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Abstract. Consider the abelian category Ck of commutative group
schemes of finite type over a field k. By results of Serre and Oort, Ck
has homological dimension 1 (resp. 2) if k is algebraically closed of
characteristic 0 (resp. positive). In this article, we explore the abelian
category of commutative algebraic groups up to isogeny, defined as the
quotient of Ck by the full subcategory Fk of finite k-group schemes.
We show that Ck/Fk has homological dimension 1, and we determine
its projective or injective objects. We also obtain structure results for
Ck/Fk, which take a simpler form in positive characteristics.
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1 Introduction

There has been much recent progress on the structure of algebraic groups over
an arbitrary field; in particular, on the classification of pseudo-reductive groups
(see [CGP15, CP15]). Yet commutative algebraic groups over an imperfect field
remain somewhat mysterious, e.g., extensions with unipotent quotients are
largely unknown; see [To13] for interesting results, examples, and questions.
In this article, we explore the category of commutative algebraic groups up to
isogeny, in which the problems raised by imperfect fields become tractable; this
yields rather simple and uniform structure results.
More specifically, denote by Ck the category with objects the group schemes of
finite type over the ground field k, and with morphisms, the homomorphisms
of k-group schemes (all group schemes under consideration will be assumed
commutative). By a result of Grothendieck (see [SGA3, VIA, Thm. 5.4.2]),
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Ck is an abelian category. We define the category of ‘algebraic groups up to
isogeny’ as the quotient category of Ck by the Serre subcategory of finite group
schemes; then Ck/Fk is obtained from Ck by inverting all isogenies, i.e., all
morphisms with finite kernel and cokernel.

It will be easier to deal with the full subcategory Ck of Ck/Fk with objects
the smooth connected algebraic groups, since these categories turn out to be
equivalent, and morphisms in Ck admit a simpler description.

As a motivation for considering the ‘isogeny category’ Ck, note that some nat-
ural constructions involving algebraic groups are only exact up to isogeny; for
example, the formations of the maximal torus or of the largest abelian variety
quotient, both of which are not exact in Ck. Also, some structure theorems
for algebraic groups take on a simpler form when reformulated up to isogeny.
A classical example is the Poincaré complete reducibility theorem, which is
equivalent to the semi-simplicity of the isogeny category of abelian varieties,
i.e., the full subcategory Ak of Ck with objects abelian varieties. Likewise, the
isogeny category of tori, T k, is semi-simple.

We gather our main results in the following:

Theorem. (i) The category Ck is artinian and noetherian. Its simple ob-
jects are the additive group Ga,k, the simple tori, and the simple abelian
varieties.

(ii) The product functor T k × Uk → Lk yields an equivalence of categories,
where Uk (resp. Lk) denotes the isogeny category of unipotent (resp. lin-
ear) algebraic groups.

(iii) If char(k) > 0, then the product functor Sk × Uk → Ck yields an equiva-
lence of categories, where Sk denotes the isogeny category of semi-abelian
varieties. If in addition k is locally finite, then the product functor
T k ×Ak → Sk yields an equivalence of categories as well.

(iv) The base change under any purely inseparable field extension k′ of k yields
an equivalence of categories Ck → Ck′ .

(v) The homological dimension of Ck is 1.

We also describe the projective objects of the category Ck (Theorem 5.14) and
its injective objects (Theorem 5.16). Moreover, in characteristic 0, we obtain
a structure result for that category (Proposition 5.13), which turns out to be
more technical than in positive characteristics.

Let us now compare the above statements with known results on Ck and its
full subcategories Ak (resp. Tk, Uk, Lk, Sk) of abelian varieties (resp. tori,
unipotent groups, linear groups, semi-abelian varieties).

About (i) (an easy result, mentioned by Serre in [Se60]): Ck is artinian and not
noetherian. Also, every algebraic group is an iterated extension of ‘elementary’
groups; these are the simple objects of Ck and the simple finite group schemes.
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About (ii): denoting by Mk the full subcategory of Ck with objects the alge-
braic groups of multiplicative type, the product functor Mk × Uk → Lk yields
an equivalence of categories if k is perfect. But over an imperfect field, there
exist non-zero extensions of unipotent groups by tori, and these are only par-
tially understood (see [To13, §9] again; our study of Ck brings no new insight
in these issues).
About (iii): the first assertion follows from recent structure results for algebraic
groups (see [Br17, §5]), together with a lifting property for extensions of such
groups with finite quotients (see [Br15] and [LA15]). The second assertion is a
direct consequence of the Weil-Barsotti isomorphism (see e.g. [Oo66, §III.18]).
About (iv): this is a weak version of a result of Chow on abelian varieties,
which asserts (in categorical language) that base change yields a fully faithful
functor Ak → Ak′ for any primary field extension k′ of k (see [Ch55], and
[Co06, §3] for a modern proof).
About (v), the main result of this article: recall that the homological dimension
of an abelian category D is the smallest integer, hd(D), such that ExtnD(A,B) =
0 for all objects A,B of D and all n > hd(D); these Ext groups are defined as
equivalence classes of Yoneda extensions. In particular, hd(D) = 0 if and only
if D is semi-simple.
It follows from work of Serre (see [Se60, 10.1 Thm. 1] together with [Oo64,
Thm. 3.5]) that hd(Ck) = 1 if k is algebraically closed of characteristic 0. Also,
by a result of Oort (see [Oo66, Thm. 14.1]), hd(Ck) = 2 if k is algebraically
closed of positive characteristic. Building on these results, Milne determined
hd(Ck) when k is perfect (see [Mi70, Thm. 1]); then the homological dimen-
sion can be arbitrarily large. In the approach of Serre and Oort, the desired
vanishing of higher extension groups is obtained by constructing projective
resolutions of elementary groups, in the category of pro-algebraic groups. The
latter category contains Ck as a full subcategory, and has enough projectives.
In contrast, to show that hd(Ck) = 1 over an arbitrary field k, we do not need
to go to a larger category. We rather observe that tori are projective objects in
Ck, and abelian varieties are injective objects there. This yields the vanishing
of all but three extension groups between simple objects of Ck; two of the three
remaining cases are handled directly, and the third one reduces to the known
vanishing of Ext2Ck

(Ga,k,Ga,k) when k is perfect.
When k has characteristic 0, the fact that hd(Ck) ≤ 1 follows from a similar
result for the category of Laumon 1-motives up to isogeny (obtained by Mazzari
in [Ma10, Thm. 2.5]). Indeed, Ck is equivalent to a Serre subcategory of the
latter category; moreover, if an abelian category has homological dimension at
most 1, then the same holds for any Serre subcategory (as follows e.g. from
[Oo64, §3]). Likewise, the fact that the category of Deligne 1-motives up to
isogeny has homological dimension at most 1 (due to Orgogozo, see [Or04,
Prop. 3.2.4]) implies the corresponding assertion for the isogeny category of
semi-abelian varieties over an arbitrary field.
Abelian categories of homological dimension 1 are called hereditary. The most
studied hereditary categories consist either of finite-dimensional modules over a
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finite-dimensional hereditary algebra, or of coherent sheaves on a weighted pro-
jective line (see e.g. [Ha01]). Such categories are k-linear and Hom-finite, i.e.,
all groups of morphisms are finite-dimensional vector spaces over the ground
field k. But this seldom holds for the above isogeny categories. More specif-
ically, Ak and T k are both Q-linear and Hom-finite, but not Ck unless k is
a number field. When k has characteristic 0, we may view Ck as a mixture
of k-linear and Q-linear categories. This is already displayed by the full sub-
category Vk with objects the vector extensions of abelian varieties: as shown
in §5.1, Vk has enough projectives, and these are either the unipotent groups
(k-linear objects), or the vector extensions of simple abelian varieties (Q-linear
objects).

In positive characteristic, one may also consider the quotient category of Ck
by the Serre subcategory Ik of infinitesimal group schemes. This yields the
abelian category of ‘algebraic groups up to purely inseparable isogeny’, which
is equivalent to that introduced by Serre in [Se60]; as a consequence, it has
homological dimension 1 if k is algebraically closed. For any arbitrary field k,
the category Ck/Ik is again invariant under purely inseparable field extensions;
its homological properties may be worth investigating.

Notation and conventions. We will use the book [DG70] as a general
reference, especially for affine algebraic groups, and the expository text [Br17]
for some further results.

Throughout this text, we fix the ground field k and an algebraic closure k̄; the
characteristic of k is denoted by char(k). We denote by ks the separable closure
of k in k̄, and by Γk the Galois group of ks over k. We say that k is locally
finite, if it is algebraic over Fp for some prime p.

By an algebraic k-group, we mean a commutative group scheme G of finite type
over k; we denote by G0 the neutral component of G. The group law of G will
be denoted additively: (x, y) 7→ x+ y.

By a k-subgroup of G, we mean a closed k-subgroup scheme. Morphisms are
understood to be homomorphisms of k-group schemes. The (scheme-theoretic)
image of a morphism f : G → H will be denoted by Im(f) or f(G), and the
(scheme-theoretic) pull-back of a k-subgroup H ′ ⊂ H , by G×HH

′ or f−1(H ′).

Recall that an abelian variety over k is a smooth connected proper algebraic
k-group. Also, recall that a k-group scheme G is an affine algebraic k-group if
and only if G is isomorphic to a k-subgroup of the general linear group GLn,k
for some n. We will thus call affine algebraic k-groups linear. We say that an
algebraic k-group G is of multiplicative type if G is isomorphic to a k-subgroup
of some k-torus.

To simplify the notation, we will suppress the mention of the ground field k
whenever this yields no confusion. For example, the category Ck will be denoted
by C, except when we use base change by a field extension.

Given an algebraic group G and two subgroups G1, G2, we denote by G1 +G2

the subgroup of G generated by G1 and G2. Thus, G1 +G2 is the image of the
morphism G1 ×G2 → G, (x1, x2) 7→ x1 + x2.

Documenta Mathematica 22 (2017) 679–725



Algebraic Groups up to Isogeny 683

An isogeny is a morphism with finite kernel and cokernel. Two algebraic groups
G1, G2 are isogenous if they can be connected by a chain of isogenies.
We say that two subgroups G1, G2 of an algebraic group G are commensurable
if both quotients G1/G1 ∩G2 and G2/G1 ∩G2 are finite; then G1 and G2 are
isogenous.
Given an algebraic group G and a non-zero integer n, the multiplication by n
yields a morphism

nG : G −→ G.

We denote its kernel by G[n], and call it the n-torsion subgroup. We say that
G is divisible if nG is an epimorphism for all n 6= 0; then nG is an isogeny for
all such n. When char(k) = 0, the divisible groups are the connected algebraic
groups; when char(k) = p > 0, they are just the semi-abelian varieties, that is,
the extensions of abelian varieties by tori (see e.g. [Br17, Thm. 5.6.3] for the
latter result).
Still assuming that char(k) = p > 0, we say that an algebraic group G is a
p-group if pnG = 0 for n ≫ 0. Examples of p-groups include the unipotent
groups and the connected finite algebraic groups, also called infinitesimal.

2 Structure of algebraic groups

2.1 Preliminary results

We will use repeatedly the following simple observation:

Lemma 2.1. Let G be a smooth connected algebraic group.

(i) If G′ is a subgroup of G such that G/G′ is finite, then G′ = G.

(ii) Any isogeny f : H → G is an epimorphism.

Proof. (i) The quotient G/G′ is smooth, connected and finite, hence zero.
(ii) This follows from (i) applied to Im(f) ⊂ H .

The following lifting result for finite quotients will also be frequently used:

Lemma 2.2. Let G be an algebraic group, and H a subgroup such that G/H is
finite.

(i) There exists a finite subgroup F ⊂ G such that G = H + F .

(ii) If G/H is infinitesimal (resp. a finite p-group), then F may be chosen
infinitesimal (resp. a finite p-group) as well.

Proof. (i) This is a special case of [Br15, Thm. 1.1].
(ii) Assume G/H infinitesimal. Then the quotient G/(H +F 0) is infinitesimal
(as a quotient of G/H) and étale (as a quotient of F/F 0), hence zero. Thus,
we may replace F with F 0, an infinitesimal subgroup.
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Next, assume that G/H is a finite p-group. Denote by F [p∞] the largest p-
subgroup of F . Then the quotient G/(H + F [p∞]) is a finite p-group and is
killed by the order of F/F [p∞]. Since the latter order is prime to p, we obtain
G/(H + F [p∞]) = 0. Thus, we may replace F with F [p∞].

Next, we recall a version of a theorem of Chevalley:

Theorem 2.3. (i) Every algebraic group G contains a linear subgroup L
such that G/L is an abelian variety. Moreover, L is unique up to com-
mensurability in G, and G/L is unique up to isogeny.

(ii) If G is connected, then there exists a smallest such subgroup, L = L(G),
and this subgroup is connected.

(iii) If in addition G is smooth, then every morphism from G to an abelian
variety factors uniquely through the quotient map G→ G/L(G).

Proof. The assertion (ii) follows from [Ra70, Lem. IX 2.7] (see also [BLR90,
9.2 Thm. 1]).
To prove (i), note that G contains a finite subgroup F such that G/F is con-
nected (as follows from Lemma 2.2). Then we may take for L the pull-back
of a linear subgroup of G/F with quotient an abelian variety. If L′ is another
linear subgroup of G such that G/L′ is an abelian variety, then L+L′ is linear,
as a quotient of L × L′. Moreover, the natural map q : G/L → G/(L + L′) is
the quotient by (L + L′)/L, a linear subgroup of the abelian variety G/L. It
follows that (L + L′)/L is finite; thus, q is an isogeny and L′/L ∩ L′ is finite.
Likewise, q′ : G/L′ → G/(L + L′) is an isogeny and L/L ∩ L′ is finite; this
completes the proof of (i).
Finally, the assertion (iii) is a consequence of [Br17, Thm. 4.3.4].

The structure of linear algebraic groups may be described as follows (see [DG70,
Thm. IV.3.1.1]):

Theorem 2.4. Let G be a linear algebraic group. Then G has a largest subgroup
of multiplicative type, M ; moreover, G/M is unipotent. If k is perfect, then
G =M × U , where U denotes the largest unipotent subgroup of G.

Also, note the following orthogonality relations:

Proposition 2.5. (i) Let M be a group of multiplicative type, and U a
unipotent group. Then HomC(M,U) = 0 = HomC(U,M).

(ii) Let L be a linear algebraic group, and A an abelian variety. Then
HomC(A,L) = 0, and every morphism L → A has finite image. More-
over, HomC(L,A) is n-torsion for some positive integer n.

Proof. (i) This follows from [DG70, Cor. IV.2.2.4].
(ii) The image of a morphism A→ L is proper, smooth, connected and affine,
hence zero. Likewise, the image of a morphism L → A is affine and proper,
hence finite.
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To show the final assertion, we may replace k with any field extension, and
hence assume that k is perfect. Then the reduced neutral component L0

red

is a smooth connected subgroup of L, the quotient L/L0
red is finite, and

HomC(L
0
red, A) = 0 by the above argument. As a consequence, we have

HomC(L,A) = HomC(L/L
0
red, A) and this group is n-torsion, where n denotes

the order of the finite group scheme L/L0
red (indeed, L/L0

red is n-torsion in view
of [SGA3, VIIA, Prop. 8.5]).

Next, we obtain a key preliminary result. To state it, recall that a unipotent
group G is said to be split if it admits a finite increasing sequence of subgroups
0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that Gi/Gi−1

∼= Ga for i = 1, . . . , n.

Proposition 2.6. Let G be an algebraic group.

(i) There exists a finite subgroup F ⊂ G such that G/F is smooth and con-
nected.

(ii) If G is unipotent, then we may choose F such that G/F is split.

Proof. (i) By Lemma 2.2, we have G = G0+F for some finite subgroup F ⊂ G.
Thus, G/F ∼= G0/F ∩G0 is connected; this yields the assertion if char(k) = 0.
If char(k) = p > 0, then we may assume G connected by the above step.
Consider the relative Frobenius morphism FG/k : G → G(p) and its iterates

FnG/k : G → G(pn), where n ≥ 1. Then Ker(FnG/k) is finite for all n; moreover,

G/Ker(FnG/k) is smooth for n ≫ 0 (see [SGA3, VIIA, Prop. 8.3]), and still
connected.
(ii) We argue by induction on the dimension of G. The statement is obvious if
dim(G) = 0. In the case where dim(G) = 1, we may assume that G is smooth
and connected in view of Lemma 2.2 again; then G is a k-form of Ga. By
[Ru70, Thm. 2.1], there exists an exact sequence

0 −→ G −→ G2
a

f
−→ Ga −→ 0,

where f ∈ O(G2
a)

∼= k[x, y] satisfies f(x, y) = yp
n

− a0 x− a1 x
p − · · · − am x

pm

for some integers m,n ≥ 0 and some a0, . . . , am ∈ k with a0 6= 0. Thus, the
projection

p1 : G −→ Ga, (x, y) 7−→ x

lies in an exact sequence

0 −→ αpn −→ G
p1
−→ Ga −→ 0,

where αpn denotes the kernel of the endomorphism x 7→ xp
n

of Ga. This yields
the assertion in this case.
If dim(G) ≥ 2, then we may choose a subgroup G1 ⊂ G such that 0 <
dim(G1) < dim(G) (as follows from [DG70, Prop. IV.2.2.5]). By the induc-
tion assumption for G/G1, there exists a subgroup G2 ⊂ G such that G1 ⊂ G2,
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G2/G1 is finite, and G/G2 is split. Next, the induction assumption for G2

yields a finite subgroup F ⊂ G2 such that G2/F is split. Then G/F is split as
well.

Remark 2.7. By Proposition 2.6, every algebraic group G admits an isogeny
u : G → H , where H is smooth and connected. If k is perfect, then there also
exists an isogeny v : K → G, where K is smooth and connected: just take v to
be the inclusion of the reduced neutral component G0

red. But this fails over any
imperfect field k. Indeed, if such an isogeny v exists, then its image must be
G0

red. On the other hand, by [SGA3, VIA, Ex. 1.3.2], there exists a connected
algebraic group G such that Gred is not a subgroup.

By combining Lemma 2.2, Theorems 2.3 and 2.4, and Proposition 2.6, we obtain
readily:

Proposition 2.8. Every algebraic group G admits a finite increasing sequence
of subgroups 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that each subquotient Gi/Gi−1,
i = 1, . . . , n, is finite or isomorphic to Ga, a simple torus, or a simple abelian
variety. Moreover, G is linear if and only if no abelian variety occurs.

2.2 Characteristic zero

In this subsection, we assume that char(k) = 0. Recall that every unipotent
group is isomorphic to the additive group of its Lie algebra via the exponential
map; this yields an equivalence between the category U of unipotent groups and
the category of finite-dimensional k-vector spaces (see [DG70, Prop. IV.2.4.2]).
In particular, every unipotent group is connected.
Next, consider a connected algebraic group G. By Theorem 2.3, there is a
unique exact sequence 0 → L → G → A → 0, where A is an abelian variety,
and L is connected and linear. Moreover, in view of Theorem 2.4, we have
L = T × U , where T is a torus and U is unipotent.
We now extend the latter structure results to possibly non-connected groups:

Theorem 2.9. (i) Every algebraic group G lies in an exact sequence

0 −→M × U −→ G −→ A −→ 0,

where M is of multiplicative type, U is unipotent, and A is an abelian
variety. Moreover, U is the largest unipotent subgroup of G: the unipotent
radical, Ru(G). Also, M is unique up to commensurability in G, and A
is unique up to isogeny.

(ii) The formation of the unipotent radical commutes with base change under
field extensions, and yields an exact functor

Ru : C −→ U ,

right adjoint to the inclusion U → C.
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(iii) The projective objects of C are the unipotent groups.

Proof. (i) Theorem 2.3 yields an exact sequence

0 −→ L −→ G −→ A −→ 0,

where L is linear (possibly non-connected), and A is an abelian variety. By
Theorem 2.4, we have L =M ×U , where M is of multiplicative type and U is
unipotent.
Since M and A have no non-trivial unipotent subgroups, we have U = Ru(G).
Given another exact sequence

0 −→M ′ × U −→ G −→ A′ −→ 0

satisfying the same assumptions, the image of M ′ in A ∼= G/(M × U) is finite
by Proposition 2.5. In other words, the quotient M ′/M ′ ∩ (M × U) is finite.
Likewise, M/M ∩ (M ′ × U) is finite as well. Since we have (M × U) ∩M ′ =
M ∩M ′ = M ∩ (M ′ × U), we see that M,M ′ are commensurable in G. Then
A = G/(M ×U) and A′ = G/(M ′×U) are both quotients of G/(M ∩M ′)×U
by finite subgroups, and hence are isogenous.
(ii) In view of (i), G/Ru(G) is an extension of an abelian variety by a group
of multiplicative type. Since these two classes of algebraic groups are stable
under base change by any field extension k′ of k, it follows that (G/Ru(G))k′

has zero unipotent radical. Thus, Ru(G)k′ = Ru(Gk′ ).
Next, note that every morphism f : G→ H sends Ru(G) to Ru(H). Consider
an exact sequence

0 −→ G1
f

−→ G2
g

−→ G3 −→ 0

and the induced complex

0 −→ Ru(G1)
Ru(f)
−→ Ru(G2)

Ru(g)
−→ Ru(G3) −→ 0.

Clearly, Ru(f) is a monomorphism. Also, we have

Ker(Ru(g)) = Ru(G2) ∩Ker(g) = Ru(G2) ∩ Im(f) = Im(Ru(f)).

We now show that Ru(g) is an epimorphism. For this, we may replace G2

with g−1(Ru(G3)), and hence assume that G3 is unipotent. Next, we may
replace G2 with G2/Ru(G2), and hence assume (in view of (i) again) that G2

is an extension of an abelian variety by a group of multiplicative type. Then
Hom(G2, G3) = 0 by Proposition 2.5; this completes the proof of the exactness
assertion.
The assertion about adjointness follows from the fact that every morphism
U → H , where U is unipotent and H arbitrary, factors through a unique
morphism U → Ru(H).
(iii) Consider an epimorphism ϕ : G → H , a unipotent group U , and a mor-
phism ψ : U → H . Then ψ factors through Ru(H). Also, by (ii), ϕ restricts to
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an epimorphism Ru(G) → Ru(H), which admits a section as unipotent groups
are just vector spaces. Thus, ψ lifts to a morphism U → G. This shows that
U is projective in C.
Conversely, let G be a projective object in C. We claim that the (abstract)
group HomC(G,H) is divisible for any divisible algebraic group H . Indeed, the
exact sequence

0 −→ H [n] −→ H
nH

−→ H −→ 0

yields an exact sequence

0 −→ HomC(G,H [n]) −→ HomC(G,H)
×n
−→ HomC(G,H) −→ 0,

for any positive integer n.
Next, the exact sequence 0 → L→ G→ A→ 0 yields an exact sequence

0 −→ EndC(A) −→ HomC(G,A) −→ HomC(L,A),

where the abelian group EndC(A) is free of finite rank (see [Mi86, Thm. 12.5]),
and HomC(L,A) is killed by some positive integer (Proposition 2.5). On
the other hand, HomC(G,A) is divisible by the above claim. It follows that
EndC(A) is zero, and hence so is A. Thus, G is linear, and hence G = M × U
as above. Since U is projective, so is M . Choose a torus T containing M ; then
again, the group HomC(M,T ) is finitely generated and divisible, hence zero.
Thus, T = 0 and G = U .

Remark 2.10. With the notation of the above theorem, we have a natural
map

G −→ G/M ×A G/U,

which is a morphism of M × U -torsors over A, and hence an isomorphism.
Moreover, G/M is an extension of an abelian variety by a unipotent group;
such ‘vector extensions’ will be studied in detail in §5.1. Also, G/U is an
extension of an abelian variety by a group of multiplicative type, and hence
of a semi-abelian variety by a finite group. The semi-abelian varieties will be
considered in §5.2.

2.3 Positive characteristics

In this subsection, we assume that char(k) = p > 0. Then the assertions of
Theorem 2.9 are no longer valid. For example, the formation of the unipotent
radical (the largest smooth connected unipotent subgroup) is not exact, and
does not commute with arbitrary field extensions either (see Remark 2.12 (i)
for details). Also, C has no non-zero projective objects, as will be shown in
Corollary 5.15. Yet Theorem 2.9 has a useful analogue, in which the unipotent
radical is replaced by the largest unipotent quotient:

Theorem 2.11. Let G be an algebraic group.
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(i) G has a smallest subgroup H such that U := G/H is unipotent. Moreover,
H is an extension of an abelian variety A by a group of multiplicative type
M . Also, M is unique up to commensurability in G, and A is unique up
to isogeny.

(ii) Every morphism H → U is zero; every morphism U → H has finite
image.

(iii) The formation of U commutes with base change under field extensions,
and yields a functor

U : C −→ U ,

which is left adjoint to the inclusion of U in C. Moreover, every exact
sequence in C

0 −→ G1
f

−→ G2
g

−→ G3 −→ 0

yields a right exact sequence

0 −→ U(G1)
U(f)
−→ U(G2)

U(g)
−→ U(G3) −→ 0,

where Ker(U(f)) is a finite p-group.

(iv) There exists a subgroup V ⊂ G such that G = H + V and H ∩ V is a
finite p-group.

Proof. (i) Since the underlying topological space of G is noetherian, we may
choose a subgroup H ⊂ G such that G/H is unipotent, and H is minimal for
this property. Let H ′ ⊂ G be another subgroup such that G/H ′ is unipotent.
Then so is G/H ∩H ′ in view of the exact sequence

0 −→ G/H ∩H ′ −→ G/H ×G/H ′.

By minimality of H , it follows that H ∩H ′ = H , i.e., H ⊂ H ′. Thus, H is the
smallest subgroup with unipotent quotient.
Since the class of unipotent groups is stable under extensions, every unipotent
quotient of H is zero. Also, by the affinization theorem (see [Br17, Thm. 1,
Prop. 5.5.1]), H is an extension of a linear algebraic group L by a semi-abelian
variety S. Then every unipotent quotient of L is zero, and hence L must be
of multiplicative type in view of Theorem 2.4. By [DG70, Cor. IV.1.3.9], the
reduced neutral component L0

red is its maximal torus, T ; the quotient L/T is
a finite group of multiplicative type. Denote by S′ the preimage of T in H ;
then S′ is a semi-abelian variety (extension of T by S) and we have an exact
sequence

0 −→ S′ −→ H −→ L/T −→ 0.

By Lemma 2.2, there exists a finite subgroup F ⊂ H such that H = S′ + F ;
equivalently, the quotient morphism H → L/T restricts to an epimorphism
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F → L/T . Also, by Theorem 2.4 again, F has a largest subgroup of mul-
tiplicative type, MF , and the quotient F/MF is unipotent. Since L/T is of
multiplicative type, it follows that the composition MF → F → L/T is an
epimorphism as well. Thus, we may replace F with MF , and assume that F is
of multiplicative type. Let T ′ be the maximal torus of the semi-abelian variety
S′, and M := T ′ + F . Then M is of multiplicative type; moreover, H/M is a
quotient of S′/T ′, and hence is an abelian variety. The uniqueness assertions
may be checked as in the proof of Theorem 2.9.
(ii) This follows readily from Proposition 2.5.
(iii) The assertion on base change under field extensions follows from the sta-
bility of the classes of unipotent groups, abelian varieties, and groups of mul-
tiplicative type, under such base changes. The adjointness assertion may be
checked as in the proof of Theorem 2.9 (ii).
Next, consider an exact sequence as in the statement. Clearly, U(g) is an epi-
morphism. Also, Ker(U(g))/Im(U(f)) ∼= g−1(H3)/(u(G1)+H2), where Hi de-
notes the kernel of the quotient map Gi → U(Gi). Thus, Ker(U(g))/Im(U(f))
is a quotient of g−1(H3)/u(G1) ∼= H3. As Ker(U(g))/Im(U(f)) is unipotent,
it is trivial by (ii). Finally, Ker(U(f)) ∼= (G1 ∩ u

−1(H2))/H1 is isomorphic to
a subgroup of H2/u(H1). Moreover, H2/u(H1) is an extension of an abelian
variety by a group of multiplicative type. Since Ker(U(f)) is unipotent, it is
finite by (ii) again.
(iv) If G is linear, then H =M is the largest subgroup scheme of multiplicative
type of G. By [Br17, Thm. 5.3.1], there exists a subgroup scheme W ⊂ G
such that G = H + W and H ∩ W is finite. Equivalently, the composition
W → G → U is an epimorphism and its kernel is finite. As a consequence,
W is n-torsion for some n ≥ 1, and hence W = V + F where V is a p-group
and F is finite of order prime to p. Thus, G/(H + V ) is a quotient of U and a
quotient of F , hence trivial. So G = H + V , where H ∩ V is a finite p-group.
For an arbitrary algebraic group G, Theorem 2.3 yields an exact sequence

0 −→ L −→ G −→ A −→ 0,

where L is linear and A is an abelian variety. In view of (iii) and the vanishing
of U(A), we obtain an exact sequence

0 −→ F −→ U(L) −→ U(G) −→ 0,

where F is a finite p-group. By the preceding step, there exists a subgroup
V ⊂ L such that the composition V → L → U(L) is an epimorphism with
kernel a finite p-group. Thus, so is the composition V → G→ U(G).

Remarks 2.12. (i) The formation of the unipotent radical does not commute
with purely inseparable field extensions, in view of [SGA3, XVII.C.5]. This
formation is not exact either, as seen e.g. from the exact sequence

0 −→ αp −→ Ga
F
−→ Ga −→ 0,
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where F denotes the relative Frobenius endomorphism.
When k is perfect, one may show that every exact sequence

0 −→ G1 −→ G2 −→ G3 −→ 0

in C yields a complex

0 −→ Ru(G1) −→ Ru(G2) −→ Ru(G3) −→ 0

with finite homology groups. But this fails when k is imperfect; more specif-
ically, choose a finite purely inseparable field extension K of k of degree p,
and consider G := RK/k(Gm,K), where RK/k denotes the Weil restriction. By
[CGP15, Prop. A.5.11], G is smooth, connected, and lies in an exact sequence

0 −→ Gm −→ G −→ U −→ 0,

where U is unipotent of dimension p − 1. Moreover, every morphism from
a smooth connected unipotent group to G is constant, as follows from the
adjointness property of the Weil restriction (see [CGP15, (A.5.1)]). In other
terms, Ru(G) = 0.
(ii) The functor U of Theorem 2.11 is not left exact, as seen from the exact
sequence

0 −→ αp −→ E
F
−→ E(p) −→ 0,

where E denotes a supersingular elliptic curve, and F its relative Frobenius
morphism. Also, note that the torsion subgroups E[pn], where n ≥ 1, form a
strictly increasing sequence of infinitesimal unipotent groups; in particular, E
has no largest connected unipotent subgroup.

Corollary 2.13. Let G be an algebraic group.

(i) There exists a finite subgroup F ⊂ G such that G/F ∼= S×U , where S is
a semi-abelian variety, and U a split unipotent group. Moreover, S and
U are unique up to isogeny.

(ii) If k is locally finite, then we may choose F so that S ∼= T ×A, where T
is a torus, and A an abelian variety. Moreover, T and A are unique up
to isogeny.

Proof. (i) With the notation of Theorem 2.11, we have isomorphisms

G/H ∩ V ∼= G/V ×G/H ∼= (H/H ∩ V )× U.

Also, H/H ∩ V is an extension of an abelian variety, H/(H ∩ V ) +M , by a
group of multiplicative type, M/M ∩ V . Moreover, U is an extension of a split
unipotent group by a finite group (Proposition 2.6). Thus, we may assume that
G = H . Then G0

red is a semi-abelian variety, as follows from [Br17, Lem. 5.6.1].
Since G/G0

red is finite, applying Lemma 2.2 yields that G is an extension of a
semi-abelian variety by a finite group.
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(ii) By [Br17, Cor. 5.5.5], there exists an abelian subvariety A ⊂ S such that
S = T +A, where T ⊂ S denotes the maximal torus. Then T ∩A is finite, and
S/T ∩ A ∼= T/T ∩ A×A/T ∩A.

This completes the proof of the existence assertions in (i) and (ii). The unique-
ness up to isogeny follows from Proposition 2.5.

3 The isogeny category of algebraic groups

3.1 Definition and first properties

Recall that C denotes the category of commutative algebraic groups, and F the
full subcategory of finite groups. Since F is stable under taking subobjects,
quotients and extensions, we may form the quotient category C/F ; it has the
same objects as C, and its morphisms are defined by

HomC/F (G,H) = lim
→

HomC(G
′, H/H ′),

where the direct limit is taken over all subgroups G′ ⊂ G such that G/G′ is
finite, and all finite subgroups H ′ ⊂ H . The category C/F is abelian, and
comes with an exact functor

Q : C −→ C/F ,

which is the identity on objects and the natural map

HomC(G,H) −→ lim
→

HomC(G
′, H/H ′), f 7−→ f

on morphisms. The quotient functor Q satisfies the following universal prop-
erty: given an exact functor R : C → D, where D is an abelian category, such
that R(F ) = 0 for any finite group F , there exists a unique exact functor
S : C/F → D such that R = S ◦ Q (see [Ga62, Cor. III.1.2, Cor. III.1.3] for
these results).

Alternatively, C/F may be viewed as the localization of C at the multiplicative
system of isogenies (see [GZ67, §I.2] or [SP16, §4.26] for localization of cate-
gories); this is easily checked by arguing as in the proof of [SP16, Lem. 12.9.6].

We now show that C/F is equivalent to a category with somewhat simpler
objects and morphisms:

Lemma 3.1. Let C be the full subcategory of C/F with objects the smooth con-
nected algebraic groups.

(i) The inclusion of C in C/F is an equivalence of categories.

(ii) HomC(G,H) = limHomC(G,H/H
′), where the direct limit is taken over

all finite subgroups H ′ ⊂ H.
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(iii) Let f ∈ HomC(G,H) be represented by a morphism f : G → H/H ′ in
C. Then f is zero (resp. a monomorphism, an epimorphism, an isomor-
phism) if and only if f is zero (resp. has a finite kernel, is an epimor-
phism, is an isogeny).

Proof. (i) This follows from Proposition 2.6.
(ii) This follows from Lemma 2.1.
(iii) By [Ga62, Lem. III.1.2], f is zero (resp. a monomorphism, an epimorphism)
if and only if Im(f) (resp. Ker(f), Coker(f)) is finite. By Lemma 2.1 again,
the finiteness of Im(f) is equivalent to f = 0, and the finiteness of Coker(f) is
equivalent to f being an epimorphism. As a consequence, f is an isomorphism
if and only if f is an isogeny.

The abelian category C will be called the isogeny category of (commutative)
algebraic groups. Every exact functor R : C → D, where D is an abelian cate-
gory and R(f) is an isomorphism for any isogeny f , factors uniquely through
C (indeed, R must send any finite group to zero).

We may now prove the assertion (i) of the main theorem:

Proposition 3.2. (i) The category C is noetherian and artinian.

(ii) The simple objects of C are Ga, the simple tori, and the simple abelian
varieties.

Proof. (i) Let G be a smooth connected algebraic group, and (Gn)n≥0 an in-
creasing sequence of subobjects of G in C, i.e., each Gn is smooth, connected,
and equipped with a C-morphism

ϕn : Gn −→ G/G′
n,

where Ker(ϕn) and G
′
n are finite; moreover, we have C-morphisms

ψn : Gn −→ Gn+1/G
′′
n+1,

where Ker(ψn) and G
′′
n+1 are finite. Thus, dim(Gn) ≤ dim(Gn+1) ≤ dim(G).

It follows that dim(Gn) = dim(Gn+1) for n ≫ 0, and hence ψn is an isogeny.
So Gn ∼= Gn+1 in C for n ≫ 0. This shows that C is noetherian. One may
check likewise that C is artinian.
(ii) This follows from Proposition 2.8.

Next, we relate the short exact sequences in C with those in C:

Lemma 3.3. Consider a short exact sequence in C,

ξ : 0 −→ G1
u

−→ G2
v

−→ G3 −→ 0,

where G1, G2, G3 are smooth and connected. Then ξ splits in C if and only if the
push-out f∗ξ splits in C for some epimorphism with finite kernel f : G1 → H.
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Proof. The exact sequence ξ splits in C if and only if there exists a C-morphism
g : G2 → G1 such that g ◦ u = id in C. Equivalently, there exists a finite
subgroup G′

1 ⊂ G1 and a C-morphism g : G2 → G1/G
′
1 such that g ◦ u is the

quotient map f1 : G1 → G1/G
′
1.

If such a pair (G′
1, g) exists, then g factors through a C-morphism G2/u(G

′
1) →

G1/G
′
1, which splits the bottom exact sequence in the push-out diagram

0 −−−−→ G1
u

−−−−→ G2
v

−−−−→ G3 −−−−→ 0

f1

y f2

y id

y

0 −−−−→ G1/G
′
1

u′

−−−−→ G2/u(G
′
1)

v′
−−−−→ G3 −−−−→ 0.

Replacing G′
1 by a larger finite subgroup, we may assume that G1/G

′
1 is smooth

and connected (Lemma 2.2).
Conversely, a splitting of the bottom exact sequence in the above diagram is
given by a C-morphism g′ : G2/u(G

′
1) → G1/G

′
1 such that g′ ◦u′ = id in C. Let

g : G2 → G1/G
′
1 denote the composition G2

f2
−→ G2/u(G

′
1)

g′

−→ G1/G
′
1. Then

g ◦ u = g′ ◦ f2 ◦ u = g′ ◦ u′ ◦ f1 = f1 as desired.

We may now construct non-split exact sequences in C, thereby showing that
hd(C) ≥ 1:

Examples 3.4. (i) Consider an exact sequence

ξ : 0 −→ Ga −→ G −→ A −→ 0,

where A is an abelian variety. Then ξ, viewed as an extension of A by Ga in
C, is classified by an element η ∈ H1(A,OA) (see [Ro58] or [MM74, §1.9]).
If char(k) = 0, then every epimorphism with finite kernel f : Ga → H may be
identified with the multiplication by some t ∈ k∗, viewed as an endomorphism
of Ga; then the push-out f∗ξ is classified by tη. In view of Lemma 3.3, it follows
that ξ is non-split in C whenever η 6= 0.
In contrast, if char(k) = p > 0, then ξ splits in C. Indeed, the multiplication
map pA yields an isomorphism in C, and pGa

= 0 whereas (pGa
)∗ξ = p∗Aξ.

(ii) Assume that char(k) = p > 0 and consider the algebraic group W2 of Witt
vectors of length 2. This group comes with an exact sequence

ξ : 0 −→ Ga −→W2 −→ Ga −→ 0,

see e.g. [DG70, §V.1.1.6]. Every epimorphism with finite kernel f : Ga → H
may be identified with a non-zero endomorphism of Ga. In view of [DG70,
Cor. V.1.5.2], it follows that the push-forward f∗ξ is non-split. Thus, ξ does
not split in C.

Proposition 3.5. Consider an exact sequence

0 −→ G1
u
1

−→ G2
u
2

−→ · · ·
u
n−1

−→ Gn −→ 0
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in C. Then there exists an exact sequence

0 −→ H1
v1
−→ H2

v2
−→ · · ·

vn−1

−→ Hn −→ 0

in C, and epimorphisms with finite kernels fi : Gi → Hi (i = 1, 2, . . . , n), such
that the diagram

0 −−−−→ G1
u
1

−−−−→ G2
u
2

−−−−→ · · ·
u
n−1

−−−−→ Gn −−−−→ 0

f
1

y f
2

y f
n

y

0 −−−−→ H1
v
1

−−−−→ H2
v
2

−−−−→ · · ·
v
n−1

−−−−→ Hn −−−−→ 0

commutes in C.

Proof. We argue by induction on the length n. If n = 2, then we just have
an isomorphism u : G1 → G2 in C. Then u is represented by an isomorphism
u : G1/G

′
1 → G2/G

′
2 in C, for some finite groups G′

1 ⊂ G1 and G′
2 ⊂ G2.

If n = 3, then the C-morphism u2 : G2 → G3 is represented by an epimorphism
u2 : G2 → G3/G

′
3 in C, where G′

3 is a finite subgroup of G3. We may thus
replace G3 with G3/G

′
3, and assume that u2 is an epimorphism in C.

Next, u1 : G1 → G2 is represented by a morphism u1 : G1 → G2/G
′
2 with

finite kernel, where G′
2 is a finite subgroup of G2. We may thus replace G1

(resp. G2, G3) with G1/Ker(u1) (resp. G2/G
′
2, G3/u2(G

′
2)) and assume that

u1 is a monomorphism in C. Then u2 ◦ u1 has finite image, and hence is zero
since G1 is smooth and connected.
We now have a complex in C

0 −→ G1
u1

−→ G2
u2

−→ G3 −→ 0,

where u1 is a monomorphism, u2 an epimorphism, and Ker(u2)/Im(u1) is fi-
nite. By Lemma 2.2, we may choose a finite subgroup F ⊂ Ker(u2) such that
Ker(u2) = Im(u1) + F . This yields a commutative diagram in C

0 −−−−→ G1
u1

−−−−→ G2
u2

−−−−→ G3 −−−−→ 0

q1

y q2

y id

y

0 −−−−→ G1/u
−1
1 (F )

v1
−−−−→ G2/F

v2
−−−−→ G3 −−−−→ 0,

where q1, q2 denote the quotient maps. Clearly, v1 is a monomorphism, and
v2 an epimorphism. Also, v2 ◦ v1 = 0, since q1 is an epimorphism. Finally, q2
restricts to an epimorphism Ker(u2) → Ker(v2), and hence Ker(v2) = Im(v1).
This completes the proof in the case where n = 3.
For an arbitrary length n ≥ 4, we cut the given exact sequence into two exact
sequences in C

0 −→ G1
u
1

−→ G2 −→ K −→ 0,

0 −→ K −→ G3
u
3

−→ · · ·
u
n−1

−→ Gn −→ 0.
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By the induction assumption, there exists a commutative diagram in C

0 −−−−→ K −−−−→ G3
u
3

−−−−→ · · ·
u
n−1

−−−−→ Gn −−−−→ 0

f

y f
3

y f
n

y

0 −−−−→ L
v

−−−−→ H3
v
3

−−−−→ · · ·
v
n−1

−−−−→ Hn −−−−→ 0,

where f, f3, . . . , fn are epimorphisms with finite kernels, and the bottom se-
quence comes from an exact sequence in C. Since f is an isomorphism in C, we
have an exact sequence

0 −→ G1
u
1

−→ G2 −→ L −→ 0

in C, and hence another commutative diagram in C

0 −−−−→ G1
u
1

−−−−→ G2 −−−−→ L −−−−→ 0

f
1

y f
2

y g

y

0 −−−−→ H1
v
1

−−−−→ H2 −−−−→ M −−−−→ 0,

where again f1, f2, g are epimorphisms with finite kernels, and the bottom
sequence comes from an exact sequence in C. Let H ′

3 := H3/v(F ), and denote
by F the kernel of g : L→M ; then we have a commutative diagram in C

0 −−−−→ L −−−−→ G3
u
3

−−−−→ G4
u
4

−−−−→ · · ·
u
n−1

−−−−→ Gn −−−−→ 0

g

y h

y f
4

y f
n

y

0 −−−−→ M −−−−→ H ′
3

w
−−−−→ H4

v
4

−−−−→ · · ·
v
n−1

−−−−→ Hn −−−−→ 0,

satisfying similar properties. By concatenating the two latter diagrams, we
obtain the desired commutative diagram

0 −−−−→ G1
u
1

−−−−→ G2
u
2

−−−−→ G3
u
3

−−−−→ · · ·
u
n−1

−−−−→ Gn −−−−→ 0
y

y
y

y

0 −−−−→ H1
v
1

−−−−→ H2 −−−−→ H ′
3

w
−−−−→ · · ·

v
n−1

−−−−→ Hn −−−−→ 0.

3.2 Divisible groups

Given a divisible algebraic group G and a non-zero integer n, the morphism

nG : G → G factors through an isomorphism G/G[n]
∼=
−→ G. We denote the

inverse isomorphism by

un : G
∼=
−→ G/G[n].
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By construction, we have a commutative triangle

G

nG

��

q

##●
●

●

●

●

●

●

●

●

G
un

// G/G[n],

where q denotes the quotient morphism. Since q yields the identity morphism
in C, we see that un yields the inverse of the C-automorphism nG of G. As a
consequence, EndC(G) is a Q-algebra.
More generally, we have the following:

Proposition 3.6. Let G,H be smooth connected algebraic groups, and assume
that H is divisible.

(i) Every extension group ExtnC(G,H) is a Q-vector space.

(ii) The natural map Q : HomC(G,H) → HomC(G,H) is injective and in-
duces an isomorphism

γ : Q⊗Z HomC(G,H) −→ HomC(G,H),
1

n
⊗ f 7−→ Q(un ⊗ f).

(iii) If G is divisible as well, then the natural map

Q1 : Ext1C(G,H) → Ext1C(G,H)

induces an isomorphism

γ1 : Q⊗Z Ext1C(G,H) −→ Ext1C(G,H).

Proof. (i) Just note that ExtnC(G,H) is a module over the Q-algebra EndC(H).

(ii) Let f ∈ HomC(G,H), and n a positive integer. If γ( 1n ⊗ f) = 0, then
γ(f) = 0, i.e., f = 0. Thus, f = 0 in view of Lemma 3.1; this shows the
injectivity of γ.
For the surjectivity, consider a C-morphism f : G → H represented by a C-
morphism f : G→ H/H ′, where H ′ is a finite subgroup of H . Then H ′ ⊂ H [n]
for some positive integer n, which we may take to be the order of H ′. Thus,
we may assume that H ′ = H [n]. Then the C-morphism ϕ := u−1

n ◦ f : G→ H
satisfies ϕ = nf , i.e., f = γ( 1n ⊗ ϕ).

(iii) Consider η ∈ Ext1C(G,H) such that γ1( 1n ⊗η) = 0 for some positive integer
n. Then of course γ1(η) = 0, i.e., η is represented by an exact sequence in C

0 −→ H
u

−→ E
v

−→ G −→ 0,

which splits in C. By Lemma 3.3 and the divisibility of H , it follows that
the push-out by mH of the above extension splits in C for some m > 0. But
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(mH)∗η = mη (see e.g. [Oo66, Lem. I.3.1]), and hence mη = 0. This shows
the injectivity of γ1.
For the surjectivity, we adapt the proof of Proposition 3.5. Let η ∈ Ext1C(G,H)
be represented by an exact sequence in C

0 −→ H
u

−→ E
v

−→ G −→ 0.

Since G is divisible, v is represented by a C-morphism v : E → G/G[m] for some
positive integerm. Replacing η with its pull-back u∗mη = (m∗

G)
−1η = γ1( 1

m⊗η),
we may thus assume that v is represented by a C-epimorphism v : E → G.
Likewise, as H is divisible, u is represented by a C-morphism u : H → E/E[n].
Then η is represented by the exact sequence in C

0 −→ H
u

−→ E/E[n]
v
n

−→ G −→ 0,

where vn : E/E[n] → G/G[n] is the C-epimorphism induced by v. So we may
further assume that u is represented by a C-morphism u : H → E. By Lemma
3.1, we then have v ◦ u = 0; moreover, Ker(u) and Ker(v)/Im(u) are finite.
In view of Lemma 2.2, we have Ker(v) = Im(u) + E′ for some finite subgroup
E′ ⊂ E. This yields a commutative diagram in C

0 −−−−→ H
u

−−−−→ E
v

−−−−→ G −−−−→ 0
y

y id

y

0 −−−−→ H/u−1(E′)
u1

−−−−→ E/E′ v1
−−−−→ G −−−−→ 0,

where the bottom sequence is exact, and u−1(E′) is finite.
We may thus choose a positive integer r such that u−1(E′) ⊂ H [r]. Taking
the push-out by the quotient map H/u−1(E′) → H/H [r] yields a commutative
diagram in C

0 −−−−→ H
u

−−−−→ E
v

−−−−→ G −−−−→ 0
y

y id

y

0 −−−−→ H/H [r]
u2

−−−−→ E/E′ + u(H [r])
v2

−−−−→ G −−−−→ 0,

where the bottom sequence is exact again. Thus, rη = (rH)∗η is represented
by an exact sequence in C.

Remarks 3.7. (i) Given two divisible groups G,H , the map

Q1 : Ext1C(G,H) −→ Ext1C(G,H)

is not necessarily injective. Indeed, the group Ext1C(A,Gm) has non-zero torsion
for any non-zero abelian variety A over (say) a separably closed field, as follows
from the Weil-Barsotti isomorphism.
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(ii) We may also consider the natural maps

γn : Q⊗Z ExtnC (G,H) −→ ExtnC(G,H)

for n ≥ 2. But these maps turn out to be zero for any algebraic groups G,H ,
since ExtnC(G,H) = 0 (Lemma 4.11) and ExtnC(G,H) is torsion (Remark 4.12).

As a first application of Proposition 3.6, we obtain:

Proposition 3.8. Assume that char(k) = 0.

(i) The composition of the inclusion U → C with the quotient Q : C → C

identifies U with a full subcategory of C.

(ii) The unipotent radical functor yields an exact functor

Ru : C −→ U ,

which is right adjoint to the inclusion. Moreover, Ru commutes with base
change under field extensions.

(iii) Every unipotent group is a projective object in C.

Proof. (i) Recall that a morphism of unipotent groups is just a linear map of
the associated k-vector spaces. In view of Proposition 3.6, it follows that the
natural map HomC(U, V ) → HomC(U, V ) is an isomorphism for any unipotent
groups U, V .
(ii) The functor Ru : C → U is exact by Theorem 2.9, and sends every finite
group to 0. By the universal property of Q, there exists a unique exact functor
S : C/F → U such that Ru = S ◦ Q. Since Ru commutes with base change
under field extensions (Theorem 2.9 again), so does S by uniqueness. Thus,
composing S with the inclusion C → C/F yields the desired exact functor.
For any unipotent group U and any algebraic group G, the natural map

HomU (U,Ru(G)) −→ HomC(U,G)

is an isomorphism. By Proposition 3.6 again, the natural map

Q : HomC(U,G) −→ HomC(U,G)

is an isomorphism as well. It follows that Ru is right adjoint to the inclusion.
(iii) Let U be a unipotent group. Then the functor on C defined by

G 7−→ HomU(U,Ru(G))

is exact, since the unipotent radical functor is exact and the category U is semi-
simple. Thus, G 7→ HomC(U,G) is exact as well; this yields the assertion.
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3.3 Field extensions

Let k′ be a field extension of k. Then the assignment G 7→ Gk′ := G ⊗k k
′

yields the base change functor

⊗kk
′ : Ck −→ Ck′ .

Clearly, this functor is exact and faithful; also, note that an algebraic group G
is connected (resp. smooth, finite, linear, unipotent, a torus, an abelian variety,
a semi-abelian variety) if and only if so is Gk′ .

Lemma 3.9. With the above notation, the functor ⊗kk
′ yields an exact functor

⊗kk
′ : Ck −→ Ck′ .

Proof. As the composite functor Qk′ ◦⊗kk
′ : Ck → Ck′ is exact and sends every

finite k-group to 0, it factors through a unique exact functor Ck/Fk → Ck′ .
This yields the existence and exactness of ⊗kk

′.

Lemma 3.10. Let k′ be a purely inseparable field extension of k, and G′ a
k′-group.

(i) There exists a smooth k-group G and an epimorphism f : G′ → Gk′ such
that Ker(f) is infinitesimal.

(ii) If G′ ⊂ Hk′ for some k-group H, then there exists a k-subgroup G ⊂ H
such that G′ ⊂ Gk′ and Gk′/G

′ is infinitesimal.

Proof. (i) Let n be a positive integer and consider the nth relative Frobenius
morphism

FnG′/k′ : G
′ −→ G′(pn).

Recall that the quotient G′/Ker(FnG′/k′) is smooth for n≫ 0. Since Ker(FnG′/k′ )

is infinitesimal, we may assume that G′ is smooth. Then FnG′/k′ is an epimor-

phism in view of [SGA3, VIIA, Cor. 8.3.1].
Next, note that G′ is defined over some finite subextension k′′ of k′, i.e., there
exists a k′′-subgroup G′′ such that G′ = G′′ ⊗k′′ k

′. By transitivity of base
change, we may thus assume that k′ is finite over k. Let q := [k′ : k], then
q = pn, where p = char(k) and n is a positive integer; also, k′

q
⊂ k. Consider

again the morphism FnG′/k′ ; then by construction, G′(pn) ∼= G′ ⊗k′ k
′, where k′

is sent to itself via the qth power map. Thus, G′(pn) ∼= Gk′ , where G denotes
the k-group G′ ⊗k′ k; here k

′ is sent to k via the qth power map again. So the
induced map G′ → Gk′ is the desired morphism.
(ii) As above, we may reduce to the case where k′ is finite over k. Then the
statement follows by similar arguments, see [Br17, Lem. 4.3.5] for details.

We now are ready to prove Theorem 1 (iv):
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Theorem 3.11. Let k′ be a purely inseparable field extension of k. Then the
base change functor ⊗kk

′ : Ck → Ck′ is an equivalence of categories.

Proof. By Lemma 3.10, every k′-group G′ is isogenous to Gk′ for some smooth
k-group G. It follows that ⊗kk

′ is essentially surjective.
Next, let G,H be smooth connected k-groups, and f : G→ H a Ck-morphism,
represented by a Ck-morphism f : G→ H/H ′ for some finite k-subgroup H ′ of
H . If f

k′
: Gk′ → Hk′ is zero in Ck′ , then the image of fk′ : Gk′ → Hk′/H

′
k′ is

finite. By Lemma 2.1, it follows that fk′ = 0. This shows that ⊗kk
′ is faithful.

We now check that ⊗kk
′ is full. Let again G,H be smooth connected k-groups,

and let f ∈ HomC
k′
(Gk′ , Hk′). We show that there exists a finite k-subgroup

H ′ ⊂ H and a k-morphism ϕ : G → H/H ′ such that ϕk′ represents f . For
this, we may replace H with its quotient by any finite k-subgroup.
Choose a representative f : Gk′ → Hk′/H

′′ of f , where H ′′ ⊂ Hk′ is a finite
k′-subgroup. By Lemma 3.10, there exists a k-subgroup I ⊂ H such that
H ′′ ⊂ Ik′ and Ik′/H

′′ is finite; then Ik′ is finite as well, and hence so is I.
We may thus replace H by H/I, and f by its composition with the quotient
morphismHk′/H

′′ → Hk′/Ik′ = (H/I)k′ . Then f is represented by a morphism
f : Gk′ → Hk′ .
Consider the graph Γ(f) ⊂ Gk′ ×k′ Hk′ . By Lemma 3.10 again, there exists a
k-subgroup ∆ ⊂ G × H such that Γ(f) ⊂ ∆k′ and ∆k′/Γ(f) is finite. Then
the intersection ∆k′ ∩ (0 ×Hk′ ) is finite, since Γ(f) ∩ (0 ×Hk′) is zero. Thus,
∆∩ (0×H) is finite as well; equivalently, the k-group H ′ := H ∩ (0× id)−1(∆)
is finite. Denoting by Γ the image of ∆ in G × H/H ′, we have a cartesian
square

∆ −−−−→ G×H
y

y

Γ −−−−→ G×H/H ′,

where the horizontal arrows are closed immersions, and the left (resp. right)
vertical arrow is the quotient by ∆ ∩ (0 × H) (resp. by H ′ acting on H via
addition). So Γ is a k-subgroup of G × H/H ′, and Γ ∩ (0 × H/H ′) is zero;
in other words, the projection π : Γ → G is a closed immersion. Since G is
smooth and connected, and dim(Γ) = dim(∆) = dimΓ(f) = dim(G), it follows
that π is an isomorphism. In other words, Γ is the graph of a k-morphism
ϕ : G→ H/H ′. Since the above cartesian square lies in a push-out diagram,

0 −−−−→ ∆ −−−−→ G×H
ϕ−q

−−−−→ H/H ′ −−−−→ 0
y

y id

y

0 −−−−→ Γ −−−−→ G×H/H ′ ϕ−id
−−−−→ H/H ′ −−−−→ 0,

where q : H → H/H ′ denotes the quotient morphism, it follows that ∆ =
ker(ϕ − q). As Γ(f) ⊂ ∆k′ , we see that ϕk′ = qk′ ◦ f . Thus, f is represented
by ϕk′ ; this completes the proof of the fullness assertion.
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Remarks 3.12. (i) Likewise, the base change functor induces equivalences of
categories Uk → Uk′ , T k → T k′ , Lk → Lk′ , and Ak → Ak′ . For tori, this
follows much more directly from the anti-equivalence of T k with the category
of rational representations of the absolute Galois group, see Proposition 4.1.
(ii) In particular, the category Uk is equivalent to Uki , where ki denotes the
perfect closure of k in k̄. Recall from [DG70, Thm. V.1.4.3, Cor. V.1.4.4]
that the category Uki is anti-equivalent to the category of finitely generated
modules over the Dieudonné ring D = Dki which are killed by some power
of the Verschiebung map V . Moreover, the category Uki is anti-equivalent to
the category of finitely generated modules over the localization D(V ) which are
killed by some power of V ; see [DG70, §V.3.6.7].
By work of Schoeller, Kraft, and Takeuchi (see [Sc72, Kr75, Tak75]), the cat-
egory Uk is anti-equivalent to a category of finitely generated modules over a
certain k-algebra, which generalizes the Dieudonné ring but seems much less
tractable.

4 Tori, abelian varieties, and homological dimension

4.1 Tori

Denote by T (resp. M, FM) the full subcategory of C with objects the tori
(resp. the groups of multiplicative type, the finite groups of multiplicative type).
Then T is stable under taking quotients and extensions, but not subobjets; in
particular, T is an additive subcategory of C, but not an abelian subcategory.
Also, F and FM are stable under taking subobjects, quotients and extensions.
Thus, we may form the quotient abelian category M/FM, as in §3.1. One
may readily check that M/FM is a full subcategory of C/F .
Let T be the full subcategory of M/FM with objects the tori. Since these are
the smooth connected objects of M, one may check as in Lemma 3.1 that the
inclusion of T in M/FM is an equivalence of categories. The remaining state-
ments of Lemma 3.1 also adapt to this setting; note that we may replace the
direct limits over all finite subgroups with those over all n-torsion subgroups,
since tori are divisible. Also, Proposition 3.6 yields natural isomorphisms

Q⊗Z HomC(T1, T2)
∼=
−→ HomT (T1, T2)

for any tori T1, T2.
By assigning with each group of multiplicative type G its character group,

X(G) := Homks(Gks ,Gm,ks),

one obtains an anti-equivalence between M (resp. FM) and the category of
finitely generated (resp. finite) abstract commutative groups equipped with the
discrete topology and a continuous action of the Galois group Γ; see [DG70,
Thm. IV.1.3.6]. Thus, the assignment

XQ : G 7−→ Q⊗Z X(G) =: X(G)Q
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yields a contravariant exact functor from M to the category RepQ(Γ) of finite-
dimensional Q-vector spaces equipped with a continuous representation of Γ
as above; moreover, every finite group of multiplicative type is sent to 0. This
yields in turn a contravariant exact functor

XQ : T −→ RepQ(Γ).

Proposition 4.1. The functor XQ is an anti-equivalence of categories. In
particular, the category T is semi-simple, and HomT (T1, T2) is a finite-
dimensional Q-vector space for any tori T1, T2.

Proof. Given a finite-dimensional Q-vector space V equipped with a continuous
action of Γ, there exists a finitely generated Γ-stable subgroup M ⊂ V which
spans V ; thus, V ∼= X(T )Q, where T denotes the torus with character group
M . So XQ is essentially surjective.
Given two tori T1, T2, the natural isomorphism

HomM(T1, T2) ∼= HomΓ(X(T2), X(T1))

yields an isomorphism

HomT (T1, T2) ∼= HomΓ(X(T2)Q, X(T1)Q)

in view of Proposition 3.6. It follows that XQ is fully faithful.

Lemma 4.2. (i) Every algebraic group G has a unique maximal torus, T (G).

(ii) Every morphism of algebraic groups u : G→ H sends T (G) to T (H).

(iii) The formation of T (G) commutes with base change under field extensions.

Proof. (i) This follows from the fact that T1 + T2 is a torus for any subtori
T1, T2 ⊂ G.
(ii) Just note that the image of a torus under any morphism is still a torus.
(iii) Consider an algebraic group G, its maximal torus T , and a field extension
k′ of k. If char(k) = 0, then Theorem 2.9 implies that G/T is a an extension
of an abelian variety by a product M ×U , where M is finite and U unipotent.
As a consequence, a similar assertion holds for Gk′/Tk′ ; it follows that Gk′/Tk′

contains no non-zero torus, and hence Tk′ is the maximal torus of Gk′ . On the
other hand, if char(k) > 0, then G/T is a 3-step extension of a unipotent group
by an abelian variety by a finite group, in view of Theorem 2.11. It follows
similarly that Tk′ is the maximal torus of Gk′ .

By Lemma 4.2, the assignment G 7→ T (G) yields a functor

T : C −→ T ,

the functor of maximal tori. This functor is not exact, as seen from the exact
sequence

0 −→ G[n] −→ G
nG

−→ G −→ 0,
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where G is a non-zero torus and n a non-zero integer. But T is exact up to
finite groups, as shown by the following;

Lemma 4.3. Every exact sequence in C

0 −→ G1
u

−→ G2
v

−→ G3 −→ 0

yields a complex in C

0 −→ T (G1)
T (u)
−→ T (G2)

T (v)
−→ T (G3) −→ 0,

where T (u) is a monomorphism, T (v) an epimorphism, and KerT (v)/ImT (u)
is finite.

Proof. We argue as in the proof of Theorem 2.11 (iii). Clearly, T (u) is a
monomorphism. Also, the group

KerT (v)/ImT (u) = T (G2) ∩ u(G1)/u(T (G1))

is the quotient of a group of multiplicative type by its maximal torus, and hence
is finite.
To show that T (v) is an epimorphism, we may replace G2 with v−1(T (G3)),
and hence assume that G3 is a torus. Next, we may replace G2 with G2/T (G2),
and hence assume that T (G2) is zero. We then have to check that G3 is zero.
If char(k) = 0, then there is an exact sequence

0 −→M × U −→ G2 −→ A −→ 0

as in Theorem 2.9, where M is finite. Thus, every morphism G2 → G3 has
finite image. Since v : G2 → G3 is an epimorphism, it follows that G3 = 0. On
the other hand, if char(k) > 0, then there are exact sequences

0 −→ H −→ G2 −→ U −→ 0, 0 −→M −→ H −→ A −→ 0

as in Theorem 2.11, whereM is finite. This implies again that every morphism
G2 → G3 has finite image, and hence that G3 = 0.

Proposition 4.4. (i) The functor of maximal tori yields an exact functor

T : C −→ T ,

right adjoint to the inclusion T → C. Moreover, T commutes with base
change under field extensions.

(ii) Every torus is a projective object in C.

Proof. (i) Composing T with the functor T → T induced by the quotient
functor Q, we obtain an exact functor C → T (Lemma 4.3), which sends every
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finite group to 0. This yields an exact functor T : C → T . The adjointness
assertion follows from the natural isomorphism

HomC(T,G) ∼= HomT (T, T (G))

for any torus T and any algebraic group G, which yields a natural isomorphism

HomC(T,G) ∼= HomT (T, T (G))

by using Lemmas 3.1 and 4.3. Finally, the assertion on field extensions is a
direct consequence of Lemma 4.2.
(ii) This follows by arguing as in the proof of Proposition 3.8 (iii).

4.2 Abelian varieties

Denote by A (resp. P) the full subcategory of C with objects the abelian va-
rieties (resp. the proper groups, i.e., those algebraic groups G such that the
structure map G → Spec(k) is proper). Like the categorye of tori, A is stable
under taking quotients and extensions, but not subobjects; so A is an addi-
tive subcategory of C, but not an abelian subcategory. Also, P is stable under
taking subobjects, quotients and extensions; it also contains the category F of
finite groups. We may thus form the quotient abelian category P/F , which is
a full subcategory of C/F .
Next, let A be the full subcategory of P/F with objects the abelian varieties.
As in §4.1, the inclusion of A in P/F is an equivalence of categories, and the
remaining statements of Lemma 3.1 adapt to this setting. Also, Proposition
3.6 yields natural isomorphisms

Q⊗Z HomC(A1, A2)
∼=
−→ HomA(A1, A2)

for any abelian varieties A1, A2. Since the abelian group HomC(A1, A2) is free
of finite rank (see [Mi86, Thm. 12.5]), HomA(A1, A2) is a finite-dimensional Q-
vector space. Moreover, the category A is semi-simple, in view of the Poincaré
complete reducibility theorem (which holds over an arbitrary field, see [Co06,
Cor. 3.20] or [Br17, Cor. 4.2.6]).

Lemma 4.5. (i) Every smooth connected algebraic group G has a largest
abelian variety quotient,

α = αG : G −→ A(G).

Moreover, Ker(α) is linear and connected.

(ii) Every morphism u : G → H, where H is smooth and connected, induces
a unique morphism A(u) : A(G) → A(H) such that the square

G
u

−−−−→ H

αG

y αH

y

A(G)
A(u)

−−−−→ A(H)
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commutes.

(iii) For any field extension k′ of k, the natural morphism A(Gk′ ) → A(G)k′

is an isomorphism if char(k) = 0, and an isogeny if char(k) > 0.

Proof. (i) and (ii) The assertions are direct consequences of Theorem 2.3 (ii).
(iii) By (i), we have an exact sequence

0 −→ L(G) −→ G
α

−→ A(G) −→ 0,

where L(G) is linear and connected. This yields an exact sequence

0 −→ L(G)k′ −→ Gk′ −→ A(G)k′ −→ 0.

Thus, L(Gk′) ⊂ L(G)k′ and we obtain an exact sequence

0 −→ L(G)k′/L(Gk′) −→ A(Gk′ ) −→ A(G)k′ −→ 0.

Sinc L(G)k′ is linear, the quotient L(G)k′/L(Gk′) must be finite; this yields
the assertion when char(k) > 0.
When char(k) = 0, we may characterize L(G) as the largest connected linear
subgroup of G. It follows that L(G)k′ ⊂ L(Gk′ ); hence equality holds, and

A(Gk′ )
∼=
→ A(G)k′ .

Remarks 4.6. (i) An arbitrary algebraic group Gmay admit no largest abelian
variety quotient, as shown by the following variant of [Br17, Ex. 4.3.8]: let A
be a non-zero abelian variety, and choose an integer n ≥ 2. Let

G := (A×A[n2])/diag(A[n]),

where A[n] is viewed as a subgroup of A[n2]. Consider the subgroups of G

H1 := (A[n]×A[n2])/diag(A[n]), H2 := diag(A[n2])/diag(A[n]).

Then G/H1, G/H2 are both isomorphic to A. Also, H1 ∩H2 = 0, and G is not
an abelian variety.
(ii) The assignment G 7→ A(G) does not preserve exactness of sequences of
smooth connected algebraic groups. For example, consider an elliptic curve E
equipped with a k-rational point of prime order ℓ ≥ 2. Assume that k contains
a nontrivial ℓth root of unity; this identifies µℓ with the constant group scheme
Z/ℓZ. Consider the quotient

G := (E ×Gm)/diag(µℓ),

with an obvious notation. Then G is a smooth connected algebraic group,
which lies in an exact sequence

0 −→ E −→ G −→ Gm −→ 0.

Moreover, the induced map A(E) → A(G) is just the quotient map E → E/µℓ.
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We now show that the assignment G 7→ A(G) is exact up to finite groups:

Lemma 4.7. Consider an exact sequence in C

0 −→ G1
u

−→ G2
v

−→ G3 −→ 0,

where G1, G2, G3 are smooth and connected. Then we have a commutative
diagram in C

0 −−−−→ G1
u

−−−−→ G2
v

−−−−→ G3 −−−−→ 0

α1

y α2

y α3

y

0 −−−−→ A(G1)
A(u)

−−−−→ A(G2)
A(v)

−−−−→ A(G3) −−−−→ 0,

where A(v) is an epimorphism, and KerA(u), KerA(v)/ImA(u) are finite.

Proof. Clearly, A(v) is an epimorphism. Let Li := Ker(αi) for i = 1, 2, 3;
then each Li is connected and linear by Theorem 2.3. We have isomor-
phisms KerA(u) ∼= u−1(L2)/L1, ImA(u) ∼= u(G1)/u(G1) ∩L2 and KerA(v) ∼=
v−1(L3)/L2. Since u

−1(L2) is linear, KerA(u) is linear as well; it is also proper,
and hence finite. Also, KerA(v)/ImA(u) ∼= v−1(L3)/L2+u(G1) is a quotient of
v−1(L3)/u(G1) ∼= L3. It follows similarly that KerA(v)/ImA(u) is finite.

Next, we obtain a dual version of Proposition 4.4:

Proposition 4.8. (i) The Albanese functor yields an exact functor

A : C −→ A,

which is left adjoint to the inclusion A → C. Moreover, A commutes with
base change under field extensions.

(ii) Every abelian variety is an injective object in C.

Proof. (i) Consider a C-morphism f : G → H and choose a representative by
a C-morphism f : G→ H/H ′, where H ′ is a finite subgroup of H . This yields
an A-morphism

A(f) : A(G) −→ A(H/H ′) = A(H)/αH(H ′),

and hence an A-morphism A(f) : A(G) → A(H). One may readily check that
A(f) depends only on f , in a covariant way. By Proposition 3.5 and Lemma
4.5, the resulting functor A is exact and commutes with base change under
field extensions.
To show the adjointness assertion, consider a smooth connected algebraic group
G and an abelian variety A. Then the map

HomA(A(G), A) −→ HomC(G,A), f 7−→ f ◦ αG
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is an isomorphism by Lemma 4.5 again. In view of Proposition 3.6, it follows
that the analogous map

HomA(A(G), A) −→ HomC(G,A)

is an isomorphism as well.

(ii) This follows formally from (i).

Remarks 4.9. (i) Denote by Â the dual of an abelian variety A. Then the

assignment A 7→ Â yields a contravariant endofunctor of A, which is involutive
and preserves isogenies and finite products. As an easy consequence, we obtain
a contravariant endofunctor of A, which is involutive and exact. Note that each
abelian variety is (non-canonically) A-isomorphic to its dual, via the choice of
a polarization.

(ii) Let k′ be a field extension of k. Then the assignment

A 7−→ Q⊗Z A(k
′) =: A(k′)Q

yields a functor from A to the category of Q-vector spaces (possibly of infinite
dimension), which preserves finite products. Moreover, each isogeny

f : A −→ B

yields an isomorphism

A(k′)Q
∼=
−→ B(k′)Q,

since this holds for the multiplication maps nA. Thus, the above assignment
yields an exact functor from A to the category of Q-vector spaces.

4.3 Vanishing of extension groups

In this subsection, we prove the assertion (v) of Theorem 1: hd(C) = 1. We
first collect general vanishing results for extension groups in C:

Lemma 4.10. Let G be a smooth connected algebraic group, U a smooth con-
nected unipotent group, A an abelian variety, and T a torus.

(i) ExtnC (T,G) = 0 = ExtnC(G,A) = 0 for all n ≥ 1.

(ii) If char(k) = 0, then ExtnC(U,G) = 0 for all n ≥ 1.

(iii) If char(k) = p > 0 and G is divisible, then ExtnC(U,G) = 0 = ExtnC(G,U)
for all n ≥ 0.

(iv) If G is linear, then ExtnC(G, T ) = 0 for all n ≥ 1. If moreover char(k) = 0,
then ExtnC(G,U) = 0 for all n ≥ 1 as well.
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Proof. (i) Just recall that T is projective in C (Proposition 4.4), and A is
injective in C (Proposition 4.8).
(ii) Likewise, U is projective in C by Proposition 3.8.
(iii) Since U is unipotent, there exists a positive integer m such that pmG = 0.
It follows that both groups ExtmC (U,G) and ExtmC (G,U) are pm-torsion (see
e.g. [Oo66, Lem. I.3.1]). But these groups are also modules over EndC(G), and
hence Q-vector spaces by Proposition 3.6. This yields the assertion.
(iv) By Proposition 2.8 and the long exact sequence for Ext groups, we may
assume that G is unipotent or a torus. In the latter case, both assertions
follows from (i); in the former case, the first assertion follows from (ii) and
(iii), and the second assertion, from the fact that unipotent groups are just
vector spaces.

Next, recall that hd(C) ≥ 1 in view of Examples 3.4. So, to conclude that
hd(C) = 1, it suffices to check the following:

Lemma 4.11. For any smooth connected algebraic groups G,H and any integer
n ≥ 2, we have ExtnC(G,H) = 0.

Proof. Let η ∈ ExtnC(G,H), where n ≥ 3. Then η is represented by an exact
sequence in C

0 −→ H −→ G1 −→ · · · −→ Gn −→ G −→ 0,

which we may cut into two exact sequences in C

0 −→ H −→ G1 −→ G2 −→ K −→ 0,

0 −→ K −→ G3 −→ · · · −→ Gn −→ G −→ 0.

Thus, η can be written as a Yoneda product η1 ∪ η2, where η1 ∈ Ext2C(G,K)

and η2 ∈ Extn−2
C (K,H). So it suffices to show the assertion when n = 2.

Using the long exact sequences for Ext groups, we may further reduce to the
case where G,H are simple objects in C, i.e., Ga, simple tori T , or simple
abelian varieties A (Proposition 3.2). In view of Lemma 4.10, it suffices in turn
to check that

(i) Ext2C(A, T ) = 0,

(ii) Ext2C(A,Ga) = 0 when char(k) = 0,

(iii) Ext2C(Ga,Ga) = 0 when char(k) > 0.

For (i), we adapt the argument of [Oo66, Prop. II.12.3]. Let η ∈ Ext2C(A, T ) be
represented by an exact sequence in C

0 −→ T
u

−→ G1
v

−→ G2
w

−→ A −→ 0.
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As above, η = η1 ∪ η2, where η1 denotes the class of the extension

0 −→ T
u

−→ G1 −→ K −→ 0,

and η2 that of the extension

0 −→ K −→ G2
w

−→ A→ 0.

Also, note that A(w) : A(G2) → A is an epimorphism in A, and hence has
a section, say s. Denoting by H2 the pull-back of s(A) under the Albanese
morphism G2 → A(G2), we have a monomorphism ι : H2 → G2 in C, such that
A(w ◦ ι) : A(H2) → A is an isomorphism. This yields a commutative diagram
of exact sequences in C

0 −−−−→ T −−−−→ H1 −−−−→ H2 −−−−→ A −−−−→ 0

id

y
y ι

y id

y

0 −−−−→ T
u

−−−−→ G1
v

−−−−→ G2
w

−−−−→ A −−−−→ 0.

Thus, η is represented by the top exact sequence, and hence we may assume
that A(w) is an isomorphism. Then K is linear in view of Theorem 2.3. Thus,
κ1 = 0 by Lemma 4.10 (iv). So η = 0; this completes the proof of (i).
For (ii), we replace T with Ga in the above argument, and use the vanishing
of Ext1C(L,Ga) for L linear (Lemma 4.10 (iv) again).

Finally, for (iii), it suffices to show that Ext2U (Ga,Ga) = 0. Also, we may

assume that k is perfect, in view of Theorem 3.11. Let η ∈ Ext2U (Ga,Ga) be
represented by an exact sequence in U ,

0 −→ Ga −→ G1 −→ G2 −→ Ga −→ 0.

Then Proposition 3.5 yields an exact sequence in U ,

0 −→ Ga −→ H1 −→ H2 −→ Ga −→ 0,

and a commutative diagram in U ,

0 −−−−→ Ga −−−−→ G1 −−−−→ G2 −−−−→ Ga −−−−→ 0
y

y
y

y

0 −−−−→ Ga −−−−→ H1 −−−−→ H2 −−−−→ Ga −−−−→ 0.

where the vertical arrows are isomorphisms in U (here we use the fact that the
quotient of Ga by a finite subgroup is isomorphic to Ga). As Ext

2
U (Ga,Ga) = 0

(see [DG70, V.1.5.1, V.1.5.2]), the bottom exact sequence is equivalent to the
trivial exact sequence in U , and hence in U . Thus η = 0 as desired.

Remark 4.12. When k is perfect, the groups ExtnC(G,H) are torsion for all
n ≥ 2 and all algebraic groups G,H , in view of [Mi70, Cor., p. 439]. In fact,
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this assertion extends to an arbitrary field k: indeed, it clearly holds when G
or H is finite, or more generally m-torsion for some positive integer m. Using
Proposition 2.8, one may thus reduce to the case when G,H are simple objects
of C. Then the assertion is obtained by combining Proposition 3.6, Lemma
4.10, and the proof of Lemma 4.11.

5 Structure of isogeny categories

5.1 Vector extensions of abelian varieties

In this subsection, we assume that char(k) = 0. Recall that a vector extension
of an abelian variety A is an algebraic group G that lies in an extension

ξ : 0 −→ U −→ G −→ A −→ 0,

where U is unipotent. Then U = Ru(G) and A = A(G) are uniquely de-
termined by G; also, the extension ξ has no non-trivial automorphisms, since
HomC(A,U) = 0. Thus, the data of the algebraic group G and the extension ξ
are equivalent.
We denote by V the full subcategory of C with objects the vector extensions
(of all abelian varieties). By Theorems 2.3 and 2.4, the objects of V are those
smooth connected algebraic groups that admit no non-zero subtorus. In view
of Lemmas 4.2 and 4.3, this readily implies:

Lemma 5.1. (i) Let 0 → G1 → G2 → G3 → 0 be an exact sequence in C,
where G2 is connected. Then G2 is an object of V if and only if so are
G3 and G0

1.

(ii) Let f : G → H be an isogeny of connected algebraic groups. Then G is
an object of V if and only if so is H.

(iii) Let k′ be a field extension of k, and G an algebraic k-group. Then G is
an object of Vk if and only if Gk′ is an object of Vk′ .

In particular, V is stable under taking quotients and extensions, but not sub-
objects; like T and A, it is an additive subcategory of C, but not an abelian
subcategory.
Next, recall from [Ro58] or [MM74, §1.9] that every abelian variety A has a
universal vector extension,

ξ(A) : 0 −→ U(A) −→ E(A) −→ A −→ 0,

where U(A) is the additive group of the vector space H1(A,OA)
∗; moreover,

dimU(A) = dimA. Also, E(A) is anti-affine, i.e., every morphism from E(A)
to a linear algebraic group is zero (see e.g. [Br17, Prop. 5.5.8]).

Proposition 5.2. (i) The assignments A 7→ E(A), A 7→ U(A) yield addi-
tive functors

E : A −→ V , U : A −→ U ,

which commute with base change under field extensions.
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(ii) For any morphism f : A → B of abelian varieties, the induced mor-
phism U(f) : U(A) → U(B) is the dual of the pull-back morphism
f∗ : H1(B,OB) → H1(A,OA). Moreover, U(f) is zero (resp. an iso-
morphism) if and only if f is zero (resp. an isogeny).

(iii) E is left adjoint to the Albanese functor A : V → A.

Proof. We prove (i) and (ii) simultaneously. Let f : A→ B be a morphism of
abelian varieties. Consider the pull-back diagram of exact sequences

0 −−−−→ U(B) −−−−→ F −−−−→ A −−−−→ 0

id

y
y f

y

0 −−−−→ U(B) −−−−→ E(B) −−−−→ B −−−−→ 0.

The universal property of ξ(A) yields a commutative diagram of exact sequences

0 −−−−→ U(A) −−−−→ E(A) −−−−→ A −−−−→ 0
y

y id

y

0 −−−−→ U(B) −−−−→ F −−−−→ A −−−−→ 0,

and hence another such diagram,

0 −−−−→ U(A) −−−−→ E(A) −−−−→ A −−−−→ 0

U(f)

y E(f)

y f

y

0 −−−−→ U(B) −−−−→ E(B) −−−−→ B −−−−→ 0,

which defines morphisms E(f) and U(f).
Next, let η ∈ H1(B,OB), so that we have a push-out diagram of extensions

0 −−−−→ U(B) −−−−→ E(B) −−−−→ B −−−−→ 0

η

y
y id

y

0 −−−−→ Ga −−−−→ Eη −−−−→ B −−−−→ 0.

By construction, the pull-back of Eη by f is the push-out of ξ(A) by the map
η◦U(f) : U(A) → Ga. Hence U(f) is the dual of f∗ : H1(B,OB) → H1(A,OA).
As a consequence, U is a covariant functor, and hence so is E.
Since the formation of the universal vector extension commutes with base
change under field extensions, the functors E and U commute with such base
change as well. Clearly, they are additive; this completes the proof of (i).
To complete the proof of (ii), recall the canonical isomorphism

H1(A,OA) ∼= Lie(Â),
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where the right-hand side denotes the Lie algebra of the dual abelian variety
(see [Mi86, Rem. 9.4]). This isomorphism identifies f∗ with Lie(f̂), where

f̂ : B̂ → Â denotes the dual morphism of f . As a consequence,

U(f) = 0 ⇔ f∗ = 0 ⇔ f̂ = 0 ⇔ f = 0,

where the second equivalence holds since char(k) = 0, and the third one follows
from biduality of abelian varieties. Likewise, U(f) is an isomorphism if and

only if f∗ is an isomorphism; equivalently, f̂ is an isogeny, i.e., f is an isogeny.
(iii) Given a vector extension 0 → U → G → A(G) → 0, we check that the
map

α : HomV(E(A), G) −→ HomA(A,A(G)), u 7−→ A(u)

is an isomorphism.
Consider a morphism u : E(A) → G such that A(u) = 0. Then u factors
through a morphism E(A) → Ru(G), and hence u = 0 as E(A) is anti-affine.
Next, consider a morphism v : A → A(G). By (i), we have a commutative
square

E(A)
E(v)

−−−−→ E(A(G))
y

y

A
v

−−−−→ A(G).

Also, the universal property of ξ(A) yields a commutative square

E(A(G))
δ

−−−−→ G
y αG

y

A(G)
id

−−−−→ A(G).

Thus, w := E(v) ◦ δ ∈ HomV(E(A), G) satisfies α(v) = u.

Denote by V the isogeny category of vector extensions, that is, the full subcat-
egory of C with the same objects as V . Then V is an abelian category in view
of Lemma 5.1. Also, Proposition 3.6 yields natural isomorphisms

Q⊗Z HomC(G1, G2)
∼=
→ HomV(G1, G2), Q⊗Z Ext1C(G1, G2)

∼=
→ Ext1V(G1, G2)

for any objects G1, G2 of V .

Corollary 5.3. (i) The functors E : A → V, U : A → U yield exact
functors

E : A −→ V , U : A −→ U ,

which commute with base change under field extensions. Moreover, E is
left adjoint to the Albanese functor A : V → A.

Documenta Mathematica 22 (2017) 679–725



714 Michel Brion

(ii) The universal vector extension of any abelian variety is a projective object
of V.

Proof. (i) This follows from Propositions 3.5 and 5.2.
(ii) We have canonical isomorphisms for any object G of V :

HomV(E(A), G) ∼= Q⊗Z HomV(E(A), G) ∼= Q⊗Z HomA(A,A(G)),

where the first isomorphism follows from Proposition 3.6, and the second one
from Proposition 5.2. Using Proposition 3.6 again, this yields a canonical
isomorphism

HomV(E(A), G) ∼= HomA(A,A(G)).

Since the Albanese functor A is exact (Proposition 4.8), it follows that the
functor G 7→ HomV(E(A), G) is exact as well.

Next, let G be an object of V . Form and label the commutative diagram of
exact sequences in C

0 −−−−→ U(A)
ι

−−−−→ E(A) −−−−→ A −−−−→ 0

γ

y δ

y id

y

0 −−−−→ U −−−−→ G −−−−→ A −−−−→ 0,

where U = U(G), A = A(G), and γ = γG classifies the bottom extension. This
yields an exact sequence in C

ξ : 0 −→ U(A)
γ−ι
−→ U × E(A) −→ G −→ 0.

Proposition 5.4. Keep the above notation.

(i) ξ yields a projective resolution of G in V.

(ii) For any object H of V, we have an exact sequence

0 −→ HomV(G,H)
ϕ

−→ HomU (U(G), U(H))×HomA(A(G), A(H))

ψ
−→ HomU (U(A(G)), U(H)) −→ Ext1V(G,H) −→ 0,

where ϕ(f) := (U(f), A(f)), and ψ(u, v) := u ◦ γG − γH ◦ U(v).

Proof. (i) This holds as U,U(A) are projective in C (Theorem 2.9), and E(A)
is projective in C (Proposition 5.2).
(ii) In view of (i), this follows readily from the long exact sequence of extension
groups

0 → HomV(G,H) → HomV(U ×E(A), H) → HomV(U,H) → Ext1V(G,H) → 0

associated with the short exact sequence ξ.
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As a direct consequence of Proposition 5.4, we obtain:

Corollary 5.5. The following conditions are equivalent for an object G of V:

(i) G ∼= E(A) in V for some abelian variety A.

(ii) HomV(G,Ga) = Ext1V(G,Ga) = 0.

As a further consequence, we describe the projective or injective objects of V :

Corollary 5.6. (i) The projective objects of V are the products V ×E(A),
where V is unipotent, and A is an abelian variety.

(ii) The injective objects of V are the abelian varieties.

Proof. Let G be an extension of an abelian variety A by a unipotent group U .

(i) If G is projective in V, then Ext1V(G,Ga) = 0. In view of Proposition 5.4, it
follows that the map HomU (U,Ga) → HomU(U(A),Ga), u 7→ u◦γ is surjective.
Equivalently, γ is injective; hence so is δ : E(A) → G. Identifying E(A) with
a subgroup of G, it follows that G = U + E(A), and U(A) ⊂ U . We may
choose a complement V ⊂ U to the subspace U(A) ⊂ U ; then G ∼= V × E(A).
Conversely, every such product is projective by Proposition 5.2. This yields
the assertion.

(ii) If G is injective in V , then Ext1V(B,G) = 0 for any abelian variety B. Thus,
we have an exact sequence

0 −→ HomV(B,U) −→ HomV(B,G) −→ HomV(B,A)
∂

−→ Ext1V(B,U) −→ 0.

Moreover, Ext1V(B,U) ∼= HomU (U(B), U), as follows e.g. from Proposition 5.4.
Since HomV(B,A) = HomA(B,A) is a finite-dimensional Q-vector space, so is
HomU (U(B), U).

When k is not a number field, i.e., k is an infinite-dimensional Q-vector space,
this forces U = 0, since U(B) 6= 0 for any non-zero abelian variety B. Thus, G
is an abelian variety.

On the other hand, when k is a number field, there are only finitely many
isomorphism classes of abelian varieties that are isogenous to any prescribed
abelian variety (see [MW93] for a quantitative version of this finiteness result).
As a consequence, we may choose a simple abelian variety B, not isogenous to
any simple factor of A. Then HomA(B,A) = 0; as above, this yields U = 0,
i.e., G is an abelian variety.

Conversely, every abelian variety is injective in V by Proposition 4.8.

We now describe the structure of V and V in terms of linear algebra. Let
D be the category with objects the triples (A,U, γ), where A is an abelian
variety, U a unipotent group, and γ : U(A) → U a morphism; the D-morphisms
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from (A1, U1, γ1) to (A2, U2, γ2) are those pairs of C-morphisms u : U1 → U2,
v : A1 → A2 such that the square

U(A1)
U(v)

−−−−→ U(A2)

γ1

y γ2

y

U1
u

−−−−→ U2

commutes. We also introduce the ‘isogeny category’ D, by allowing v to be a
C-morphism in the above definition (this makes sense in view of Corollary 5.3).
Next, define a functor

D : V −→ D

by assigning to each objectG the triple (A(G), Ru(G), γ), where γ : U(A(G)) →
Ru(G) denotes the classifying map, and to each morphism f : G1 → G2, the
pair (A(f), U(f)). By Corollary 5.3 again, we may define similarly a functor

D : V −→ D.

Proposition 5.7. With the above notation, the functors D and D yield equiv-
alences of categories.

We omit the easy proof.

5.2 Semi-abelian varieties

Recall that a semi-abelian variety is an algebraic group G that lies in an ex-
tension

ξ : 0 −→ T −→ G −→ A −→ 0,

where T is a torus, and A an abelian variety. We now adapt part of the results
of §5.1 to this setting, leaving the (easy) verifications to the motivated reader.
The algebraic groups T = T (G) and A = A(G) are uniquely determined by G,
and the extension ξ has no non-trivial automorphisms. Thus, the data of G and
of the extension ξ are equivalent. Moreover, recall the natural isomorphism

c : Ext1C(A, T )
∼=
−→ HomΓ(X(T ), Â(ks)),

which arises from the Weil-Barsotti isomorphism

Ext1Cks
(Aks ,Gm,ks)

∼=
−→ Â(ks)

together with the pairing

Ext1C(A, T )×X(T ) −→ Ext1Cks
(Aks ,Gm,ks)

given by push-out of extensions via characters of T .
Denote by S the full subcategory of C with objects the semi-abelian varieties.
Then the analogue of Lemma 5.1 holds in view e.g. of [Br17, §5.4] (but there
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is no analogue of the universal vector extension in this setting). Thus, the
isogeny category of semi-abelian varieties, S, is an abelian category. As for
vector extensions of abelian varieties, we have natural isomorphisms

Q⊗Z HomC(G1, G2)
∼=
→ HomS(G1, G2), Q⊗Z Ext1C(G1, G2)

∼=
→ Ext1S(G1, G2)

for any objects G1, G2 of S. This yields a natural isomorphism

Ext1C(A, T )
∼=
−→ HomΓ(X(T )Q, Â(ks)Q).

Note that the assignment
A 7−→ Â(ks)Q

yields an exact functor from A to the category of Q-vector spaces equipped
with the discrete topology and a continuous representation of Γ, as follows e.g.
from Remarks 4.9.
Next, we obtain a description of S in terms of linear algebra. Let E be the
category with objects the triples (A,M, c), where A is an abelian variety, M a
finite-dimensional Q-vector space equipped with a continuous action of Γ, and
c :M → Â(ks)Q a Γ-equivariant linear map; the E-morphisms from (A1,M1, c1)
to (A2,M2, c2) are those pairs (u, v), where u : A1 → A2 is a A-morphism and
v : M2 → M1 a Γ-equivariant linear map, such that the square

M2
c2

−−−−→ Â2(ks)Q

v

y û

y

M1
c1

−−−−→ Â1(ks)Q

commutes. Then one may check that the assignment

G 7−→ (A(G), X(T (G))Q, c(G)Q)

yields an equivalence of categories S → E . Moreover, the sequence

0 −→ HomS(G1, G2)
ϕ

−→ HomΓ(M2,M1)×HomA(A1, A2)

ψ
−→ HomΓ(M2, Â1(ks)Q) −→ Ext1S(G1, G2) −→ 0

is exact for any semi-abelian varieties G1, G2, where E(Gi) := (Ai,Mi, ci) for
i = 1, 2, ϕ(f) := (XQ ◦ T )(f), A(f)), and ψ(u, v) := c1 ◦ u− v̂ ◦ c2.
Yet there are important differences between the isogeny categories of vector
extensions and semi-abelian varieties. For example, the latter does not have
enough projectives in general:

Proposition 5.8. (i) If k is not locally finite, then the projective objects of
S are the tori.

(ii) If k is locally finite, then the product functor T × A → S yields an
equivalence of categories.

Documenta Mathematica 22 (2017) 679–725



718 Michel Brion

Proof. (i) Let G be a semi-abelian variety, extension of an abelian variety A

by a torus T . Denote by c : X(T ) → Â(ks) the classifying map, and by

cQ : X(T )Q −→ Â(ks)Q

the corresponding Q-linear map; recall that c and cQ are Γ-equivariant.
If G is projective in C, then Ext1C(G, T

′) = 0 for any torus T ′. Thus, we have
an exact sequence

0 −→ HomC(A, T
′) −→ HomC(G, T

′) −→ HomC(T, T
′)

∂
−→ Ext1C(A, T

′) −→ 0.

Moreover, the boundary map ∂ may be identified with the map

HomΓ(X(T ′)Q, X(T )Q) −→ HomΓ(X(T ′)Q, Â(ks)Q). f 7−→ cQ ◦ f.

Since ∂ is surjective, and X(T ′)Q may be chosen arbitrarily among finite-
dimensional Q-vector spaces equipped with a continuous representation of Γ,
the map cQ is surjective as well. In particular, the abelian group Â(ks) has
finite rank. In view of [FJ74, Thm. 9.1], this forces A to be zero, i.e., G is a
torus.
(ii) This follows readily from Proposition 2.5 and Corollary 2.13.

5.3 Product decompositions

In this subsection, we first prove the remaining assertions (ii) and (iii) of The-
orem 1. Then we describe the isogeny category C in characteristic 0, and its
projective or injective objects in arbitrary characteristics.

Proposition 5.9. (i) If k is perfect, then the product functor M×U → L

yields an equivalence of categories.

(ii) For any field k, the product functor T × U → L yields an equivalence of
categories.

Proof. (i) This follows readily from Theorem 2.4 and Proposition 2.5.
(ii) This is a consequence of (i) in view of Theorem 3.11.

Proposition 5.10. If char(k) > 0, then the product functor S × U → C yields
an equivalence of categories.

Proof. Let G be a smooth connected algebraic group. By Corollary 2.13, there
exists a finite subgroup F ⊂ G such that G/F ∼= S × U , where S is a semi-
abelian variety, and U is unipotent. Thus, the product functor Π is essentially
surjective.
Next, let S1, S2 be semi-abelian varieties, and U1, U2 smooth connected unipo-
tent groups. We check that Π induces an isomorphism

HomC(S1, S2)×HomC(U1, U2) −→ HomC(S1×U1, S2×U2), (ϕ, ψ) 7−→ ϕ×ψ.
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Assume that ϕ× ψ = 0. Choose representatives ϕ : S1 → S2/S
′
2 and ψ : U1 →

U2/U
′
2, where S

′
2, U

′
2 are finite. Then ϕ × ψ : S1 × U1 → (S2 × U2)/(S

′
2 × U ′

2)
has finite image, and hence is zero by Lemma 2.1. So ϕ = ψ = 0.
Let γ ∈ HomC(S1×U1, S2 ×U2) be represented by γ : S1 ×U1 → (S2 ×U2)/F ,
where F is finite. Then F ⊂ S′

2 × U ′
2 for some finite subgroups S′

2 ⊂ S2,
U ′
2 ⊂ U2. Thus, we may assume that F = S′

2 × U ′
2. Then the composite

morphisms

S1 −→ S1 × U1
γ

−→ S2/S
′
2 × U2/U

′
2 −→ U2/U

′
2,

U1 −→ S1 × U1
γ

−→ S2/S
′
2 × U2/U

′
2 −→ S2/S

′
2

are zero by Lemma 2.1 and Proposition 2.5. Thus, γ = ϕ × ψ for some mor-
phisms ϕ : S1 → S2/S

′
2, ψ : U1 → U2/U

′
2.

Combining Propositions 5.8 (i) and 5.10, we obtain readily:

Corollary 5.11. If k is locally finite, then the product functor

T × A× U −→ C

yields an equivalence of categories.

Remarks 5.12. (i) With the notation of the above corollary, each of the cat-
egories T , A, U admits a description of its own. By Proposition 4.1, T is
equivalent to the category of Q-vector spaces equipped with an automorphism
of finite order. Also, the isomorphism classes of abelian varieties over a fi-
nite field are classified by the Honda-Tate theorem (see [Ho68, Tat66]); their
endomorphism rings are investigated in [Wa69]. Finally, the structure of U
(obtained in [DG70, §V.3.6.7]) has been described in Remark 3.12.
(ii) Combining Lemma 2.2, Theorem 2.4 and Lemma 3.10, one may show that
the product functor M/IM × U/IU → L/I yields an equivalence of cate-
gories. Here I denotes the category of infinitesimal algebraic groups, and IM

(resp. IU) the full subcategory of infinitesimal groups of multiplicative type
(resp. unipotent).

Next, assume that char(k) = 0. Then every algebraic group is isogenous to a
fibered product E×AS, where E is a vector extension of the abelian variety A,
and S is semi-abelian with Albanese variety isomorphic to A (see e.g. Remark
2.10). This motivates the consideration of the fibered product V ×A S: this is
the category with objects the triples (E, S, f), where E is a vector extension
of an abelian variety, S a semi-abelian variety, and f : A(E) → A(S) an A-
isomorphism. The morphisms from (E1, S1, f1) to (E2, S2, f2) are those pairs
of C-morphisms u : E1 → E2, v : S1 → S2 such that the square

A(E1)
A(u)

−−−−→ A(E2)

f
1

y f
2

y

A(S1)
A(v)

−−−−→ A(S2)
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commutes in A.

Proposition 5.13. If char(k) = 0, then C is equivalent to V ×A S.

The proof is similar to that of Proposition 5.10, and will be omitted. Note that
the descriptions of V and S in terms of linear algebra, obtained in §5.1 and
§5.2, can also be reformulated in terms of fibered products of categories.
Returning to an arbitrary field k, we obtain:

Theorem 5.14. The projective objects of C are:

• the linear algebraic groups, if char(k) = 0.

• the semi-abelian varieties, if k is locally finite.

• the tori, if char(k) > 0 and k is not locally finite.

Proof. Let G be a smooth connected algebraic group. As a consequence of
Theorem 2.9 and Proposition 5.10, we have an exact sequence in C

0 −→ U −→ G −→ S −→ 0,

where U is smooth, connected, and unipotent, and S is a semi-abelian variety.
If G is projective in C, then Ext1C(G, T

′) = 0 for any torus T ′. Since

HomC(U, T
′) = 0 (as a consequence of Proposition 2.5) and Ext1C(U, T

′) = 0 (by

Lemma 4.10), the long exact sequence for Ext groups yields Ext1C(S, T
′) = 0 as

well. By arguing as in the proof of Proposition 5.8, this forces either A(S) to
be zero, or k to be locally finite.
If A(S) = 0, then G is linear, and hence G ∼= T × U in C by Proposition 5.9.
Moreover, tori are projective in C by Proposition 4.4; thus, we may assume
that G is unipotent. If char(k) = 0, then every unipotent group is projective,
as follows e.g. from Lemma 4.10. If char(k) > 0 and G 6= 0, then there exists
an exact sequence

0 −→ H −→ G −→ Ga −→ 0

in C. Since Ext1C(G,Ga) = 0 = Ext2C(H,Ga), it follows that Ext
1
C(Ga,Ga) = 0.

But this contradicts Example 3.4 (ii), hence G = 0.
On the other hand, if k is locally finite, then G ∼= T ×A×U in C (by Corollary
5.11) and it follows as above that U is zero. Conversely, every semi-abelian
variety is projective in C, by Corollary 5.11 again.

Corollary 5.15. If char(k) > 0, then C has no non-zero projective objects.

Proof. Let G be a projective object of C. By the claim in the proof of Theorem
2.9 (iii), the (abstract) group HomC(G,H) is divisible for any divisible group
H . By arguing as in that proof, it follows that G is linear. Also, for any torus
T , the group HomC(G, T ) is finitely generated and divisible, hence zero.
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Next, we show that G is connected. Indeed, the quotient G/G0 is finite and
étale, hence contained in a torus T . As HomC(G, T ) = 0, this yields the
assertion.
In view of Theorem 2.4, we obtain an exact sequence

0 −→M −→ G −→ U −→ 0,

where M is of multiplicative type, and U is unipotent and connected. We now
show that U is projective in the unipotent category U . Indeed, given an exact
sequence U1 → U2 → 0 in U and a morphism ϕ : U → U2, we may lift the
composition ψ : G → U → U2 to a morphism γ : G → U1. Then γ(M) = 0
(Proposition 2.5) and hence γ factors through a morphism δ : U → U1, which
lifts ϕ.
Let F be an infinitesimal subgroup of U such that U/F is smooth; then U/F
is an object of U , and one easily checks by using Proposition 3.5 that U/F is
projective in U . In view of Proposition 5.10 and Theorem 5.14, it follows that
U/F is zero, hence U is infinitesimal. If U 6= 0 then there exists an epimorphism
U → αp and hence a non-zero morphism U → A for some (supersingular)
abelian variety A. Since HomC(G,A) = 0, this yields a contradiction. Thus,
U = 0, i.e., G is of multiplicative type, hence contained in a torus, hence
zero.

Theorem 5.16. The injective objects of C are the semi-abelian varieties if k is
locally finite, and the abelian varieties otherwise.

Proof. Let G be an injective object of C, and

0 −→ G1 −→ G −→ G2 −→ 0

an exact sequence in C. Since hd(C) = 1, the map Ext1C(H,G) → Ext1C(H,G2)
is an epimorphism for any object H of C. Thus, every quotient of G is injective.
In particular, so is the largest semi-abelian quotient S (in view of Remark 2.10
and Theorem 2.11).
We now adapt the argument of Corollary 5.6. Recall that S lies in a unique
extension

0 −→ T −→ S −→ A −→ 0,

classified by a Γ-equivariant morphism c : X(T ) → Â(ks). Since S is injective
in C, we have Ext1C(B,S) = 0 for any abelian variety B, and hence the con-

necting homomorphism ∂ : HomC(B,A) −→ Ext1C(B, T ) is surjective. Under
the isomorphisms

HomC(B,A) ∼= Q⊗Z HomC(B,A), Ext1C(B, T )
∼= Q⊗Z HomΓ(X(T ), B̂(ks))

(Proposition 3.6 and §5.2), the map ∂ is identified with the composition of the
natural map

Q⊗Z HomC(B,A) −→ Q⊗Z HomΓ(Â(ks), B̂(ks))
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with the map

γ : Q⊗Z HomΓ(Â(ks), B̂(ks)) −→ Q⊗Z HomΓ(X(T ), B̂(ks)), u 7−→ u ◦ c.

Next, consider a free abelian groupM of finite rank, equipped with a continuous
action of Γ. Then for any abelian variety B, the tensor product Bks ⊗Z M is
a ks-abelian variety equipped with the diagonal Γ-action, and descends to a
unique k-abelian variety B(M). Replacing B with B(M), it follows that the
corresponding map

∂(M) : Q⊗Z HomΓ
Cks

(Bks ⊗Z M,Aks) −→ Q⊗Z HomΓ(X(T )⊗Z M, B̂(ks))

is surjective as well. AsQ⊗ZHomCks
(Bks , Aks) andQ⊗ZHom(X(T ), B̂(ks)) are

direct sums of continuous, finite-dimensional Γ-modules, and M is arbitrary, it
follows that the natural map

HomCks
(Bks , Aks) −→ Hom(X(T ), B̂(ks))

is surjective over the rationals.
In the case where k is not locally finite, recall from [FJ74, Thm. 9.1] that

the group B̂(ks) has infinite rank for any non-zero abelian variety B. Since
HomCks

(Bks , Aks) has finite rank, it follows that X(T ) = 0, i.e., S is an abelian
variety. We now distinguish between two subcases.
If char(k) = 0, then G is a vector extension of A, and hence is injective in the
category V . Thus, G = A in view of Corollary 5.6.
If char(k) > 0, then G ∼= A × U in C for some split unipotent group U , which
must be injective in C. If in addition U 6= 0, then it follows that Ga (a quotient
of U) is injective in C as well. But Ext1C(Ga,Ga) 6= 0 in view of Example 3.4,
a contradiction. Thus, G = A again.
Finally, in the case where k is locally finite, we have G ∼= T ×A×U in C with
an obvious notation. As above, we obtain that U = 0; on the other hand, T
and A are injective in C by Corollary 5.11. This completes the proof.

Remark 5.17. The category C has no non-zero injective objects. This result
should be well-known, but we could not find it in the literature; also, it does not
seem to follow from Theorem 5.16, as the relation between injective objects in
C and C is unclear. So we sketch a direct proof: let G be an injective object of
C. For any positive integer n which is prime to char(k), the n-torsion subgroup
G[n] is finite and étale, hence isomorphic to a subgroup of some torus Tn. The
inclusionG[n] ⊂ G extends to a morphism Tn → G, and hence G[n] is contained
in the maximal torus T (G). Likewise, G[n] is isomorphic to a subgroup of an
abelian variety An, and hence is contained in the largest abelian subvariety of
G. Since this abelian variety intersects T (G) along a finite subgroup, it follows
that G[n] = 0 for n≫ 0.
If char(k) = 0, then there is an exact sequence

0 −→ Ru(G) −→ G −→ H −→ 0,
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where H0 is a semi-abelian variety. Since nRu(G) is an isomorphism, we have
G[n] ∼= H [n] for all n; it follows that H is finite. Thus, G = Ru(G) + F for
some finite group F , which embeds into some torus T . As above, it follows
that F = 0, i.e., G is unipotent. If G 6= 0, then Ext1C(A,G) 6= 0 for any abelian
variety A, a contradiction.
If char(k) = p > 0, then there is an exact sequence

0 −→ H −→ G −→ U −→ 0,

where H0 is again a semi-abelian variety, H/H0 is of multiplicative type, and
U is unipotent. Thus, H [n] ∼= G[n] for all n prime to p, and hence H is finite.
It follows as above that H = 0, i.e., G is unipotent. If G 6= 0, then G contains a
copy of αp, which embeds into some abelian variety; this yields a contradiction.
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(1962), 323–448.

[GZ67] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory,
Ergeb. Math. Grenzgeb. 35, Springer-Verlag, New York, 1967.

[Ha01] D. Happel, A characterization of hereditary categories with tilting ob-
ject, Invent. Math. 144 (2001), no. 2, 381–398.

[Ho68] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math.
Soc. Japan 20 (1968), 83–95.

[Kr75] H. Kraft, Kommutative algebraische Gruppen und Ringe, Lecture Notes
in Math. 455, Springer-Verlag, Berlin-New York, 1975.

[LA15] G. Lucchini Arteche, Extensions of algebraic groups with finite quotient,
preprint, arXiv:1503:06582.

[MM74] B. Mazur, W. Messing, Universal extensions and one dimensional
crystalline cohomology, Lecture Notes in Math. 370, Springer-Verlag,
Berlin-New York, 1974.
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