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Abstract. We show that a cubic fourfold F that is apolar to a
Veronese surface has the property that its variety of power sums
V SP (F, 10) is singular along a K3 surface of genus 20 which is the
variety of power sums of a sextic curve. This relates constructions of
Mukai and Iliev and Ranestad. We also prove that these cubics form
a divisor in the moduli space of cubic fourfolds and that this divisor
is not a Noether-Lefschetz divisor. We use this result to prove that
there is no nontrivial Hodge correspondence between a very general
cubic and its V SP .
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1. Introduction

For a hypersurface F ⊂ Pn = P(V ∗) defined by a homogeneous polynomial
f ∈ SdV of degree d in n+1 variables, we define the variety of sums of powers
as the Zariski closure

V SP (F, s) = {{[l1], . . . , [ls]} ∈ Hilbs(P̌n) | ∃λi ∈ C : f = λ1ld1 + . . .+ λslds},(1)

in the Hilbert scheme Hilbs(P̌n), of the set of power sums presenting f (see
[20]). The minimal s such that V SP (F, s) is nonempty is called the rank of
F . We will study these power sums using apolarity. Concretely, we can see the
defining equation f as the equation of a hyperplane Hf in the dual space SdV ∗,

and more generally, we get for each k ≤ d a subspace Ikf := [Hf : Symd−kV ∗] ⊂

SkV ∗.

1K.R. partially supported by RCN project no 239015 “Special Geometries”.
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Definition 1.1. We say that a subscheme Z ⊂ P̌n is apolar to f (or to
F = V (f)) if IZ ⊂ If , or, equivalently, IdZ ⊂ Idf = Hf . We use the term

symmetrically, and also say that f is apolar to Z if IdZ ⊂ I
d
f = Hf .

The relation between apolarity and power sums is given by the following duality
lemma (see [15]):

Lemma 1.2. Let l1, . . . , ls ∈ V be linear forms. Then f = λ1l
d
1 + . . .+ λsl

d
s for

some λi ∈ C∗ if and only if Z = {[l1], . . . , [ls]} ⊂ P(V ) is apolar to F = V (f).

In the case F ⊂ P5 is a general cubic hypersurface, the rank of F is 10 and
the variety of 10-power sums of F is 4-dimensional. In the paper [15], Iliev
and the first author exhibited cubic fourfolds FIR(S) associated to K3 surfaces
S of degree 14 obtained as the transverse intersection G(2, 6) ∩ PS of the

GrassmannianG(2, 6) with a codimension 6 linear space PS of P(
∧2

V6) = P14

(see Section 2 for the precise construction). On the other hand Beauville and
Donagi, in [3], associate to such aK3 surface S the Pfaffian cubic FBD(S) which

is the intersection of the Pfaffian cubic in P(
∧2 V ∗

6 ) with the P5 ⊂ P(
∧2 V ∗

6 )
orthogonal to PS . The following result is proved in [15].

Theorem 1.3. For general S as above, the variety V SP (FIR(S), 10) is iso-
morphic to the family of secant lines to S, i.e. to Hilb2(S).

Combining this result with those of Beauville and Donagi [3], we conclude that
V SP (FIR(S), 10) is isomorphic to the Fano variety of lines in the Pfaffian cubic
fourfold FBD(S). Theorem 1.3 also says that V SP (FIR(S), 10) is a smooth
hyperkähler fourfold. A deformation argument ([15, proof of Theorem 3.17]),
may therefore be applied to prove

Corollary 1.4. For a general cubic fourfold F , the variety V SP (F, 10) is a
smooth and irreducible hyperkähler fourfold.

Remark 1.5. Note that the statement of [15, Theorem 3.17] is incorrect, and
was corrected in [16].

Recall from [3] that the Hodge structure on H4(F,Q), for F a smooth cubic
fourfold, is up to a shift isomorphic to the Hodge structure on H2 of its variety
of lines, the isomorphism being induced by the incidence correspondence. The
construction of Iliev and Ranestad provides for general F a second hyperkähler
fourfold V SP (F, 10) associated to F . A natural question is whether there is also
an isomorphism of Hodge structures of bidegree (−1,−1) between H4(F,Q)
and H2(V SP (F, 10),Q). Note that Theorem 1.3 above combined with the
results of Beauville and Donagi does not imply this statement even for the
particular cubic fourfolds of the type FIR(S), because the Hodge structures
on degree 4 cohomology of the cubics FIR(S) and FBD(S) could be unrelated.
Another way of stating our question is whether the two hyperkähler fourfolds
associated to F , namely its variety of lines and V SP (F, 10), are “isogenous”
in the Hodge theoretic sense.
We prove in this paper that such a Hodge correspondence does not exist for
general F .
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Theorem 1.6. For a very general cubic fourfold F , there is no nontrivial mor-
phism of Hodge structures

α : H4(F,Q)prim → H2(V SP (F, 10),Q).

In particular, there is no correspondence Γ ∈ CH3(F ×V SP (F, 10)), such that
[Γ]∗ : H4(F,Q)prim → H2(V SP (F, 10),Q) is non zero.

This theorem cannot be proved locally (in the usual topology), because the two
variations of Hodge structures have the same shape and we have no description
of the periods of V SP (F, 10): it is even not clear how its holomorphic 2-form
is constructed. In fact, by the general theory of the period map, there exists
locally near a general point of the moduli space of cubic fourfolds and up to a
local change of holomorphic coordinates, an isomorphism between the complex
variations of Hodge structure on H4(F,C)prim and H2(V SP (F, 10),C)prim.
Indeed, by the work of Beauville and Donagi, we know that the variation
of Hodge structure on H4(F,C)prim is isomorphic (with a shift of degree)
to the variation of Hodge structure on H2

prim of the corresponding family of

varieties of lines, hence in particular this is (up to a shift of degree) a com-
plete variation of polarized Hodge structures of weight 2 with Hodge numbers
h2,0 = 1, h1,1prim = 20. The same is true for the variation of Hodge structure

on H2(V SP (F, 10),C)prim once one knows that the family of V SP ’s is locally
universal at the general point, which is equivalent to saying that the defor-
mations of V SP (F, 10) induced by the deformations of F have 20 parameters,
this last fact being easy to prove. Hence both complex variations of Hodge
structures are given (locally near a general point in the usual topology) by an
open holomorphic embedding into a quadric in P21, and thus they are locally
isomorphic since a quadric is a homogeneous space.
Notice that if we consider plane sextic curves instead of cubic fourfolds, then
we are faced with an analogous situation, namely we can associate naturally
to a plane sextic curve C two K3 surfaces, the first one being the double cover
of P2 ramified along C, and the other one being the variety of power sums
V SP (C, 10), which has been proved by Mukai [19] to be a smooth K3 surface
for general C (see also [10]).
Theorem 1.6 will be obtained as a consequence of the following construction
which relates the Mukai construction for plane sextic curves to the Iliev-
Ranestad construction for cubic fourfolds. This involves the introduction of
the closed algebraic subset of the moduli space of the cubic F parameterizing
cubic fourfolds apolar to a Veronese surface. This subset, which we will prove
to be a divisor DV −ap, will now be introduced in more detail.
Let W be a 3-dimensional vector space, and V := S2W , which is a 6-
dimensional vector space. There is a natural map

s : S6W → S3V

which is dual to the multiplication map

m : S3(S2W ∗)→ S6W ∗.
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If a ∈ W , we have

s(a6) = (a2)3.(2)

The map s associates to a plane sextic curve C with equation g ∈ S6W a four
dimensional cubic F with equation f = s(g) ∈ S3V . Note that we recover g
from f using the multiplication morphism m′ : S3V → S6W . Indeed we have

m′(f) = g,(3)

as an immediate consequence of (2).

Lemma 1.7. The cubic polynomials in the image of s are exactly those which
are apolar to the Veronese surface Σ ⊂ P(S2W ).

Proof. Indeed, by definition of apolarity, a cubic hypersurface defined by an
equation f ∈ S3V is apolar to the Veronese surface if and only if the hyperplane
Hf ⊂ S3V ∗ determined by f contains the ideal IΣ(3). Equivalently, 〈f, k〉 = 0,
for k ∈ IΣ(3). But as we have f = s(g), (3) tells that

〈f, k〉 = 〈g,m(k)〉.

By definition of the Veronese embedding, the map

m : S3V ∗ → S6W ∗

is nothing but the restriction map to Σ, so that m(k) = 0 and 〈f, k〉 = 0
for k ∈ IΣ(3). For the converse, note that the map s is injective and that
dimCS

6W = dimCS
3V ∗−dimCIΣ(3), so if 〈f, k〉 = 0 for every k ∈ IΣ(3), then

f is in the image of s. �

It follows that the K3 surface V SP (C, 10) embeds naturally in V SP (F, 10)
and we will prove in Section 5:

Theorem 1.8. The variety V SP (F, 10) is singular along V SP (C, 10). For a
general choice of C, the variety V SP (F, 10) is smooth away from theK3 surface
V SP (C, 10) and has nondegenerate quadratic singularities along V SP (C, 10).

Our strategy for the proof of Theorem 1.6 is the following. We will first prove
that DV−ap is a divisor, and that the divisor DV−ap is not a Noether-Lefschetz
divisor in the moduli space M of cubic fourfolds (Proposition 4.16), which
means that for a general cubic parameterized by this divisor, there is no nonzero
Hodge class in H4(F,Q)prim. Secondly, using Theorem 1.8, we will prove that
DV−ap is a Noether-Lefschetz divisor for the family VSP (F, 10) of varieties
of power sums parameterized by a Zariski open set of M, which has to be
interpreted in the sense that the generic Picard rank of the extension along
DV−ap of the variation of Hodge structure on the degree 2 cohomology of
V SP (F, 10) is at least 2.
Both proofs involve a careful analysis of the variety of power sums V SP (F, 10)
with results that we believe may have independent interest. Indeed, the set
theoretic definition given in (1) of V SP (F, s) as a closure in the Hilbert scheme
does not give a priori any information on its schematic structure. We obtain
in Section 3 the following results in the case of V SP (F, 10) for cubic fourfolds.
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Let U ⊂ Hilb10(P
5) be the open set of zero-dimensional subschemes imposing

independent conditions to cubics. There is vector bundle E of rank 46 on U ,
with fiber IZ(3) over the point [Z] ∈ Hilb10(P

5).

Theorem 1.9. (i) (cf. Proposition 3.1) For a general choice of F in the com-
plement of explicit divisors in the moduli space of cubic fourfolds, the variety
of power sums V SP (F, 10) is contained in U and is the zero locus of a section
of the vector bundle E∗ on U .
(ii) (cf. Proposition 3.5) For a general cubic fourfold F , the variety V SP (F, 10)
does not intersect the singular locus of Hilb10(P

5).
(iii) (cf. Proposition 4.11 and Corollary 4.12) These results remain true for a
general cubic fourfold apolar to a Veronese surface.

In order to prove these results, we were led to introduce new divisors in the mod-
uli space of cubic fourfolds, that is divisors inP(S3V ) invariant under the action
of PGl(6), along which properties stated above fail. Many PGl(6)-invariant
divisors were already known: the discriminant hypersurface parameterizing
singular cubic fourfolds and the infinite sequence of divisors of smooth cubic
fourfolds containing a smooth surface which is not homologous to a complete
intersection, introduced by Brendan Hassett [14]. The latter sequence includes
the Beauville-Donagi hypersurface parameterizing Pfaffian cubics. These are
all Noether-Lefschetz divisors. Concerning the new divisors Drk3, Dcopl and
DV−ap we introduce in this paper (see Section 2), we prove that DV−ap is not
a Noether-Lefschetz divisor, and it is presumably the case that neither Drk3

nor Dcopl are Noether-Lefschetz divisors. We do not know whether the Iliev-
Ranestad divisor DIR parameterizing the Iliev-Ranestad cubics is a Noether-
Lefschetz divisor. As a consequence of Theorem 1.3, the Picard rank of the
variety V SP (F, 10) jumps to 2 along this divisor. Therefore proving that DIR

is not a Noether-Lefschetz divisor could have been another approach to Theo-
rem 1.6.

Acknowledgments. We would like to thank an anonymous referee for nu-
merous suggestions that improved the presentation of our proofs.

1.1. Notation. We give the numerical information of the minimal free reso-
lution of a graded S = C[x0, . . . , xr]-module

0←M ← F0 ← F1 ← . . .← Fn ← 0

with Fi =
⊕

j∈Z
βijS(−j) in Macaulay2 notation [18], i. e. in the form

β00 β11 β22 . . . βn,n
β01 β12 β23 . . . βn,n+1

...
...

... . . .
...

β0m β1,m+1 β2,m+2 . . . βn,n+m.

The β0j counts the number of linearly independent generators ofM of degree j+
1, while the βij , for i > 0 counts the homogeneous sets of linearly independent
syzygies of order i.
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2. Some divisors in the moduli space of cubic fourfolds

Let V = C6. We introduce in this section two PGl(V )-invariant divisors
Drk3 and Dcopl in the open set P(S3V )reg of the projective space P(S3V )
parameterizing smooth cubic fourfolds. We also recall the definition of the
Iliev-Ranestad divisor DIR. These divisors are crucial in the proof that the
set DV−ap considered in the introduction is also a divisor (Corollary 4.10 in
Section 4).
The divisor Drk3. This is the set of cubic forms [f ] ∈ P(S3V )reg such that
f has a partial derivative of rank ≤ 3.

Lemma 2.1. The set of cubic forms [f ] ∈ P(S3V )reg such that f has a partial
derivative of rank ≤ 3 is an irreducible divisor in P(S3V )reg.

Proof. If [f ] ∈ Drk3, there exist a point p ∈ P(V ∗) and a plane P(W ) ⊂ P(V ∗)
such that

∂2f

∂p∂w
= 0, ∀w ∈W.(4)

Consider the case where p does not belong to P(W ) and let us compute how
many conditions on f are imposed by (4) for fixed p, W . We may choose
coordinates Xi, i = 0, . . . , 5, such that W is defined by Xi = 0, i = 3, 4, 5
and p is defined by equations Xi = 0, i = 0, . . . , 4. Then f has to satisfy the
conditions

∂2f

∂X5∂Xi
= 0, for any i ∈ {0, 1, 2}.

Equivalently, we have

∂3f

∂X5∂Xi∂Xj
= 0, for any i ∈ {0, 1, 2} and any j ∈ {0, ..., 5}.(5)

The number of coefficients of f annihilated by these conditions is 15. As the
pair (p,W ) has 14 parameters, we conclude that the f satisfying these equations
for some (p, W ) fill-out at most a hypersurface. On the other hand, the map

P(S3V )reg → G(6, S2V ); [f ] 7→ 〈
∂f

∂X0
, ...,

∂f

∂X5
〉

is generically injective; for general f , the apolar ideal is generated by the
quadrics orthogonal to the partials of f , and according to Macaulays theo-
rem, the apolar ideal defines f up to scalar. The rank 3 locus in P(S2V ) has
codimension 6, so the 6-dimensional subspaces of S2V that intersect the rank
3 locus form a hypersurface section in G(6, S2V ). Therefore the cubic forms
that have a partial of rank 3 form at least a divisor in P(S3V )reg, i.e. they
form exactly a divisor. It is irreducible, because it is dominated by a projective
bundle over the parameter space for (p,W ). Denote this hypersurface by Drk3.
To complete the argument we consider the degenerate situation where p ∈
P(W ). It may be seen as a limit of the above case: We may choose coordinates
Xi, i = 0, . . . , 5, such that W is defined by Xi = 0, i = 3, 4, 5 and pt is defined
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by equations Xi = 0, i = 1, . . . , 4 and X5 = tX0. Thus p0 ∈ P(W ). For any t,
we consider the cubic forms f that satisfy the conditions

∂2f

∂X0∂Xi
− t

∂2f

∂X5∂Xi
= 0, i = 0, 1, 2.

Equivalently, we have

∂3f

∂X0∂Xi∂Xj
− t

∂3f

∂X5∂Xi∂Xj
= 0, i = 0, 1, 2 ∀j.(6)

These are 15 linearly independent conditions on the coefficients of f for any
value of t. In particular, any cubic form f0 satisfying the conditions with t = 0
is a limit of forms f that satisfy the conditions for t 6= 0 as t tends to 0. So also
in the degenerate situation, the forms lie in the irreducible hypersurface Drk3.

�

Note the following other characterization of Drk3:

Lemma 2.2. A cubic form belongs to Drk3 if it has a net (a 3-dimensional
vector space) of partial derivatives which are all singular in a given point p.

Proof. The fact that f has a net of partial derivatives which are singular in
a point p is equivalent to the vanishing ∂p(∂wi

f) = 0 for three independent
vectors wi. This holds if and only if ∂wi

(∂pf) = 0 for i = 1, 2, 3, which in turn
is equivalent to the fact that the partial derivative ∂pf has rank ≤ 3. �

The divisor Dcopl. The subset Dcopl ⊂ P(S3V )reg is the Zariski closure of
the set of forms f which can be written as

f =

10∑

1=1

a3i ,(7)

such that four of the linear forms ai ∈ V are coplanar.

Lemma 2.3. Dcopl is an irreducible divisor in P(S3V )reg.

Proof. The set Dcopl is irreducible, since it is dominated by the irreducible
algebraic set parameterizing the 10 linear forms, four of which are coplanar.
If we count dimensions, we find that this last algebraic set has dimension 56.
However, we observe that a general cubic form g in 3 variables has a two dimen-

sional variety of power sums V SP (E, 4), where E = V (g). If f =
∑i=10

1=1 a3i ,
where a1, . . . , a4 are coplanar, we have

f = g(b1, b2, b3) +

i=10∑

i=5

a3i ,(8)

where the ai’s for i ≤ 4 are linear combinations of the bi’s. As there is a 2-
parameter family of ways of writing g as a sum of four powers of linear forms
in the bi’s, we conclude that there is a 2-parameter family of ways of writing
f as in (7). This proves that Dcopl has codimension at least 1. To show that
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it actually is a divisor, we exhibit an affine subfamily of Dcopl of codimension
one in the space of cubic forms. In fact if we let

b1 = x0 + b′0, b2 = x1 + b′2, b3 = x2 + b′3

and

a5 = x0 − x1 + x3 + x4 + a′5, a6 = x1 + x2 − x3 − x4 − x5 + a′6,

a7 = x2 + x3 − x4 + x5 + a′7, a8 = x3 + a′8, a9 = x4 + a′9, a10 = x5 + a′10,

with b′1, .., b
′
3, a

′
5, ..., a

′
10 ⊂ V , then

f = g(b1, b2, b3) +
i=10∑

i=5

a3i

belongs to Dcopl for every 9-tuple of linear forms b′1, .., b
′
3, a

′
5, ..., a

′
10. The sum-

mands in f that are linear in the b′i and a
′
j span the tangent space to this family

at the origin, where b′1 = ... = a′10 = 0. This space may thus be shown, with
Macaulay2 [18], to have dimension 54. Therefore the family is a divisor. �

The divisor DIR. This is the divisor constructed by Iliev and Ranestad
in [15]. It parameterizes the cubic fourfolds FIR(S) mentioned in the intro-
duction, associated to K3 surfaces S which are complete intersections of the
Grassmannian G(2, 6) ⊂ P14 with a P8

S . More precisely, these cubic fourfolds

are defined as follows: Dual to P8
S , we get a P5

S ⊂ P̌14. The dual projective

space P̌14 contains the Grassmannian of lines Ǧ(2, 6) and for generic choice of
P5

S , the intersection P5
S ∩ Ǧ(2, 6) is empty. It is then proved in [15] that the

ideal of cubic forms on P̌14 vanishing on Ǧ(2, 6) restricts to a hyperplane in

H0(P5
S ,OP5

S
(3)). This hyperplane in turn determines a cubic fourfold in P̌5

S .

For later use in the paper, we recall and extend a characterization from [15]
of apolar length 10 subschemes to cubic forms [f ] ∈ DIR in terms of quartic
surface scrolls, i.e. rational normal surface scrolls in P5.

Lemma 2.4. Let f be a cubic form of rank 10, such that [f ] ∈ DIR. Then the
general subscheme of length 10 apolar to f is the intersection of two quartic
surface scrolls. In particular f is apolar to a quartic surface scroll.
Conversely, if f is a cubic form of rank 10 apolar to a quartic surface scroll,
then [f ] ∈ DIR.

Proof. The first part is shown in [15]: Let S = G(2, 6)∩P8
S be the K3-surface

section associated to F = V (f), i.e. F = FIR(S) in the notation of loc. cit.
Then S parameterizes quartic surface scrolls apolar to f , and the two scrolls
corresponding to a pair of points on S intersect in a length 10 subscheme apolar
to f (Lemma 2.9 and the proof of Theorem 3.7 loc.cit.).
For the second part, if f is apolar to a quartic surface scroll, then by dimension
count, f has a 2-dimensional family of length 10 apolar subschemes on this
scroll. The general such subscheme Z has a Gale transform in P3 contained in
a smooth quadric surface [11, Corollary 3.3]. Furthermore, the two rulings in
the quadric surface correspond to two quartic surface scrolls that contain Z, see

Documenta Mathematica 22 (2017) 455–504



Variety of Power Sums and Divisors . . . 463

[11, Example 3.4], where an analogous case is explained. Therefore f is apolar
to a 2-dimensional family of quartic surface scrolls. Now, the family of quartic
surface scrolls in P5 is irreducible of dimension 29, and each scroll is apolar to
a 27-dimensional space of cubic forms, so there is an irreducible 54-dimensional
family of cubic forms apolar to some quartic surface scroll. This family must
coincide with the divisor DIR since it contains it. �

3. Apolarity and syzygies

In this section we first show that for a general cubic fourfold F ⊂ P(V ∗), the
variety V SP (F, 10) is defined as the zero locus, inside the Hilbert scheme, of a
section of a vector bundle. In fact the variety V SP (F, 10) is then entirely con-
tained in the set U ⊂ Hilb10(P(V )) of zero-dimensional subschemes imposing
independent conditions on cubics (Proposition 3.1), and Z is apolar to F for
every [Z] ∈ V SP (F, 10). Furthermore, after defining the cactus rank of a cubic
fourfold F (Definition 3.2), we note that any scheme of minimal length apolar
to F , is locally Gorenstein, and show, as a consequence, that V SP (F, 10) does
not meet the singular locus of Hilb10(P(V )) for a general F (Proposition 3.5).
We also show that if F is general, then the cactus rank coincides with the
rank and V SP (F, 10) contains all schemes of length 10 that are apolar to F
(Corollary 3.6).
In the second part of this section we give a criterion (Lemma 3.18) for a cubic
form f to have cactus rank 10 in terms of a syzygy variety of its apolar ideal
If . When a cubic fourfold F ⊂ P(V ∗) has cactus rank 10, then the union
of the apolar subschemes of length 10 forms a hypersurface V10(F ) in P(V ).
We will show (Lemma 3.21) that V10(F ) is a syzygy variety of If , and analyze
its singular locus. At the end of this section we show (Proposition 3.5) that
V SP (F, 10) does not meet the singular locus of Hilb10(P(V )) for a general F .
The results of this section that are used later, are formulated in two lemmas
and two propositions. Lemmas 3.18 and 3.21 will be used in Section 4 to prove
that a general [f ] ∈ DV−ap is apolar to finitely many Veronese surfaces, from
which we will deduce that DV−ap is a divisor. Propositions 3.1 and 3.5 are
applied in Section 4 to show that for a general [f ] ∈ DV−ap, the length 10
subscheme Z is apolar to f for every [Z] ∈ V SP (F, 10) and is a smooth point
in Hilb10(P(V )).

3.1. Apolar subschemes of length 10.

Proposition 3.1. Let F ⊂ P(V ∗) be a cubic fourfold defined by a general
form f ∈ Sym3V . Then any length 10 subscheme [Z] ∈ V SP (F, 10) imposes
independent conditions to cubics, i.e. h1(IZ(3)) = 0, and is apolar to f , that
is IZ(3) ⊂ Hf .
Furthermore, if there is a codimension 1 component of the set of smooth cubic
fourfolds not satisfying this conclusion, it must be one of the two divisors Drk3

and Dcopl introduced in the previous section.
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Note that the second statement follows from the first using Lemma 1.2 and
the fact that the condition IZ(3) ⊂ Hf is a closed condition on the open
set U ⊂ Hilb10(P(V )) of zero-dimensional subschemes imposing independent
conditions to cubics.
The proof of Proposition 3.1 is postponed until later in this section. The propo-
sition will be crucial in the study of the schematic structure of V SP (F, 10),
for f satisfying the above conditions. To see this, we first consider finite sub-
schemes of minimal length apolar to f . A form f of rank 10 may be apolar to
subschemes of length less than 10. This motivates the notion of cactus rank of
f :

Definition 3.2. The cactus rank of a form f or equivalently of the hypersurface
F = V (f) ⊂ Pn is the minimal length of a 0-dimensional subscheme Z of P̌n

which is apolar to f (resp. F ).

Remark 3.3.

(1) Buczyńska and Buczyński showed in [4, Proposition 2.2, Lemma 2.3]
that a finite subscheme Z, that is apolar to f and has length equal to
its cactus rank, is locally Gorenstein.

(2) Casnati, Jelisiejew and Notari have shown that any local Gorenstein
scheme of length at most 13 is smoothable (cf. [8, Theorem A]).

Since the smooth apolar schemes form an open set in its component of the
Hilbert scheme, we get:

Lemma 3.4. If F is a general cubic fourfold of rank 10, then the cactus rank
of F is also 10.

Proof. Since Gorenstein schemes of length ≤ 9 are smoothable, cubic forms f
of cactus rank ≤ 9 lie in the closure of forms of rank ≤ 9. But the closure of
the set of forms of rank ≤ 9 is a proper subset of the set of cubic forms, so the
general form of rank 10 must also have cactus rank 10. �

The Proposition 3.1 provides a criterion for V SP (F, 10) to avoid the singular
locus of Hilb10P(V ).

Proposition 3.5. Let V = C6, and let F be a fourfold defined by a cubic form
f ∈ Sym3V with no partial derivative of rank ≤ 3. If f has cactus rank 10
and Z is apolar to f for every [Z] ∈ V SP (F, 10), then V SP (F, 10) does not
intersect the singular locus of Hilb10(P(V )).

Proof. Let [Z] ∈ V SP (F, 10), then, by Remark 3.3, the scheme Z is locally
Gorenstein. Consider the morphism qf : P(V ) → P(Q∗

f ) defined by the space

of quadrics Qf that are apolar to F . Then the linear span of the image qf (Z)
has, by Lemma 3.9, dimension 2 or 3. Since f has no partial of rank ≤ 3, the
morphism qf is, by Lemma 3.8, an embedding, so the scheme Z is embeddable
in P3. By [17] and [9, Corollary 2.6], the corresponding point [Z] is smooth in
the Hilbert scheme. �
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By Remark 3.3, the open set UG ⊂ U ⊂ Hilb10(P
5) of length 10 locally Goren-

stein subschemes that impose independent conditions to cubics is contained in
the irreducible component of the smooth subschemes.

Corollary 3.6. Let F = V (f) be a general cubic fourfold. Then V SP (F, 10)
is the zero locus of a section σf of the vector bundle E on UG of rank 46 with
fiber IZ(3)

∗. In particular, V SP (F, 10) admits a natural smooth and connected
scheme structure and contains all subschemes of length 10 that are apolar to
F .

Proof. Indeed, let σf be the section of E given by Z 7→ f∗
|IZ(3), where f∗

denotes the linear form on Sym3V ∗ corresponding to f . Then σf vanishes
on V SP (F, 10) by Proposition 3.1. The set UG is irreducible and the set of
sections σf clearly has no basepoints. By Proposition 3.5, the general section
vanishes only in the smooth locus of UG, so the zero locus of σf is smooth and
connected for general F . �

The proof of Proposition 3.1 will need a few preparatory lemmas.
For a cubic form f ∈ S3V such that F = V (f) is not a cone, let P (f) ⊂ P(S2V )
be the space of partial derivatives of f and Qf = P (f)⊥ ⊂ S2V ∗. Then P (f)
is 6-dimensional and hence dimQf = 15. Note that Qf = [Hf : V ∗], where
Hf ⊂ S3V ∗ is the hyperplane defined by f∗; indeed we may identify the space
of partials P (f) with the image V ∗(f) ⊂ S2V , so if q ∈ S2V ∗, then q ·V ∗(f) = 0
if and only if q(P (f)) = 0.
Consider now a subscheme Z ⊂ P5 of length 10. Since Z imposes at most 10
conditions on quadrics, the space IZ(2) of quadrics in the ideal has dimension
at least 11, with equality for an open set of schemes Z. Likewise, the ideal
is generated in degree 2, for an open set of length 10 schemes Z: If Z is the
intersection of a rational normal quintic curve and a quadric, then IZ(2) has
dimension 11 and generate the ideal IZ . Therefore this is the case also for a
general Z.
Thus, in particular, if F is a general cubic fourfold and [Z] ∈ V SP (F, 10) is
general, then IZ(2) has dimension 11 and generate the ideal IZ . Furthermore,
by Lemma 1.2, IZ(2) ⊂ Qf . It follows that the rank of the evaluation map

Qf → H0(OZ(2))

is at most 4 for a general [Z] ∈ V SP (F, 10), and by semicontinuity of the rank,
the same remains true for any [Z] ∈ V SP (F, 10). Therefore

Lemma 3.7. Let f ∈ S3V be a cubic form such that F = V (f) is not a cone,
and let [Z] ∈ V SP (F, 10), then dim IZ(2) ∩Qf ≥ 11.

The linear system of quadrics Qf gives a rational map

qf : P(V ) 99K P(Q∗
f ),

defined as the composition of the Veronese map P(V ) → P(S2V ) and the
projection from the subspace P (f) ⊂ P(S2V ).
The following lemma is an immediate consequence of this description.
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Lemma 3.8.

(1) qf is a morphism if and only if f has no partials of rank ≤ 1.
(2) qf is an embedding if and only if f has no partials of rank ≤ 2.
(3) qf is an embedding and the image Xf := qf (P(V )) contains no sub-

scheme of length 3 contained in a line if and only if f has no partial
derivative of rank ≤ 3, i.e. f /∈ Drk3.

This lemma allows us to find possible schemes Z such that dim IZ(2)∩Qf ≥ 11.

Lemma 3.9. Let f be a cubic form with no partial derivative of rank ≤ 3, let
Xf = qf (P(V )), as above, and let P ⊂ P(Q∗

f ) be a P3.
If XP := P ∩Xf contains a curve, then XP is the image by qf of a line and a
residual finite subscheme.
In particular, if F = V (f), [Z] ∈ V SP (F, 10) and Zf = qf (Z), then the linear
span of Zf is a P2 or a P3, and if IZ(2) ∩ Qf is contained in the ideal of a
curve, this curve is a line.

Proof. Indeed, by Lemma 3.8 (3), qf is an embedding and the image Xf has no
trisecant line. Since it is a linear projection of the second Veronese embedding,
every curve in the image has even degree. Consider now a 3-space P ⊂ P(Q∗

f )
and the intersection XP = P ∩Xf . Since every surface in P contains a line or
has a trisecant line, XP cannot contain a surface. Furthermore, the only curves
in P of even degree with no trisecant lines are the conics and the complete in-
tersections of two quadric surfaces (e.g. [2]). But a complete intersection of
two quadric surfaces is not the second Veronese embedding of a curve. There-
fore, if XP contains a curve, XP is the union of a conic and a residual finite
subscheme.
If [Z] ∈ V SP (F, 10), then dim IZ(2)∩Qf ≥ 11 by Lemma 3.7, so the span 〈Zf 〉
is at most a P3. On the other hand, Zf must span at least a plane, since Xf

has no trisecant line, so that 3 ≥ dim 〈Zf 〉 ≥ 2. The linear span 〈Zf 〉 intersects
Xf in the zero locus of IZ(2)∩Qf , so the last claim in the lemma now follows
from the first. �

Notice that the span 〈Zf 〉, whether Z is apolar to f or not, has dimension 2
(resp. 3) if and only if IZ(2) ∩Qf has dimension 12 (resp. 11).

Lemma 3.10. Let V = C6, and let f ∈ Sym3V be a cubic form with no partial
derivative of rank ≤ 3. Let Z ⊂ P(V ) be a subscheme of length 10, and assume
that IZ(3) has codimension at most 9 in Sym3V ∗. Let Γ ⊂ P(V ) be the zero
locus of the space of quadrics IZ(2) ∩Qf .

(1) If dim IZ(2) ∩Qf = 12, then Γ is a line.
(2) If dim IZ(2) ∩ Qf = 11, then Γ is the union of a line and a residual

finite subscheme.

Proof. Let Z ⊂ P(V ) be a subscheme of length 10 and assume that IZ(3)
has codimension at most 9 in Sym3V ∗. Notice first that dim IZ(2) ≥ 12. In
fact, the subscheme Z does not impose independent conditions on cubics, i.e.
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h1(IZ(3)) > 0. The multiplication by a general linear form h defines an exact
sequence of sheaves

0→ IZ(2)→ IZ(3)→ OH(3)→ 0,

where H = {h = 0}. Since h1(OH(3)) = 0, h1(IZ(3)) > 0 implies that
h1(IZ(2)) > 0, and hence that dim IZ(2) ≥ 12.
Now, assume furthermore that dim IZ(2)∩Qf ≥ 11. Let Γ ⊂ P(V ) be the zero
locus of the space of quadrics IZ(2)∩Qf . Then, qf (Γ) is contained in a P3, so
by Lemma 3.9, Γ is either a line and a residual finite subscheme, or Γ is finite.
Assume first that Γ is finite. Then Z spans at least a P4 in P(V ), since any
finite intersection of quadrics in a P3 has length at most 8. Let Z0 be a maximal
length subscheme of Z that spans a P3 in P(V ). The length of Z0 is then at
most 8, and at least 4 since it spans P3.
The residual scheme Z1 = Z \ Z0 therefore has length at least 2 and at most
6. Let H = {h = 0} be a general hyperplane that contains Z0. Then multipli-
cation by h defines a sequence of sheaves of ideals

0→ IZ1(2)→ IZ(3)→ IH,Z0(3)→ 0,

which is exact. Since h1(IZ(3)) > 0, either h1(IH,Z0(3)) > 0 or h1(IZ1(2)) > 0.
We claim h1(IZ1 (2)) = 0. Since Γ is a finite intersection of quadrics, the
subscheme Z1 contains no subscheme of length 3 contained in a line, and no
subscheme of length 5 contained in a plane. By the maximality of Z0, it has
at most a subscheme of length 5 in a P3.
Therefore Z1 either has minimal length in its span, in which case the claim
follows, or it has length d in a Pd−2 with d = 4, 5 or 6. If Z1 has length
4 in a plane it is a complete intersection of two curves of degree 2, so again
h1(IZ1 (2)) = 0. If Z1 has length 5 and spans a P3 or length 6 and spans a P4,
it contains a subscheme Z2 of length 3 or 4 in a plane P2. The residual scheme
Z1,2 to Z2 in Z1 has length 1, 2 or 3. Multiplication by a general linear form h
that contains the plane P2 defines an exact sequence of sheaves

0→ IZ1,2(1)→ IZ1(2)→ IH,Z2(2)→ 0.

Now, h1(IZ1,2 (1)) = h1(IH,Z2(2)) = 0, so we infer h1(IZ1(2)) = 0.

We may therefore assume h1(IH,Z0(3)) > 0. If P = 〈Z0〉, then, by further
restriction, also h1(IP,Z0(3)) > 0. If Z0 has length 4 or 5, we may argue as for
Z1 above that h

1(IZ0 (2)) = 0 and hence also h1(IZ0(3)) = 0. So we may assume
that Z0 has length at least 6. Since Z0 is contained in a finite intersection of
quadrics, a general net of these quadrics defines a complete intersection Y
in P that contains Z0. Then Y has length 8, and contains a subscheme of
length at most 2 residual scheme to Z0. If Z0 = Y , then h1(IH,Z0 (3)) = 0, a
contradiction. If Z0 has length 7 it is residual to a point p in Y . Let X be
a cubic surface that contains Z0 but not Y . Then multiplication by the form
defining X defines two exact sequences

0→ Ip → IY (3)→ IX,Z0(3)→ 0
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and
0→ OP → IP,Z0(3)→ IX,Z0(3)→ 0.

From the first we deduce that h1(IX,Z0 (3)) = 0, and so by the second
h1(IP,Z0(3)) = 0, a contradiction.
If Z0 has degree 6, it contains a subscheme Z2 of length 3 or 4 in a plane P2.
The residual scheme Z0,2 to Z2 in Z0 has length 2 or 3. Multiplication by the
linear form h that defines the plane P2 defines an exact sequence of sheaves

0→ IP,Z0,2(2)→ IP,Z0(3)→ IP2,Z2(3)→ 0.

Now, h1(IP,Z0,2(2)) = h1(IP2,Z2(3)) = 0, so we infer h1(IP,Z0(3)) = 0, a
contradiction.
Therefore Γ contains a line ∆. Let Z∆ = Z ∩ ∆. The line ∆ is mapped to
a conic qf (∆). If dim IZ(2) ∩ Qf = 12, then Zf = qf (Z) spans only a plane,
and the image qf (Γ) has a subscheme of length 3 in a line, unless Z is entirely
contained in ∆, i.e. Z∆ = Z and Γ = ∆. �

Proof of Proposition 3.1. Let [Z] ∈ V SP (F, 10). We assume, for contradiction,
that Z does not impose independent conditions on cubics. Assuming f is
regular and has no partial derivative of rank ≤ 3, we already proved that
12 ≥ dim IZ(2) ∩ Qf ≥ 11. By Lemma 3.10, we conclude in both cases that
there is a line ∆ such that IZ(2) ⊂ I∆(2), so that

IZ(2) ∩Qf ⊂ I∆(2) ∩Qf .

Note also that, under the same assumptions on f , the image qf (∆) is a conic
curve in a plane that does not have any residual intersection with Xf =
qf (P(V )). Thus dim I∆(2)∩Qf = 12 and the zero locus of Qf,∆ := I∆(2)∩Qf

is ∆.
Since [Z] ∈ V SP (F, 10), there exists a flat family of subschemes

(Zt)t∈B, Zt ⊂ P5, lengthZt = 10,

where B is a smooth curve, such that Z0 = Z for some point 0 ∈ B and
for general t ∈ B, Zt is apolar to f and imposes 10 independent conditions
to quadrics. The subspace Jt := IZt

(2) ⊂ Qf is thus of codimension 4. Let
J ⊂ Qf ∩ IZ(2) be the specialization of Jt at t = 0. Then dim J = 11 and
J ⊂ Qf,∆ = I∆(2) ∩Qf so that J is a hyperplane in Qf,∆.
On the other hand, note that by semicontinuity of the rank, we have for any
k ≥ 0

codim (SkV ∗ · J ⊂ Sk+2V ∗) ≥ codim (SkV ∗ · Jt ⊂ S
k+2V ∗)

≥ codim (IZt
(k + 2) ⊂ Sk+2V ∗) = 10.

The contradiction that concludes the proof of Proposition 3.1 is derived from
the following statement:

Lemma 3.11. Assume f is general. Then for any line ∆ ⊂ P5, and for any
hyperplane J ⊂ Qf,∆ := I∆(2) ∩Qf , we have

codim (S3V ∗ · J ⊂ S5V ∗) ≤ 9.
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Furthermore, the locus of smooth cubic fourfolds not satisfying this condition
has codimension > 1 away from the union of Drk3 and Dcopl.

�

Proof of Lemma 3.11. The proof has two parts, that both depend on the fol-
lowing property of the zero locus Γ ⊇ ∆ of J .
Let τ0 : X0 → P5 be the blow-up of P5 along ∆. Then J provides a space
J ′ of sections of L0 := τ∗0 (OP5(2))(−E∆) on X0, where E∆ is the exceptional
divisor of τ0.

Sublemma 3.12. Assume f is regular and has no partial derivative of rank
≤ 3. Let J ⊂ I∆(2) ∩ Qf be a hyperplane with zero locus Γ ⊇ ∆. Let H ⊂ P5

be a hyperplane that does not contain ∆. Then the subscheme of H ∩ Γ that
has support on ∆ has length at most 2.

Proof. Since f has no partial derivative of rank ≤ 3, the line ∆ is the zero
locus of Qf,∆, i.e. Qf,∆ generates I∆(2) at any point of ∆. Let E∆,x be the
fiber over x = H ∩ ∆ in E∆. Then E∆,x

∼= P3 and L0|E∆,x
∼= OP3(1). The

restriction of the sections J ′ generates at least a hyperplane of sections in this
line bundle, so their zero locus on E∆,x is at most a point. So J restricted to
H , defines a scheme at x that is the intersection of quadrics and is contained
in a line, so it has length at most 2. �

Now, we first deal with the case where the zero locus of J ⊂ I∆(2) ⊂ S2V ∗ has
a finite subscheme of length at most 3 residual to ∆. In this case, we have the
following:

Sublemma 3.13. Assume f is regular and has no partial derivative of rank
≤ 3. Let J ⊂ I∆(2) ∩ Qf be as above, with zero locus Γ ⊇ ∆. Assume the
scheme γ residual to ∆ in Γ is finite of length at most 3. Then

S3V ∗ · J = IΓ(5).(9)

In particular, codim (S3V ∗ · J ⊂ S5V ∗) ≤ 9.

Proof. Let τ0 : X0 → P5 be the blow-up of P5 along ∆, and let, in the
notation as above, γ′ be the zero-locus of J ′ supported over γ. As in the proof
of Sublemma 3.12, γ′ intersects the fiber in E∆ over any point of ∆ in at most
a point. Via the blowup map τ0, the subscheme γ′ is therefore isomorphic to
the subscheme γ, and hence finite of length at most 3.
Furthermore, we have

H0(X0, τ
∗
0 (OP5(2))(−E∆)⊗ Iγ′) = H0(X0, L0 ⊗ Iγ′) ∼= H0(P5, IΓ(2)),

H0(X0, τ
∗
0O(5)(−E∆)⊗ Iγ′) ∼= H0(P5, IΓ(5)).

It follows from the last equality that (9) is equivalent to the fact that

H0(X0, τ
∗
0O(3)) · J

′ = H0(X0, τ
∗
0O(5)(−E∆)⊗ Iγ′)).
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Assume first that γ′ is curvilinear. It follows that by successively blowing-up
at most three points x1, x2, x3 starting from x1 ∈ X0, we get a variety

τ : X → P5, τ1 : X → X0,

with three exceptional divisors Ei corresponding to the xi’s and one exceptional
divisor τ∗1E∆ over E∆. The Ei are the pullbacks to X of the exceptional divisor
of the blow up at xi such that the pull-backs J ′′ of the J ′ gives rise to a base-
point free linear system of sections of

L := τ∗O(2)(−τ∗1E∆ −
∑

i

Ei)(10)

on X . Furthermore, we have

J ′′ ⊂ H0(X,L) ∼= H0(P5, IΓ(2)),

H0(X, τ∗O(5)(−τ∗1E∆ −
∑

i

Ei)) ∼= H0(P5, IΓ(5)).

We are thus reduced to prove that the base-point free linear system

J ′′ ⊂ H0(X, τ∗O(2)(−τ∗1E∆ −
∑

i

Ei))

generatesH0(X, τ∗O(5)(−τ∗1E∆−
∑

i Ei)). This is done by a Koszul resolution
argument. The Koszul resolution of the surjective evaluation map

J ′′ ⊗OX(−L)→ OX ,

gives us an exact complex with terms
∧i

J ′′ ⊗OX(−iL), 0 ≤ i ≤ 5. We twist
this complex by

L′ := τ∗O(5)(−τ∗1E∆ −
∑

i

Ei)(11)

and the result then follows from the vanishing

Hi(X, (−i− 1)L+ L′) = 0, i = 1, . . . , 5.(12)

For i = 5, we have by (10), (11)

−6L+ L′ = τ∗O(−7)(5
∑

i

Ei + 5τ∗1E∆),

while

KX = τ∗O(−6)(4
∑

i

Ei + 3τ∗1E∆).

Thus

H5(X,−6L+ L′) = H0(X, τ∗O(1)(−
∑

i

Ei − 2τ∗1E∆))
∗,

and the right hand side is 0.
For i = 4, we have similarly

−5L+ L′ = τ∗O(−5)(4
∑

i

Ei + 4τ∗1E∆),
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hence

H4(X,−5L+ L′) = H1(X, τ∗O(−1)(−τ∗1E∆))
∗,

and the right hand side is 0 since it is equal to H1(P5, I∆(−1)).
For i = 3, we have

−4L+ L′ = τ∗O(−3)(3
∑

i

Ei + 3τ∗1E∆),

hence

H3(X,−4L+ L′) = H2(X, τ∗O(−3)(
∑

i

Ei))
∗.

Consider the strict transform Y onX of a general cubic fourfold whose pullback
to X0 contains γ. Then τ∗O(−3)(

∑
iEi) is the ideal sheaf of Y . On the other

hand Y is regular so H1(Y,OY ) = 0, and hence H2(X, τ∗O(−3)(
∑

iEi)) = 0.
For i = 2, we claim that

H2(X,−3L+ L′) = H2(X, τ∗O(−1)(2
∑

i

Ei + 2τ∗1E∆) = 0.

Consider the strict transform Y on X of a general hyperplane through ∆ whose
pullback to X0 contains γ. Then Y is smooth and the multiplication by the
form defining Y fits in the exact sequence of sheaves

0→ τ∗O(−1)(2
∑

i

Ei + 2τ∗1E∆)→

→ OX(
∑

i

Ei + τ∗1E∆)→ OY (
∑

i

Ei + τ∗1E∆)→ 0.

But neither of the two invertible sheaves of exceptional divisors on the right
have nonvanishing higher cohomology, so the claim follows.
For i = 1, we get

H1(X,−2L+ L′) = H1(X, τ∗O(1)(
∑

i

Ei + τ∗1E∆) = 0,

since

H1(X, τ∗O(1)) = H1(X,E1) = H1(X,E2) = H1(X,E3) = H1(X, τ∗1E∆) = 0.

When γ is not curvilinear, and thus consists of one point with noncurvilinear
schematic structure of length 3, the argument is simpler: Such a scheme γ is the
first order neighborhood of a point in a plane. The image qf (Γ) = qf (γ)∪qf (∆)
spans a P3 and has by assumption no subscheme of length three contained in
a line. But qf (∆) is a conic curve, while qf (γ) spans a plane that intersects
this conic. Therefore there are lines that intersect the conic and qf (γ) in a
subscheme of length 2, a contradiction. �

To conclude the proof of Lemma 3.11, we now show

Sublemma 3.14. Consider the cubic fourfolds F = V (f) in the open dense
subset

P(S3V )reg \ (Drk3 ∪Dcopl),
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where Dcopl is the divisor introduced in Section 2. The subset of such fourfolds
for which there exist a line ∆ ⊂ P(V ∗), and a hyperplane J ⊂ I∆(2) ∩ Qf ,
such that the zero locus Γ of J has a subscheme residual to ∆ of length ≥ 4,
has codimension ≥ 2.

Proof. Note first that the scheme Γ imposes at most 4 conditions to Qf , since
J ⊂ Qf ∩ IΓ(2) has codimension 4 in Qf . Therefore qf (Γ) is contained in the
intersection of Xf with a P3, so, by Lemma 3.9, the residual subscheme to ∆
in Γ is finite. If it has length ≥ 4, we can replace Γ by a subscheme Γ′ which is
the union of ∆ and a residual scheme γ′ of finite length 4. And, by Lemma 3.8
(3), we may assume qf (Γ

′) spans a P3. Note that Γ′, like Γ, is contained in an
intersection of quadrics that is finite residual to the line ∆, so its intersection
with a plane is either the line ∆ or the union of the line ∆ and one residual
point, or it is a scheme of finite length ≤ 4. Furthermore, the residual scheme
γ′ is not contained in another line ∆′, since otherwise the union of these two
lines would be contained in Γ. It follows that Γ′ imposes the maximal number
of conditions to the quadrics, namely 7. Hence

dim (IΓ′(2)) = 14,(13)

and J ⊂ IΓ′(2) has dimension 11. Since qf (Γ
′) spans a P3, the intersection

Qf ∩ IΓ′(2) has dimension 11, so it equals J . Now, Qf = P (f)⊥, so one
concludes that

dim (P (f) ∩ IΓ′ (2)⊥) = 3,(14)

where we recall that P (f) is the space of partial derivatives of f . The proof of
Sublemma 3.14 is done by a dimension count, using (14). We note that as we
assumed that f has no partial derivative of rank ≤ 3, it has no net of partial
derivatives singular at a given point by Lemma 2.2. Thus, if f satisfies (14),
the space IΓ′(2)⊥ is not contained in the space of quadrics singular at a given
point. In particular, Γ′ must span P(V ). This is equivalent to the vanishing
H1(IΓ′(1)) = 0, which we assume from now on.
Equation (14) determines a 3-dimensional subspace W ⊂ V ∗, by

W (f) = {∂uf, u ∈W} = P (f) ∩ IΓ′(2)⊥.

Given W and Γ′, we define JΓ′,W ⊂ S3V to be the linear space of cubic forms

JΓ′,W := {f ∈ S3V |W (f) ⊂ IΓ′(2)⊥ = QΓ′} = (W · IΓ′ (2))⊥.

The space JΓ′,W contains the space JΓ′ := IΓ′(3)⊥ (which is generated by the
cone over the third Veronese embedding of Γ′) and the space S3(W⊥).
Consider the subscheme

Γ′
W := P(W⊥) ∩ Γ′ ⊂ P(V ).

and assume first that Γ′
W = ∅. In this case, we claim that

JΓ′,W = S3(W⊥)⊕ JΓ′ ,(15)
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so that dim JΓ′,W = 18. Assuming the claim, we now observe that elements

f ∈ JΓ′,W = S3(W⊥)⊕ JΓ′

fill-in, when the pair (Γ′,W ) deforms, staying in general position, the divisor
Dcopl of Section 2. Indeed, the general Γ′ is the disjoint union of a line ∆ =
P(U) and 4 points x1, . . . , x4. Then JΓ′ = S3U + 〈x31, . . . , x

3
4〉 and thus f ∈

S3(W⊥) ⊕ JΓ′ belongs to S3(W⊥) + S3U + 〈x31, . . . , x
3
4〉. The component of

f lying in S3(W⊥) is the sum of 4 cubes of coplanar linear forms, and the
component of f lying in S3U is the sum of 2 cubes. Thus f is the sum of 10
cubes of linear forms, 4 of which are coplanar.
In order to prove formula (15), we dualize it and note that it is equivalent to
the equality

W · IΓ′(2) = (W · S2V ∗) ∩ IΓ′(3).(16)

The right hand side is equal to IΓ′∪P(W⊥)(3). As Γ
′ ∩P(W⊥) = ∅, the Koszul

resolution of the ideal sheaf IP(W⊥) remains exact after tensoring by IΓ′ , which
gives the following resolution of IΓ′∪P(W⊥):

0→
3∧
W ⊗ IΓ′(−3)→

2∧
W ⊗ IΓ′(−2)→ W ⊗ IΓ′(−1)→ IΓ′∪P(W⊥) → 0.

Twisting with O(3) and applying the vanishingsH1(IΓ′(1)) = 0 and H2(IΓ′) =
0, we get the desired equality W · IΓ′(2) = IΓ′∪P(W⊥)(3).
To conclude the proof of Sublemma 3.14, it only remains to prove the following
claim:

Claim 3.15. The set of cubic fourfolds in the open set P55
reg \ Drk3 :=

P(S3V )reg \Drk3 satisfying (14) for a pair (W,Γ′) with Γ′
W = Γ′∩P(W⊥) 6= ∅

has codimension ≥ 2.

�

Proof of Claim 3.15. Recall, from above, that Γ′ contains a line ∆ and spans
P5. Also, since qf (Γ

′) spans a P3 and contains no subscheme of length 3 in a
line, every component of Γ′ that is not supported on ∆ is curvilinear. Consider
the intersection Γ′

W = Γ′ ∩P(W⊥).
If Γ′

W contains ∆, then, since it is the intersection of quadrics and is finite
residual to ∆, the residual scheme to ∆ in Γ′

W is at most a point.
If Γ′

W intersects ∆ only in a point x, then Γ′
W ∪∆ spans at most a P3, so Γ′

has a scheme of length at least 2 residual to Γ′
W ∪∆. By Sublemma 3.12, the

scheme Γ′
W has a component of length at most 2 supported on x and a residual

closed point x′.
If Γ′

W does not intersect the line ∆, then Γ′
W is curvilinear and has length at

most 3.
We observe that in each of the listed situations, if X,Y ∈ W are generically
chosen, and P3

X,Y ⊇ P(W⊥) is defined by X and Y , we have

Γ′ ∩P3
X,Y = Γ′ ∩P(W⊥) = Γ′

W .
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We want to estimate the dimension of JΓ′,W = (W · IΓ′(2))⊥, or equivalently
of W · IΓ′(2), since

dim JΓ′,W = 56− dim (W · IΓ′(2)).

We consider the exact sequence

0→ 〈X,Y 〉 · IΓ′(2)→W · IΓ′(2)→W · IΓ′(2)|P3
X,Y
→ 0.

and observe that dimW · IΓ′ (2)|P3
X,Y

= dim IΓ′(2)|P3
X,Y

. Therefore

dim (W · IΓ′(2)) = dim (〈X,Y 〉 · IΓ′(2)) + dim IΓ′(2)|P3
X,Y

.(17)

Furthermore, consider the space of linear forms [IΓ′ (2) : 〈X,Y 〉] ⊂ V. Mul-
tiplication by the matrix (X,−Y ) and (Y,X)t respectively defines an exact
sequence

0→ [IΓ′(2) : 〈X,Y 〉]→ IΓ′(2)⊕ IΓ′ (2)→ 〈X,Y 〉 · IΓ′(2)→ 0.

From this sequence, and the fact (13) that dim IΓ′(2) = 14, we get

dim (〈X,Y 〉 · IΓ′ (2)) = 2 dim IΓ′(2)− dim [IΓ′(2) : 〈X,Y 〉] =

= 28− dim [IΓ′ (2) : 〈X,Y 〉].

Putting this equality together with the equation (17) we get:

dim JΓ′,W = 28 + dim [IΓ′(2) : 〈X,Y 〉]− dim IΓ′(2)|P3
X,Y

.

We make now a case-by-case analysis. Recall that if the scheme Γ′
W has finite

length, this length is ≤ 3 and if it contains the line ∆, it contains at most one
reduced residual point.

(1) If Γ′
W = [l] is a reduced point on ∆ = P(U), which is not the

support of an embedded point, then dim [IΓ′(2) : 〈X,Y 〉] = 0 and

dim IΓ′(2)|P3
X,Y

= 9, so we get dim JΓ′,W = 19. The parameter space

for such (W,Γ)′s has dimension 7 + 28 = 35, so the subset of P55
reg

satisfying equation (14) with this condition on (W,Γ) has dimension
≤ 35 + 18 = 53.

(2) If Γ′
W = [l] is a reduced point on ∆ = P(U), the support of an embed-

ded point, then dim [IΓ′(2) : 〈X,Y 〉] = 1 and dim IΓ′ (2)|P3
X,Y

= 9. Thus

dim JΓ′,W = 20. As Γ′ has an embedded point on ∆, the parameter
space for Γ′ has dimension 27, so the parameter space for such (W,Γ)′s
has dimension 7+27 = 34. Thus the subset of P55

reg satisfying equation
(14) with this condition on (W,Γ) has dimension ≤ 34 + 19 = 53.

(3) If Γ′
W = [l] is a reduced point not in ∆, then dim [IΓ′ (2) : 〈X,Y 〉] = 1

and dim IΓ′(2)|P3
X,Y

= 9, so we get dim JΓ′,W = 20. The parameter

space for such (W,Γ)′s has dimension 6+28 = 34, so the subset of P55
reg

satisfying equation (14) with this condition on (W,Γ) has dimension
≤ 34 + 19 = 53.
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(4) If Γ′
W is a subscheme of length 2 that intersects ∆ in one point, which

is not the support of an embedded point, then dim [IΓ′(2) : 〈X,Y 〉] = 1

and dim IΓ′(2)|P3
X,Y

= 8, so we get dim JΓ′,W = 21. The parameter

space for such (W,Γ)′s has dimension 4+28 = 32, so the subset of P55
reg

satisfying equation (14) with this condition on (W,Γ) has dimension
≤ 32 + 20 = 52.

(5) If Γ′
W is a subscheme of length 2 that intersects ∆ in one point, which

is the support of an embedded point, then dim [IΓ′(2) : 〈X,Y 〉] = 2

and dim IΓ′(2)|P3
X,Y

= 8, so we get dim JΓ′,W = 22. The parameter

space for such (W,Γ)′s has dimension 3+27 = 30, so the subset of P55
reg

satisfying equation (14) with this condition on (W,Γ) has dimension
≤ 30 + 21 = 51.

(6) If Γ′
W = z2 is a subscheme of length 2 that does not intersect ∆,

then dim [IΓ′(2) : 〈X,Y 〉] = 2 and dim IΓ′(2)|P3
X,Y

= 8, so we get

dim JΓ′,W = 22. The parameter space for such (W,Γ)′s has dimension
3 + 28 = 31, so the subset of P55

reg satisfying equation (14) with this
condition on (W,Γ) has dimension ≤ 31 + 21 = 52.

(7) If Γ′
W = ∆, then dim [IΓ′(2) : 〈X,Y 〉] = 2 and dim IΓ′(2)|P3

X,Y
= 7,

so we get dim JΓ′,W = 23. The parameter space for such (W,Γ)′s has
dimension 3 + 28 = 31, so the subset of P55

reg satisfying equation (14)
with this condition on (W,Γ) has dimension ≤ 31 + 22 = 53.

(8) If Γ′
W is a subscheme of length 3 that does not intersect ∆, then

dim [IΓ′ (2) : 〈X,Y 〉] = 3

and dim IΓ′(2)|P3
X,Y

= 7, so we get dim JΓ′,W = 24. The parame-

ter space for such (W,Γ)′s has dimension 28, so the subset of P55
reg

satisfying equation (14) with this condition on (W,Γ) has dimension
≤ 23 + 28 = 51.

(9) If Γ′
W is a subscheme of length 3 that intersects ∆ in a point [l], which

is the support of an embedded point, then dim [IΓ′ (2) : 〈X,Y 〉] = 3 and

dim IΓ′(2)|P3
X,Y

= 7, so we get dim JΓ′,W = 24. The parameter space

for such (W,Γ)′s has dimension 27, so the subset of P55
reg satisfying

equation (14) with this condition on (W,Γ) has dimension ≤ 27+23 =
50.

(10) If Γ′
W is a subscheme of length 3 that intersects ∆ in a point [l], which

is not the support of an embedded point, then dim [IΓ′(2) : 〈X,Y 〉] = 2

and dim IΓ′(2)|P3
X,Y

= 7, so we get dim JΓ′,W = 23. The parameter

space for such (W,Γ)′s has dimension 1+28 = 29, so the subset of P55
reg

satisfying equation (14) with this condition on (W,Γ) has dimension
≤ 22 + 29 = 51.

(11) If Γ′
W is the union of the line ∆ and an embedded point, then

dim [IΓ′(2) : 〈X,Y 〉] = 3 and dim IΓ′(2)|P3
X,Y

= 6, so we get

Documenta Mathematica 22 (2017) 455–504



476 Kristian Ranestad, Claire Voisin

dim JΓ′,W = 25. The parameter space for such (W,Γ)′s has dimension
28, so the subset of P55

reg satisfying equation (14) with this condition
on (W,Γ) has dimension ≤ 24 + 28 = 52.

This proves the claim.
�

The proof of Lemma 3.11, hence also of Proposition 3.1, is finished. �

3.2. Syzygies. Recall that the cactus rank of a cubic fourfold F = V (f) is
the minimal length of an apolar subscheme (Definition 3.2). We consider the
syzygies of the ideal If , and give below a partial characterization of cubic
fourfolds of cactus rank < 10, which we will use to prove Proposition 4.1 in the
next section.
For a cubic fourfold F ⊂ P(V ∗), let V10(F ) ⊂ P(V ) be the union of subschemes
of length 10 which are apolar to F . We shall show, in Lemma 3.21, that when
F is general and of cactus rank 10, then V10(F ) is a hypersurface of degree 9.
As suggested to us by Hans Christian von Bothmer, to find the equation of
V10(F ), when it is a hypersurface, we study the syzygies of the apolar ideal If
and compare it with syzygies of the ideal of subschemes of length 9 and 10.
We are interested in the graded Betti numbers for the minimal free resolution
of the ideal If for a general f , and for the ideal of a general set of 9 and 10
points.

Example 3.16. The Betti numbers in the following examples have been com-
puted with Macaulay2 [18].

(1) Let f ∈ C[x0, ..., x5] be the cubic form

f = 2x21x2 − 2x0x
2
2 − 2x21x3 − 2x23x4 − x0x1x5 + 2x1x2x5

+ x22x5 + x2x3x5 + 3x1x4x5 + x24x5 + 3x0x
2
5 + x3x

2
5

Then the resolution of If has Betti numbers:

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

.

(2) Let Z6 be the 6 coordinate points in P5, then the resolution of the ideal
of the 9 points

Z9 = Z6 ∪ {(1 : 1 : 1 : 1 : 0 : 0), (0 : 0 : 1 : −1 : −1 : 1), (1 : −1 : 0 : 0 : 1 : 1)}

in P5 has Betti numbers

1 − − − − −
− 12 25 15 − −
− − − 6 10 3

,
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(3) The resolution of the ideal of the 10 points Z9∪{(0 : 1 : −1 : −1 : 0 : 1)}
in P5 has Betti numbers

1 − − − − −
− 11 20 5 − −
− − − 16 15 4

.

Remark 3.17. The graded Betti numbers in the three resolutions of Example
3.16 are clearly minimal for apolar ideals of cubic forms and for ideals of 9
(resp. 10) points in P5. By semicontinuity we conclude that the Betti numbers
are the same as in these examples for a general cubic form, and for the ideal of
9 (resp. 10) general points in P5.

Lemma 3.18. If f is a cubic form with no partials of rank ≤ 3, then f has
cactus rank ≥ 9. If furthermore the minimal free resolution of the apolar ideal
If has Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

and f has cactus rank 9, then the (35 × 21)-matrix M2 of linear second order
syzygies has generic rank at most 20. In other words, if f has no partial
derivative of rank ≤ 3, the apolar ideal If has Betti numbers as above and the
matrix M2 has generic rank 21, then f has cactus rank 10.

Proof. Since f has no partial derivatives of rank ≤ 3, the map qf : P(V )→ Xf

is a smooth embedding and Xf has no trisecant lines, by Lemma 3.8. Let Z
be an apolar subscheme of length at most 8. Since IZ(2) ⊂ Qf = If (2) and
Qf ⊂ S2V has codimension 6, the rank of the restriction mapQf → H0(OZ(2))
is at most 2. Hence Zf = qf (Z) is contained in a line, and Xf would have a
trisecant line, a contradiction. Therefore f has cactus rank at least 9.
Assume next, f has cactus rank 9 computed by an apolar subscheme Z ⊂ P(V )
that consists of 9 general points. We consider the Gale transform of Z (cf. [11]).
The Gale transform Z ′ of Z is a set of 9 points in a plane, and Z ′ is general
since Z is general. In particular we may assume that Z ′ lies on a unique smooth
cubic curve. By [11, Corollary 3.2], the set of 9 points Z itself lies on this curve
reembedded as an elliptic sextic curve EZ in P(V ). The Betti numbers of the
minimal free resolution of the ideal of EZ are

1 − − − −
− 9 16 9 −
− − − − 1

.

Since IEZ
⊂ IZ and IZ ⊂ If , by assumption, we get that IEZ

⊂ If , i.e. the
elliptic sextic curve EZ is apolar to f . The inclusion of the resolution of IEZ

in the resolution of If displays a third order syzygy of the ideal IEZ
that is a

third order syzygy for the linear strand of the resolution of the ideal If . In the
resolution of If the matrix M2 therefore has generic rank at most 20.
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It remains to consider any cubic form f of cactus rank 9 and no partials of rank
at most 3. Let Z be a length 9 subscheme apolar to f . Now, by Remark 3.3,
the scheme Z is locally Gorenstein and the limit of smooth schemes of length
9, the form f is likewise a limit of forms of cactus rank 9 with a smooth apolar
scheme of length 9. Therefore, by the previous argument, the matrix M2 in
the resolution of If is the limit of matrices of generic rank at most 20, so M2

also has generic rank at most 20.
�

We analyze further the syzygies of elliptic normal sextic curves, to find the
locus in P(V ) where the matrix M2 in the resolution of If drops rank.
First, an elliptic normal sextic curve E lies in a smooth Veronese surface: any of
the four linear systems |D| of degree 3 on E such that |2D| is the linear system
of hyperplane sections of E ⊂ P(V ), is the linear system of conic sections of E
in a smooth Veronese surface in P(V ).

Lemma 3.19. Let E be an elliptic normal sextic curve in P5 and let

p ∈ P(V ) \ E.

Then the ideal of E ∪{p} has a unique second order linear syzygy that vanishes
at p.
If, in addition, p is not contained in the secant variety of any of the four
Veronese surfaces containing E, then the syzygy has rank 5 and no ideal strictly
contained in the ideal of E ∪ {p} has this syzygy.
If p ∈ Σ \ E, where Σ is a Veronese surface that contains E, then the second
order linear syzygy that vanishes at p is a syzygy for IΣ, but no ideal strictly
contained in IΣ.

Proof. Let p be in P(V ) \ E. The minimal free resolution of IE is symmetric
with Betti numbers

1 − − − −
− 9 16 9 −
− − − − 1

.

The third order syzygy is therefore nonzero at the point p outside E, and
defines a unique second order syzygy that vanishes at p.
This syzygy is a syzygy among at most 5 first order linear syzygies that also
vanishes at p, and finally, these first order syzygies are linear syzygies among
quadrics in the ideal of E that vanish at p. Therefore the ideal of IE∪{p} has
a second order linear syzygy vanishing at p.
The secant variety of E is the intersection of a pencil of determinental cubic
hypersurfaces that are singular along E (see [12] Theorem 1.3, Lemma 2.9).
In fact, these hypersurfaces are defined by determinants of (3 × 3)-matrices
with linear entries that have rank one along E. Since E is smooth, all the
linear entries are nonzero. Four of the cubic hypersurfaces are secant varieties
of Veronese surfaces that contain E. If p is not on any of these four hyper-
surfaces, then p is not on the secant variety of E, and there is a unique cubic
determinental hypersurface Y that is singular along E and contains p. We may
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assume that this hypersurface is defined by the determinant of the (3 × 3)-

matrix A =




a0 a1 a2
a3 a4 a5
a6 a7 a8



 with linear entries ai. Since p is not on any of the

four secant varieties of a Veronese surface containing E, the matrix A is not
symmetric, so p is in a unique plane in each of the two nets of planes in Y .
In particular we may assume that p = V (a0, a1, a2, a4, a7). Then the ideal of
E ∪ {p} is generated by all the (2× 2)-minors of A except a3a8− a6a5, i.e. the
quadrics

IE∪{p} =(a1a3 − a0a4, a2a3 − a0a5, a2a4 − a1a5, a1a6 − a0a7, a2a6 − a0a8,

a4a6 − a3a7, a2a7 − a1a8, a5a7 − a4a8).

These quadrics have the following matrices of first and second order linear
syzygies that vanish at p:

S1 =




−a2 0 a7 0 0
a1 0 a0 a7 0
−a0 0 0 0 −a7
0 −a2 −a4 0 0
0 a1 0 −a4 0
0 0 a1 a2 0
0 −a0 0 0 a4
0 0 0 a0 −a1




and S2 =




−a7
a4
−a2
a1
a0



,

i.e.

IE∪{p},2 · S1 = S1 · S2 = 0.

The rows of the matrix S1 have no constant syzygies, so there are no ideal
properly contained in IE∪{p} with the second order linear syzygy, S2, among
its quadrics.
Now, if the matrix above is symmetric, i.e. a1 = a3, a2 = a6, a5 = a7, it has
rank one along a Veronese surface Σ. Therefore, for each point p ∈ Σ, there
is an inclusion IΣ ⊂ IE∪{p}. The quadrics in IE∪{p} in the non-symmetric
case reduces to the quadrics in IΣ. If p = V (a0, a1, a2, a4, a7) ∈ Σ, the above
displayed second order syzygy remains a second order linear syzygy among the
quadrics in IΣ, and as in the non-symmetric case, no proper ideal contained in
IΣ has this second order linear syzygy.

�

Assume now that Z is a set of 10 points that is apolar to a cubic fourfold F of
rank 10, and that a subset Z0 ⊂ Z of 9 points lies in an elliptic normal sextic
curve E. By Lemma 3.19, the ideal of E ∪ Z, and hence also IZ , has a second
order syzygy that vanishes in the point p = Z \ Z0 so the matrix M2 in the
resolution of If has rank at most 20 at p.
Furthermore, assume that the set Z0 ⊂ E of 9 points in P(V ) is the base locus
of a pencil of elliptic sextic curves {Eλ} on a Veronese surface, and that the
point p is not contained in the secant variety of this Veronese surface. Then,
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for a general curve Eλ in the pencil, the second order linear syzygy for the
ideal of Eλ ∪ Z determines the curve. Therefore there is a pencil of second
order syzygies for IZ that vanishes at p = Z \Z0. Hence, we conclude that the
matrix M2 in the resolution of If has rank at most 19 at p.
Let F be a cubic fourfold defined by a form f of rank 10 and consider the
incidence

IV SP = {(p, [Z])|p ∈ Z} ⊂ P(V )× V SP (F, 10).

Then, by definition, V10(F ) ⊂ P(V ) is the image of IV SP under the first
projection IV SP → P(V ).

Corollary 3.20. Let f be a cubic form of rank 10 with no partial derivatives
of rank ≤ 3 and Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

for the apolar ideal If . Assume that there exist a set Z of 10 points apolar to
f , and that a subset Z0 ⊂ Z of 9 points lie on an elliptic sextic curve EZ0 ,
while the point p = Z \ Z0 does not lie on the secant variety of any Veronese
surface that contains EZ0 . Then the (35×21)-matrix M2 of linear second order
syzygies has rank at most 20 along V10(F ). Furthermore, M2 has rank at most
19 at every point p ∈ Z ⊂ P(V ) such that the subscheme Z0 is contained in a
pencil of elliptic sextic curves on a Veronese surface.

Proof. The first condition on Z0 and Z is clearly an open condition in
V SP (F, 10), so M2 has rank at most 20 along a Zariski open set of V10(F ),
hence everywhere along V10(F ). Similarly the second condition on Z0 and Z is
open among sets of points Z such that the subset Z0 is contained in a pencil of
elliptic sextic curves on a Veronese surface, so the second part of the Corollary
follows.

�

Lemma 3.21. (von Bothmer [5]) Let f be a cubic form whose apolar ideal If
has a minimal free resolution with Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

.

Then the (35× 21)-matrix M2 of linear second order syzygies has rank at most
20 either on all of P(V ) or on a hypersurface YF . In the second case, V10(F )
is equal to YF and has degree 9 if M2 has rank 20 at a general point of YF .

Proof. Consider the linear strand of the resolution of If with Betti numbers

1 − − − −
− 15 35 21 −
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evaluated at a general point. The first map has kernel of dimension 14. There-
fore the corank of the third map ϕM2 is at least 14. If the linear strand is exact
at a general point, then the rank of the third map drops along a hypersurface.
We compute the degree of this hypersurface by restricting the linear strand to
a general line L ⊂ P(V ). This restriction of the linear strand is a complex

0← OL ← 15OL(−2)← 35OL(−3)← 21OL(−4)← 0

that is exact, except at 35OL(−3). The kernel of the first map is a vector
bundle E1 of rank 14 and first Chern class c1(E1) = −30 on L. Therefore, the
second map factors into a surjective map E1 ← 35OL(−3) with kernel a vector
bundle E2 of rank 21 with first Chern class c1(E2) = 35 · (−3)− (−30) = −75
on L. The third map of the linear strand, defined by the restriction of ϕM2 to
L, factors through a vector bundle map E2 ← 21OL(−4) between two bundles
of rank 21. The determinant of this bundle map, since it is assumed to be
nonzero, defines a divisor whose class is the difference of the first Chern classes
of the two bundles, i.e. of degree −75 + 21 · (−4) = 9 on L. So ϕM2 either has
rank at most 20 on all of P(V ) or it has rank at most 20 on a hypersurface of
degree 9.
For the last statement, we already proved in Corollary 3.20 that the hyper-
surface V10(F ) ⊂ P(V ) is contained in the determinental hypersurface YF of
points where M2 has rank at most 20. On the other hand, one can exhibit F
for which YF is irreducible (cf. Proposition 4.1). Hence for such an F , V10(F )
must be equal to YF , which implies the same result for any F . �

Remark 3.22. The general cubic fourfold F in the divisor DIR has rank 10,
while V10(F ) is a Pfaffian cubic hypersurface (cf. [15, Lemma 3.9 and Proposi-
tion 3.15]). In this case the (35× 21)-matrixM2 has rank 18 at a general point
of V10(F ).

Lemma 3.23. Let f ∈ S3V be a cubic form whose apolar ideal If has a minimal
free resolution with Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

.

If the (35 × 21)-matrix M2 of linear second order syzygies has rank 21 at a
general point and rank 20 at some point, then V10(F ) is singular along the set
of points [l] ∈ P(V ) for which f − l3 has rank 9 and the matrix M2 has rank
at most 19, in particular at the points [l] for which f − l3 is apolar to a pencil
of elliptic normal sextic curves on a Veronese surface.

Proof. Indeed, by Lemma 3.21, the (35 × 21)-matrix M2 has rank at most 20
along the determinantal hypersurface V10(F ) = YF . Since it has rank 20 at
some point, it must have rank 20 at a general point of V10(F ), while V10(F )
is singular where the rank is at most 19. The lemma therefore follows from
Corollary 3.20. �
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Remark 3.24. We have computed with Macaulay2 [18] for certain cubic forms
f , that V10(F ) is a hypersurface of degree 9 whose singular locus is a surface
of degree 140 that coincides with the locus where M2 has rank at most 19.
Therefore we conjecture that this holds for a general f .

Lemma 3.25. Let f be a cubic form of rank 9 and assume that there is a 9-tuple
of points apolar to f that is a divisor D on an elliptic sextic curve and that 2D
is not a cubic hypersurface divisor on the curve. Then there are exactly two
subschemes of length 9 that are apolar to f .

Proof. Let D = {p1, ..., p9} be a set of points on an elliptic sextic curve E
apolar to f . Then the Gale transform of the points D are 9 points D′ ⊂ P2.
The Gale transform (cf. [11]) reembeds E as a cubic curve E′ through the
points D′ in P2, such that the lines in the plane intersect E′ in divisors H3

equivalent to D−H6, where H6 is a hyperplane divisor on E in P5. Since 2D
is not equivalent to 3H6, the cubic divisor in the plane 3H3 = 3D − 3H6 =
D + (2D − 3H6) is not equivalent to D. Therefore D′ lies on a unique cubic
curve in the plane, and likewise E is the unique elliptic sextic curve in P5

through D. The curve E is apolar to f , and we claim that any 9-tuple of
points apolar to f lies on this curve.
By Terracini’s Lemma, (cf. [21], [24]), the tangent space to the 8-th secant
variety of the 3-uple embedding W3 ⊂ P55 of P5 at the point [f ] is the span of
the tangent spaces of any 9 points in W3 whose span contains [f ]. The tangent
space to the 8-th secant variety at [f ] is therefore defined by the linear space
of cubic hypersurfaces that are singular at p1, ..., p9. The curve E is contained
in four Veronese surfaces, corresponding to the four square roots of the hyper-
plane line bundle of degree 6. The secant varieties of these Veronese surfaces
generate a pencil of cubic hypersurfaces singular along the elliptic curve. Their
intersection is precisely the union of secant lines to E, so there are no other
cubics singular along E, and E is the common singular locus of this pencil.
We will show that these hypersurfaces are precisely the cubic hypersurfaces
singular at p1, ..., p9. Since the divisor 2D is not linearly equivalent to a cu-
bic hypersurface divisor, a cubic hypersurface singular in D must contain the
curve E. Furthermore, on any smooth intersection S of three quadrics contain-
ing the curve, the curve E has trivial normal bundle. Therefore, the residual of
a cubic hypersurface section of S that contains E, meets the curve in a divisor
equivalent to a cubic section. Hence, a cubic that is singular along D, must
contain the doubling of the curve in the three quadrics. Varying the complete
intersection surface S, we may conclude that the cubic must be singular along
the curve.
Summing up we see that tangent space of the 8-th secant variety of W3 at the
point [f ] has codimension 2 in P55 and that any 9-tuple of points on W3 whose
span contains [f ] is contained in the reembedding E′′ of E in W3.
The curve E′′ inW3 is an elliptic normal curve of degree 18. By [7, Proposition
5.2], and its proof, when 2D is not equivalent to 3H6 there is unique divisor
D′′ of degree 9 on E′′, distinct from D, whose span in the 3-uple embedding
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contains [f ]. In fact, D′′ is a divisor equivalent to 3H6 − D. Therefore f is
apolar to exactly two subschemes of length 9 supported on E. �

Lemma 3.26. Let F be a fourfold defined by a cubic form f , that has no partials
of rank ≤ 3 and whose apolar ideal If has a minimal free resolution with Betti
numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

.

Assume that the (35×21)-matrixM2 of linear second order syzygies has rank 21
at a general point, and that there is a 10-tuple of points Z ⊂ P(V ) apolar to f
and a point [l] ∈ Z at which M2 has rank 20, such that the 9 points Z0 = Z \ [l]
form a divisor D on an elliptic sextic curve EZ0 . Assume furthermore that the
divisor 2D is not equivalent to a cubic hypersurface divisor on EZ0 , and that [l]
is not contained in the secant variety of any Veronese surface containing EZ0 .
Then the projection IV SP → V10(F ) is generically 2 : 1.

Proof. Note that the cubic form f has rank 10 and that f − cl3 has rank 9 for
some c ∈ C. In fact, sinceM2 has rank 20 at [l], the ideal If has a unique second
order linear syzygy vanishing at [l]. By Lemma 3.19, this syzygy determines
uniquely the curve EZ0 . In particular, there is a unique c such that f − cl3

has rank 9. By Lemma 3.25, there are exactly two points in the fiber of the
projection

IV SP → V10(F ) ([l], [Z]) 7→ [l]

over [l]. Since the conditions on Z are open, the lemma follows. �

4. The divisor of cubic fourfolds apolar to a Veronese

In the first part of this section we show (Corollary 4.5) that for a general cubic
fourfold F apolar to a Veronese surface Σ, i.e. in the set DV −ap, the variety
V SP (F, 10) is singular along a K3 surface, and then (Corollary 4.7) that the
hypersurface V10(F ) introduced and studied in the previous section is singular
along Σ. Subsequently, we show (Corollary 4.9) that the general F in DV −ap

is apolar to finitely many Veronese surfaces, by exhibiting an F in DV−ap such
that the singular locus of V10(F ) cannot contain a one-dimensional family of
Veronese surfaces. Next, we extend results in Section 3 to show (Corollary 4.10
and Propositions 4.11 and 4.13) that DV−ap is a divisor different from Drk3

and Dcopl, and that the fourfold V SP (F, 10) does not meet the singular locus
of the Hilbert scheme for a general F in DV−ap (Corollary 4.12). In the final
part of the section we show (Proposition 4.16) that DV−ap is not a Noether
Lefschetz divisor in the moduli space of smooth cubic fourfolds.
The Propositions 4.11 and 4.16 and Corollaries 4.9 and 4.12 are applied in
Section 5 to show that for a general [f ] ∈ DV−ap, the fourfold V SP (F, 10) is
smooth outside a surface along which it has quadratic singularities.
By a direct calculation in an example we now prove:
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Proposition 4.1. Let F be a general cubic fourfold apolar to a Veronese sur-
face Σ.
(i) F has cactus rank 10. Hence no length 9 subscheme of P(V ) is apolar to
F .
(ii) F is nonsingular and the form f defining F has no partial derivatives of
rank ≤ 3.
(iii) The minimal free resolution of the apolar ideal If has Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

,

and the matrix M2 of linear second order syzygies of If has rank 20 at a general
point of Σ.
(iv) YF = V10(F ) is an irreducible fourfold singular in codimension at least 2.

Proof. We find with Macaulay2 [18] a cubic form apolar to a Veronese surface
Σ, and compute the resolution of its annihilator (apolar ideal). Let Σ be the
Veronese surface defined by the (2× 2)-minors of



x0 x1 x2
x1 x3 x4
x2 x4 x5




So the ideal of Σ is generated by

〈x0x3 − x
2
1, x0x5 − x

2
2, x3x5 − x

2
4, x0x4 − x1x2, x1x4 − x2x3, x1x5 − x2x4.〉

By differentiation one may check that each of these quadratic forms annihilates
the following cubic form:

f =y20y1 + y1y
2
2 − 2y1y2y3 − y2y

2
3 − y

2
1y4 + 2y0y2y4 − 2y0y3y4 − 2y1y3y4

+ 2y0y1y5 + y24y5 + y3y
2
5 .

So f is apolar to the Veronese surface Σ. The apolar ideal of the cubic form f
has Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

.

Its 35× 21-matrix M2 of second order linear syzygies restricted to the plane

x0 = x3 = x4 − x5 = 0,

has rank 20 along a curve of degree 9. Reduced modulo 5 the defining form for
this curve is
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x91 − 2x81x2 + 2x71x
2
2 − x

6
1x

3
2 + x51x

4
2 + x41x

5
2 + 2x31x

6
2 − 2x21x

7
2 + 2x92 − 2x81x4

+ x71x2x4 − 2x61x
2
2x4 + 2x51x

3
2x4 − x

4
1x

4
2x4 − x

3
1x

5
2x4 − x

2
1x

6
2x4 + x1x

7
2x4

− 2x82x4 + 2x71x
2
4 + 2x61x2x

2
4 − 2x51x

2
2x

2
4 − x

4
1x

3
2x

2
4 − 2x21x

5
2x

2
4 − x1x

6
2x

2
4 − x

6
1x

3
4

− 2x41x
2
2x

3
4 − 2x31x

3
2x

3
4 + 2x1x

5
2x

3
4 − x

6
2x

3
4 + x51x

4
4 − 2x41x2x

4
4 − 2x31x

2
2x

4
4

− x1x
4
2x

4
4 + 2x41x

5
4 − x

3
1x2x

5
4 − 2x1x

3
2x

5
4 + x42x

5
4 − 2x31x

6
4 + 2x21x2x

6
4 − 2x32x

6
4

+ 2x21x
7
4 + 2x1x2x

7
4 + x1x

8
4 − 2x2x

8
4 − x

9
4

It is nonsingular, which proves (iv). In particular the generic rank of the matrix
M2 is 21 for f . Therefore, by Lemma 3.18, the cactus rank of f is 10, which
proves (i).
A direct computation shows that F = V (f) is nonsingular, that f has no
partials of rank 3, and that the matrix M2 for the apolar ideal of f has rank
20 at the point V (x0, x1, x2, x3, x4) ∈ Σ, hence at a general point on Σ, which
proves (ii) and (iii), respectively. �

Let W be a vector space of rank 3, and V = S2W , and recall the linear map
(cf. (2))

s : S6W → S3V s.t. s(a6) = (a2)3(18)

For g ∈ S6W , we consider the cubic form f = s(g) ∈ S3V . Let C = V (g) ⊂
P(W ∗) and F = V (f) ⊂ P(V ∗). Formula (18) shows that there is a natural
embedding

φ : V SP (C, 10)→ V SP (F, 10).

Indeed, if g =
∑

i a
6
i , then f = s(g) =

∑
i(a

2
i )

3. For distinct [ai] ∈ P(W ), the
morphism φ sends the length 10 subscheme {[ai]|i = 1, ..., 10} to the length 10
subscheme {[a2i ]|i = 1, ..., 10} of P(V ). More generally, φ associates to a length
10 apolar subscheme Z of g in P(W ) the length 10 apolar subscheme to f in
P(V ) which is the image of Z under the Veronese embedding.

Remark 4.2. When g is general sextic ternary form and C = V (g), then g has
rank 10. Mukai showed in [19] that V SP (C, 10) is a smooth K3 surface. We
shall often use the notation Sg := φ(V SP (C, 10)).

Lemma 4.3. If g is a general sextic ternary form and f = s(g), then
V SP (F, 10) is a fourfold and the projection IV SP → V10(F ) is generically
2 : 1, where F = V (f).

Proof. We may assume that f = s(g) is a general cubic form apolar to a
Veronese surface. By Remark 4.2, the sextic form g has rank 10, and by
Proposition 4.1, f = s(g) has cactus rank 10, hence also rank 10, and V10(F )
is a fourfold. We first claim that the projection IV SP → V10(F ) is generically
finite, and hence that V SP (F, 10) is also a fourfold. For this let Σ be the
Veronese surface that is the image of the quadratic embedding of P(W ) in
P(V ) = P(S2W ), and let Z ⊂ Σ be a general 10-tuple of points on Σ that is
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apolar to F . Note that [Z] ∈ Sg = φ(V SP (C, 10)). We may assume that a
subset Z0 ⊂ Z of 9 points lie on a unique elliptic sextic curve EZ0 in Σ. Then
p = Z \Z0 lies on V10(F ), and IΣ has a unique linear second order syzygy that
vanishes at p. By Proposition 4.1 (iii), this syzygy is the unique second order
syzygy for If that vanishes at p, and, by Lemma 3.19, every apolar subscheme
Z ′ to F that contains p must be contained in Σ. Thus [Z ′] ∈ φ(V SP (C, 10)).
But, by Remark 4.2, the variety V SP (C, 10) is a surface, so, since p is a general
point, there are finitely many apolar schemes to C of length 10 that contain
the point p. Therefore the projection IV SP → V10(F ) also has a finite fiber
over p ∈ V10(F ), and the projection is generically finite.
By Proposition 4.1 (iv), the variety V10(F ) is an integral hypersurface of degree
9. Consider a one parameter family of cubic fourfolds {Ft}t∈C that contains F
and the total family

I = {(p, Z, t)|p ∈ Z, [Z] ∈ V SP (Ft, 10)} ⊂ P(V )×Hilb10P(V )×C.

After possibly shrinking the parameterspace, we may assume that I is irre-
ducible and flat over an open subset ∆ ⊂ C. For t ∈ ∆ the fiber in I over
t is IV SPt

, and the variety V10(Ft) ⊂ P(V ) is the image of the projection of
this fiber into the first factor. For general t the variety V10(Ft) is an integral
hypersurface of degree 9 by Lemma 3.21, while the projection IV SPt

→ V10(Ft)
is generically 2 : 1 by Lemma 3.26. Since V10(F ) is a hypersurface of degree 9,
the generically finite map IV SP → V10(F ) is also 2 : 1.

�

To show that V SP (F, 10) is singular along Sg = φ(V SP (C, 10)), we use the
following general criterion for singularities of the variety of power sums of a
hypersurface:

Lemma 4.4. Assume that k is the rank of a general hypersurface F ′ of degree
d in P(V ∗). Let F ⊂ P(V ∗) be a hypersurface of degree d and rank k and
assume that dimV SP (F, k) = dimV SP (F ′, k). Let [Z] ∈ Hilbk(P(V )) be
an apolar subscheme to F such that Z = {[l1], . . . , [lk]} consists of k distinct
points. Then V SP (F, k) is singular at [Z], if there is a hypersurface of degree
d in P(V ) which is singular along Z.

Proof. Consider the universal family

VSP = {([Z], [f ])|[Z] ∈ V SP (F, k)} ⊂ Hilbk(P(V ))×P(SdV ).

The fiber of the second projection over a point [f ] ∈ P(SdV ) is V SP (F, k),
where F = V (f). The fiber over a point [Z] ∈ Hilbk(P(V )) of the first projec-
tion is a linear space, the linear span 〈ρd(Z)〉 of the image ρd(Z) in P(SdV ) un-
der the d−uple Veronese embedding ρd. Now, consider a point ([Z], [f ]) ∈ VSP
where Z is a smooth subscheme apolar to f and f has rank k. Then Z be-
longs to the set of subschemes that impose independent conditions to poly-
nomials of degree d, which is open in the Hilbert scheme, and 〈ρd(Z)〉 is a
Pk−1. Since Hilbk(P(V )) is smooth of dimension kn near Z, we conclude that
VSP is smooth of dimension kn + k − 1 at ([Z], [f ]). Since F has rank k,
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the second projection VSP → P(SdV ) is dominant. Furthermore, since the
dimension of the fiber V SP (F, k) of the second projection VSP → P(SdV ) is
equal to the dimension of a general fiber, the variety V SP (F, k) is singular at
a point [Z] if the rank of the second projection at the point ([Z], [f ]) is less
than dim(P(SdV )). If Z = {[l1], . . . , [lk]}, then this rank is the dimension of

the span TZ = 〈[ld−1
i yj ]|1 ≤ i ≤ k, 0 ≤ j ≤ n〉 where 〈y0, . . . , yn〉 = V . In fact,

from the expansion of (li + yj)
d, we see that ld−1

i yj defines a tangent direction
at the point [ldi ], so TZ is the span of the tangent spaces to the d-uple embed-
ding ρd(P(V )) at the points [ldi ] (this is a special case of Terracini’s Lemma,
cf. [21], [24]). Hence V SP (F, k) is singular at [Z] if these tangent spaces do
not span P(SdV ).
But hyperplanes in P(SdV ) correspond to hypersurfaces of degree d in P(V ),
and a hyperplane contains the tangent space at [ldi ] if and only if the cor-
responding hypersurface is singular at [li]. Therefore V SP (F, k) is singular
at [Z] if there is a hypersurface in P(V ) of degree d singular in the points
[l1], . . . , [lk]. �

Corollary 4.5. If g is a general sextic ternary form and f = s(g) (cf. 18),
then V SP (F, 10) is singular along Sg = φ(V SP (C, 10), where F = V (f) and
C = V (g).

Proof. First, we may assume that f = s(g) is a general cubic form apolar to
a Veronese surface Σ. By Remark 4.2, the sextic form g has rank 10, and
by Proposition 4.1, f = s(g) has cactus rank 10, hence also rank 10, and by
Lemma 4.3, V SP (F, 10) is a fourfold.
Let Z ⊂ Σ be a general 10-tuple of points on Σ that is apolar to F . Note
that [Z] ∈ Sg = φ(V SP (C, 10)). Now, since g has rank 10, the points in Z
impose independent conditions to S3V ∗. According to Lemma 4.4, the variety
V SP (F, 10) is singular at [Z] if there exists a cubic fourfold singular along Z.
This condition is satisfied in our situation since Z is contained in the Veronese
surface Σ ⊂ P(V ). In fact, the Veronese surface is the singular locus of the
discriminant cubic hypersurface parameterizing singular conics in P(W ∗). �

The next lemma is used to prove that if F is a general cubic fourfold apolar to a
Veronese surface Σ, then the hypersurface V10(F ) is singular along Σ (Corollary
4.7).

Lemma 4.6. Let C be a plane curve defined by a general sextic form g, and let

IV SP = {([l], [Z])|[l] ∈ Z} ⊂ P2 × V SP (C, 10)

be the natural incidence variety. Then the projection onto the first factor is
2 : 1.

Proof. We may assume that g has rank 10. Let p = [l] ∈ Z ⊂ P2 be a point
in a general apolar subscheme of length 10. Then Z0 = Z − p has length nine
and is contained in a unique smooth cubic curve EZ0 . In fact, in the pencil
g−λl6, there is a unique form g1 of rank 9: The (10× 10)-catalecticant matrix
of µg−λl6 has nonvanishing determinant with a zero of multiplicity 9 at µ = 0,
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and hence one more zero. The corank of the catalecticant matrix is the rank
of the space of cubic forms apolar to µg − λl6, so the simple zero correspond
to a unique sextic form g1 in the pencil g− λl6 that is apolar to a cubic curve,
i.e. apolar to the scheme Z0 and the cubic curve EZ0 . By genericity, we may
assume that 2Z0 is not equivalent to 6HL as divisors on EZ0 , where HL is a
divisor defined by a line in P2. We apply now Lemma 3.25 to the cubic form
s(g1), and conclude that p is contained in exactly two subschemes of length 10
that are apolar to g1. �

Corollary 4.7. Let F be a cubic fourfold of cactus rank 10 that is apolar to
a Veronese surface Σ. If the matrix M2 of linear second order syzygies of the
apolar ideal If has rank 20 at a general point of V10(F ), then this hypersurface
is singular along Σ.

Proof. Let F = V (f) and f = s(g), then, by Corollary 4.5, the variety
V SP (F, 10) is singular along the K3 surface Sg = φ(V SP (C, 10)), where
C = V (g), and V10(F ) ⊂ P(V ) is a hypersurface of degree 9, by Lemma
3.21. Now, assume that {gt}t∈C is a general one parameter family of ternary
sextic forms such that g = g0. Let gt be a general member of the family.
Then, by Proposition 4.1 and Remark 4.2, the sextic form gt and the cubic
form ft = s(gt) both have rank 10. Any length 9 subscheme of a general apolar
scheme of length 10 of gt is contained in an elliptic normal sextic curve E on
Σ, and as a divisor on E satisfies the condition of Lemma 3.25. The projection
IV SPt

→ V SP (Ft, 10) and its restriction over Sgt are both finite and of degree
10.
Consider the other projection IV SPt

→ V10(Ft). By Lemma 4.3, it is generically
2 : 1 and V10(Ft) is an irreducible hypersurface of degree 9. On the other hand,
by Proposition 4.1 (iii) the Veronese surface Σ is contained in V10(Ft). Let
p ∈ Σ be a general point. As in the proof of Corollary 4.5, if (p, [Z]) ∈ IV SPt

,
then Z ⊂ Σ. Therefore we may conclude, by Lemma 4.6, that the projection
IV SPt

→ V10(Ft) is 2 : 1 over p, and hence generically over Σ.
An analytic neighborhood in V SP (Ft, 10) of a general point in Sgt is therefore
isomorphic to a suitable neighborhood in V10(Ft) of any of the corresponding
points in Σ. Therefore V10(Ft) is singular along Σ if and only if V SP (Ft, 10)
is singular along Sgt .
Thus, for an open neighborhood 0 ∈ ∆ ⊂ C, there is a family {V10(Ft)|t ∈ ∆}
of hypersurfaces of degree 9 whose general member is singular along Σ. To see
that V10(F ) is singular along Σ, we study this family.
Let

I = {(p, Z, t)|p ∈ Z, [Z] ∈ V SP (Ft, 10)} ⊂ P(V )×Hilb10P(V )×∆,

be the closure of the natural incidence, and let VSP∆(10) ⊂ P(V )×∆ be the
image of the projection I → P(V )×∆. Then I and VSP∆(10) are fivefolds, and
thus the fibers of VSP∆(10)→ ∆ are all fourfolds. The fiber at t ∈ ∆ therefore
contains the fourfold V10(Ft) as a component. Since V10(Ft) is singular along
Σ for a general t, the same holds for t = 0 and the lemma follows. �
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Remark 4.8. In computations we have found forms f apolar to a Veronese
surface Σ, such that V10(F ) is singular along the union of Σ and a surface of
degree 140, the locus of points where the matrix M2 of second order linear
syzygies has rank at most 19. As noted in Proposition 4.1 (iii), the matrix M2

has rank 20 generically on Σ.

Corollary 4.9. Let F be a general cubic fourfold apolar to a Veronese surface.
Then F is apolar to finitely many Veronese surfaces.

Proof. The union of a 1−dimensional family of Veronese surfaces is a threefold.
So, if f is apolar to a 1−dimensional family of Veronese surfaces, then, by
Lemma 3.21 and Corollary 4.7, the degree 9 determinantal hypersurface V10(f)
would be singular along a threefold, contradicting Proposition 4.1. �

Corollary 4.10. The set DV−ap of cubic forms that are apolar to some
Veronese surface is an irreducible hypersurface in P(S3V ).

Proof. The map g 7→ f = s(g) induces a rational map

smod : S6W//Gl(W ) 99K S3V//Gl(V ).

The image of smod is the locus of cubic fourfolds apolar to a Veronese surface, so
DV−ap is irreducible. That it is a divisor, follows from a dimension count: Plane
sextics have 28 − 9 = 19 parameters, while cubic fourfolds have 56 − 36 = 20
parameters, so it suffices to show that smod has generically finite fiber. The
fiber of smod over a point parameterizing a cubic fourfold F may be identified
with the set of Veronese surfaces which are apolar to F . The result thus follows
from Corollary 4.9. �

Proposition 4.11. A general cubic fourfold F which is apolar to a Veronese
surface satisfies the conclusion of Proposition 3.1, namely, any element [Z] ∈
V SP (F, 10) corresponds to a length 10 subscheme Z which imposes independent
conditions on cubics and is apolar to F .

Proof. By Proposition 3.1, the divisorial part of the set of cubic fourfolds not
satisfying this conclusion is contained in the union of the irreducible divisors
Drk3 and Dcopl introduced in Section 2. As we know that the set of cubics
apolar to a Veronese surface is an irreducible divisor which is different from
Drk3 by Proposition 4.1 (ii), the result follows from the following Proposition
4.13. �

Corollary 4.12. For a general cubic fourfold F which is apolar to a Veronese
surface, V SP (F, 10) does not meet Sing(Hilb10(P(V )).

Proof. This follows from Proposition 4.1(ii) which guarantees that the form
f that defines F has no partial derivative of rank ≤ 3, Proposition 4.11 and
Proposition 3.5. �

Proposition 4.13. The divisors Dcopl and DV−ap are distinct.
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Proof. We shall distinguishDcopl andDV−ap by proving that their intersections

DV−ap ∩DIR and Dcopl ∩DIR

with DIR are distinct.
Recall from Section 2 that DIR denotes the set of cubic fourfolds FIR(S)
associated to a K3 surface section S = P8

S ∩ G(2, 6) ⊂ P14. The dual

space P5
S := (P8

S)
⊥ ⊂ P̌14 intersects the Pfaffian cubic hypersurface, the

secant variety of Ǧ(2, 6) ⊂ P̌14, in a Pfaffian cubic fourfold FBD(S). Fur-
thermore, by [15, Lemma 3.9 and Proposition 3.15], there is an identification
V10(FIR(S)) = FBD(S).

Lemma 4.14. Let FBD(S) ⊂ P5
S be a Pfaffian cubic fourfold with no rank 2

points, i.e. P5
S ∩ Ǧ(2, 6) = ∅, and let S = P8

S ∩ G(2, 6) be the corresponding
linear section of G(2, 6). Then FIR(S) has cactus rank 10, and S is birational to
a component of the Hilbert scheme of rational quartic surface scrolls in FBD(S)
that are apolar to FIR(S).

Proof. If FBD(S) has no rank 2 points, then P8
S = (P5

S)
⊥ defines the apolar

ideal If of a cubic fourfold FIR(S) = V (f), and this fourfold has cactus rank
10, (cf. [15, 3.5 and Lemma 3.6]). By [15, Lemma 2.9], each secant line to S
defines a pair of rational quartic surface scroll in FBD(S) that intersect along
scheme of length 10 apolar to FIR. The two scrolls correspond to the points of
intersection on the variety S. �

If a cubic fourfold F of cactus rank 10 is apolar to a Veronese surface, then, by
Corollary 4.7, V10(F ) must contain this Veronese surface. So the proposition
follows by finding a cubic fourfold F = FIR(S) ∈ Dcopl ∩ DIR, such that the
Pfaffian cubic FBD(S) contains no Veronese surface.
We first consider Pfaffian cubic fourfolds that contain a plane. For a smooth
cubic fourfold F , let A(F ) := H4(F,Z)∩H2,2(F ), the lattice of integral middle
Hodge classes.

Lemma 4.15. If F is a general smooth Pfaffian cubic fourfold that contains a
plane P intersecting a rational quartic surface S4 in F along a conic section,
then A(F ) does not contain the class of a Veronese surface. Furthermore the
Pfaffian cubic fourfolds that contain such a plane form a divisor in the variety
of Pfaffian cubic fourfolds.

Proof. We may assume that A(F ) has rank 3, generated by the classes of
h2, [S4] and [P ] (cf. [6, Example 3.1 and Theorem 3.]). The intersection matrix
is

h2 [S4] [P ]
h2 3 4 1
[S4] 4 10 0
[P ] 1 0 3

The class of a Veronese surface Σ in F would have intersections

h2 · [Σ] = 4, [Σ]2 = 12
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and −1 ≤ [Σ] · P ≤ 3, since Σ has degree 4 and [Σ] · P = −1 when Σ ∩ P is a
conic. If Σ ⊂ F , then [Σ] = aH2+ b[S4]+ c[P ] with integral a, b, c. Computing
intersection numbers we get

3[Σ]2 − ([Σ] · [h2])2 = 14b2 + 8c2 − 8bc = 20.

Since 4 divides the right hand side, b in the left hand side must be even, which
again means that 8 must divide the right hand side, a contradiction. For the
last statement, see [1, Section 2]. �

We now exhibit a cubic form f in Dcopl that is apolar to a rational quartic
surface scroll and has both rank and cactus rank 10. By Lemma 2.4, it belongs
to Dcopl ∩DIR.
The cubic form

f = −7x30 + 9x20x1 − 12x0x
2
1 + x31 − 12x20x2 + 6x0x1x2 + 3x20x3

− 3x21x3 − 6x0x2x3 − 6x1x2x3 + 3x0x
2
3 − 3x2x

2
3 + x33 − 6x0x1x4 − 3x21x4

− 6x0x2x4 − 6x1x3x4 − 3x0x
2
4 − 3x20x5 − 6x0x1x5 + 6x22x5

− 6x0x3x5 + 6x2x4x5 + 3x1x
2
5 − x

3
5

is apolar to the two quartic surface scrolls S4 and S′
4 defined by the 2-minors

of (
x0 x1 x3 x4
x1 x2 x4 x5

)
and

(
x3 x4 x0 + x1 + x5 x1 − x2 + x4
x4 x5 x1 − x3 + x4 x0 + x2 − x3

)

respectively, so f belongs to DIR. The intersection S4 ∩ S′
4 of the two scrolls

is the union of the six points Z6 defined by the 2-minors of
(
x0 x1 x3 x4 x0 + x1 + x5 x1 − x2 + x4
x1 x2 x4 x5 x1 − x3 + x4 x0 + x2 − x3

)

and the four points

V (x0x2 − x
2
1, x

2
0 + x0x1 + 2x1x2), x3, x4, x5)

in the plane V (x3, x4, x5), so f belongs also to Dcopl and has rank at most 10.
The resolution of the apolar ideal If has Betti numbers

1 − − − − − −
− 15 35 21 − − −
− − − 21 35 15 −
− − − − − − 1

.

and the matrix 35× 21-matrix M2 of second order linear syzygies of If has
no syzygies. So we conclude that f has cactus rank 10 by Lemma 3.18 and
hence also rank 10. Let F = V (f). Then F = FIR(S) for some K3 surface S,
and FBD(S) is the corresponding Pfaffian cubic that contains the two quartic
scrolls S4 and S′

4. Since each scroll intersects the plane P = V (x3, x4, x5) in
a conic section, the plane P is contained in FBD(S) and A(FBD(S)) contains
the rank three lattice generated by h2, [S4] and [P ] with intersection matrix as
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in the proof of Lemma 4.15. By Lemma 4.15, the Pfaffian cubic fourfolds F
that contain a plane that intersect a quartic scroll in a conic form a family of
codimension one in the divisor of Pfaffian cubic fourfolds. But DIR∩Dcopl is a
divisor in DIR, so the corresponding set of Pfaffian cubics also has codimension
one in the divisor of Pfaffian cubic fourfolds. Therefore the Pfaffians cubic
fourfold FBD(S) corresponding to a general cubic fourfold FIR(S) ∈ DIR∩Dcopl

is general in the sense of Lemma 4.15, and does not contain the class of a
Veronese surface.
This concludes the proof of Proposition 4.13. �

We conclude this section with the following result concerning the divisor
DV−ap.

Proposition 4.16. The divisor DV−ap is not a Noether-Lefschetz divisor.

Here by a Noether-Lefschetz divisor (or component of the Hodge loci, see [22]),
we mean a divisor D along which a locally constant nonzero primitive rational
cohomology class in H4(Fb,Q), b ∈ D, remains a Hodge class. Equivalently,
as the Hodge conjecture is satisfied by cubic fourfolds, the cubic fourfolds Fb

parameterized by such a divisor carry a codimension 2 cycle whose cohomology
class is not proportional to the class h2, h = c1(OFb

(1)). Hodge theory shows
that in the case of cubic fourfolds, the Hodge loci are hypersurfaces in the
moduli space, as a consequence of the equality h3,1(F ) = 1 (see [22]).

Proof of Proposition 4.16. First of all, we recall that in the moduli stack
M of smooth cubic fourfolds (or in the local universal family of deforma-
tions), Noether-Lefschetz divisors have a smooth normalization. More pre-
cisely, each local branch Mα near a cubic fourfold [F ] is defined by a class
α ∈ H4(F,Q)prim, where Mα is the “locus of points t ∈ M where the class
αt ∈ H4(Ft,Q)prim deduced from α by parallel transport is a Hodge class”,
and the statement is that Mα is smooth. We refer to [22] for various local
descriptions of these Hodge loci and their local study. The smoothness follows
from [22, Corollary 3.3], and from the following fact:

Lemma 4.17. Let F be a nonsingular cubic fourfold, and 0 6= α ∈
H2(F,Ω2

F )prim. Then the cup-product-contraction map

yα : H1(F, TF )→ H3(F,ΩF )

is surjective.

This lemma can be proved directly using Griffiths’ description of the in-
finitesimal variations of Hodge structures of hypersurfaces, or by using the
Beauville-Donagi isomorphism between the variation of Hodge structures on
H4(F,Q)prim and the variation of Hodge structures on H2(L(F ),Q)prim,
where L(F ) is the Fano variety of lines of F , together with general proper-
ties of the period map for hyper-Kähler manifolds.
The universal family of deformations of the cubic Fermat hypersurface
FFermat = V (fFermat) in P5 can be obtained as follows: in S3V we choose a
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linear subspace T which is transverse to the tangent space at the point fFermat

to the orbit of fFermat under Gl(V ), and we restrict the universal hypersurface
in S3V × P5 to T × P5, where T is embedded in an affine way in S3V , by
t 7→ fFermat + t. Since the differential at (Id, 0) of the map

Gl(V )× T → S3V,

(γ, t) 7→ γ(fFermat) + t,

is an isomorphism, it is a local isomorphism in the analytic topology, hence
there is a neighborhood U ′ of fFermat in S3V and a holomorphic retraction
π : U ′ → U ⊂ T with the property that π(g) is the unique point of intersection
of U ′ ∩Og with T (where Og is the orbit of g ∈ U under Gl(V )).
It is well-known (see [23, Remark 6.16]) that the tangent space to the orbit of
fFermat at fFermat is the degree 3 part of the Jacobian ideal of fFermat, gener-

ated by the partial derivatives of fFermat. If we write fFermat =
∑i=5

i=0X
3
i , the

Jacobian ideal JfFermat
is generated by the X2

i , so there is a natural such com-
plementary subspace T ; the vector subspace of S3V generated by the XiXjXk

for i, j, k all distinct.
As the map smod : S6W//Gl(W ) 99K S3V//Gl(V ) is induced by the linear map
s : S6W → S3V , the divisor DV−ap ⊂ S3V//Gl(V ) comes from a divisor DU

in U ⊂ T ⊂ S3V (U is a analytic open set which will be the basis of a universal
family of deformations of FFermat), where DU is obtained as the image of the
composition of the linear map s : S6W → S3V with π : U ′ → U ⊂ T , where it
is defined.
The following proposition implies that DV−ap is not a Noether-Lefschetz divi-
sor, thus concluding the proof of the proposition. �

Proposition 4.18. The local branches of the divisor DU at the origin are
singular.

Remark 4.19. We cannot identify hereDU with an open set of DV−ap. Indeed,
DU is a divisor in the universal family of deformations of FFermat, and its image
DV−ap in S3V//Gl(V ) is obtained by taking the quotient of DU by the group
of automorphisms of FFermat, which is nontrivial. If DV−ap is a Noether-
Lefschetz divisor, then the divisor DU in the universal family of deformations
must have smooth local branches. The criterion, that a Noether-Lefschetz
divisor has smooth local branches can be applied only in the universal family
of deformations, which is itself smooth.

Proof of Proposition 4.18. We wish to exploit the following observation:

Lemma 4.20. For a generic sextic polynomial g ∈ S6W which is the sum of six
6-th powers of elements of W , f = s(g) is (conjugate to) the Fermat polynomial

gF =
∑i=5

i=0X
3
i .

Proof. This follows immediately from formula (2), which says that if g =∑i=5
1=0 a

6
i then f =

∑i=5
i=0(a

2
i )

3. On the other hand, for a generic choice of
the ai’s, the a

2
i provide a basis Xi, i = 0, ..., 5 of V = S2W . �
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We fix a0, . . . , a5 providing a basis Xi = a2i , i = 0, ..., 5 of V . For any b• =
(b0, . . . , b5) ∈W 6 and b ∈ W , we consider the curve in S6W parameterized by
the coordinate t, of the form

t 7→ gb•,b,t :=

i=5∑

i=0

b6i + tb6 ∈ S6W.

At t = 0, the corresponding curve t 7→ s(gb•,b,t) ∈ S3V passes through

s(
∑i=5

i=0 b
6
i ), which is equal to

∑i=5
i=0(b

2
i )

3 ∈ S3V . The later polynomial is
not equal for generic b• to the Fermat polynomial fFermat =

∑
iX

3
i but it

is canonically conjugate to it, namely, let γb• ∈ Gl(V ) be determined by

γb•(b
2
i ) = Xi, i = 0, . . . , 5.

Then we have

γb•(s(

i=5∑

i=0

b6i )) = fFermat,

and may conclude that the curve

t 7→ fb•,b,t := γb•(s(gb•,b,t)) ∈ S
3V, t ∈ C

passes through fFermat at t = 0. By definition, its image in S3V//Gl(V ) is
contained in Im smod. Furthermore, for small t, fb•,b,t belongs to the small
open set where the holomorphic retraction π : U → T is defined, so that
π(fb•,b,t) ∈ DU for any such (b•, t). Thus there must be one branch D′

U of DU

such that π(fb•,b,t)) ∈ D′
U for any (b•, t), since the parameter space for the

family fb•,b,t is smooth hence in particular normal. Let us now prove that D′
U

is not smooth at the point fFermat. The derivative at 0 with respect to t of
the holomorphic map

t 7→ π(fb•,t) ∈ T

is obtained by applying the projection

p : S3V → T ∼= S3V/JfFermat

to γb•(s(b
6)) = γb•((b

2)3). The above reasoning shows that all these elements
lie in the Zariski tangent space TD′

U
,0 at the point 0 (parameterizing the Fer-

mat equation). The proof that D′
U is not smooth is thus concluded with the

following lemma:

Lemma 4.21. The set S of elements p(γb•((b
2)3)) ∈ T generates T as a vector

space.

Proof. Choose two independent elements Y0, Y1 ofW . Then the three elements
Y 2
0 , Y

2
1 , (Y0+Y1)

2 are independent in S2W . For a generic choice of a3, a4, a5 ∈
W , the set

Y 2
0 , Y

2
1 , (Y0 + Y1)

2, a23, a
2
4, a

2
5

forms a basis of V . We choose

b• = (Y0, Y1, Y0 + Y1, a3, a4, a5).
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Then

γb•(Y
2
0 ) = X0, γb•(Y

2
1 ) = X1,(19)

γb•((Y0 + Y1)
2) = X2, γb•(a

2
i ) = Xi, i = 3, 4, 5.

Choose now for b a generic linear combination of Y0 and Y1. Then we can write
b2 = αY 2

0 + βY 2
1 + γ(Y0 + Y1)

2, with the coefficients α, β, γ all nonzero. It
follows that

(b2)3 = 6αβγ(Y0)
2(Y1)

2(Y0 + Y1)
2 + P ((Y0)

2, (Y1)
2, (Y0 + Y1)

2)

where the cubic polynomial P contains all monomials in (Y0)
2, (Y1)

2, (Y2)
2

containing at least one quadratic power of one of the variables. Applying the
transformation γb• of (19) and the projection p, we get

p(γb•((b
2)3)) = 6αβγX0X1X2

since all the monomials in the Xj containing at least a quadratic power of the
variables are in J3

fFermat
. We thus proved that the set S contains X0X1X2,

and the same proof would show that S contains XiXjXk for arbitrary distinct
indices i, j, k. Thus S generates T as a vector space.

�

The proof of Proposition 4.18 is finished. �

5. Local structure of V SP for a cubic fourfold apolar to a

Veronese surface

Let W be a 3-dimensional vector space, and let g ∈ S6W , f = s(g) ∈ S3(S2W )
be as in the previous section, i.e. C = V (g) is a plane sextic curve, and
F = V (f) is a cubic fourfold. Our goal in this section is to prove the following
theorem (from which Theorem 1.8 of the introduction immediately follows):

Theorem 5.1. Assume that g is a general ternary sextic form, and let f = s(g).
(i) The variety V SP (F, 10) is smooth of dimension 4 away from the K3 surface
Sg = V SP (C, 10). In particular, there is only one Veronese surface apolar to
f , so we may denote by Sf the surface Sg.
(ii) The singularities of V SP (F, 10) are quadratic nondegenerate in the normal
direction to Sf at any point of Sf .

Proof of Theorem 5.1, (i). We know, by Corollary 4.10, that the set of cubics
apolar to a Veronese surface is a divisor DV−ap in the space parameterizing all
cubics. Let

VSPV−ap := {([Z], [f ]) ∈ Hilb10(P
5)×DV−ap, IZ(3) ⊂ Hf}(20)

be the universal family of V SP ’s of cubics apolar to a Veronese surface, with
projection

pr2 : VSPV−ap → P(S3V ).

We consider the dense open D0
V−ap ⊂ DV−ap defined as the set of points [f ] in

the smooth locus of DV−ap such that f = s(g) for a ternary sextic form g of
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rank 10 for which Sg is integral, and Corollary 4.12 and Propositions 4.11 and
4.1, (i) are satisfied.
We prove the following:

Lemma 5.2. Let [f ] ∈ D0
V −ap. Then there is only one Veronese surface that

is apolar to f , thus determining a unique curve C defined by a ternary sextic
form g such that Sg = V SP (C, 10) ⊂ V SP (F, 10). In this case we denote by
Sf this surface Sg.
Furthermore, denoting by VSPV−ap,0 the restriction to D0

V−ap of the family
VSPV−ap, VSPV−ap,0 is nonsingular away from the family S ⊂ VSPV−ap,0 of
surfaces Sf .

Proof. We identify f , as before, with a hyperplane Hf in S3V ∗. Let

K ⊂ Hom(Hf , S
3V ∗/Hf) = TP(S3V ),f)

be the tangent space of DV−ap at [f ], with f = s(g) for some g ∈
H0(P2,OP2(6)) and some Veronese embedding Σ ⊂ P(V ) of P2. We denote
again by h ∈ S3V ∗ the discriminant cubic form, such that V (h) is singular
along Σ. Notice that h ∈ Hf , since f is apolar to Σ.
First of all, we claim that K⊥ is generated by h. As K is a hyperplane, it
suffices to show that h belongs to K⊥, i.e. that γ(h) = 0 for every γ ∈ K.
Let [Z] be a general point in Sg ⊂ V SP (F, 10). Then Z is contained in a
unique Veronese surface Σ apolar to f = s(g), and VSPV−ap contains a family

SU = {[Z ′], [f ′]) ∈ U |[Z ′] ∈ Sg′ ⊂ V SP (F ′, 10);

f ′ = s(g′), F ′ = V (f ′)} ⊂ VSPV −ap

of surfaces in a neighborhood U of the point ([Z], [f ]). Since Sg is integral,
we may assume that SU is smooth at ([Z], [f ]). On the other hand, the im-
age pr2(SU ) ⊂ P(S3V ) is dense in DV −ap. Now, let TVSPV −ap,([Z],[f ]) be the
Zariski tangent space to VSPV −ap at ([Z], [f ]). It contains the tangent space
TSU ,([Z],[f ]), so since pr2(SU ) is dense in DV−ap, the tangent space K to DV −ap

at [f ] is the image of the linear map

pr2∗ : TVSPV −ap,([Z],[f ]) → TP(S3V ),f .

So to prove the claim it suffices to prove that the discriminant cubic form h
belongs to the orthogonal of

Im (pr2∗ : TVSPV −ap,([Z],[f ]) → TP(S3V ),f ).

Since g has rank 10, we may assume that the scheme Z consists of ten
distinct points that impose independent conditions on cubics, so we can
identify THilb10(P(V )),[Z] with H0(TP5|Z), and furthermore H0(TP5|Z) with
HomOP(V )

(IZ ,OZ). We have then the following description of the tangent

space of VSP at ([Z], [f ]) :

T([Z],[f ]) := {(u, γ) ∈ HomOP(V )
(IZ ,OZ)×Hom(Hf , S

3V ∗/Hf),(21)

γ|IZ(3) = p ◦ du : IZ(3)→ S3V ∗/Hf},
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where du : IZ(3)→ H0(OZ(3)) is the map induced by u ∈ HomOP(V )
(IZ ,OZ)

on global sections, and p : H0(OZ(3)) → S3V ∗/Hf is deduced from the
quotient map S3V ∗ → S3V ∗/H , using the fact that the restriction map
S3V ∗ → H0(OZ(3)) is surjective and that its kernel IZ(3) is contained in
Hf . We just have to prove that for γ satisfying the equation (21), we have

γ(h) = 0.(22)

But as h ∈ IZ(3), we get γ(h) = du(h) modulo Hf , and since h is singular
along Z, du(h) = 0, which proves (22). The claim is thus proved.
Note that the claim proves in particular that for [f ] ∈ D0

V −ap, there is a unique
Veronese surface apolar to f since it says that the cubic h is determined by
K = TD0

V −ap
,[f ] and on the other hand it determines Σ, because Σ is the singular

locus of V (h).
The proof of the smoothness of VSPV−ap,0 away from S will now use the fact
that the discriminant cubic with equation h is smooth away from Σ. The
argument goes as follows: Let [f ] ∈ D0

V−ap, [Z] ∈ V SP (F, 10), [Z] 6∈ Sf and

K = TD0
V −ap

,[f ]. Recall that the conclusion of Corollary 4.12 holds, so that [Z]

is a smooth point of Hilb10(P(V )). Furthermore, Proposition 4.11 also holds,
so Z is apolar to f and imposes independent conditions on cubics. Hence
IZ(3) ⊂ Hf , and this property gives us the local equations for V SP (F, 10)
inside Hilb10(P(V ))reg. Differentiating these equations, the Zariski tangent
space to VSPV−ap at ([Z], [f ]) is thus given as before by

TVSPV −ap,([Z],[f ]) := {(u, α) ∈ HomOP(V )
(IZ ,OZ)×K,(23)

α|IZ(3) = p ◦ du : IZ(3)→ S3V ∗/Hf},

where K is the hyperplane in Hom(Hf , S
3V ∗/Hf) of linear forms vanishing on

h. The variety VSPV−ap is smooth at ([Z], [f ]) if the restriction map

ρK : K → Hom(IZ (3), S
3V ∗/Hf)

is surjective, since this implies that the linear equations in (23) defining the
Zariski tangent space to VSPV −ap at ([Z], [f ]), which are nothing but the
differentials of the equations defining VSPV−ap, are linearly independent.
1) If h does not vanish identically on Z, then the hyperplane

K ⊂ Hom(Hf , S
3V ∗/Hf )

does not contain the kernel of the surjective map

Hom(Hf , S
3V ∗/Hf )→ Hom(IZ(3), S

3V ∗/Hf )

so the restriction map ρK is surjective.
2) If h vanishes on Z, the image of the map K → Hom(IZ(3), S

3V ∗/Hf) is
the set of linear forms on IZ(3) vanishing on h ∈ IZ(3). Therefore, the linear
equations in (23), parameterized by HomOP(V )

(IZ ,OZ), are linearly dependent
only if the map

HomOP(V )
(IZ ,OZ)→ C, u 7→ du(h) mod Hf
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is the zero map. But the map

u 7→ du(h) ∈ H
0(OZ(3))(24)

is H0(OZ)-linear. So if its image is contained in Hf/IZ(3), it provides a sub-
H0(OZ)-module of H0(OZ(3)) which is the ideal of a subscheme of Z apolar
to f . By Proposition 4.1, (i), this implies that this ideal is equal to 0, that is,
the map (24) is 0.
In conclusion, if VSPV−ap is singular at ([Z], [f ]), then Z is contained in the
singular locus of h, hence in Σ. In other words, [Z] belongs to Sf .

�

Lemma 5.2 implies (i) by a Sard type argument and this concludes the proof
of Theorem 5.1, (i).

�

Proof of Theorem 5.1, (ii). We first prove the following result:

Lemma 5.3. For general g and f = s(g), the embedding dimension of
V SP (F, 10) is 5 at any point of Sf .

Proof. We know that the universal family VSP is smooth and that the hyper-
surface VSPV−ap contains the family of surfaces S which has generically smooth
fibers. If Sf is smooth, the corank of the map pr2∗ : TVSP,([Z],[f ]) → TP(S3V ),[f ]

is 1 everywhere along Sf . This implies that the embedding dimension of
V SP (F, 10) is 5 at any point of Sf . �

This lemma shows that for general g and f = s(g), the variety V SP (F, 10) has
locally hypersurface singularities along Sf , and our goal now is to show that
the Hessian of the local defining equation, which is a homogeneous quadratic
polynomial on the normal bundle NSf

, is everywhere nondegenerate. Here the
bundle NSf

is defined as the quotient of TV SP (F,10)|Sf
by its subbundle TSf

.
The bundle NSf

is thus locally free of rank 3 by Lemma 5.3.
We first have the following:

Lemma 5.4. The determinant of NSf
is trivial.

Proof. We recall that by Proposition 4.11, V SP (F, 10) is defined as the follow-
ing set:

V SP (F, 10) = {[Z] ∈ Hilb10(P(V )), IZ(3) ⊂ Hf}.(25)

The variety V SP (F, 10) is contained in the smooth part of Hilb10(P(V )) and
defined according to (25) as the 0-locus of a section σ of the bundle F with
fiber Iz(3)

∗ over the point [Z] ∈ Hilb10(P(V )). More precisely, since we as-
sumed that [f ] ∈ D0

V−ap, the conclusion of Proposition 4.11 holds and thus

V SP (F, 10) is contained in the open set of Hilb10(P(V )) where F is locally
free. In particular, VSP → P(S3V ) is flat over a neighborhood of [f ]. For a
general f ∈ S3V , we know by [15] that V SP (F, 10) is a smooth Hyper-Kähler
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manifold, hence in particular has trivial canonical bundle. This means that the
line bundle

det (THilb10(P5)|V SP (F,10))⊗ (detF)−1

has trivial restriction to V SP (F, 10), which implies that it has trivial restriction
to V SP (F, 10) when f is a general cubic apolar to a Veronese surface, since
VSP → P(S3V ) is flat at [f ].
On the other hand, the proof of Lemma 5.3 shows that the cokernel of the
differential dσ along Sf is the trivial line bundle with fiber Hom (Ch, S3V ∗/Hf )
at any point [Z] of Sf .
The exact sequence

0→ TV SP (F,10)|Sf
→ THilb10(P5)|Sf

→ F|Sf
→ Cokerdσ → 0

thus implies the triviality of det TV SP (F,10)|Sf
, hence the triviality of detNSf

since detTSf
is trivial. �

Using the fact that the cokernel of the map dσ is the trivial line bundle on
Sf , we conclude that the Hessian of σ is a section of S2N∗

Sf
. Here we use

the following notion of Hessian for a section σ of a vector bundle E of rank
r on a smooth variety Y , at a point y where dσ is not of maximal rank.
The Hessian is then intrinsically an element of (Coker dσy) ⊗ S

2ΩY,y,σ, where
ΩY,y,σ = (Ker dσy)

∗. (Note that dσy : TY,y → Ey is not intrisically defined but
Ker dσy and Cokerdσy are.) This Hessian is related to the usual Hessian as
follows: In an adequate local trivialization of E near y, σ is given by a r-tuple
(σ1, . . . , σr) of functions on Y , and we can assume that if k is the rank of dσ
at y, then dσ1, . . . , dσk are independent at the point y, while dσk+1, . . . , dσr
vanish at y. Let Y ′ be the smooth codimension k submanifold of Y defined by
σi, i ≤ k. Then ΩY,y,σ = ΩY ′,y and the restriction σ|Y ′ has zero differential
at y. Then the Hessian of σ at y is the (r − k)-tuple of quadratic forms
(Hess(σk+1|Y ′), . . . ,Hess(σr|Y ′)). If furthermore we know that the vanishing
locus of σ has ordinary quadratic singularities along a submanifold Z ⊂ Y ,
then near y, we have Z ⊂ Y ′ and the Hessians Hess(σi|Y ′) ∈ S2ΩY ′,y appearing

above in fact belong to S2N∗
Z/Y ′ . In our case, Z is Sf and what we denoted

by NSf
is naturally isomorphic to NZ/Y ′ .

As the determinant of NSf
is trivial, the Hessian of σ as a section of S2N∗

Sf
is

a nondegenerate quadric everywhere along Sf if and only if it is nondegenerate
generically along Sf . The last property can be shown as follows: Recall that f is
a generic cubic apolar to a Veronese surface and [Z] ∈ Sf . The pair ([Z], [f ]) can
be constructed starting from a general subscheme of length 10 of the Veronese
surface Σ, and taking for Hf a general hyperplane of S3V ∗ containing IZ(3).
Take for Z a reduced subscheme consisting of ten distinct points x1, . . . , x10
in general position on Σ. Then the hyperplane Hf is determined by a linear
form p : S3V ∗ → S3V ∗/Hf . This form is the composite of the projection map
S3V ∗ → S3V ∗/IZ(3) and a linear form

p′ : H0(OZ(3))→ C.

Documenta Mathematica 22 (2017) 455–504



500 Kristian Ranestad, Claire Voisin

After trivialization of OZ(3) we may write

p′ =
∑

i

pievxi

for some scalars pi which can be chosen arbitrarily. Recalling that the cokernel
of dσ is generated by Hom (Ch, S3V ∗/Hf), it is clear that the Hessian Hess(σ)
at the point [Z] is obtained by restricting the sum

∑
i pid

2hxi
to

NSf ,[Z] ⊂ H
0(NΣ/P5|Z) = ⊕iNΣ/P5,xi

.

Here we use the same trivialization of OZ(3) as above to see the Hessian d2hxi

of h at xi as an element of S2N∗
Σ/P5,xi

. Since h has nondegenerate quadratic

singularities along Σ, each of the quadrics d2hxi
is nondegenerate. We now

have:

Lemma 5.5. The 3-dimensional vector space NSf ,[Z] is the orthogonal com-

plement of the subspace Im (H0(Σ, NΣ/P5) → ⊕iNΣ/P5,xi
) with respect to the

quadratic form
∑

i pid
2hxi

.

Proof. Indeed, the space NSf ,[Z] is equal to the kernel of the composite map

H0(NΣ/P5|Z)→ Hom(IΣ(3), H
0(OZ(3))

p′

→ Hom(IΣ(3), S
3V ∗/Hf ),

where H0(NΣ/P5|Z) ∼= ⊕iNΣ/P5,xi
and p′ =

∑
i pievxi

.

Let now u ∈ H0(Σ, NΣ/P5), u|Z = (ui) and v = (vi) ∈ H0(NΣ/P5|Z). Then

(
∑

i

pid
2hxi

)(u|Z , v|Z) =
∑

i

pid
2hxi

(ui, vi).

The section u ∈ H0(Σ, NΣ/P5) lifts to a section U ∈ H0(P5, TP5). Let

dU : S3V ∗ → S3V ∗ be the induced map on cubic forms. Then the degree
3 polynomial dU (h) belongs to IΣ(3). Furthermore we have

d2hxi
(ui, vi) = d(dU (h))(vi)

for any i. It follows that
∑

i

pid
2hxi

(ui, vi) =
∑

i

pid(dU (h))(vi).

If now (vi) belongs to NSf ,[Z], we find that
∑

i pid(dU (h))(vi) = 0 and thus
∑

i

pid
2hxi

(ui, vi) = 0.

Hence we proved that Im (H0(Σ, NΣ/P5)→ ⊕iNΣ/P5,xi
) is perpendicular with

respect to
∑

i pid
2hxi

to the space NSf ,[Z]. As the space H0(Σ, NΣ/P5) is of

dimension 27, the map H0(Σ, NΣ/P5) → ⊕iNΣ/P5,xi
is injective of maximal

rank 27 for a general choice of the xi’s. As the space NSf ,[Z] is of dimension 3,
we conclude that

Im (H0(Σ, NΣ/P5)→ ⊕iNΣ/P5,xi
)
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is the orthogonal complement with respect to
∑

i pid
2hxi

of the space NSf ,[Z],

since the quadratic form
∑

i pid
2hxi

on the 30-dimensional vector space
⊕iNΣ/P5,xi

is nondegenerate. �

It follows that the quadratic form Hess(σ), that is the restriction of
∑

i pid
2hxi

to NSf ,[Z], is nondegenerate if and only if the quadratic form
∑

i pid
2hxi

has a

nondegenerate restriction to Im (H0(Σ, NΣ/P5)→ ⊕iNΣ/P5,xi
). The last prop-

erty may be achieved because the points xi being general, the map

H0(Σ, NΣ/P5)→ ⊕1≤i≤9NΣ/P5,xi

is injective (hence an isomorphism). Hence any combination
∑

1≤i≤9 pid
2hxi

with pi 6= 0 for any i ≤ 9 has a nondegenerate restriction to
Im (H0(Σ, NΣ/P5) → ⊕iNΣ/P5,xi

) and thus a general combination∑
1≤i≤10 pid

2hxi
has a nondegenerate restriction to

Im (H0(Σ, NΣ/P5)→ ⊕iNΣ/P5,xi
).

In conclusion, we proved that, for general g and f = s(g), at a general point
[Z] ∈ Sf = Sg ⊂ V SP (F, 10), the Hessian of the local defining equation of
V SP (F, 10) has rank 3, and as explained above, this implies that it is every-
where nondegenerate in the normal direction to Sf . �

6. Proof of Theorem 1.6

We first recall the statement of the result:

Theorem 6.1. Let F be a very general cubic fourfold. Then there
is no nonzero morphism of Hodge structures between H4(F,Q)prim and
H2(V SP (F, 10),Q)prim.

Proof. Let B be the Zariski open set of P(H0(P5,OP5(3))) parameterizing
smooth cubics. We have the universal family π : X → B of cubic hypersurfaces,
where the morphism π is smooth and projective. We also have the family
π′ : VSP → B which is projective overB but is not smooth. By Proposition 4.1
the general cubic fourfold apolar to a Veronese surface is smooth, so the base
B contains the divisor DV−ap parameterizing smooth cubic fourfolds apolar
to a Veronese surface. We proved in Theorem 5.1 that for [f ] in an open

subset D0
V−ap, the fiber V SP (F, 10) = π′−1

([f ]) has only ordinary quadratic

singularities along the surface Sf which is a smooth K3 surface. Let [f ] be a
point of D0

V−ap and let B0 be a Zariski open set of B containing [f ] and such

that DV−ap ∩ B0 ⊂ D0
V −ap. Let B′ → B0 be the double cover ramified along

D0
V−ap. Since D0

V−ap is contained in the smooth locus of DV −ap (cf. Lemma

5.2), the double cover, B′, is smooth, and the pulled-back family

π̃′ : VSP ′ → B′

is smooth except along the family of surfaces S → D0
V−ap, which has codi-

mension 3 in VSP ′, and along which VSP ′ has quadratic nondegenerate sin-
gularities. The family VSP ′ → B′ can be modified after passing to a degree 2
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étale cover of B′ to a family of smooth complex projective manifolds by a small
resolution: For this we first blow-up VSP ′ along S to get VSP ′′ → B′. The
exceptional divisor E of the blow-up is a bundle over S with fibers smooth two-

dimensional quadrics. There is an étale double cover S̃ → S parameterizing
the rulings in the fibers of E → S. As a K3 surface is simply connected, this

double cover comes from a double cover D̃0
V −ap → D0

V−ap. We may assume this

étale double cover is induced by an étale double cover B̃0 → B0. Performing

this base change, the pulled-back family ṼSP ′′ → B̃0 has the property that

the inverse image Ẽ of E admits two morphisms to a P1-bundle over S̃. We

choose one of them, and as is well-known, we can contract Ẽ to S̃ along this

morphism. The resulting family φ : ṼSP → B̃0 is smooth proper over B̃0.
We now have two families

φ : ṼSP → B̃, ψ : X̃ → B̃

of smooth proper complex manifolds, where X̃ := X ×B B̃0. The fibers of
both families are projective, and in particular Kähler, although it is not clear if
both morphisms are projective. We thus get two associated variations of Hodge

structures on B̃, one of weight 2 on the primitive cohomology of degree 2 of the
fibers of the first family with associated local system H2, the other of weight
4 on the primitive cohomology of degree 4 of the fibers of the second family

with associated local system H4. The locus of points b ∈ B̃ where there is

a nonzero morphism of Hodge structures H4(X̃b,Q)prim → H2(ṼSP b,Q)prim
is the Hodge locus for the induced variation of Hodge structure on the local
system Hom (H4, H2). The Hodge locus is a countable union of closed algebraic

subsets of the base B̃ (cf. [22]). In order to prove Theorem 6.1, it thus suffices

to prove that there is a point of B̃ where there is no nonzero morphism of

Hodge structures between H4(X̃b,Q)prim and H2(ṼSP b,Q)prim.
By Proposition 4.16, the divisor DV −ap is not a Noether-Lefschetz locus for
the family X → B. This means that there exists a point b ∈ DV−ap, that
we may assume to be in D0

V −ap, such that there is no nonzero Hodge class in

H4(Xb,Q)prim. This fact implies that the Hodge structure on H4(Xb,Q)prim
is simple. Indeed, since h3,1(Xb) = 1, any proper sub-Hodge structure has h3,1-
number 0 or its orthogonal complement for the intersection pairing satisfies this
property. In both cases, the existence of a proper sub-Hodge structure implies
the existence of a nonzero Hodge class. Note also that it has h2,2-number equal
to 20.
On the other hand, we claim that the transcendental part of H2(ṼSP b,Q)prim
has h1,1-number ≤ 19. Here the transcendental part is defined as the minimal
sub-Hodge structure containing the H2,0-component.

The claim follows from the fact that ṼSP b is hyper-Kähler, being a fiber of a
family of Kähler manifolds whose general member is hyper-Kähler, and on the
other hand it is the blow-up of VSPb along the K3 surface Sb. It thus con-
tains the exceptional divisor Eb over Sb and the morphism of Hodge structures
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H2(ṼSP b,Q) → H2(Eb,Q) does not vanish on H2,0(ṼSP b) because a sym-
plectic form on a fourfold cannot vanish on a divisor. On the other hand, this

morphism sends H2(ṼSP b,Q)tr to H2(Eb,Q)tr which is equal to H2(Sb,Q)tr.
The induced morphism

H2(ṼSP b,Q)tr → H2(Sb,Q)tr

must be injective by the same simplicity argument as above, and thus

h1,1(ṼSP b,Q)prim ≤ h
1,1(Sb)prim ≤ 19.

As the Hodge structure on H4(Xb,Q)prim is simple with h2,2-number equal to
20, any morphism of Hodge structures between H4(Xb,Q)prim and a weight 2
Hodge structure with h1,1-number ≤ 19 is identically 0, which concludes the
proof of Theorem 1.6.

�
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cubique de dimension 4, Compt. Rendu. Acad. Sc. Paris. 301 (1986),
703-706.
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