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ABSTRACT. We extend the notion of Poisson-Lie groups and Lie
bialgebras from Poisson to g-quasi-Poisson geometry and provide a
quantization to braided Hopf algebras in the corresponding Drinfeld
category. The basic examples of these g-quasi-Poisson Lie groups are
nilpotent radicals of parabolic subgroups. We also provide examples
of moment maps in this new context coming from moduli spaces of
flat connections on surfaces.
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1 INTRODUCTION

Quasi-Poisson geometry, introduced by Alekseev, Kosmann-Schwarzbach and
Meinrenken [3] in their study of moduli spaces of flat connections, is an “in-
finitesimally braided” version of Poisson geometry. A g-quasi-Poisson manifold
is by definition a manifold with an action of a Lie algebra g and with an in-

variant bivector field 7, satisfying
[, 71/2 = p(),

where p is the action of g and ¢ € /\3 g is built from an invariant inner product
on g and from the structure constants of g.

There are two main reasons for studying quasi-Poisson geometry. The first one
is the symplectic and Poisson geometry of moduli spaces of flat connections on
compact oriented surfaces. As shown in [2, 3], there is a natural quasi-Poisson
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structure on such moduli spaces when we trivialize the principal bundle at a
chosen point on the boundary of the surface. The Atiyah-Bott symplectic form
[1] is then obtained by a quasi-Hamiltonian reduction. The main advantage
of this method is that the quasi-Poisson moduli spaces are smooth and can
be built from simple buiding blocks (obtained by cutting the surface to simple
pieces), whereas the moduli space of a closed surface is not smooth and the
Atiyah-Bott symplectic form requires a global definition.

The second main reason is deformation quantization. Quasi-Poisson geometry
is “infinitesimally braided” in the following sense. The inner product on g and a
Drinfeld associator were used by Drinfeld [4] to deform the symmetric monoidal
structure on the category of Ug-modules to a braided monoidal structure. As
observed by Enriquez and Etingof [5], the natural definition of deformation
quantization of a g-quasi-Poisson manifold is a deformed product which is as-
sociative in Drinfeld’s category. As it turns out, it is often easier to quantize
a quasi-Poisson manifold in this sense and then perform a reduction and thus
obtain a quantization of the reduced Poisson manifold, than to directly quan-
tize the Poisson manifold. This method was used in [10] for quantization of
Poisson-Lie groups and related Poisson manifolds.

Indeed, Poisson-Lie groups are among the most interesting and useful Poisson
manifolds. In this work we extend the theory of Poisson-Lie groups and Lie
bialgebras to the quasi-Poisson world, and we quantize these g-quasi-Poisson
versions to braided Hopf algebras in the Drinfeld category. This means, in
particular, that the deformed product and coproduct satisfy the relation

This quantization is a braided extension of the celebrate result of Etingof and
Kazhdan [6] on quantization of Lie bialgebras to Hopf algebras. To achieve it
we use a quantization method developed in [11].

We also show that many basic notions from the theory of Poisson-Lie groups /
Lie bialgebras have a natural g-quasi-Poisson version. This is true in particular
for Manin triples (that get replaced by quadruples) and for moment maps.
These constructions are closely related to moduli spaces of flat connections
on surfaces with decorated boundaries, as studied in [8]; in particular, these
moduli spaces provide natural examples of moment maps.

The nilpotent radicals of parabolic subgroups are the simplest examples of
g-quasi-Poisson Lie groups.
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2 QUASI-POISSON MANIFOLDS

Let g be a Lie algebra with an invariant element ¢ € (S%g)®. We shall suppose
that ¢t is non-degenerate and denote the corresponding bilinear pairing (the

inverse of t) on g by (, ). Let ¢ € A? g be given by

8(a, 8,7) = Jo (6, 144) for all o, 3,5 € g".

DEFINITION 2.1 ([3]). A g-quasi-Poisson manifold is a manifold M with an
action p of g and with a g-invariant bivector field w, satisfying

[, 7]/2 = p(9),

where p: g — (T M) is extended to an algebra morphism p : Ng — T(ATM).
Equivalently, the bracket {f, g} := w(df,dg) on C°(M) satisfies

{{fag}a h} + {{g’h}a f} + {{haf}ag} = p(¢)(dfa dgvdh) (1)

A map f: My — My between two g-quasi-Poisson manifolds (M, p1,m1) and
(Mas, p2, m2) is quasi-Poisson if it is g-equivariant and if fom = 2.

If M is g-quasi-Poisson and if the action g on M integrates to an action of a
connected Lie group G, we shall say that M is G-quasi-Poisson.

There is a natural g-quasi-Poisson structure on the product of two g-quasi-
Poisson manifolds:

DEFINITION 2.2 ([3]). If (M1, p1, ™) and (Ma, p2,m2) are g-quasi-Poisson man-
ifolds then their fusion product M; ® Ms is the g-quasi-Poisson manifold
My x My with the diagonal action of g and with the bivector field

1 ..
T=m + 7y — 3 tY p1(ei) A pa(e;),

where t = tYe; ® €; in a basis e; of g.

Let us note that the fusion product is associative, but not commutative. It
makes the category of g-quasi-Poisson manifolds to a (non-symmetric) monoidal
category.

A Lie subalgebra p C g is called coisotropic if p+ C p.

ExaMPLE 2.1 ([8]). A particularly useful class of g-quasi-Poisson manifolds
is given by triples (M, p,0), where p is an action of g such that p(t) = 0 €
['(T®2M), or equivalently such that the stabilizers of the action are coisotropic
Lie subalgebras of g. In this case the diagonal map M — M ® M is g-quasi-
Poisson.

Another useful construction is the coisotropic reduction:
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PROPOSITION 2.1 ([9]). Let p C g be a coisotropic Lie subalgebra and let
g = p/pt. If M’ := M/pt is a manifold, i.c. if there is a manifold M’
and a surjective submersion p : M — M' whose fibers are the p-orbits, then
(M, p', ") is g'-quasi-Poisson, where ©’ = p,m and p’ is induced from p. Sim-
ilarly, if M" = M/p is a manifold then (M" ") is Poisson, where " is the
push-forward of .

The projection (M; ®g Ma)/pt — (M /pt) ®y (Ma/p) is g'-quasi-Poisson,

i.e. reduction can be seen as a (colax) monoidal functor.

3 g-QUASI-POISSON LIE GROUPS AND LIE g-QUASI-BIALGEBRAS

DEFINITION 3.1. A g-quasi-Poisson Lie group is a Lie group H with a g-quasi-
Poisson structure (p,m), such that the multiplication on H is a quasi-Poisson
map

He H— H.

In more detail it means the following: the g-quasi-Poisson structure (p,7) is
such that the action p of g on H is by infinitesimal automorphisms of the Lie
group H, and the bivector field 7 satisfies the relation (for any h,h’ € H)

1 ..
mwne = bl 4 wln b= 87 (plea) n h) A (B pleg)ln), (2)

where |, € A>T,H is the value of the bivector field 7 at h, and h7l|y €
/\2 Thi H is 7|p left-translated by h to hh' (and similarly for |, A’ and right
translation). Setting h = h' = 1 we get

7T|1:O.

EXAMPLE 3.1. As observed already in [3], if G is a Lie group with the Lie
algebra g then G, with the action p(X) = X’ — X and the bivector field
™= f%tij el n ef, is a g-quasi-Poisson-group. Here, for X € g, X* and XF
denote the left/right-invariant vector field on G.

The corresponding infinitesimal notion is as follows.
DEFINITION 3.2. A Lie g-quasi-bialgebra is a triple (b, p,d), where

e 0 is a Lie algebra

e pis an action of g on h by Lie algebra derivations

e f:h— /\2h s a g-invariant Lie cobracket on b
such that

ady 5(Y) —ad?) 6(X) — 8(1X, Y]) — 9 plen)(X) A ple)(Y) =0 (3)

for all X, Y €8, where adg?) —adx ®1+1®ady.
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THEOREM 3.1. If (H, p, ) is a g-quasi-Poisson Lie group then (b, p,d) is a Lie
g-quasi-bialgebra, with

(p(w)X)" = [p(u), X"] Vueg,Xeh

where, for X € b, XT denotes the corresponding left-invariant vector field on
H, and
3(X) = [X*, 7,

i.e. 0 is the linearization of m at the unit element 1 € H.

Proof. Rewriting (2) as
_ 1o _
e WH =7l = Bl BT = S pled)|n A (e pleg )l ),
setting b’ = exp(eX) and differentiating w.r.t. € at e = 0 yields

Lxum=6(X)% — 519 pleq) ATXP, ple;)] (4)

The identity LxcLyr — Lyt Lxr = ﬁ[XﬁY]L then gives
(ad 6(Y))E — (adl? §(X))E — 19 X, p(es)] A Y, pleg)] = 6([X, Y])E,

i.e. 0 satisfies (3).

It remains to prove that ¢ : h — h ® b is a Lie cobracket, i.e. that its transpose
5t h* ® h* — b* is a Lie bracket. To see it, notice that &' is the linearization
of the quasi-Poisson bracket {f, g} := w(df,dg) at 1 € H. The Jacobi identity
for 6° then follows from the quasi-Jacobi identity (1) and from the fact that
the linearization of the trivector field p(¢) at 1 € H vanishes. O

ExXAMPLE 3.2. The Lie g-quasi-bialgebra corresponding to Example 3.1 is
(g,ad,[,]%), where [,]* : g — A”g is the transpose of [,] : A°g — g (here
we identify g* with g via the bilinear pairing on g).

Remark. To avoid potential confusion, let us note that quasi-Poisson Lie groups
introduced in [7] and our g-quasi-Poisson Lie groups are different notions. The
former integrate quasi-Lie bialgebras and are semiclassical limits of quasi-Hopf
algebras; the letter are semiclassical limits of braided Hopf algebras.

4 MANIN QUADRUPLES

Lie bialgebras can be conveniently rephrased in terms of Manin triples. The
corresponding notion for Lie g-quasi-bialgebras is as follows.

DEFINITION 4.1. (9,a,b,¢) is a Manin quadruple if 0 is a Lie algebra with an
invariant nondegenerate symmetric pairing (,) and a, b, ¢ are its Lie subalge-
bras such that
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e 0=a®bdc (as vector spaces)
eat=a®b, -=bPc.

EXAMPLE 4.1. Let 0 be a semisimple Lie algebra and py,p_ C 0 a pair of
opposite parabolic Lie subalgebras. Let ny = pT C p4 be the nilpotent radicals
of p+. Then

(aanrvar mp*an*)

is a Manin quadruple.

PROPOSITION 4.1. If (9, a,b,¢) is a Manin quadruple then [b,a] C a and [b,¢] C
c. As a result, a @b C 0 is a Lie subalgebra which is a semidirect sum of a
and b. The restriction of {,) to b is non-degenerate, and a,c C 0 are isotropic
subspaces. The pairing (,) provides an isomorphism a* = c.

Proof. We have ([b,a],a) = (b,[a,a]) C (b,a) = 0, and similarly ([b,a],b) =
{a,[b,b]) C {(a,b) = 0, which implies [b,a] C (a @ b)t = a, as we wanted to
show. The rest of the proposition follows easily. O

THEOREM 4.1. There is an equivalence between Lie g-quasi-bialgebras and
Manin quadruples, given as follows: if (9,b,9,b*) is a Manin quadruple then
(b, p,0) is a Lie g-quasi-bialgebra, where

p)X = X] (veg, Xeph)
(0(X),A® B) = (X,[B,A]) (X e€bh,A Beh*).

Proof. If (v, 5, 9,5*) is a Manin quadruple then § is clearly a Lie cobracket and
the action p of g on h preserves both the bracket and the cobracket on . To
show that (b, p,d) is a Lie g-quasi-bialgebra we thus need to verify the relation
(3). In fact, this relation is simply the Jacobi identity

<[AaX]a [Yv B]> - <[BvX]7 [Ya A]> - <[Xa Y]a [BvAD =0 (5>

for X,Y €bh, A,B € bh*.
To see it, it is convenient to use the graphical notation

z x w

w2y = e~ (wyllbu)= >~ (@y2wed).

Y Y z

In particular, if X,Y € h and A, B € h*, we get

A B A B A B A B
(14, X], ¥, B]) = >—< - H + H + M
X Y X Y X Y X Y
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where directed edges go from h to h* and the wiggly edge connects g with g.
The identity (5) thus gives us

RSl st

which is the relation (3) contracted with A ® B (the terms are parenthesized
to correspond to the 4 terms of (3)).

This construction is easily seen to be reversible: if (b, p,0) is a Lie g-quasi-
bialgebra then we get a Lie bracket on 9, as (5) is the non-trivial part of the
Jacobi identity in 0. O

ExAMPLE 4.2. The Manin quadruple corresponding to Example 3.2 is

(gpa® 0,0 0%, 0%).

Here g denotes g with ¢ replaced by —t, g g® g denotes the Lie algebra gbgdg
with the pairing given by (¢, —t,t), and finally
g ={(X,X,0),X eg}, ¢”={0,X,X),Xeg}
g% = {(X, X, X),X € ¢}

5 CONSTRUCTION OF g-QUASI-POISSON GROUPS

Let (9,h,8,h*) be a Manin quadruple and let H be the 1-connected group
integrating b (or at least such that the adjoint action of H on 0 is well-defined).
In this section we shall describe how to make H to a g-quasi-Poisson group.
The adjoint action of g on h extends to an action p of g on H by infinitesimal
automorphisms. More generally, for any v € 9 let us define a vector field p(v)
on H via

p()|n :==p(Adpv)h  (h € H)

where p : 0 — b is the projection w.r.t. g ® h*. By construction
pX)=X" for X €h, pv) =p(v) forveg.
PROPOSITION 5.1. p is an action of 0 on H.
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Proof. Let D be the 1-connected Lie group integrating ? and let P— C D be the
connected Lie subgroup integrating the Lie subalgebra p_ := g&h* C 0. Let us
first suppose that P_ is closed, so that the quotient P_\D is a manifold. The
action of 0 on D by the left-invariant vector fields projects to an action of 0 on
P_\D. Moreover the composition H — D — P_\D is a local diffeomorphism,
so the action of ® on P_\D pulls back to an action on H. By construction, this
action is p.

This argument is easily refined to the case when P_ C D is not closed. The
cosets P_d, d € D, form a foliation F of D. For any h € H let us choose an
open subset h € Uy C D with the property that H NUj, intersects every leaf of
F once, so that we have a diffeomorphism H NU, = Uy, /F. The Lie algebra
0 acts on Up/F and under the diffeomorphism H N U, = Uy /F this action is
equal to p. O

THEOREM 5.1. Let (9,h,g,b*) be a Manin quadruple, (b, p,d) the corresponding
Lie g-quasi-bialgebra, and H the 1-connected Lie group integrating fy. There is
a unique g-quasi-Poisson structure (p,w) on H making H to a g-quasi-Poisson
group, such that the corresponding Lie g-quasi-bialgebra is (b, p,d). Explicitly,

1

™= =
2

pLE") N (BT, (6)

where E; is a basis of b and E* the dual basis of h*.

Proof. Uniqueness follows from 7|y = 0 and from (4).

Let us note that H := (H, p,0) is a 0-quasi-Poisson manifold, as the stabilizer of
p at any point h € H is coisotropic, namely Ad;-1 p_, where p_ =g h* C 0.
The diagonal map H— H®y H is 0-quasi-Poisson.

Let p, ;== h®g C 0; we have h = (py)* C p; and p,/h = g. Using the
coisotropic reduction by b = (p4 )+ C p; we turn

(H @ H)/H

to a g-quasi-Poisson manifold.

Let us identify (H @y H)/H with H via (hy, hy) — hihy'. We thus constructed
a g-quasi-Poisson structure (p,7) on H. Let us check that it makes H to a
g-quasi-Poisson group, i.e. that the group product H x H — H is a g-quasi-
Poisson map. To see it, consider the g-quasi-Poisson maps

given by
€([h1, ha, ha]) = [h1, hs]
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A([h1, ha, hs]) = [h1, ha, ha, hs]
H([h17h27h37h4]) = ([hlth]a [h37h4]>

where hq, ho, hs, hsy € H and the square bracket denotes the respective cosets.
It can be easily seen that xo A is in fact a diffeomorphism. Moreover, since all
the maps at the diagram are g-quasi-Poisson maps, we have that eo (ko A)™1,
which coincides with the multiplication H x H — H under our identification
H = (f[ ®a f[)/H, is also g-quasi-Poisson.

Let us now prove that the bivector field 7 on H = (H ®, H)/H satisfies (6).
Let e, be a basis of g and e® the dual basis of g (w.r.t. (,)). We have

th=E"QE,+F,QE +e,Qe"

and thus
7= =57 (B A o) + 1 (B:) A a(B) + fea) A fae”)

where 7 : H x H — H, 7(hy, ha) = hih3 " is our identification of H = (H @,
H)/H with H. Since 7(h,1) = h and p(h*)|1 = p(g))1 = 0 and p(X) = X* for
X e b, we get

PE | AR E,

| =

7l = 57 (1 () A po(Bi)l1) =

as we wanted to show.
To finish the proof, we need to show that [ X, 7]|; = §(X), i.e.

(X 7], A® B) = (X,[B,A]) VX ech, A Bch*

Using (6) we get

<[XL77T]|17A oy B> = (<[X7 E1]7A><EZaB> - <[Xa EZ]vB><E17A>)

|~

(<[XaB]7A>7<[XaA]’B>): <X7{B,A]> (7>

|~

as we needed. O

Remark. The proof above is not the shortest possible, but it contains a con-
ceptual construction of the g-quasi-Poisson group H as (H @y H)/H which will
be useful when we consider moment maps and deformation quantization. This
construction is of interest also in the special case of g = 0, i.e. of Poisson-Lie
groups.

ExaMPLE 5.1. Let us consider the Manin quadruple of Example 4.1 in the case
of 0 = sl(N), with the inner product (A, B) = Tr AB. In this case g consists of
the traceless block-diagonal N x N-matrices (for some partition of (1,2,...,N)
into blocks), h of matrices with blocks above the diagonal, and h* of matrices

DOCUMENTA MATHEMATICA 22 (2017) 953-972



962 PAvOoL SEVERA AND FRIDRICH VALACH

with blocks below the diagonal. We have H = 14§ C SL(N). For an element
X € H let zf denote the matrix elements of X; zf’s are functions on H.
Equation (6) gives the following expression for the g-quasi-Poisson bracket on
H:

{aF, 2™} = (z’;x;n (6L — 07 + 05, —07) + 65 dharay — oy 5;z’:x;;).

T T

|~

where

" 0 m>n

g {1 m<n
and n, for 1 <n < N, denotes the number of the block to which n belongs.

6 MOMENT MAPS

In this section we shall see that the theory of moment maps, as known from
the case of Lie bialgebras and Poisson-Lie groups, can be developed also for
Lie g-quasi-bialgebras and g-quasi-Poisson Lie groups.

DEFINITION 6.1. If (H, pp,7H) s a g-quasi-Poisson group and (M, par, 7ar)
a g-quasi-Poisson manifold, an action H x M — M is g-quasi-Poisson if it is
a g-quasi-Poisson map

H®M — M.

If (b, p,9) is a Lie g-quasi-bialgebra, an action ¥ of h on M is g-quasi-Poisson
if it is g-equivariant and if

(), mar] = (X)) + 57 $(3(e) X) A pav ) ®)
for every X € 1.

PROPOSITION 6.1. If (H,pm,7H) is a connected g-quasi-Poisson group and
(M, prr, mar) @ g-quasi-Poisson manifold, and - : HxM — M is a g-equivariant
action of H on M, then this action is g-quasi-Poisson iff the corresponding
action ¥ of §, Y(X)|m = %‘0 e X .m (m € M), is g-quasi-Poisson.

Proof. Let us define an action * of H on /\2 TM: for he Hyme M, b, €
N> T M

1 ..
hox by = by o+ warl-m = 5t (pa (el -m) A (- par(e;)lm) € A*Thom M.

The fact that x is an action follows easily from the multiplicativity property
(2) of my and from the g-equivariance of the action - : H x M — M and of the
product H x H — H.

The action * has the property that the map - : H ® M — M is g-quasi-Poisson
iff the bivector field my is H-invariant under the x-action, i.e. iff w1, is invariant
under the corresponding action of the Lie algebra . The latter invariance is
Equation (8). O
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As observed in [8], if (M, p, ) is a g-quasi-Poisson manifold then the operators
L
dy = E[m, ]+ 5t ples) Alp(e), ]
are differentials on the graded algebra I'(A T M) of polyvector fields on M.

Comparing with (8) we see that a g-equivariant action ¢ of h on M is g-quasi-
Poisson iff

d-(X) = =9(6(X)).

Let us recall that if A — M is a vector bundle and if d4 is a differential on the
graded algebra I'(\ A*) then A is a Lie algebroid with the bracket

([, v]a,w) = [daty + iuda, iv]w u,v € N'(A),w € T(AY)
and with the anchor a: A — TM
a()f = (wdaf)  weT(A),feC=(M)

In particular, dy give us two Lie algebroid structures ([,]+,a+) and ([,]-,a-)
on T*M. The anchors are

where )
o=7+ §p(t) € T(T%*M).

PROPOSITION 6.2. Let (H, p,7) be a g-quasi-Poisson Lie group. Then for any
o, BeDh”
[aLa ﬂL]Jr = 7[avﬂ]L'

Proof. For any X € ) we have, by (4),
dy Xt = —6(X)*
and thus
([o*, B )4, XF) = [dyiqr +iqrdy,ig] X"
= —igriqed; X* = (a ® B,5(X)) = —([a, B], X).

Since this equality holds for every X € b, we have indeed [ol, 8¥] = —[a, B]F.
O

If (9,5,9,b*) is a Manin quadruple then both h and h* are g-quasi-bialgebras;
we shall call b* the dual Lie g-quasi-bialgebra of . We can now formulate and

prove the main result of this section.
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THEOREM 6.1 (Moment map). Let (h,p,0) be a Lie g-quasi-bialgebra and let
H* be a connected g-quasi-Poisson Lie group integrating its dual. If

w:M— H*
is a g-quasi-Poisson map then the map
$:h = T(TM), $(X)=—ay(u*X")
is a g-quasi-Poisson action of h on M.

Proof. Let us extend the Lie brackets [,]+ to Gerstenhaber brackets [,]+ on
the graded algebras Q(M) and Q(H*). The morphisms of graded algebras

(Q(H*)ada [a]Jr) L (Q(M)ada [a]Jr) Ai} (F(/\ TM),d,, [7]) (9)

preserve the indicated differentials and Gerstenhaber brackets: for the first
map it follows immediately from the fact that p* is g-quasi-Poisson. For the
second map it follows from the more general fact that if (A,[,]4,a) is a Lie
algebroid over M then Aa: (T'(AA),[,]a) = (T(ATM),[,]) is a morphism of
Gerstenhaber algebras, and Aa® : (Q(M),d) — (T(A\ A*),da) is a morphism
of differential graded algebras, where at : T*M — A* is the transpose of a,
together with the fact that a =a,.

Let now U : (Q(H*),d,[,]+) = T(ATM),d_,[,]) be the composition of (9).
By definition we have, for X € b, that ¢(X) = —W(XF). The fact that
1 is an action of h now follows from Proposition 6.2, and the fact that this
action is g-quasi-Poisson, i.e. that d_v(X) = —(5(X)), follows from d(X*) =
(5(X))E. O

7 EXAMPLES FROM MODULI SPACES OF FLAT CONNECTIONS

One important class of g-quasi-Poisson manifolds arises from moduli spaces of
flat connections on surfaces with marked points on the boundary. It is also
this place where one can find many examples of momentum maps, which will
be our focus in this section.

Firstly, let us mention a more general notion of fusion, which we will need in
this section.

DEFINITION 7.1 ([3]). Let (g,t), (¢/,t") be two Lie algebras with invariant inner
products. If (M, p,m) is a g ® g ® ¢ -quasi-Poisson manifold (where g® g ® g’
is equipped with the inner product t ® t ®t') then the (internal) fusion of M is
the g ® ¢ -quasi-Poisson manifold (M, pe,Te) given by

p@(XaY):p(XaXaY) VXEg,YGgI,

1
Tg =T — 5(01 A p2)(t),

where p1 and ps are the actions of the first and of the second copy of g in
gD gDy, respectively.
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Let now ¥ be an compact oriented surface with boundary (not necessarily
connected) and let V' C 93 be a finite set meeting every component of ¥. Let,
as above, 0 be a Lie algebra with invariant inner product, and D a Lie group
integrating 0. The moduli space

Mp(%,V)

of flat principal D-bundles over ¥ trivialized over V is naturally identified with
the space of groupoid morphisms

Hom(1I, (%, V), D).

There is a natural action of the group DY on Mp (3, V) given by changing the
trivialization of a principal D-bundle P — X over V.

THEOREM 7.1 ([9]). There is a natural DV -quasi-Poisson structure msy on
Mp(X,V) characterized by these properties:

1. If ¥ is a disk and V' consists of two points then ms v = 0.

2. If ¥ = %1 UXs (and so Mp(X,V) = Mp(X1,V1) x Mp(31,V1)) then
TS,V = Tsy, vy T T8,V

3. Let x,y € V and let ¥ be obtained from ¥ by a “corner connected sum”:

Let V' be the image of V in ¥/, i.e. with x and y identified (denoted z
on the picture). In this case Mp (X', V') =2 Mp(X,V) (the isomorphism
is induced by the gluing map ¥ — %'). Then the Dvl—quasi—Poisson
structure on Mp(X', V') is obtained from the DV -quasi- Poisson structure
on Mp(3,V) by fusion of the 0’s acting at x and y.

This quasi-Poisson structure is functorial under embeddings of surfaces: if i :
¥ — 3 is an embedding then the induced map i* : Mp(X,V) — Mp (X', V' =
V Ni(X)) is DY -quasi-Poisson (where DV\V' acts trivially on Mp(X',V")).

Let now (9, b, g, h*) be a Manin quadruple, D a connected Lie group integrating
0, and H,G,H* C D the connected subgroups integrating b, g, h*. We shall
suppose that the map

HxGx H* =D, (h,g,h*)w hgh*

is a diffeomorphism. (If we drop this assumption then we need to replace the
moduli spaces considered below with appropriate locally diffeomorphic mani-
folds.) Let P— C D be the connected Lie subgroup integrating the Lie subal-
gebra p_ := g @ bh* C 0; it is a semi-direct product of G with H*.
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EXAMPLE 7.1 (g-quasi-Poisson Lie groups as moduli spaces). Let us consider
the moduli space Mp(A,V) for the triangle (i.e. for the disk with 3 marked
points on the boundary). It is D3-quasi-Poisson; after we take its quotient by

P_xP_xHCDXxDxD,

we get a G-quasi-Poisson manifold. For every marked point we specify on the
picture the subgroup of D by which we mod out:

P_ P_

H

By Theorem 7.1, this g-quasi-Poisson manifold Mp(A,V)/P- x P_ x H can
be obtained by a fusion followed by a reduction

VY

Mp(A,V)/P- x P- x H= ((D/P_) @, (D/P_))/H.

Here D, the moduli space for a bigon (which is D?-quasi-Poisson), has 7 = 0
(see Theorem 7.1), and thus the D-quasi-Poisson space D/P_ has also m = 0.
We can identify D/P_ with H. We thus have an isomorphism

Mp(A,V)/P_x P_ x H= (H ®, H)/H

and thus, as we noticed in the proof of Theorem 5.1 (where we denoted the
0-quasi-Poisson manifold H with 7 = 0 by H), we have an isomorphism of
g-quasi-Poisson manifolds

Mp(A,V)/P_x P x HX H

where H on the RHS is the g-quasi-Poisson Lie group given by the Manin
quadruple (9, b, g, b*). Similarly, the moduli space given by

P, P,

H*
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is isomorphic, as a g-quasi-Poisson manifold, to the dual g-quasi-Poisson Lie

group
Mp(A,V)/Py x Py x H* = H*. (10)

EXAMPLE 7.2 (Moment map from 3 marked points). Let ¥ be a connected
compact oriented surface and Vs, C 9% a set of 3 marked points. Let i : A — X
be an embedding of a triangle sending the vertices VA of A to Vx. Then, by
Theorem 7.1, the induced map

. MD(E, Vz) — MD(A, VA)
is D3-quasi-Poisson, and thus, in view of (10), it induces a g-quasi-Poisson map
Mp(X,Vs)/Py x Py x H* — H*,

i.e. a moment map.

EXAMPLE 7.3 (Moment map from 2 marked points). Let now ¥ be a connected
compact oriented surface and Vy, = {A, B} C 9% a set of 2 marked points. Let
1 : /A — ¥ be a map which sends one vertex of A to A, the two remaining
vertices to B, and is an embedding of A with two vertices identified to 3. By
Theorem 7.1 the map

i*: Mp (2, Vs) = Mp (A, VA)®

is D?-quasi-Poisson, where Mp(A,Va)® is Mp(A, V) with fusion applied at
the two identified vertices. (Geometrically, Mp (A, Va)® is the moduli space
for an annulus with two marked points; the two points can be either on the
same boundary circle, or on both of them, depending on the order of the fusion,
giving two different quasi-Poisson structures.)

The projection

p: Mp(A,VA)® /Py x H* — Mp(A,VA)/Py x Py x H
is g-quasi-Poisson. As a result,

poi*: Mp(X,Vs)/Py x H* = Mp(A,VA)/Py x Py x H* = H*

DOCUMENTA MATHEMATICA 22 (2017) 953-972



968 PAvOoL SEVERA AND FRIDRICH VALACH

is a g-quasi-Poisson map to the dual g-quasi-Poisson group H*, i.e. it is a
moment map.

As a simple example, let 3 be an annulus and let Vx consist of two points, one
on each boundary circle of X.

In this case Mp (X, V) & Dx D, with the identification given by the holonomies
along the dashed curves. Moreover Mp (X, Vs)/ Py x H* 2 D, as the projection

DxD %"MD(E,VE) — MD(E,Vz)/P+ x H*

restricts to a diffeomophism on {1} x D C D x D.
The g-quasi-Poisson structure on D 2 Mp (X, Vs)/Py x H* is
1 _ .
=3 [(B'AE)" — (B"ANE)® — (e*) A (ea)”]
with g acting on D by conjugation. One can check that it makes D to a g-
quasi-Poisson group and that H C D (though not H* C D) is a g-quasi-Poisson
inclusion. The moment map D — H* is the projection D — D/P, = H*.

8 (QUANTIZATION TO BRAIDED HOPF ALGEBRAS

One of the main reason for introducing g-quasi-Poisson Lie groups and Lie g-
quasi-bialgebras is that they can be quantized to braided Hopf algebras. We
shall describe this quantization procedure in this section.

Let us briefly describe Drinfeld’s construction of braided monoidal categories
(BMCs) using a Drinfeld associator [4]. If U and V are two Ug-modules, let
tWV . U®V — U®V be given by tYV = (py ® py)(t) (where, as above,
te(S%g)? Cg®g),andlet ¥V : U®V — V®U be the flip. Let Ug-modp,
be the category of Ug-modules, where the morphisms are allowed to be formal
power series in h. If ® € K((x,y)) is a Drinfeld associator, where K is our base
field of characteristic 0, then the braiding

h
B ="V oexp(3t7) UV 5 VeU

and the associativity constraint

AUVW — OV o @ (mtVV mtY W) (U VoW - U (Ve W),
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where

ATV URV)OW s U (VeW)

is the standard associativity constraint, make Ug-mody; to a BMC. We shall
denote this braided monoidal category by Ug—modg.

If M is a g-quasi-Poisson manifold then its deformation quantization is a g-
equivariant bilinear product * on C°°(M)

fi* f2a = fifa+hBi(fi, f2) + B*Ba(f1, f2) + ...

where By, are bidifferential operators, such that (C*° (M), %, 1) is an associative
algebra in the BMC Ug—modg, and such that

{f1, f2} = B1(f1, f2) — B1(f2, f1)-

It is not expected to exist in general. However, if H is a g-quasi-Poisson Lie
group, such a * does exist, and, moreover, is a part of a Hopf algebra structure.
In order to describe this quantization it is convenient to introduce the following
category (a version of Ug-modp,).

DEFINITION 8.1. The category g-many has g-manifolds as objects, and a mor-
phism F : M — N is a g-equivariant linear map

F*:C®(N) = C>®(M)[[R]], F*=F;+hFy+hF;+...

such that Fy = f* for some smooth map f : M — N and such that F},
k > 1, are differential operators w.r.t. the algebra map Fg. The composition of
morphisms is given by (F o G)* :== G* o F™*.

The category g-many is symmetric monoidal, with the product M; ® My :=
My x Ms. Tts deformation to a BMC via a Drinfeld associator ® € R{(x, y))
will be denoted by g-mang.
Let g-man denote the symmetric monoidal category of g-manifolds. Whenever
M is a g-manifold then (M, A €) is a comonoid in g-man, where A : M —
M x M is the diagonal map, and € : M — point is the unique map. A
comonoid structure (M, Ap, €) in g-many, such that (A})o = A*, is equivalent
to a s«-product on M via

frog=Aif®g) (11)

making C°°(M) to an associative algebra in Ug-mod} .
We can now formulate the main result of this section.

THEOREM 8.1. If H is a g-quasi-Poisson Lie group then there is a Hopf algebra
structure on H in the BMC g-many deforming the Hopf algebra (i.e. Lie group)
structure of H in g-man, such that the x-product on H given by (11) is a
deformation quantization of the g-quasi-Poisson manifold H .

Similarly, if (y,p,06) is a Lie g-quasi-bialgebra, there is a deformation of the
Hopf algebra structure on Ul to a Hopf algebra structure in the BMC' Ug —modg,
such that, for v e g C Ug, Ap(v) — A (v) = hé(v) + O(h?).
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The proof of the theorem is an application of the method of quantization of Lie
bialgebras presented in [11] (one can probably also use the original approach
of Etingof and Kazhdan [6] in combination with the g-quasi-Poisson group D
of Example 7.3, but it seems more complicated). For further details about the
relevant definitions etc. we refer the reader to [11].

Let us first observe that if (Q, Ag,eq) and (Q', Ag,eq) are comonoids in a
BMC D then Q ® Q' is a comonoid as well, with the counit g ® g/ and the
coproduct

@ Q) @ Q)

o

Q Q'

THEOREM 8.2 ([11]). Let D and C be BMCs, (Q,Aq,€eq) a cocommutative
comonoid in D, and F : D — C a braided colax monoidal functor with these
invertibility properties: the composition

FQ) 2% F(1p) - 1c
is an isomorphism, and for every objects X,Y € D the morphism
Ty F(X©Q oY)+ FX0Q) e FQoY),
defined as the composition

F(X®QoQ)eY)=
“F(X0Q)® QoY) » FX®Q)o F(QRY),

is an isomorphism.
Then F(Q ® Q) is a Hopf algebra in C, with the structure defined as follows:

e The coalgebra structure on F(Q®Q) is inherited from the coalgebra struc-
ture on Q ® Q.

e The product on F(Q ® Q) is the composition

F@ —1
FR®Q)®FQ®Q) == F(Q®Q)® Q)

F(idQ ®Keq ®idQ)
— - T

FQ®Q).

o The unit is (Ao
F
le = F(Q) —> F(Q® Q).
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e The antipode is
F(B99)
FQR®Q) ——=FQ®Q)
where B9 : Q®Q — Q ® Q is the braiding in D.

Proof of Theorem 8.1. Let (9,%,g,h*) be the Manin quadruple corresponding
to the Lie g-quasi-bialgebra . Let C = g-man} and let D be the full subcat-
egory of -manj consisting of those d-manifolds for which the action of  C d
integrates to a free and proper action of the group H. Let F': D — C be given
by

FM)=M/H

and let @ = H with the action p of d (see Proposition 5.1) and with the
undeformed coproduct Ag and undeformed counit eq.
By [11, Proposition 2] the functor F', with the coherence maps

(M x N)/H — M/H x N/H

given by the natural projections, is a braided colax monoidal functor (here it
is important to use the same associator ® € R((x,y)) in the definitions of C
and D) and (Q,Ag,€q) is a cocommutative comonoid in D. The hypotheses
of Theorem 8.2 are satisfied, hence

FQ®Q) = (H x H)/H=H

is a Hopf algebra in g-many. The identification (H x H)/H = H we use is
(h1,h2) + hihst, as in the proof of Theorem 5.1.

This Hopf algebra structure (in g-manf) on H is clearly a deformation of the
Lie group structure on H. To finish the proof we need to check that the x-
product on H we obtained is indeed a deformation quantization of the g-quasi-
Poisson structure on H. Tt follows from the fact [10] that if (M™), Ag)) and

(M3, Ag)) are deformation quantizations of two d-quasi-Poisson structures on
manifolds M) and M®) then their tensor product in d-man{ is a deformation
quantization of the fusion M) ® M®). As a result the comonoid Q ® Q is
a deformation quantization of H ®, H, where H denotes, as in the proof of
Theorem 5.1, H with the action p and with 7 = 0, and thus F(Q ® Q) is a
quantization of the g-quasi-Poisson manifold (H @, H)/H, which is H with its
g-quasi-Poisson structure.

The deformation of the Hopf algebra structure on Ul is constructed similarly:
we set D = Ud-mody, C = Ug-mody, F(V) = V/(h-V), and Q = Uh =
Ud/(p_Ud) with its original cocommutative coalgebra structure. Finally we
identify F(Uh ® Uh) with Uh via 2 ® y — x So(y), where Sy : Uh — U is the
original (non-deformed) antipode. The coproduct in the coalgebra Uh @ Uh (in
the category D) applied to x ® 1, = € b, is

h
Ah(x@)l):x®1®1®1+1®1®z®1751@5(z)®1+0(ﬁ2)EUh®4
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and thus the coproduct in Uh = F(Uh ® Uh) applied to = € h is

h
Ah(ac):x®1+1®x+§5(9€)+0(ﬁ2),

so indeed
(A — Azp)(z) =ho(z) + O(h2)

as we wanted to show. O
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