗AH)⊗AH
)

=F
(

H⊗A(H⊗AH)
) Υ //

F (H⊗A m)

��

H⊗AF (H⊗AH)

H⊗AF (m)

��
F (H⊗AH)

Υ // H⊗AF (H).

Once shown that this diagram is commutative, it follows that the canonical map for

F (H) is bijective as canH ,F (H) = Υ◦F (canH ,H )◦ψ, where canH ,H is bijective being the

canonical map of the unit bundle U (H). To check that the above diagram is commu-

tative, one only needs to show the commutativity of the rectangle in the upper right.

This, in fact, forms part of the well-known properties of the natural transformation

Υ; for the sake of completeness, we explain how this works: to start with, denote by

T ,S : ModA → ComodK the functors

T (X) = F (X ⊗A H) ⊗B F (H), S(X) = F
(

X ⊗A (H ⊗A H)
)

.

Clearly, ψ(−⊗AH),H : T → S is a natural transformation. Since T and S commute

with direct limits, we have for every A-module X:

(X ⊗A ψ(A⊗AH),H ) ◦ ΥTX = Υ
S

X ◦ ψ(X⊗AH),H .

Using this equality for X := A, we deduce the claim sinceΥT
X
= ΥF

X
⊗BF (H) holds. �

Corollary 7.8. Let (D,I) be another flat Hopf algebroid. Then the functor F

restricts to a functor

F : PBℓ(I,H) −→ PBℓ(I,K).

Proof. By Proposition 7.7, the triple (F (H), α, β) defines a principal left (H ,K)-

bundle; the cotensor product (R�H F (H), δ̃, β̃), where (R, δ, ω) is a principal left

(I,H)-bundle, yields as in Lemma 6.1 a principal left (I,K)-bundle. Then, the first

natural isomorphism of Eq. (7.4) leads to R�H F (H) � F (R), which is an isomor-

phism of (I,K)-bicomodules, and this proves the claim. �

The following proposition (mentioned in Figure 1 in the Introduction) shows that two

Morita equivalent Hopf algebroids are connected by a principal bibundle.
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Proposition 7.9. Let (A,H) and (B,K) be two flat Hopf algebroids. Assume that

there is a symmetric monoidal equivalence of categories F : ComodH → ComodK
with inverse G. Then (F (H), α, β) is a principal (H ,K)-bibundle whose opposite

bundle is G(K).

Proof. Set P := F (H) and Q := G(K). From Proposition 7.7 follows that (P, α, β) is

a left principal (H ,K)-bundle. Interchanging F with G, we also obtain that (G, σ, θ)

is a left principal (K ,H)-bundle, where θ : A � G(B) → G(K), and σ is constructed

in the same way as was α.

On the other hand, using the equivalences F and G together with the natural transfor-

mations

F � −�H P, G � −�K Q,

of Eq. (7.4), we obtain the isomorphisms

P�K Q � U (H), Q�H P � U (K)

of H and K-bicomodules, respectively, which fulfil the triangle properties (6.4) and

(6.5). This implies that (P, α, β) is an invertible 1-cell in the category PBℓ(H ,K) of

principal left bundles. Now, conclude the proof by making use of Proposition 6.7

(i). �

To sum up, we can state the main theorem of this article motivated by Theorem 2.9 in

the groupoid case:

Theorem 7.10. Let (A,H) and (B,K) be two flat Hopf algebroids. The following

are equivalent:

(a) (A,H) and (B,K) are Morita equivalent.

(b) There is a principal bibundle connecting (A,H) and (B,K).

(c) (A,H) and (B,K) are weakly equivalent.

Proof. The implication (a) ⇒ (b) is Proposition 7.9, whereas the implication (b) ⇒

(c) is contained in Proposition 7.2. Finally, the step (c)⇒ (a) is obvious from the very

definitions. �

Remark 7.11. As mentioned in Figure 1 in the Introduction, Theorem 7.1 also states

the implication (b)⇒ (a), whereas Proposition 7.2 moreover yields (c)⇒ (b).

7.3. The categorical group of monoidal symmetric auto-

equivalences. In this subsection, we combine the results of Theorems 7.10

and 7.1 by taking a single flat Hopf algebroid. More precisely, we show that all

symmetric monoidal auto-equivalences of the category of right H-comodules form

a categorical group with morphisms given by natural tensor transformations, and

conclude that this group is equivalent to the categorical group of principal bibundles.

Denote by Aut⊗(A,H) the category of monoidal symmetric auto-equivalences of the

category of (right) comodules ComodH over a flat Hopf algebroid (A,H). Morphisms

in this category are natural tensor transformations, that is, natural transformations
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θ : F → F ′ such that the diagrams

(7.10)

F
(

X ⊗A Y
)

Θ
X⊗AY //

�φ1,F

��

F ′
(

X ⊗A Y
)

φ1,F ′
�

��
F (X) ⊗B F (Y)

ΘX⊗
BΘY // F ′(X) ⊗B F ′(Y)

F (A)
ΘA // F ′(A)

B

�

φ0,F

<<①①①①①①①①①φ0,F ′

�

bb❊❊❊❊❊❊❊❊

commute. Note that this gives a sets-category (in the sense that homomorphisms be-

tween two objects form a set) as ComodH is a Grothendieck category and the involved

functors preserve inductive limits. The category Aut⊗(A,H) is itself a monoidal cat-

egory with multiplication given by the composition of functors and identity object

given by the identity equivalence idComodH
. On the other hand, as in Subsection 6.1, we

are interested in the monoidal category
(

PBb(H ,H), �H ,U (H)
)

. Both categories are

in fact categorical groups (more precisely, a 2-group and a bigroup) and are equivalent

as such.

Proposition 7.12. Let (A,H) and (B,K) be two flat Hopf algebroids, F ,F ′ :

ComodH → ComodK two symmetric monoidal equivalences, and Θ : F → F ′ a

natural tensor transformation. Then ΘH : F (H) → F ′(H) is a morphism of prin-

cipal (H ,K)-bibundles. In particular, Θ is a natural isomorphism and consequently
(

Aut⊗(A,H), ◦, idComodH

)

is a categorical group.

Proof. By definition, ΘH is a morphism of right K-comodule algebras. Let us check
that it is also a morphism of leftH-comodule algebras. Recall that the respective left
comodule algebra structure of both F (H) and F ′(H) is given as in Proposition 7.5.
That ΘH is leftH-colinear follows from the following diagram:

F
(

H ⊗A H
) F(∆) //

ΘH⊗AH

��

F (H)

ΘH

��

H ⊗A F (H)
λ

44

�

ΥF 44❤❤❤❤❤❤❤❤❤❤

H⊗AΘH

��

F ′(H ⊗A H)
F ′(∆) // F ′(H)

H ⊗A F ′(H)
λ

44

�

ΥF ′ 44❤❤❤❤❤❤❤❤❤❤

where the left hand square is commutative by the universal property of the natural

isomorphism Υ. The A-algebra structure of F (H) is given by the algebra map αF (H) :

A → F (H), a 7→ F (λs(a))(1F (H)), and similarly for F ′(H), see Eq. (7.7). Thus, for

any a ∈ A, we have

ΘH ◦ α
F (H)(a) = ΘH ◦F (λs(a))(1F (H)) =

=F
′(λs(a)) ◦ ΘH(1F (H)) = F

′(λs(a))(1F ′(H)) = αF
′(H)(a)

since ΘH is a B-algebra map. Therefore,ΘH is an A-algebra map as it is multiplicative,

and this finishes the proof of the first statement. Now, by Lemma 4.12, ΘH is an
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isomorphism and this suffices to show that Θ is a natural isomorphism: using the

natural isomorphisms given in Eqs. (7.2) and (7.4), one can see that the diagram

F
Θ //

�

��

F ′

�

��
−�H F (H)

−�H ΘH

// −�H F ′(H)

of natural transformations commutes, which means that Θ is a natural isomorphism.

�

The following is Theorem B in the Introduction:

Theorem 7.13. The functors
(

Aut⊗(A,H), ◦, idComodH

)

−→
(

PBb(H ,H), �H ,U (H)
)

, F 7−→ F (H)
(

PBb(H ,H), �H ,U (H)
)

−→
(

Aut⊗(A,H), ◦, idComodH

)

, (P, α, β) 7−→ −�H P

establish a monoidal equivalence of categorical groups.

Proof. This essentially follows from Proposition 7.12, Theorems 7.10 and 7.1, in com-

bination with Corollary 6.8. �

Appendix A. Some observations on coinvariant subalgebras

As our guideline was to mimic the theory of principal bundles in the Lie groupoid

context, we include for sake of completeness two results dealing with coinvariant sub-

algebras. They correspond to the statement that for any G -equivariant submersion

Q → P, where P is a principal G -bundle and Q a G -manifold, Q/G is a manifold as

well and the canonical projection Q→ Q/G yields a principal G -bundle, see [MoeMr,

Lemma 2.8].

Proposition A.1. Let (Q, σ) be a left H-comodule algebra, F : P → Q be anH-

colinear injective map of A-rings, and (P, α, β) a trivial left principal (H ,K)-bundle

of the form P := H ⊗φ B. Consider the algebra Q ⊗P B, defined by using the splitting

of β in the second factor and F in the first one. Then

(i ) there is an algebra isomorphism

T := QcoinvH � Q ⊗P B,

and the canonical monomorphism τ : QcoinvH →֒ Q splits as an algebra map;

(ii ) the triple (Q, σ, τ) is a left principal (H , T )-bundle.

Proof. Denote by

γ : P := H ⊗φ B→ B, u ⊗φ b 7→ φ0(ε(u))b,

the splitting of β, see Example 4.9. To prove (i), define first

ω : Q ⊗P B→ Q, q ⊗P b 7→ q(0)F
(

S (q(−1)) ⊗φ b
)

,

which via the map (q ⊗B b, q′) 7→ ω(q ⊗B b)q′ yields a left (Q ⊗P B)-action on Q. One

can easily check that ω is well-defined and has

κ : Q→ Q ⊗P B, q 7→ q(0) ⊗P φ0

(

ε(q(−1))
)
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as a splitting, that is, κ ◦ ω = idQ⊗P B. Since the image of ω lands in QcoinvH , we can

use this splitting to establish an isomorphism QcoinvH � Q ⊗P B of algebras, which also

shows that τ is a split monomorphism.

To prove (ii), we already know by part (i) that τ splits, so in order to prove that τ is

faithfully flat, we only need to check that τ is flat or, equivalently, that this is true for

ω. To this end, we will check that there is a natural isomorphism

− ⊗Q⊗PB Q → − ⊗A Ht,

where we consider Q ⊗P B as an A-algebra via the map φ0 in the second factor. This

will be sufficient sinceHt is flat. Let X be a (Q ⊗P B)-module and consider the map

ϑ : X ⊗Q⊗P B Q→ X ⊗A Ht, x ⊗Q⊗P B q 7→
(

x(q(0) ⊗P 1B)
)

⊗A q(−1),

which is well-defined as the following consideration shows: from one hand, we have

ϑ
(

(x(q ⊗P b)) ⊗ q′
)

= (x(qq′(0) ⊗P b)) ⊗A q′(−1).

On the other hand,

ϑ
(

(x ⊗ ω(q ⊗P b)q′
)

= ϑ
(

x ⊗
(

q(0)F(S (q(−1)) ⊗φ b)
)

q′
)

= x
(

[

q(0)F
(

S (q(−1)) ⊗φ b
)

q′(0)

]

⊗P 1B

)

⊗A q′(−1)

= x
(

(q(0)q
′
(0)) ⊗P γ(S (q(−1)) ⊗φ b)

)

⊗A q′(−1)

= x
(

(q(0)q
′
(0)) ⊗P φ0

(

ε(q(−1))
)

b
)

⊗A q′(−1)

= x
(

(q(0)q
′
(0)) ⊗P γα

(

ε(q(−1))
)

b
)

⊗A q′(−1)

= x
(

(q(0)q
′
(0)F
(

s(ε(q(−1))) ⊗φ 1B

)

) ⊗P b
)

⊗A q′(−1)

= x
(

(q(0)q
′
(0)σ(ε(q(−1)))) ⊗P b

)

⊗A q′(−1)

= x
(

(qq′(0) ⊗P b)
)

⊗A q′(−1)

= ϑ
(

(x(q ⊗P b)) ⊗ q′
)

,

which shows the well-definedness of ϑ. The inverse of ϑ is now given by

ϑ−1 : X ⊗AHt → X ⊗Q⊗P B Q, x ⊗A u 7→ x ⊗Q⊗PB F(u ⊗φ 1B),

and the fact that ϑ is a natural transformation is easily checked from the definition. Let

us finally check that the canonical map can : Q ⊗T Q → H ⊗A Q is bijective; define

can−1 : H ⊗A Q→ Q ⊗T Q, u ⊗A q 7→ F
(

u(1) ⊗φ 1B

)

⊗T F
(

S (u(2)) ⊗φ 1B

)

q,

and we leave it to the reader to check that this is the desired inverse, indeed. �

In case that P is no longer trivial, we can make the following statement:

Proposition A.2. Let (Q, σ), and F : P→ Q be as in Proposition A.1 and (P, α, β)

any left principal (H ,K)-bundle. Then the canonical map

can : Q ⊗T Q→ H ⊗A Q, q ⊗T q′ 7→ q(−1) ⊗A q(0)q
′

is bijective, where τ : QcoinvH =: T → Q is the canonical monomorphism.
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Proof. Define a map

˜can : H ⊗A Q→ Q ⊗T Q, u ⊗A q 7→ F(u+) ⊗T F(u−)q,

and we will explicitly compute that can ◦ ˜can = idH⊗A Q along with ˜can ◦ can = idQ⊗T Q.

Since F is anH-colinear morphism of algebras, one sees that

(can◦ ˜can)(u⊗A q) = (F(u+))(−1)⊗A (F(u+))(0)F(u−)q = u+(−1)⊗A F(u+(0)u−)q = u⊗A q,

using (4.6). On the other hand,

( ˜can ◦ can)(q ⊗T q′) = F(q(−1)+) ⊗T F(q(−1)−)q(0)q
′

= F(q(−1)+)F(q(−1)−)q(0) ⊗T q′

= F(α(ε(q(−1))))q(0) ⊗T q′ = q ⊗T q′,

using (4.4) in the third step, and where the second step is justified by the fact that an

element of the form q(−1)+⊗B F(q(−1)−)q(0) ∈ P⊗B Q actually lies in P⊗BT = P⊗B QcoinvH ,

which we show now:

(idP ⊗B λ)(q(−1)+ ⊗B F(q(−1)−)q(0)) = q(−2)+ ⊗B q(−2)−(−1)q(−1) ⊗A F(q(−2)−(0))q(0)

= q(−3)+ ⊗B S (q(−2))q(−1) ⊗A F(q(−3)−)q(0)

= q(−2)+ ⊗B t(ε(q(−1))) ⊗A F(q(−2)−)q(0)

= q(−1)+ ⊗B 1H ⊗A F(q(−1)−)q(0),

where we used theH-colinearity of F together with (4.11) and (4.4). �

Remark A.3. If one were able to show that τ is a faithfully flat extension, then the

triple (Q, σ, τ) became a left principal (H , T )-bundle.
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[Brz] T. Brzeziński, Translation map in quantum principal bundles, J. Geom.

Phys. 20 (1996), no. 4, 349–370.
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Studi di Roma La Sapienza

P.le Aldo Moro 5

00185 Roma

Italia

kowalzig@mat.uniroma1.it

Documenta Mathematica 22 (2017) 551–609



610

Documenta Mathematica 22 (2017)


	1. Introduction
	1.1. Aims and objectives
	1.2. Main results

	2. Abstract groupoids and principal bisets revisited
	2.1. Principal bisets and orbit sets
	2.2. Natural isomorphisms and functors between groupoid-sets
	2.3. Monoidal equivalence between groupoid-sets versus principal bisets

	3. Hopf algebroids and comodule algebras
	3.1. Hopf algebroids
	3.2. Comodules, bicomodules and cotensor product
	3.3. Comodule algebras
	3.4. The coinvariant subalgebra for the tensor product of comodule algebras
	3.5. Bicomodule algebras and two-sided translation Hopf algebroids

	4. Principal bibundles in the Hopf algebroid context
	4.1. General definitions
	4.2. Comments on local triviality of principal bundles
	4.3. Natural comodule transformations

	5. Principal bibundles versus weak equivalences
	5.1. The case of trivial principal bibundles
	5.2. The case of general principal bibundles

	6. The bicategory of principal bundles as a universal solution
	6.1. The cotensor product of principal bundles
	6.2. The bicategory of principal bundles
	6.3. Invertible 1-cells
	6.4. The 2-functor P and principal bundles as universal solution

	7. Principal bibundles and Morita equivalences of categories of comodules
	7.1. Principal bibundles versus monoidal equivalence
	7.2. Symmetric monoidal equivalence versus principal bibundles
	7.3. The categorical group of monoidal symmetric auto-equivalences

	Appendix A. Some observations on coinvariant subalgebras
	References

