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ABSTRACT.

For an irreducible non-permutation matrix A, the triplet (O, Da, p?)
for the Cuntz-Krieger algebra O4, its canonical maximal abelian C*-
subalgebra D4, and its gauge action p# is called the Cuntz Krieger
triplet. We introduce a notion of strong Morita equivalence in the
Cuntz—Krieger triplets, and prove that two Cuntz—Krieger triplets
(O, Da,p?) and (Op,Dg, p?) are strong Morita equivalent if and
only if A and B are strong shift equivalent. We also show that the
generalized gauge actions on the stabilized Cuntz—Krieger algebras are
cocycle conjugate if the underlying matrices are strong shift equiva-
lent. By clarifying K-theoretic behavior of the cocycle conjugacy,
we investigate a relationship between cocycle conjugacy of the gauge
actions on the stabilized Cuntz—Krieger algebras and topological con-
jugacy of the underlying topological Markov shifts.
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1 INTRODUCTION AND PRELIMINARIES

Let A = [A(4,4)]),—; be an irreducible matrix with entries in {0,1} with
1 < N € N. We assume that A is not any permutation matrix. In [7], J. Cuntz
and W. Krieger have introduced a C*-algebra O 4 associated to the topological
Markov shift (X4,04). The C*-algebra is called the Cuntz—Krieger algebra,
which is a universal unique purely infinite simple C*-algebra generated by par-
tial isometries Si, ..., Sy subject to the relations:

N N
> OSiSr=1, S8 =)Y A(i,§)S;S;, i=1,...,N. (1.1)
j=1

Jj=1

For t € R/Z = T, the correspondence S; — ezﬂﬁtSi,i =1,...,N gives
rise to an automorphism of @4 denoted by p;'. The automorphisms pi*,t € T
yield an action of T on Oy4 called the gauge action. Cuntz and Krieger in [7]
have shown that the algebra O4 has close relationships with the underlying
dynamical system called topological Markov shift. Let us denote by X4 the
shift space

Xa={(x)nen €{1,..., N} | A(xp, zy1) = 1 for all n € N}. (1.2)

Define the shift transformation o4 on X4 by 04((2n)nen) = (Zn41)nen, which
is a continuous surjection on X 4. The topological dynamical system (X 4,04)
is called the one-sided topological Markov shift for matrix A. The two-sided
topological Markov shift (X4, 4) is defined similarly with the shift space

Xa={(@n)nez €{1,...,NY | A(zp,xpy1) =1 for all n € Z} (1.3)

and the shift homeomorphism 74 ((7)nez) = (Tni1)nez on Xa.

Let us denote by D4 the C*-subalgebra of O4 generated by the projec-
tions of the form: S;, ---S; S7 ---Sf  i1,...,in, = 1,...,N. The subalge-
bra D4 is canonically isomorphic to the commutative C*-algebra C(X4) of
the complex valued continuous functions on X4 by identifying the projection
Siy - 8;,SF ---S;, with the characteristic function xv, ., € C(Xa4) of the
cylinder set U;,...;, for the word i; ---4,. Let us denote by K the C*-algebra
K(£?(N)) of compact operators on a separable infinite dimensional Hilbert space
£?(N) and by C its maximal abelian C*-subalgebra of diagonal operators.

In [25], R. F. Williams proved that the topological Markov shifts (X 4,5 4) and
(XB, o) are topologically conjugate if and only if the matrices A, B are strong
shift equivalent. Two nonnegative matrices A, B are said to be elementary
equivalent if there exist nonnegative rectangular matrices C, D such that A =
CD,B = DC. We write it as A ~ B. If there exists a finite sequence

in

C,D
of nonnegative matrices Ag, A1,...,A, such that A = Ay, B = A, and A, is
elementary equivalent to A;41 fori =0,1,2,...,n—1, then A and B are said to

be strong shift equivalent. Hence elementary equivalence generates topological
conjugacy of two-sided topological Markov shifts.
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Let A be an irreducible non-permutation matrix. The triplet (O, Da, p) for
the Cuntz-Krieger algebra O4, its canonical maximal abelian C*-subalgebra
D 4, and its gauge action p? is called the Cuntz—Krieger triplet for the matrix A.
As pointed out in [11], two elementary equivalence matrices A = CD, B = DC
yield an O — Op-imprimitivity bimodule via the Cuntz—Krieger algebra Oz
for the matrix Z defined by Z = g g} .

In the first part of the paper, We will introduce a notion of strong Morita
equivalence in the Cuntz—Krieger triplets, and prove the following theorem.

TueoreEM 1.1 (Corolary 2.19). The Cuntz-Krieger triplets (Oa,Da, p?) and
(Op,Dg, p?) are strong Morita equivalent if and only if the matrices A and B
are strong shift equivalent.

It is well-known that two unital C*-algebras A and B are strong Morita equiv-
alent if and only if their stabilizations 4 ® K and B ® K are isomorphic by
Brown—-Green—Rieffel Theorem [3, Theorem 1.2] (cf. [2], [3], [4]). We will
next study relationships between stabilized Cuntz—Krieger algebras with their
gauge actions and strong shift equivalence for matrices. We must emphasize
that Cuntz and Krieger in [7, Theorem 3.8] and Cuntz in [6, Theorem 2.3]
have shown that the stabilized Cuntz—Krieger triplet (04 @ K, D4 ®C, p? ®id)
is invariant under topological conjugacy of the two-sided topological Markov
shifts (X4,54). We will investigate stabilizations of generalized gauge actions
from a view point of flow equivalence.
Let us denote by C(X4,Z) the set of Z-valued continuous functions on X 4.
For f € C(Xa4,Z), define a one-parameter unitary group U;(f),t € T =R/Z
in DA by

Us(f) = exp(2mvV/—1tf), (1.4)

and an automorphism pf’f on Q4 for each t € T by
o (S = U (f)S;, i=1,...,N. (1.5)

For f = 1, the action pf 1 is the gauge action denoted by pf'. Suppose that
A =CD and B = DC for some nonnegative rectangular matrices C, D. Then
there exist homomorphisms ¢ : C(X4,Z) — C(Xp,Z) and ¢ : C(Xp,Z) —
C(X4,Z) such that

(po)(f)=Ffooa,  (pov)(g)=goon (1.6)

for f € C(Xa,Z) and g € C(Xp,Z). Let us denote by (H*, H4) the ordered
cohomology groups for the one-sided topological Markov shift (X 4,04) which
has appeared in [17] by setting

H* = C(Xa,Z)/[{n—nooa|neC(Xa L)}
and its positive cone

He ={[n] € H* | n(z) > 0 for all z € X4}.
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The ordered cohomology group (H*, H{) for (X4,54) has been considered by
Y. T. Poon in [19]. The latter ordered group (H4, Hf) has been proved to be
a complete invariant of flow equivalence of the two-sided topological Markov
shift (X4,54) by M. Boyle and D. Handelman in [1]. The two ordered groups
(HA, H%") and (HA, H{") are actually isomorphic ([17, Lemma 3.1]).

In [15], the following result has been proved.

THEOREM 1.2 ([15, Corollary 4.4]). Suppose that A and B are strong shift
equivalent. Then there exist an isomorphism @ : O4 @ K — Op ® K satisfying
&(Ds®C) =Dp ®C and a homomorphism ¢ : C(Xa,Z) — C(Xp,Z) of or-
dered groups which induces an isomorphism between (H*, H%) and (H”, H)
of ordered groups such that for each function f € C(Xa,Z) there exists a uni-
tary one-cocycle v} € UM(Oa @ K)) relative to p™f @id satisfying

®oAd(w]) o (v @id) = (pf’w(f) ®id)o® forteT.

In the second part of the present paper, we will study K-theoretic behavior
of the above isomorphism @ : O4 ® K — Op ® K. Let us denote by €4 :
Ko(O4) — ZV/(id — AH)ZN the isomorphism defined in [6, Proposition 3.1]
satisfying €4 ([14]) = [(1,1,...,1)], where 14 is the unit of O4. We will prove
the following theorem.

THEOREM 1.3 (Proposition 3.10 and Theorem 4.6). Let A and B be elementary
equivalent matrices, and choose matrices C and D satisfying A = CD and
B = DC'. Then there exist an isomorphism ® : O4 @ K — Op ® K satisfying
®(Dy @ C) = Dp @ C and a unitary representation t € T — ul € M(Dy ®C)
for each f € C(Xa,Z) such that

® o Ad(uf) o (o @id) = (o ¥V @id)o®  for f € C(Xa,Z), t €T

and the diagram

Ko(0x)  —25  K(Og)

ZN J(id — ANZN —2€, ZM)(id — Bt)ZM

is commutative, where ®cr is the isomorphism induced by multiplying by the
matriz C.

In the third part of the paper, we will study the converse of the above theorem
for the gauge actions. We will introduce an invariant K$5¥(0,) which is
a non-empty subset of K(O4). The invariant K$5F(0,) is realized as the
subset of ZY /(id — A")Z" consisting of the classes [v] of vectors v € Z" such

that v = D! ... D! _ D![1,1,...,1] for some strong shift equivalences A Clle
o %D D,,C,, (Proposition 5.7). We will then prove the following theorem.
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THEOREM 1.4 (Theorem 5.8). Let A, B be irreducible and non-permutation
matrices. The following two assertions are equivalent.

(i) Two-sided topological Markov shifts (X a,54) and (Xp,&g) are topologi-
cally conjugate.

(ii) There exist an isomorphism @ : 04 @ K — Op ® K and a unitary repre-
sentation t € T — vf* € M(Da ®C) such that

(D r2C)=DpRC, PoAdw?) o (pf @id) = (pP @id)od fort e T,
D.(K5°%(0a)) = K5°F(Op).

The set K§5F(04) is always a non-empty subset of Ko(O4). If in particular
the condition K§5(04) = K(O4) holds, the matrix A is said to have full
units. In this case, we have the following corollary.

COROLLARY 1.5 (Corollary 5.12). Suppose that the matrices A and B have full
units. Then the two-sided topological Markov shifts (X a,54) and (Xp,op) are
topologically conjugate if and only if there exist an isomorphism @ : O4 QK —
Op @K of C*-algebras and a unitary representationt € T — vl € M(Da®C)
such that

H(Da®C)=DpC,  PoAd(w})o(pf ®id) = (p? ®id) o &.

Throughout the paper, we denote by N the set of positive integers and by
Zy the set of nonnegative integers, respectively. For the one-sided topological
Markov shift (X4,04), a word p = (p1,...,u) for u; € {1,..., N} is said to
be admissible for X 4 if (1, ..., pr) = (21,...,x) for some element (x,)nen €
X 4. The length of u is denoted by || = k. We denote by Bi(X4) the set
of all admissible words of length k. We similarly denote by Bj(X.) the set
of admissible words of length k, so that By(X4) = Br(X4). The cylinder set
{(zn)neny € Xa | 1 = p1,..., 25 = pr} for p = (p1,...,pux) € Brp(Xa) is
denoted by U,,.

This paper is a revised version of arXiv:1604.02763v1, in which the given proofs
of the main results were incorrect.

2 STRONG MORITA EQUIVALENCE FOR CUNTZ-KRIEGER TRIPLETS

There is a standard method to associate a Cuntz—Krieger algebra from a square
matrix with entries in nonnegative integers as described in [7, Remark 2.16] (see
also [23, Section 4]). Now we suppose that A = [A(i, j)]I;_, is an N x N matrix
with entries in nonnegative integers. Then the associated graph G4 = (Va, E4)
consists of the vertex set V4 = {v{',... 04} of N vertices and the edge set

Ea = {ai,...,an,}, where there are A(i,j) edges from v} to 1)34. Hence the
total number of edges is Z?fj:l A(i, j) denoted by N 4. For a; € E 4, denote by
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t(a;), s(a;) the terminal vertex of a;, the source vertex of a;, respectively. The
graph G4 has the Na x N4 transition matrix A€ = [AG(i,j)]f\ff:l of edges
defined by
1 if t(a;) = s(a;),
AG(i,j) _ { 1 (a‘ ) S((lj) (21)

0 otherwise.

The Cuntz—Krieger algebra Q4 for the matrix A with entries in nonnegative
integers is defined as the Cuntz—Krieger algebra O 4c for the matrix A® which
is the universal C*-algebra generated by partial isometries S,, indexed by edges
a;,i=1,..., N4 subject to the relations:

NA NA
> 8., 85 =1, SiSa = A%(i,§)S.,S; fori=1,..,Na (22)
j=1 j=1

For a word p = (p1,..., ), i € Ea, we denote by S, the partial isometry
Sﬂl T S#k :
As in the standard text books [9], [10] of symbolic dynamics, the two-sided
topological Markov shift defined by a square matrix with entries in {0,1} is
naturally topologically conjugate to a topological Markov shift of the edge shift
defined by the underlying directed graph. In what follows, we consider edge
shifts and hence square matrices with entries in nonnegative integers (cf. [9],
[10], [25], etc.). Such a matrix is simply called a nonnegative square matrix.
For a nonnegative square matrix A, the two-sided shift space X 4 is defined by
the two-sided shift space X 4c for the matrix A which consists of the two-sided
bi-infinite sequences of concatenated edges of the directed graph G 4.
Let A and B be elementary equivalent matrices, and choose matrices C' and
D satisfying A = CD and B = DC. The sizes of the matrices A and B are
denoted by N and M respectively, so that C' is an N x M matrix and D is an
0
D 0
ZQ[CD 0}[14 o]
0 DC 0 Bl

M x N matrix, respectively. We set Z = [ ] as a block matrix, and we

see

For the rectangular matrices C' and D, the vertex sets Vo and Vp are defined
by the disjoint union V4 U Vg, and C(i, j) directed edges are defined from the
vertex vl to v]B, and D(j,1) directed edges are defined from the vertex vf to

£, respectively. The former forms a directed graph written Go = (Vi E¢),
and the latter forms a directed graph written Gp = (Vp, Ep), Hene we have
five directed graphs G4 = (Va,FEa),Gg = (Vg,EB),Gec = (Vo,Ec),Gp =
(Vp, Ep) and Gz = (Vz, E) associated to the nonnegative matrices A, B, C, D
and Z, respectively. In the identity

’UA

Np

A(i,§) = C(i, k)D(k, ) fori,j=1,...,Ny,
k=1
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the left hand side expresses the number of edges in F4 starting with v;“ and
ending with Uf, whereas the right hand side expresses the number of pairs of
edges Fc and Ep starting with vZA through some vertex v,f and ending with
vj‘. Hence we may take a bijection, which is denoted by ¢4 cp, from E4 to a
subset of Ec X Ep. The other identity B = DC' similarly admits us to take
a bijection, which is denoted by ¢ pc, from Ep to a subset of Ep x Ec.
Let S.,S4,c € Ec,d € Ep be the generating partial isometries of the Cuntz—
Krieger algebra Oz for the matrix Z, so that ZceEC S.SE+ ZdeED SqS; =1
and
SiSe= > Z(c,d)SaS;,  SiSa= Y Z(d,c)S.S;

deEp cebc

for c € E¢,d € Ep. Since ScSq # 0 (resp. SqS. # 0) if and only if 4 cp(a) =
cd (resp. ¢p.pc(b) = dec) for a unique edge a € E4 (resp. b € Ep), we may
identify cd (resp. dc) with a (resp. b) through the map w4 cp (resp. ¥, pc).
We may then write S.q = S, (resp. Sgq. = Sp) where S.q denotes S.Sy (resp.
Sge denotes S3S.). We define two particular projections Po and Pp in Dz by
Po =3 cp. 55 and Pp =}, p SaSj so that Pc + Pp = 1. It has been
shown in [11] (cf. [15]) that

PeOyPo =04, PpOyPp=0p, DyPc=Ds, DyzPp=Dg. (2.3)

As in [11, Lemma 3.10], both P and Pp are full projections so that PoOzPp
has a natural structure of O4—Op imprimitivity bimodule that makes O4 and
Op strong Morita equivalent (cf. [16], [21], [22]).

Let pZ, p?, pP be the gauge actions of 7 on Oz, 04, Op, respectively. Since
S.Sq (resp. SgS.) in Oz is identified with S, in O4 (resp. S, in Op) if
wa,cpla) =cd (resp. B pc(b) = dec, we have

A
pf|Peospe = poy on Oy, o7 lppo, Py = ph  on Op. (2.4)

Let A be an irreducible non-permutation matrix. The triplet (O 4, D4, p4) for
the Cuntz-Krieger algebra O 4, its canonical maximal abelian C*-subalgebra
D4, and its gauge action p? is called the Cuntz—Krieger triplet for the matrix
A. In this section we will define the notion of strong Morita equivalence in
Cuntz—Krieger triplets. We will then prove that the Cuntz—Krieger triplets
(04, Da, p?) and (Op, Dp, pP) are strong Morita equivalent if and only if the
matrices A and B are strong shift equivalent. Let A, B be irreducible non-
permutation matrices.

DEFINITION 2.1. The Cuntz-Krieger triplets (O4, D4, p?) and (Op, Dg, p?)
are said to be strong Morita equivalent in 1-step if there exist a Cuntz—Krieger
triplet (Oz, Dz, p?) for some nonnegative matrix Z and projections Pa, Pg €
Dz having the following properties:

(1) Ps+ P =1,

DOCUMENTA MATHEMATICA 22 (2017) 873-915



880 KENGO MATSUMOTO

(2) Oz contains both @4 and Op as subalgebras, and
PAOZPA = OA and PBOZPB = OB,

(3) DZPA = DA and szg = DB,
(4) pZ|pso,p. = poy on Oq and p? |pyo,ps = p5 on Op for t € T.

In this case, we say that (Oa,Da,p?) and (Op,Dg, pP) are strong Morita
equivalent in 1-step via (Oz,Dz,p?). If two Cuntz—Krieger triplets
(04, Da,p?) and (Op,Dg,p?) are connected through n-chains of strong
Morita equivalences in 1-step, (Oa, D4, p?) and (Op,Dp, p?) are said to be
strong Morita equivalent in n-step, or simply, strong Morita equivalent.

The one-sided topological Markov shifts (X4,04) and (Xp,o0p) are said to
be eventually conjugate if there exist a homeomorphism h : X4 — Xp and a
nonnegative integer K such that

op (h(oa(x))) =0 (h(x)), =€ Xa,
ok (W opy)) =0k (h(y),  y€ Xp.

It has been shown that there exists an isomorphism ® : O4 — Op satis-
fying ®(Da) = Dp and ® o pf* = pP o ®, ¢ € T if and only if the one-sided
topological Markov shifts (X 4,04) and (Xp,0p) are eventually conjugate ([15,
Corollary 3.5]). The latter condition implies that their two-sided topological
Markov shifts (X4,54) and (Xp,55) are topologically conjugate by [14, The-
orem 5.5] (cf. [14, Theorem 6.7]). Hence an isomorphic Cuntz—Krieger triplets
(04, Dy, p?) and (Op,Dp, p?) yields a strong shift equivalence between the
underlying matrices A and B.

ProroOSITION 2.2. If A and B are elementary equivalent, then their Cuntz—
Krieger triplets (Oa,Da,p?) and (Op, Dp, p®) are strong Morita equivalent
in 1-steps,

Proof. Let A and B be elementary equivalent matrices, and choose matrices C'

and D satisfying A = CD, B = DC. Let Z be the square matrix Z = [g g} .
By the above discussions, there exist projections Po, Pp in Dy satisfying Po +
Pp =1 and (2.3) (2.4). O

The main purpose of this section is to study the converse implication of Propo-
sition 2.2.

We henceforth assume that (O4,Da,p?) and (Op, Dp, p?) are strong Morita
equivalent in 1-step via (Oz, Dy, p?) for some matrix Z. We may take two
projections Py, Pp in Dy having the properties (1), (2), (3) and (4) in Definition
2.1. Let us denote by Gz = (Vz, Ez) the directed graph for the matrix Z. The
Cuntz—Krieger algebra Oz is then generated by partial isometries S, € Ez
satisfying the relations:

> SSp=1,  Si8,= Y Z°%.n)S,S; foryeEy (2.5)
neEkz n€kz

DOCUMENTA MATHEMATICA 22 (2017) 873-915



MARKOV SHIFTS AND CUNTZ—KRIEGER ALGEBRAS 881

where Z%(y,n) = 1 if t(y) = s(n), and 0 otherwise. We have the following
lemmas.

LEMMA 2.3. Let Sy,7v € Ez be the generating partial isometries of Oz satisfy-
ing (2.5). Then we have

(i) PaSyPs = PpSyPp =0.
(ii) Sy = PaSyPp + PpS,Pa.
(i) PaS, = S,Pp and PpSy = S, Px.
Proof. By the equality P4 + Pg = 1, we have
Sy = PsSyPs + PsS,Pp + PpS,Ps + PgSPp.

Since P4S, P4 belongs to P4Oz P4 which is identified with O4, the condition
(4) of Definition 2.1 gives rise to the equality

pi (PaSyPa) = piy(PaSyPa). (2.6)
As pf|p, =id and Pa, Pg € Dy, the left hand side for t = § of (2.6) equals

PAP?(SW)PA = —PsS,Py.

As pi' = id, the right hand side for ¢ = % equals P4S,P4. Hence we have
P4S,Py =0 and similarly PgS,Pg = 0. Therefore we know (i) and hence (ii).
The assertion (iii) follows from (ii) since P4 and Pp are mutually orthogonal
projections. O

LEMMA 2.4.

> S PaS;=Pp, > S,PpS;=Pa (2.7)

YEEZ YEEzZ

Proof. By Lemma 2.3, we know S, P4 = PS5, so that

> S,PaS;= Y PgS,S;=Pp. (2.8)
yEEZ yEEZ
Similarly we see that Z’YGEZ S, PpS = Pa. O

We notice the identities in the following lemma which immediately come from
Lemma 2.3 (iii).

LEMMA 2.5. For v1,7v2 € Ez, we have the following identities.
(i) 84,8y, Pa = PaS,, S, € O and S, S, Pg = PgS,,S,, € Op.
(ii) 571PBS,Y2 = PASrylPBSszA € Oy and S’nPAS"/z = PBS%PASWPB S

Osp.
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LEMMA 2.6. Let 1,72 € Ez. Then PaS,, #0,PpS,, #0 and Z%(v1,72) =1
if and only if PaS, S, # 0.

Proof. Since the identity
PsS.,, Sy, = PaS+y, PpSy, = S+, 5+, Pa = Z(v1,72)S+, 5+, Pa (2.9)

holds, the if part is obvious. It suffices to show the only if part. By the identity
(2.9), we have

(PAS’Yl S’Yz)*(PAS’Yl‘572) = (S’hS"/zPA)*SWlS’YQPA

= P4S,5%, 5,5, Pa

- Z ZG(,yl’nl)PAS:2S7IIS:;1S’YQPA

mekz
= Z%(1,72)PaS3, Sy, Pa
= ZG(’Yla72)(PBS’Y2)*(PBS’YZ)'

The above equalities ensure the only if part. O

LEMMA 2.7. Let v1,7v2,m,n2 € Ez. Then S, S+, #0,8,,57, #0,PaSy, Sy, #
0 if and only if PaSy, Sy, Sn, Sy, # 0.

Proof. Since PaSy,S+,Sn, Sy, = 54,54, P45y, 5y,, the if part is obvious. It
suffices to show the only if part. We have
(PAS'n S’szmSnz)*(PAS% Swsmsnz)
=PaS;, 5,585,555y, Sy, S5, Sny Pa
= > Z%m, ) PaS;, S, S5, 56 St S S, Sy Pa

2T mn T2
G1E€EEZ

=Z%(11,72) Z Z%(72,$2) PaS;, S Sca SE, Sy S Pa
(2€EZ

=Z%m,%)2%(v2sm) > Z%m,¢s)PaS;, Sc,SE, Sn, Pa
(s€EEZ

=Z%1,72)Z (v2,m) Z (11, n2)PaSy, Sn, Pa.
The above equalities ensure the only if part. O

Now we are assuming that the Cuntz-Krieger triplets (Oa,Da,p?) and
(Op,Dp, pP) are strong Morita equivalent in 1-step via (Oz, Dz, p?). Recall
that B(X4) denotes the set of admissible words v; - - -y of Xz with length
k. For k = 2, we see

Ba(Xa) = {m2 | 2%, ) =1}

Let us note that for v1,7v2 € Ez, the word 712 belongs to Ba(X 4) if and only
if 5,85, #0.
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We introduce several directed graphs in this situation. Define edge sets
E;, Eg, Es, Ep by setting

Ez={(A,m2) € {4} x B2(Xz) | PaS,,5,, # 0},
Eé = {(B37172) € {B} X BQ(XZ) | PBS’YlS’>’2 7£ O}a
Ee ={(A,m) € {A} x Ez | PAS,, # 0},

Ep ={(B,m) €{B} x Ez | PpS,, # 0}
and vertex sets V3, Vi, Vias, Vi Vas Ve Vs Ve Dy setting

As = {(A s(’yl ) € {A} X VZ | (A77172) € EA}?

)
Vi, = {(At(12)) € {A} x Vz | (A,m72) € B},
Vés ={(B,s(m1)) € {B} x Vz | (B,m172) € E},
={(B,t(y2)) € {B} x Vz | (B,1172) € E},
Vés {(A;5(n)) € {A} x Vz | (A,m) € Egl,
={(B,t(n1)) € {4} x Vz [ (A,m1) € Eg},
VDS ={(B,s(m1)) € {B} xVz | (B,m1) € Ep},
={(A,t(n)) € {B} xVz | (B,m) € Ep}

LEMMA 2.8. Keep the above notation. We have
() Vie = Vi, = Ve, = V-
(i) Vas = Vi = Vps = Vou:

Proof. (i) We will first show the equality V;, = V},. Take an arbitrary vertex
(A, s(m1)) € Vi, and 72 € Ez with P4S,,5,, # 0, so that t(y1) = s(y2). We
may find 71,72 € Ez such that S,,S,, # 0 and t(12) = s(71). By Lemma 2.7,
we have S, 5,,5,,5,,Pa # 0. Since S, 5,,5+,55,Pa = PaSy, 5,5, 55,, we
have P4S,, Sy, # 0 so that (A,t(n2)) € V;, and hence (A,s(y1) € V,. This
shows that the inclusion relation V;, C Vj, holds. Similarly we obtain that
Vi, C Vj, so that Vi = Vj,.

We will second show the equality Vs, = Vpj,. Take an arbitrary vertex
(A,s(71)) € Vg,. We see that P4S,, # 0 and hence S,, Pg # 0. Now both
matrices A and B are assumed to be irreducible and not any permutations, so
that Z and hence Z© are irreducible and not any permutations. This implies
that 3°,cp, S3/Sy > 1. Hence we may find 72 € Ez such that S,,5,, Pg # 0
so that t(y2) = s(y1). Since S,,5,, Pg = PpS.,,S,, we have PgS,, # 0. This
implies that (B,72) € Ep and (4,t(72)) € V,. As t(y2) = s(71), we obtain
that (A, s(v1)) € Vp, so that Vs, C Vp,. We see Vi, C Vi, similarly so that
Ve, = Vi

V\(f:e will ﬁnally show that V; = Vjs,. Since the condition PS,,S,, # 0
implies PaS,, # 0, we have V;, C Vz,. Conversely, for (A,s(11)) € Vg,, we
have P4S,, # 0 so that S,, Pg # 0. Since Pp = Z’Y/EEZ SA,rPAS’f/,, we may
find v, € £z such that S,, S, Pa # 0. Hence we see that P45, S5, # 0 so that
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(A,s(71)) € Vji,. This shows that V;, = V.. Therefore (i) has been shown.
(ii) is shown similarly. O

Let us denote by V; and by V5 the first four vertex sets and the second four
vertex sets in Lemma 2.8, respectively. Namely we put

Vi=Vi,=Vi =Ve, = Vo
Ve = Vp, = Vi, = Vp, = Veu-
For an edge (A, v172) € E;, define its source and terminal vertices by

s(Amy2) = (A, s(n)) € Vi, tAm72) = (A t(12)) € Vi,

We then have a directed graph (V;, E ;) denoted by G ;. We have a directed
graph Gz = (V, E) similarly. From an edge (A, v;) € Eg, define its source
and terminal vertices by

s(A,m) = (4,s(n)) € Ve, A M) = (A tn)) € Vey

We have a directed graph G = (V; Fe, Vi) and similarly G5 = (V3 =N Vi)
Let A be the vertex transition matrix A : Vi x Vi — Z of the directed graph
G ; which is defined by

A((A,u), (A,0)) = {(A,m72) € Bj | s(n) = w,t(72) = v}

for (A, u), (A,v) € V;. The edge transition matrix A% : E; x E; — {0,1} of
G ; is defined by

1 if (A, y72) = s(A,mne),

AG(’YWz,??lW?) - {0 otherwise

for (A,v172), (A, mn2) € E ;. We similarly have the vertex transition matrices
B,C, D and the edge transition matrices B¢,C%, DS of the directed graphs
Gy, Ga, G p, respectively.

PROPOSITION 2.9. The matrices A and B are elementary equivalent such that
A=CD and B=DC.

Hence the two-sided topological Markov shifts (X 5,5 ;) and (X5,05) are topo-

logically conjugate.

Proof. For (A,v172) with v1,72 € Ez, Lemma 2.6 ensures that (A,v;) €
Ea, (B,v2) € Ep,Z%1,72) = 1 if and only if (4,7172) € Ej;. Since
t(A,v1) = s(B,7) if and only if Z%(y1,72) = 1, we know that A = CD,
and B = DC similarly. O
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A directed graph G = (V, E) with vertex set V and edge set F is said to be
bipartite if V and F may be decomposed into disjoint unions V' = V; UV, and
FE = E12 L E21 such that

Vi={s(y) eV |y€En}t={t(y) eV ]y € Ean}
V2 :{S(’Y) ev | vEe EQl} = {t('}/) eV | S Elg}.

Let E; = EfUEp and V; = V;UV5. It is now obvious that the directed graph
G5 = (V;,E3) is bipartite. Let us denote by Z and ZC the vertex transition
matrix and the edge transition matrix of the directed graph Gz, respectively.
Since G ; is bipartite, by the above proposition, we have

- [0 C =0 [A 0
Z‘{D o]’ Z‘[o B]'

We will study the relationship between the two matrices Z and Z. For v € E,
denote by S(4 ), S(B,,) the partial isometries PaS,, PpS,, respectively, so that
Sy =Sy + 5B,

LEMMA 2.10. Let v1,72 € Egz satisfy Z%(y1,72) = 1.
(i) S(B,y.) # 0 implies S(a,4,) # 0.
(ii) S(a,y,) # 0 implies S ) # 0.
Proof. (i) Since S(a4,)5(B,y,) = PaS, PBSy, = S,,5,Pa, we have

(Sam)S(B42))" (S(am)S(B2)) = Pas3, S5, 57,55, Pa

= Z ZG(’}/l,nl)PAS:ZSnls,:;lspr
meEz

= Z%(11,72)5(B.42)S(B.72)-
The above equality ensures the assertion. (ii) is shown similarly. O
LEMMA 2.11. FEither of the following two situations occurs:

(1) Both S(4.) and S(p, are not zeros for all v € Ez. In this case we have

CC¢ =DC = 2% 50 that A= B and Z = {2 g]
(2) For each v € Ez, either S(a .y = 0,8B,,) #0 or Sayy # 0,58, =0
holds. In this case we have Z = Z.

Proof. Suppose that there exists v € Ez such that both conditions S ,) # 0
and S(p ) # 0 hold. Since the directed graph Gz = (Vz, Ez) is irreducible,
for any edge v € Eyz, there exists a finite sequence of edges v1,...,7, in Ez
such that

Z8(v,m) =2%m, ) = =Z%m,70) = 1.
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By the preceding lemma, any edge n € Ez satisfying Z%(n, o) = 1 forces that
Sam # 0 and S, # 0. By using this argument repeatedly, we see that
Scaq) # 0 and Sy # 0. Hence either of the following two cases occurs:

(1) Both S(4,,) and S(p ) are not zeros for all vy € Ez.
(2) For each v € Ez, either S(4 ) =0 or S = 0.
Case (1): We have the following equalities.
538y =(5(a ) + S(8,)(Sam + SB.7)
=505 + 58,5587

Z CG 7), (B, U))S(B,n)S(B n)
(Bm€EER
+ > DB (A0)Sam)S{am:
(A,m€EEs

On the other hand, we have
38y =Y Z%(,m)SyS,
nekz
Z ZG(’-Y?T])(PBSUS;PB + PAS’,,S:;PA)

nekyz

> Z°m)SmayStem + Y. ZC(HmSamSian-

nekz nekz

Since both S(4,4) # 0 and S(p ) # 0 for all v € Ez, we have

CY((A,7), (B,n) = Z%(v.n), DG((B,W), (A,m) = Z%(v,m)

for all ,m € Ez. Hence we have CC = = 7% so that A = BS and hence
;A - [0 C 0 z¢ = [0 Z
A=B. AsZ = [D 0} we have Z¢ [ZG O] and hence Z = {Z O}

Case (2): Suppose that for each v € Ey, either S(4 ) # 0 or S ) # 0 occurs.
Since the identity

558y = S(amSiam + 58,15 B.)

always holds, the situation S(4,) # 0 or S(p,) # 0 occurs. Hence in this
case we see that for each v € Ez, either S4,) = 0,5+ # 0 or Sa,) #
0,S(B,y) = 0 occurs. This implies that the edge set Ez is a disjoint union
Ez = Ex U Ep. As S(A,'Yl)S(A,’Yz) = O?S(B,’yl)S(B,’Yz) = 0 for all v1,v2 € Ez,

7 [0 C
we have Z = | <

D 0} so that Z = Z. O

We thus see the following lemma and proposition.
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LEMMA 2.12. We have a natural identification between the Cuntz—Krieger
triplets (05,D3,p?) and (Oz,Dz, p?).

Proof. For v € Ez, we have that S, = PsS, + PS,. If P4S, # 0,
then (A,v) € Es. If PgS, # 0, then (B,vy) € Ep. Hence S, belongs to
the C*-algebra C*(S(a,4),SB,v) | (A,7) € Eg, (B,7') € Ep) generated by
Sa): S,y with (A,7) € Ea, (B,v') € Ef. Hence we have

C*(S(A,7)>S(B,'y’) | (A,’y) S Eé7 (377/) (S Ef)) = OZ-

Since £; = Es U Ep and V; = Vi U Vp, the algebra C*(S(AW),S(BW/) |
(A,v) € Eg, (B,7'") € Ep) is nothing but O, so that O is identified with
Oz through the correspondence between Si4.) + S(B,4) € Oz and S, € Oz.
We then have

5785 =(Sam + 5B (S +SB.2)"
—(PAS. + PpS,)(PAS, + PpS,)"
—P4S, S Pa + PpS, St Pa + PaS, S Pg + PpS, S Py
—P2S, 5% Pa + PpS, 5! Pp.

Similarly, by a routine calculation, we have the equalities

S0y Sy -+ S, SE S5 S% =PaS,, PpSy, S, 8% - St PpS? Pa

n=Yn Y2771 T yn
+PpS,, PaS,, -5, 5% -+~ S%, PaSt P

and

PASy, Sy, -+ Sy, S5 -2 S5 8% Pa =PaS,, PS,, - S, 5% - S% PpS? Pa,

nyn Y21 T Yn
PSS, - S,YnS,’;n e Sf:z Sf;lPB =PpS,, PaS,, - S5, Sf;n s S:QPAS:I Pg.

These equalities give us a natural identification between D; and D.
For t € T, we have

PtZ(Sw) :ptZ(PAS“/ + PpS,)
:PAptZ(S’Y) + PBPtZ(S'y)
=exp(2mV —1t) PaS,, + exp(2mv/—1t) PgS,
=p (S(am) + P7 (S(B.7))
=p{ (S(am) + SB.)-

Therefore the CuntzKrieger triplets (O3, Dz, p?) and (Oz, Dz, p?) are nat-
urally identified with each other. O

PROPOSITION 2.13. Z = Z.
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Proof. By Lemma 2.11, we know that the either of the following two cases
occurs:

w 2=y 5| 0 z2-z

0 Z

We assume the first case Z = {Z 0

] . Let Iz denote the identity matrix

1 1
. . . _ 1 |1z Z
whose size is the same as that of Z. By the unitary U = 7 [IZ _IZj| ,
Z 0

0 —Z
Sp*(Z) denotes the set of non zero spectra of Z. By Lemma 2.12, the Cuntz—

we have UZU* = [ } , so that Sp*(Z) = Sp*(Z) U (—Sp*(Z)), where

Krieger triplets (O, Dy, p?) and (Oz, Dz, p?) are isomorphic. Hence, as
we noted in the paragraph before Proposition 2.2, the two-sided topological
Markov shifts (X;,5;) and (Xz,57) become topologically conjugate, so that
Sp*(Z) = Sp*(Z) by a general theory of symbolic dynamics (cf. [10]). This is
a contradiction, and the case (1) does not occur. O
We will next study the bipartite graph G ;7 from the C*-algebraic view point.
For (A,7172) € E 3, define the partial isometry

S(A )y = PAS%S,Y?.

yY17Y2

LEMMA 2.14. The C*-subalgebra C*(S(a~,+,); (A,7172) € E3) of Oz is iso-
morphic to the Cuntz—Krieger algebra O ; for the matriz A.

Proof. We first notice the identity

Z S(Awm)SE‘Amw): Z PASMS%S%S;PA:PA

(Amv2)EE; Y1,72€EZ7

holds. We also have

SEKA,’Yl’YQ)S(Aa’Yl'YQ)
—PAS?, S5, S5, S5, Pa
= Y Z%m,G)PaS:, 8¢, Sz, Sy, Pa
G1E€EEZ
= > Z%1,72)Z2%(v2,m)PaSy, S5, Pa
mekEz

= Y Z%m,72) 2% (v2,m) Z% (1, 112) PaSn, S, S, S5, Pa.
n,m2€Ez

For (A,m72),(A,mmn2) € Ej, the condition t(A,v172) = s(A,min2) holds if
and only if Z%(v2,m1) = 1. Hence we know

Z%(1,72) Z€ (v2,m) Z€ (m, m2) = A (my2, mn2).
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By the above equalities, we have

S(a S(Amr) = Z A% (1172, m2) S A1) St e

(Amn2)EE 4

Y172)

thus proving that the C*-subalgebra C*(S(4,y,+,); (4, 7172) € Ej) of Oz is
isomorphic to the Cuntz—Krieger algebra O ; for the matrix A. O

LEMMA 2.15. The C*-subalgebra C*(S(4,4,~,); (A,7172) € E3) of Oz is noth-
ing but PAOzP4. Hence the Cuntz—Krieger algebra O ; is isomorphic to O4.

Proof. Since S(ay,y,) = PaSySy,Pa for (A,mv2) € Ej;, we have
C*(S(Amr2); (A,1172) € E5) C PaOzPa. We will show the converse inclusion
relation. Take an arbitrary fixed X € Oz with PAX P4 # 0. Let Py be the
dense *-subalgebra of O algebraically generated by S,y € Ez. We may find
X, € Pz such that ||X—Xn|| — 0. Since ||PAXPA—PAXHPA|| < ||X_XnH —
0, it suffices to show that P4X, P belongs to C*(S(4,y,4,); (4, 7172) € Ej).
By [7, Lemma 2.2], any element of the subalgebra P, is a finite linear
combination of elements of the form §,5;S5;S; for some admissible words
= (1, -, tm), v = (V1,...,vn) in Xz. Assume that PsS,5;5;S;Ps # 0.
Since P4S; = S;Pp, we have

Suy - Su, Pa  if mis even,

o (2.10)
Sy, - Su,, P if mis odd.

PyS, = PaS,, ---S,, = {

The assumption P4.S5,,S;5;S;Pa # 0 forces the numbers m,n to be both even,
or both odd.

Case 1: m,n are both even.

We have

PAS,S:5755Pa
=PaSu, 8, PaS,;8,,Pa--- PASHm,lsumPASiS;PA
’ S:n S;nflPA e S;4S:3PAS:ZS:1PA

*

:S(A,/Llﬂz)S(A7/L3/.L4) T S(A»Hm—lﬂm)PASiS;kPAS(A,Vn_lun) T S?A,Vgl/‘;)SZ(A,VlVQ)'

Now we have

PASiS{Pa= Y PaSiS;S;SiPa= > SainSiaij

JjEEZ JjEEZ

so that PsS,S;5;S;P4 is a finite linear combination of products of the
elements S(A,wlvz)vSEkA iv2) for (A,7172) € Ej; and hence it belongs to

C*(S(A,'yl’yg); (A771’72) S EA)
Case 2: m,n are both odd.

DOCUMENTA MATHEMATICA 22 (2017) 873-915



890 KENGO MATSUMOTO

Similarly to Case 1, we have

P4S,S:S; S5 Py

=S(Aprnz) S Apm-2m 1) A ) (A0 ) (A _svm_1) S (M)

so that PaS,,5;5;S;; Pa belongs to C*(S(4,4,+.); (A,7172) € E3). O

PROPOSITION 2.16. The Cuntz—Krieger triplet ((’)A,DA,pA) for the matriz A
is isomorphic to (Oa, D, p?).

Proof. By Lemma 2.14 and Lemma 2.15, we know that
OA = C*(S(A,'yyyg); (A,’}/l’yg) € EA) = Pa0OzP4 = Oy. (2.11)

Under the identification between C*(S(4,4,+,); (A, 7172) € E;) and P40z Py
in Lemma 2.15, the C*-subalgebra

C*(S(Aﬁﬂz) o 'S(Af\/nfl')’n)SEkAa'Yn—l"/n) o S(*Am"fz);
(Ay 7172)7 RN (A7fyn71f‘yn) € EA)

of C*(S(a,y172); (A,7172) € E5) generated by the projections

S(Aﬁlw) T S(A”YW*IAVH)SEKA,’Yn—l'Yn) e SEFA,%’Yz)

for (A,v172),..., (A, Ym—17n) € Ej; is naturally identified with the C*-
subalgebra PaDz P4 of Dz, so that D; = D4. By regarding the generating
partial isometry S(4.4,+,) for (4,7172) € E; as an element of PAOzP4 = Oa,
we have

,012425(5(,4,7172)) :ezﬂ\/jztS(A,’Yl’Yz)
:PAezﬂ\/jltS'yl 6271'\/—7125572
:PAptZ(S"/l)ptZ(S’Yz)
:PtZ (PAS'n S’m)~
Since P4S., S, € PAOzP4 = O4 and ptZ|pA@ZpA = pé“t on Oy, we have
Z(PsS,5.,) = pay(PaS,S,) = pih (S, )
Pt \FFAPy; Oy, P2t (L7AR~ Py, P2t (P (Ay172)
so that pét = p4, for all t € T and hence pA = pA. O

‘We thus have

PROPOSITION 2.17. Suppose that the Cuntz-Krieger triplets (Oa,Da, p*) and
(Op,Dpg, pP) are strong Morita equivalent in 1-step. Then the two-sided topo-
logical Markov shifts (Xa,54) and (Xp,ap) are topologically conjugate.

DOCUMENTA MATHEMATICA 22 (2017) 873-915



MARKOV SHIFTS AND CUNTZ—KRIEGER ALGEBRAS 891

Proof. Assume that the Cuntz—Krieger triplets (04, D4, p?) and (Op, D, p?)
are strong Morita equivalent in 1-step. By Proposition 2.9, the matrices A, B
are elementary equivalent so that their two-sided topological Markov shifts
(X 4,04) and (Xp,053) are topologically conjugate. Proposition 2.16 with [15,
Corollary 3.5] ensures that the ons-sided topological Markov shifts (X z,0 )
and (X4,04) are eventually conjugate and hence strongly continuous orbit
equivalent in the sense of [15]. Since the latter property yields topological con-
jugacy of their two-sided topological Markov shifts, the two-sided topological
Markov shifts (X 4,5 ;) and (Xa,5.4) are topologically conjugate. Similarly we
know that the two-sided topological Markov shifts (Xz,05) and (X4,6p) are
topologically conjugate. Therefore we get the assertion. O

Now we reach one of the main results of the paper.

THEOREM 2.18. Let A, B be irreducible non-permutation matrices. The Cuntz—
Krieger triplets (04, Da, p?) and (O, Dy, p?) are strong Morita equivalent if
and only if their two-sided topological Markov shifts (X a,54) and (Xpg,0R) are
topologically conjugate.

Proof. The if part comes from Proposition 2.2. The only if part follows from
Proposition 2.17. O

By the Williams’s fundamental theorem on topological Markov shifts which
states that two irreducible matrices A and B are strong shift equivalent if and
only if their two-sided topological Markov shifts (X4,54) and (Xp,5p) are
topologically conjugate ([25]), we obtain the following corollary.

COROLLARY 2.19. Let A, B be irreducible non-permutation matrices. The
Cuntz-Krieger triplets (O4,Da, p?) and (Op,Dp, pP) are strong Morita equiv-
alent if and only if the matrices A and B are strong shift equivalent.

3 STRONG SHIFT EQUIVALENCE AND CIRCLE ACTIONS ON O 4

It is well-known that two unital C*-algebras A and B are strong Morita equiv-
alent if and only if their stabilizations 4 ® K and B ® K are isomorphic by
Brown-Green—Rieffel Theorem [3, Theorem 1.2] (cf. [2], [3], [4], [20]). We will
next study relationships between stabilized Cuntz—Krieger algebras with their
gauge actions and strong shift equivalence matrices. We will investigate stabi-
lizations of generalized gauge actions from a view point of flow equivalence.
Recall that for a function f € C(Xa4,Z) and ¢t € T, an automorphism
pf\’f € Aut(O,) is defined by pf’f(Si) = U(f)Si,i = 1,...,N,t € T for
the unitary U,(f) = exp(2mv/—1tf) € D4 as in (1.5). It is easy to see that the
automorphisms pf’f,t € T yield an action of T to O4 such that pf’f(a) =a
foralla € Dy. For f € C(X4,7Z) and n € Z,, let us denote by f™ the function
fr(x) =) f(ohy(x)),x € Xa. We know that the identity

i (Su) = Us(f™)S, (3.1)
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for f € C(Xa,Z),u = (H1,---,n) € Bp(Xa),t € T holds (cf. [15, Lemma
3.1]).

For a C*-algebra A without unit, let M (A) stand for its multiplier C*-algebra
defined by
M(A)={ae A" |aA C A, Aa C A}

where A** denotes the second dual (A*)" of the C*-algebra A. An action «
of T to A extends to M(A) and is still denoted by «. For an action o of T
to A, a unitary one-cocycle us,t € T relative to « is a strongly continuous
map ¢t € T — u, € U(M(A)) to the unitary group U(M(A)) satisfying uiis =
usas(ug), s,t € T. The following proposition has been proved in [15].

PROPOSITION 3.1 ([15, Proposition 4.3]). Let A and B be elementary equivalent
matrices, and choose matrices C and D satisfying A= CD and B = DC. Then
there exist an isomorphism ® : O4 @ K — Op ® K satisfying ®(Dy ® C) =
Dp ® C and a homomorphism ¢ : C(Xa,Z) — C(Xp,Z) of ordered groups
such that for each function f € C(Xa,Z) there exists a unitary one-cocycle
ul € UM(O4 ® K)) relative to p*f @id such that

® o Ad(ul) o (p ®id) = (b7 @id)o®  forteT. (3.2)

In this section, we will first review the proof in [15] of the above proposition to
investigate the K-theoretic behavior of the above isomorphism ® : 04 ® £ —
Op ® K. The proof of the above proposition is based on the the proof of [11,
Proposition 4.1], in which Morita equivalence of C*-algebras has been used (cf.
2], (3], (4], [5], [8], [12], [16], [18], [24]).
Let A and B be elementary equivalent matrices, and choose matrices C' and
D satisfying A = CD and B = DC. As in the previous section, the
equality A(i,j) = kaI C(i,k)D(k,j) for i,j = 1,...,N4 forces that the
cardinal numbers of the two sets {a € Fa | s(a) = v, t(a) = 113-4} and
{(¢,d) € Ec x Ep | s(c) = le, t(c) = s(d), t(d) = vf} coincide. Hence
we may take a bijection from E4 to the above subset of Fo x EFp. We fix it
and write it as ¢ 4,cp. By the other equality B = DC, one may take a bijection
0 C
b o
as a block matrix, and use the same notation as in the previous sections.
For an arbitrary fixed function f € C(Xa4,Z), we may regard it as an element
of D4 and hence of Dz by identifying it with f $0in Dy & Dg = Dy. As

written ¢p pc from Ep to a subset of Ep X E¢ similarly. We set Z = [

exp(2mv—1t(f @ 0)) = exp(2nv—1tf) ® Pp € U(Dyz),
the automorphism pZ/® of O for t € T defined by (1.5) satisfies
pZI®0(8.) = exp(2mV/=1tf)S, for ¢ € Ec,

pZ I8 =8, forde Ep. (3.4)
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Fix ¢ € E¢ and d € Ep such that ¢(c) = s(d), and let a € E4 be the unique
edge satisfying w4 ,cp(a) = cd. Let b € Ep be the unique edge in Ep satisfying
B, pc(b) = de, in a similar way. The equalities (3.3), (3.4) imply
pZIE0(5,8,) = exp(2mvV/—1tf)S.Sq = pif (Sa),
pZI99(8,8,) = Sgexp(2mV/—1tf)S, = Sgexp(2my/—1tf) S5 S,

We set o(f) = > ycp, SafSi € Dz. As Ppp(f)Pp = ¢(f), we see that
©(f) € Dp and hence ¢(f) € C(Xp,Z) satisfies

Z Saexp(2mV/—1t ) S} = exp(2mv/—1tp(f)) € U(Dp).

deFEp

We similarly set ¢(g) =Y
see the following lemma.

LEMMA 3.2 ([15, Lemma 4.1]). For f € C(Xa,Z),9 € C(XB,Z) and t € T,
we have

S.gS¥ € C(Xa,Z) for g € C(Xp,Z). We thus

ceEc

PP IS Sa) = i (Sa), 7 I0(SaSe) = (), (35)
o (SaSe) = o (S), AU (SeSa) = (Sa) (36)

where a € Ea,b € Ep and ¢ € Ec,d € Ep satisfy pacp(a) = cd and
vp.pc(b) = de, respectively.

We note that the homomorphisms ¢ : C(X4,Z) — C(Xp,Z) and 9 :
C(Xp,Z) = C(X4,7Z) satisfy the equalities

(Y op)(f)=fooa, (pot)(g) =goop

for f € C(X4,Z) and g € C(Xp,Z) ([15, Lemma 4.2]).
By [11, Proposition 4.1], one may find partial isometries va,vg € M(Oz ® K)
such that

viva =vpvg =1®1, vavy = Po®1, vpvy = Pp ® 1. (3.7)
Since
Ad(v}) : 040K = 0z@K and Ad(vy): 00K —=0z0K (3.8)
are isomorphisms satisfying

Ad(v})(Da®C) =Dz ®C and Ad(vg)(DPp®C)=Dz&C.

By putting
w=vpvy € MOz ® K), (3.9)
b =Ad(w): 00K = 03K, (3.10)
ul = w (pZ @id)(w)  for f e C(Xa,7Z), (3.11)
ul? = w(p?*% @id)(w*) for g € C(Xp,Z), (3.12)
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they satisfy (D4 ® C) = Dp ® C and the equalities

® o Ad(u) o (o @id) = (o7 @id)o & for f € C(Xa,2),
Do (p9 ®id) = Ad(WP?) o (P9 @id)o® for g € C(Xp, 7).

The above discussion is a sketch of the proof of Proposition 3.1 given in [15].
In what follows, we will reconstruct partial isometries va,vp satisfying (3.7)
to investigate the K-theoretic behavior of the map ® : O, @ K — Op ® K in
the following section. The idea of the reconstruction is due to the proof of [2,
Lemma 2.5] (cf. [11, Proposition 4.1]).
We are assuming that A = CD, B = DC. Keep the notation as in the preceding
section. Put Fc = {¢1,...,¢en.} and Ep = {d3,...,dn, } for the matrices C
and D respectively. For k = 1,..., Np, take ¢(k) € E¢ such that c(k)dy €
By (Xz) so that we have

Sy 2 S5,

Similarly for I =1, ..., N¢, take d(I) € Ep such that d(l)c; € B2(Xz) so that
we have

S&k(l)Sd(l) Z S S*

ci™ere
Put
Uy = Pc, Uy, :Sc(k)Sd,chk fork=1,...,Np, (3.13)
TO = PD, ,I’l = Sd(l)Scz,S:l for [ = ]., . .,NC. (314)
We then have
Np Np Np
S UiU = Sa, 85, Siry SetiySan Si, = > Sa, S, = P,
k=1 k=1 k=1

N¢e N¢ Nc
ST = 8085 S Saw e Sh, = Y Se, S5, = Pe.
k=1 =1 =1

We decompose the set N of natural numbers into disjoint infinite subsets N =
U352, Nj;, and decompose Nj for each j once again into disjoint infinite sets N; =
U oN;, . Let {e; ;}ijen be a set of matrix units which generate the algebra
K = K(¢*(N)). Put the projections f; = ZieNj e;; and fj, = ZieNjk €i.i, both
of which converge in the strong operator topology on ¢?(N). Take a partial
isometry s;, ; such that sj»msjk,j = fj,5j,.,58 = fj, and put s;;, = s
We set forn=1,2,...,

Jk>J Jk>J "

Np
Up = E Uk®snk,n7 wn:PC®Sng,n+unv
k=1

Nc
t”:ZTl®5m,m Zn = Pp @ $pg,n + tn.
=1
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LEMMA 3.3. Keep the above notations.
(i) wrw, =1® fn, and wyawt < Po ® fp.
(ii) zXzp =1Q® fn, and zp25 < Pp ® fn.
Proof. (i) Since w)u, = Pp ® fn, we have
wpwn = Po ® fr+tpun = Po ® fu+ Pp® frn=1® fn.

On the other hand, we know that w,,(Pc ® Spn.ny) = (Po ® Sn.ng )us, = 0 so that
we have

Np

wpw,, = Pc @ fny + unuy, = Po @ fr, + Zsc(k)sdkS;kS:(k) ® fry-
k=1

AS fno,fnk S fn, we have
wpw,, < Po® fp.
(ii) is shown similarly. 0

We will reconstruct and study the isometry v4 in (3.7). Let f,, ., be a partial
isometry satisfying f; ., fo.m = fm, fomfom = fn. We put

v = w1 = Po ® 51,1 +u1,
U2n:(Pc®fn_U2n717};n71)<P0®fn7n+1) for 1§’IZEN,
Von—1 = Wnp(1 @ fn, — 3, _oUan_2) for2<neN.

LEMMA 3.4. Keep the above notation.
(1) v3,_oUan—2 + V3, Va1 =1Q fp.
(i) van—1V3, 1 + V2,05, = Po ® fn.
Proof. (i) As wiw, =1® f,, we have
Vg 9V2n—2 + U3y 1 V201
=03, _oVan—o+ (1 ® fr, — 03, _ovap_2)wiw,(1® f, — v3, _oVan_2)

=03, _oVan_o + 1® fr — Vi, _oVan_ o
=1® fn.
(ii) We have
V2n—1V3n_1 + V203
=213, _1 + (Po ® fr — van—1V35,_1)(Pc ® f)(Pc ® fn — Vap—105,_1)

=Von—1Vs, 1 + Po ® frn —von_1v3,
:PC (24 fn
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By the above lemma, one may see that the summations 22021 Vop—o and
Yoo van—1 converge in M(Oz ® K) to certain partial isometries written v,

and v,q respectively in the strict topology of the multiplier algebra of Oz ® K.
Similarly we obtain a partial isometry va = > °- v, in M(Oz ® K) in the

n=1
strict topology. Therefore we have the next lemma.

LEMMA 3.5. The partial isometries Vey,Voq and va defined above satisfy the
following relations:

(i) vA = Vod + Vey-
(ii) v V0d + Vi Ver = 1® 1.
(ill) Voqly + Veyl, = Po ® 1.
(iv) viva=1®1 and vavi =Pc®1.

We put

T

¢Sy = Z Von—1(Po ® 1)vs,,_q, q

n=1

= Z von—1(Pp ® 1)v3, _;
n=1

so that
Goi + Aoy = VoaVsq  and hence g5 + qpy + veyvl, = Po @ 1.
We will show the following lemma.
Z,f@®0 : *\ _ C D *
LEMMA 3.6. va(p; ®id) (V) = doq + (Ue(=f) @ 1) @5y + Ve,

Proof. We notice that ptZ’f@O(SC) = U(f)S. for ¢ € E¢x and ptZ’f@O(Sd) =5y

for d € Ep. As vgp_1v3, ; € Dz ® C, we have (p?7®° @ id)(van_103,_,) =
Uan—1V4,_1 and hence (ptZ’f@O ®1d)(Vey) = Veyp. We then have

va(p T ©1d)(vh) = voalp T ©1d) (v50) + veu (P @ 1) (07,)

o0
> van1 (7 @id) (05, 1) + Ve,
n=1

Since

Np
Ul(PC X 1) =Pc® S19,1 and ’Ul(PD X ].) = Z Sc(k)SdkS;ikk & 81,15
k=1
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we have
(77 @id)(v]) = (Po ® D)o} + (o7 *° @id)((Pp @ 1)o})
Np
= (Pc ® 1)v] + Z Say SékﬂtZ’fGBO(S:(k)) ® ST, 1
k=1
Np
= (Pe @ )o} + Y 54,55, S Un(—=f) ® 57, 1
k=1
= (Pc @ 1)v] + (Pp @ D)oy (Us(—f) ® 1),

so that
v (pf 70 @id)(v}) = v1(Pe ® 1)vf + v1(Pp @ 1)vi (Uy(— ) ® 1)
=v1(Pc @ D)v] + (Ue(—=f) ® L)1 (Pp @ L)vy.

For 2 < n € N, we have
v2n—1(PC ® 1) = (PC X Sno,n)(l 2y fn - U;n_QUZn—Q)a

Np
van-1(Pp ®1) = Z(SC(k)Sdk Si, @ Snen) (1@ fro — V3, oUon_2),
k=1
and hence
(p2 7™ @id)((Pp @ 1)v3,_,)
Np
:<1 b2y f’ﬂ - v§n72v2n*2) Z Sdk S;kptZJ@O(S:(k:)) ® S:lk,’ﬂ
k=1
Np
:<1 b2y f’ﬂ - U§n72v2n*2) Z Sdk S;k S:(k)Ut(_f) ® S:(Lk,n
k=1
=(Pp ® L)v3,_1(Us(—f) ® 1)
so that

U2n—1(ptZ,f®0 @ ld)(vgn—l)
=v2n—1(Pc ® 1)v3, 1 + v2n—1(Pp ® D)3, 1 (U(—f) @ 1)
=v2n-1(Pc @ 1)v3,_1 + (U(—f) @ 1)v2n—1(Pp ®@ 1)v3,_;.
Therefore we have
vod(p? T @ id) (v3y) = a5y + (Ue(—f) ® 1)y

and hence
valpP T @1d) () = ¢S5+ (Ui(—F) @ 1)gly + veuv,-
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By using t,, z, instead of u,,w, respectively, we similarly obtain a partial
isometry vp in M(Oz ® K) in the strict topology. We then have the following
lemmas.

LEMMA 3.7.

(i) The partial isometry v (pZ®° ®id)(vY) for f € C(Xa,Z),t € T belongs
to M(Dy ®C) and satisfies

va(pl T g id) (1) = va (PP @ id) (v )va(p? P @ id) (v7)

for f1, fa € C(Xa,Z),t €T.

(ii) The partial isometry vp(p?°®? @id)(v}y) for g € C(Xp,Z),t € T belongs
to M(Dp ® C) and satisfies

vp(p? ") @ id) (vh) = v (PE PP @id)(V)vs (PP P @ id)(v))

for g1,92 € C(Xp,7Z),t €T.

Proof. (i) Since the projections qgl, qgi, VeV, all belong to the multiplier alge-
bra M(DA®C) of D4®C, the preceding lemma ensures that the partial isometry
va(p? 70 ®id)(vY) belongs to M (D4 ®C). As Uy(f1+ f2) = Ur(f1)Us(f2), the
desired equality follows.

(ii) is shown similarly. O

LEMMA 3.8.
(i) (pZ°% @id)(va) = va for g € C(Xp,Z),t € T.
(i) (pZ7®° @id)(vp) = vp for f € C(Xa,Z),t €T.
Proof. (i) Since pZ%%9(8,) = S., pZ°%9(8,) = 2™V =119G, we have
7% (Ux) =7 " (S San S, )
:Sc(k)e%‘/j“ngkS;kef%\/j“g
=Se(k)SaSa, = Uk-
Hence (p7°®? @ id)(up) = up so that (p?°% @ id)(w,) = w,. We then have
(p?°% @id)(v1) = (P20 @1d)(Po @ s191 + u1) = Po @ s1,.1 + w1 = 1.

Since vo,_1V5,_1,Vsy_oV2n—2 € Dz ® C and the restriction of ptZ’O@g ® id to
Dz ® C is the identity, we easily know that

(07" @id)(van) = van,  (p°%? @1d)(van-1) =v2n—1 forn €N,

We thus have (p7"®®id)(v,) = v, for all n € N and hence (pZ %! @id)(v4) =

VA.
(ii) is shown similarly. O
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We put
w=wvgvy € MOz ® K),
utt = w* (pPT @ id)(w)  for f e C(Xa,Z),
u? = w(p!"* @id)(w")  for g € C(Xp, 7).
By Lemma 3.8, we have

u = vaus (o7 2 1d)(0p) (PP @1id)(v]) = va(pP ™ @id)(v]) (3.15)

and similarly u? = vp(p?°%? @ id)(v).

LEMMA 3.9.

(i) For each f € C(Xa,Z), the unitaries uf’f,t € T give rise to a unitary
representation of T in M(D4 ® C) which satisfies uj T2 = yIry M T2
for f1,fo € C(XA, Z)

(ii) For each g € C(Xp,Z), the unitaries utB’g,t € T give rise to a unitary

representation of T in M(Dp ® C) which satisfies ul 979> = y 29149
for g1,92 € C(Xp,Z).

Proof. (i) By Lemma 3.6 and (3.15), we have

upTud T =va(pf T @1id) (v)va(p2 70 @ id)(v)

=(a5y + (U= f) ® 1)al; + veovi,) (a5 + (Us(—f) @ 1)gly + vev},)

* A,
=5+ (Ures(=F) © Vagy + vew?, = gl
The equality w72 = 142 immediately follows from Lemma 3.7. (ii)
is shown similarly. O

We thus have

PRrROPOSITION 3.10. Let A, B be nonnegative irreducible and non-permutation
matrices. Suppose that they are elementary equivalent, and choose matrices
C and D satisfying A = CD, B = DC. Then there exist an isomorphism ® :
040K = OpRK satisfying (Da®C) = Dp®C, and unitary representations
teT — u™ € M(Dy®C) for each f € C(Xa,Z) and t € T — uP? €
M(Dp ®C) for each g € C(Xp,Z) such that

® o Ad(u) o (o @id) = (o7 " @id) o ®  for € C(Xa,Z),

Do (pf’w(g) ®id) = Ad(ul9) o (pP @id)o ® for g C(Xp,Z).
Proof. As in the proof of [15, Proposition 4.3], the map ® = Ad(w) where

w = vpv} gives rise to an isomorphism ¢ : O4 ® K — Op ® K such that
@(DA ®C) =D ®C and

® o Ad(u) o (o ®id) = (PP ®id) o ®.
The other equality is shown similarly. O
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Since both homomorphisms ¢ : C(X4,Z) — C(Xp,Z) and ¢ : C(Xp,Z) —
C(X4,7Z) satisty (1) = 1,9(1) = 1, we have the following corollary.

COROLLARY 3.11 (cf. [7, Theorem 3.8], [6, Theorem 2.3]). Let A, B be ir-
reducible mon-permutation matrices. Suppose that the two-sided topological
Markov shifts (Xa,04) and (Xg,5g) are topologically conjugate. Then there
exist an isomorphism ® : O4 @ K — Op ® K of C*-algebras satisfying
®(Da ®C) = Dp ®C, and unitary representations t € T — v{* € M (D4 ®C)
andt € T — vP € M(Dp ®C) such that

@ o Ad(v]) o (p;' @id) = (pf ®id) 0 @,
Do (pf @id) = Ad(vP) o (pP @id) o ®

where pf* and pP are the gauge actions on O, and Op, respectively.

REMARK 3.12. We must emphasize that Cuntz—Krieger in [7, Theorem 3.8]
and Cuntz in [6, Theorem 2.3] have shown that the stabilized Cuntz—Krieger
triplet (04 ® K,Da ® C, p* ® id) is invariant under topological conjugacy of
the two-sided topological Markov shifts (X 4,54). Hence the above corollary
is weaker than their result.

Before ending this section, we will introduce a notion of strong Morita equiva-
lence in the stabilized Cuntz-Krieger triplets. The triplet (04 @K, D4®C, pA®
id) is called the stabilized Cuntz—Krieger triplet. Two stabilized Cuntz—Krieger
triplets (04 ® K, D4 ®@C,p* ®@id) and (Op @ K,Dp ® C, p? ®id) are said to
be strong Morita equivalent in 1-step if there exist a stabilized Cuntz—Krieger
triplet (Oz ® K, Dz ® C, p? ®id) and isomorphisms of C*-algebras

Pp: 020K — 040K, Pp: 00K — 0K
satisfying

(PA(DZ®C):DA®C, (I)B(Dz(X)C):DB@C,
i (851 0 g & idoBy) o (05 0 0ido )
(@ o p ®ido @) 0 (851 0 pF @ido D).

If two stabilized Cuntz—Krieger triplets (04 ® K, D4 ®C, p” ®@id) and (Op ®
K,Dp®C, pP ®id) are connected by n-chains of strong Morita equivalences in
1-step, they are said to be strong Morita equivalent in n-step, or simply strong
Morita equivalent.

PRrROPOSITION 3.13. Let A and B be irreducible and not any permutation matri-
ces. Suppose that A, B are elementary equivalent. Then the stabilized Cuntz—
Krieger triplets (04 @ K, D4 ®C, pA ®id) and (Op @ K,Dp ®C, pP @id) are
strong Morita equivalent in 1-step.
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Proof. Let Z = g g . Take isometries v4,vp € M(Oz®K) satisfying (3.7).
By Lemma 3.8, the following identities hold
(0" @id)(va) = va, (P @id)(vp) = v

Define ® 4 = Ad(va), 5 = Ad(vp). As in (3.8), they give rise to isomorphisms
P: 020K — 040K, Pp: 00K — 0K
satisfying
PA(Dz2C)=Ds®C, Op(Dz®C)=Dp®C.

Since we see

i (S = 8o, p " (Sa) = VTS,

P 0(Se) = VTS, pP 0 (S0) = S
forceC,de D,wehavefort @ K € Oz ® K

(5 @id) 0 @a) (2 ® K) =(p{*%" @ id)(va(z ® K)v})

=va(p{ " @id)(z @ K)v}

=Py 0 (ptZ’OEBl ®id)(z ® K).

Hence we have (p®id)o® 4 = ® 40 (p7*® ®id) and similarly (p? ®id)o®p =

P o (pP'* @id). Since
. Z,160 _ . Z,0®1 _ . Z,0®1 _ . Z,180 _ .
pf @id = (p" " @id) o ("' @id) = (p""" @id) o (o @ id),
we know the assertion. O

Therefore we have the following corollary.

COROLLARY 3.14. If A, B are strong shift equivalent, then the stabilized Cuntz—
Krieger triplets (04 @ K,Da ®C, p* ®id) and (Op ® K,Dp ®@C, p? ®id) are
strong Morita equivalent.

4 BEHAVIOR ON K-THEORY

In this section we will study the behavior of the isomorphism ® : 04 ® £ —
Op ® K in Proposition 3.10 on their K-groups @, : Kq(O4) — Ko(Op) under
the condition A = CD, B = DC.

Recall that A = [A(i,5)]);—; is an N x N matrix with entries in nonnegative
integers. Then the associated graph G4 = (V4, E4) consists of the vertex set
Va = {vf,...,v4} of N vertices and edge set F4 = {ai,...,an,}, where
there are A(i,j) edges from v to v]‘-“. Denote by t(a;), s(a;) the terminal
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vertex of a;, the source vertex of a;, respectively. The graph G4 has the
N4 x N4 transition matrix A% = [AG(i,j)]%-Azl of edges defined by (2.1). The
Cuntz—Krieger algebra O 4 is defined as the Cuntz—Krieger algebra O 4¢ for the
matrix A® which is the universal C*-algebra generated by partial isometries
Sa;st = 1,..., N4 subject to the relations (2.2). We similarly consider the
Np x N matrix B¢ with entries in {0, 1} for the graph Gg = (Vg, Eg) of the
matrix B with vertex set Vg = {vP,... 05} and edge set Ep = {b1,...,bny },
so that we have the other CuntzKrieger algebra Opgc for the matrix B which
is denoted by Op.

Now we are assuming that A = CD and B = DC for some nonnegative rectan-
gular matrices C' and D. Both A and B are also assumed to be irreducible and
not any permutations. Since A = CD, the edge set F 4 is regarded as a subset
of the product Ec x Ep of those of E¢ and Ep. As in Section 2, we may take
a bijection w4 cp from E4 to a subset of Ec x Ep. For any a; € E4, there
uniquely exist ¢(a;) € Ec and d(a;) € Ep such that 4 cp(a;) = c(a;)d(a;).
We write it simply as a; = ¢(a;)d(a;). Similarly, for any edge b; € Epg, there
uniquely exist d(b;) € Ep and ¢(b;) € E¢ such that ¢p, Dc(bz) d(b )c( ), sim-
ply written b; = d(b;)c(b;). We define the N4 x Np matrix D = [D(4,1

by
ﬁ(i, )= 1 if d(a,-).: d(by), (4.1)
0 otherwise.

LEMMA 4.1. The matriz Dt : ZN4 — ZN5 jinduces a homomorphism from
ZNAJ(id — (AG))ZN4 to ZNe /(id — (BG)")ZNE as abelian groups.

Proof. Fori=1,...,Ny and [ =1,..., Ng, we know that both

ff)(z k)BC (k,1)

MZ

[A® D] (i, 1) ZA i,5)D(j,1) and [DB](i,1) =

=
Il
—

are the cardinal number of the set {c € Ec | d(a;)cd(b;) € B3(Xz)}. Hence we
have AD = DBY. We then have that D'(id — (A®)")ZN4 C (id — (B¢)")ZN»
so that D! induces a desired homomorphism. O

We denote by @ 5, the above homomorphism from Z"4 /(id — (AG)t)ZNA to
ZN5 [(id — (BS))ZN# induced by Dt

Let us denote by [eN4] the class of the vector M4 = (0,...,0, i,(), ...,0) €
ZNA in ZN4 /(id — (AG) )ZN4. Tt was shown in [6] that the correspondence
eac : Ko(O46) — ZN4/(id — (A%)")ZN4 defined by €qa([Sq,S5]) = [eN4]
yields an isomorphism of abelian groups. We then have

PROPOSITION 4.2. Suppose that A=CD,B=DC. Let ®: O, K - Op®K
be the isomorphism constructed in the proof of Proposition 3.10 such that ® =
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Ad(w) with w = vgv¥ for the isometry va as well as vg defined before Lemma
3.5. Then the diagram

KO(OAG) —_— Ko(OBG)

€AGJ/ leBG

ZN4 /(id — (AS)yzZNa 2By 7Ns /(1q — (BG)"ZN>
18 commutative.

Proof. We note that K = K(¢?(N)) has a countable basis and N is decomposed
such as N = U72;N; where N; is also a disjoint infinite set such as N; =
U ,N;, with disjoint infinite sets N;, for every k = 0,1,2,.... We write Nj,
as Nj, = {jx(0), jx(1),7x(2), ... }. In particular for j = 1,k = 0, we denote by
n=1g(n) for n=0,1,2,... so that Ny, = {0,1,2,...}. Let pr,n=0,1,2,...
be the sequence of projections of rank one in K such that 7 ps = fi,- By
[6, Proposition 3.1], the group Ko(O 4z¢) is generated by the projections of the
form

SaiSZ,; @ Pos izla"~aNA'

Denote by 14 the unit of O 4¢ so that [14] = 21]\21 [Sa, S5, @pp) in Ko(O4c). Let
O = Ad(w) : Oy6 @K — Ope ®K be the isomorphism constructed in the proof
of Proposition 3.10. Hence @, : Ko(Ogc) = Ko(Opa) satisfies @, ([S,, 5% ®

a; ~a;
po]) = [w(Sa,; S}, ®py)*w*]. To complete the proof of the proposition, we provide
the following two lemmas. O

Let I(i) be the number [ = 1,..., N¢ satisfying ¢; = c(a;) so that d(I(i)) € Ep
satisfies Ty = Sd(l(i))SC(ai)S* ) in (3.14). We put $150y,10 = S103,151,1¢ and

c(a;
— *
8107ll(i) - 811(7;),10 .

LEMMA 4.3. Keep the above notation.
(1) w(Sa@S; ®p6)w* = UB(SGZS;; ® 81,10p()810,1)11*3-

(i) vB(Sa,; 55, © 5110P3510,1)08 = Sa(i))Se(as)Sd(a) Si(a,) Se(an) Sda(y) ©
81;3:),10P0510,1,¢;) -

Proof. (i) The unitary w is given by w = vgv%. We know vqg = Y~ v, and

v1 =P ®s1,1 + EkN:Dl Uk ® s1,1- As pgs1,1 =0for k=1,..., Np, we have

03 (84,85, ® po)va = v1 (5S4, S,, ® po)v1
= (PC & 510,1)*(5117‘,‘9:,; ®p6)(PC ® S10,1)

*
= SaiSai ® 51,19P0510,1-
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(ii) For ¢ € E¢ = {c1,...,cne} and a; € Eja, we note that S} S, =
S Sc(ai)Sd(as) if €1 = c(a;), otherwise zero. Hence we have

% *
vB (84, 5;, ® 51,1,P0510,1)Vp

Nc NC *
= (ZTZ ® 511,1> (Sajszi ® 81,10176510,1) (Z Ty ® 511/,1>
=1

=1
N¢
= S, S5 8,.8% 8,85 S%,, ®81,18 0514.15]
d(l)PeciPePaiPa; PP e Pd(l) 1;,151,10P0510,151, 1
=1

:Sd(l(i))SC(ai)Sd(ai)S;(ai)S:(ai)S;(l(i)) @ 8153:y,10P0510, 113y -

LEMMA 4.4. Sd(ai)S;(m) = Z;\;Bl -D(Za Z)sz Sl;kl

Proof. In the algebra Ogc, we have Zl]\z Sp, Sy, = 1. As by = d(by)e(br), it im-

plies that Zf\:‘l Sd(bz)SC(bz)S:(bl)S;(bl) = Pp in Ogz. By multiplying Sd(ai)S;(ai)
to the equality we have

Np
Z Sd(ai)S;(ai)Sd(bz)SC(bz)S:(bl)S;(bl)Sd(ai)Ss(ai) = Sd(ai,)S;(aiy
=1
Since .
Saas)Sa(anSaw) = D@ 1) Saw,),
we have
Np
Z D&, 1) Saq) Seo)Sev)Saw) = Sdtas)Si(ar)-
=1
As Sy, = Sqv,)Se(n), We get the desired equality. O

Proof of Proposition 4.2:
By using Lemma 4.3, we have the equalities in K¢(Opgc):

P.([Sa; Sa, ®pol) = [Sa(i))Se(a)Sda:)Sa(as)Se(as) Sa)) ® Sicy,10P0510, 11 )-
Since

[Sd(l(i))SC(ai)Sd(ai)S;(ai)S:(aj)S;(l(i)) ® 511(1)710p6810711(i)]
:[Sd(al)S;(m) ®f10p6f10] in KO(OBG)a
and flop(_)flo = Do, W€ have
(I)*([Saiszi ®p()]) = [Sd(az:)S;(ai) ®p6]

As €46([Sa, Sz, ®@pg)) = [e)*] and e ([Sy, S;, ®@pg)) = [¢] ®], By using Lemma

a;~a;

4.4, we complete the proof of Proposition 4.2. [
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Let S4 and R4 be the Ny x N matrix and N X N4 matrix defined by

; ) — 4 if 4 = )
SA(z',j):{l S RA(j,z‘):{l hervi,

0 otherwise, 0 otherwise,

fori=1,...,Ngyand j =1,..., N, respectively. We then have A = R4S and
A¢ = S,R,. We similarly have the matrices S, Rp for the other matrix B
such that B = RpSp and B¢ = SpRp. The matrix S ZN4 — 7N induces
a homomorphism Z~4 /(id — (AG)t)ZNA — ZN /(id — AY)ZN of abelian groups
which is actually an isomorphism since its inverse is given by a homomorphism
induced by RY. The above isomorphism is denoted by (I)qu- We have an
isomorphism gt ZNE /(id — (BG)t)ZNB — ZM/(id — BY)ZM in a similar
way.

Now we are assuming that A = CD,B = DC so that AC = C'B and hence
CtA* = B'C*. The matrix C* : ZV — ZM induces a homomorphism from
ZN /(id — AYZN to ZM /(id — BY)ZM as abelian groups, which is denoted by
®eoe. It is actually an isomorphism with ®pe as its inverse. We notice the
following lemma. The second assertion (ii) is pointed out by Hiroki Matui.
The author thanks him for his advice.

LEMMA 4.5. (i) The diagram

ZN4 J(id — (AG)")ZNa 22U ZN= /(id — (BC)')ZNE

| o

ZNJ(d — ANZN 2, zMGd - BYyZM

1s commutative.
(ii) (I)SZ([(I’ 1L,....,0))=1[(11,...,1)].

Proof. (i) Since ® j is induced by the matrix Dt it suffices to prove the equality
DS = S4C. Let (i,j) bei=1,...,Nq and j = 1,..., M so that a; € Ex
and UjB € Vg. Let k be such that t(a;) = vi'. Hence we have

N
[SaC](i,5) =Y Sa(i,n)C(n, j) = C(k, j)

which is the number of edges of E¢ leaving v{! and terminating at Uf. On the

other hand,
Mp

[DSB)(,§) =Y D(i,))Sz(l, ).

=1

It is easy to see that the above number is also C(k, 7).
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(ii) Since A = R4Sa4, for each k = 1,..., N4 with a;, € E4 there exists a
unique 4 = 1,..., N such that s(az) = v{*. Hence Zfil Ra(i, k) = 1 so that
we have for each j=1,..., N

N

DA =

=1

Ra(i, k)Sa(k,j)

N
Il
_

PH1> wMz
MZ lM>

-
Il
_

A(i’k)> Sa(k,j)

Il
]2
=
<
&

o
Il
_

We then see

Ogr ([(1,1 = ZSAkl ZSAk2 ZSAkN
ZAtlz ZAt2z ZAtNZ

= [(1, 1, oD inZV/(d - At)ZN.
O

Put
ea=®g 0eq0: Ko(Oa) = 2V /(id — ANZY, (4.2)
which is an isomorphism of groups such that e4([14]) = [(1,1,...,1)]. We thus

reach the following theorem:

THEOREM 4.6. Suppose that two nonnegative irreducible matrices A, B satisfy
A =CD,B = DC for some nonnegative rectangular matrices C,D. Let ® :
04K — O ® K be the isomorphism constructed in the proof of Proposition
3.10 such that ® = Ad(w) with w = vpvy for the isometry va as well as vp
defined before Lemma 3.5. Then the diagram

Ko(Oa) 2 Ko(Op)
GAl leB
ZN /(id — ANZN —2€, ZM /(iq — Bt)ZM
is commutative, where all maps are isomorphisms of abelian groups.

We write A =~ Bif A=CD, B= DC. Recall that A, B are said to be strong

7

shift equivalent in n-step if there exist a finite sequence of square matrices
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Aq,...,A,_1 and two finite sequences of rectangular matrices Cy,...,C, and
D1,..., D, such that

= B.

A= AO ~ Al Al ~ AQ e A —1 ~ A
1,D1 ’ C2,D> ’ ’ " CnyDn "

This situation is written
A ~ ... =~ B. (4.3)
C1,D1 Chn,Dp,

R. F. Williams proved that two-sided topological Markov shifts (X4a,54) and
(Xp,0p) are topologically conjugate if and only if A and B are strong shift
equivalent in n-step for some n ([25]). Hence we have the following corollary.

COROLLARY 4.7. Suppose that two matrices A, B are strong shift equiva-
lent in n-step for some two sequences of rectangular matrices Cy,...,C, and
D1, ..., D, asin (4.3). Then there exist an isomorphism @ : O4®K — Op®K
of C*-algebras and a unitary representation t € T — v* € M(Da ® C) such
that

®(Da®C)=DpC, P o Ad(v) o (p ®@id) = (pP ®id) o &,
and the following diagram is commutative

Ko(O) P, Ko(Op)

GAJ( leB
P t
ZN J(id — At)zZN 2 g M (iq — BYZM.,

We note that the inverse of
<I>(Clc,2,,,cn)t : ZN/(id — At)ZN — ZM/(id — Bt)ZM is given by
D (p,..pypyy LM /(id — BYZM — ZN /(id — AY)ZY .

5 CONVERSE AND INVARIANT

In this section, we will study the converse of Corollary 3.11 by using Corollary
4.7. We fix a projection p; of rank one in /C.

PRrOPOSITION 5.1. The following assertions are equivalent.

(1) There exist an isomorphism & : O4 @ K — Op @ K of C*-algebras and a
unitary one-cocycle u; € M(Op ® K),t € T relative to pP ®id such that

(D C)=DpRC, Po(p@id) =Ad(u) o (pZ @id)o®, (5.1)
P, ([1a®@pi]) =[1p @p1] in Ko(Op). (5.2)

(ii) There exist an isomorphism ¢ : Ox — Op and a unitary one-cocycle
v; € U(Og),t € T relative to pP on Op such that

¢(Da)=Dp and @opl =Ad(v)opop, teT. (53)
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Proof. The implication (ii) = (i) is obvious by putting & = ¢ ® id and
u; = v, ® 1. We will show the implication (i) = (ii) in the following way.
By [13, Proposition 3.13], the condition @.([14 ® p1]) = [1p ® p1] in Ko(Op)
ensures that there exists a partial isometry V' € Op ® K satisfying the following
conditions:

V(D @C)V* CDp®C, V*(DPpeC)V CDp®C,
VV*=1p®@p1, V'V =90(14&®p1).

Put ¥ =Ad(V)oP: 04 @K — Op ® K. It is straightforward to see that

V(04 @ Cp1) = Op ®Cpy, ¥(Da®Cp1) =Dp @ Cpy,
V(lsa@p1) =1®@pr1.
Tt is clear that U, = @, : Ko(O4) — Ko(Op). We identify Op ® Cp; with Op.
Put the partial isometry v; = Vuy(pf ®1d)(V*) € Op ® K. Since vy = (15 ®

p1)ve(1p ® p1), by this identification, v; belongs to Op. Define ¢ : O4 — Op
by setting ¢(a) = ¥U(a @ p1) for a € O4. It then follows that

o(p(a)) @ pr =Vo(p;(a) @ pr)V*
=V (Ad(u¢) o (pf @id) o ®)(a @ p1)V*
=Vui(pf @1d)(V*)(pf @1d)@(V (a @ p1)V*)(pf @1d)(V)u;V*
=v((pf ®id) o ¥)(a & p1)vy
=(Ad(vy) o (pf © ¢)(a)) @ p1

so that we have p(p(a)) = (Ad(v¢) o pB o ¢)(a). Since we have

(o @ id)(@(1s @ p1)) =(Ad(u) 0 B (pf @ id)) (14 @ py)
=u;P(1a @ p1)us = uy V"V,
we have
vipp (vs) =Vuy(pf @id)(V*)(pf @id)(Vus(pf ©1id)(V*))
=Vuy(pf @id)(V*V)(p/ @id)(us)(pf 0 p @id)(V*)
=Vui(pf ®id)(@(1a @ p1))(py @id)(us)(pfy, @ id)(V)
ViV Vuy(pF @ 1d)(us) (o8, @1d)(V*)
=V (pf @id)(us)(pfy s @ 1d)(V*)
=Vurrs(pps ©1d) (V)

=Vtts-
Hence v;,t € T is a unitary one-cocycle relative to p?. O
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REMARK 5.2. Let v; in Op be a unitary one-cocycle relative to p? satisfying
(5.3). For a € D4, we see that p(pi*(a)) = Ad(v:)(pP(¢(a))). As pii(a) = a
and ¢(a) belongs to Dp so that we have p(a) = Ad(v)(¢(a)). Hence v,
commutes with any element of Dg. This implies that v; belongs to Dp and
hence it is fixed by the action p®. Therefore a unitary one-cocycle vy in Op
relative to pP satisfying (5.3) automatically belongs to Dp and yields a unitary
representation t € T — v; € Dp. Since the unitary u; in (5.1) is given by
us = v:®1 from the unitary v; satisfying (5.3), the unitary one-cocycle u; in the
statement (i) of the above proposition can be taken as a unitary representation
t €T — u; € M(Dp ®C) which is fixed by the action p? ® id.

COROLLARY 5.3. If there exist an isomorphism @ : O4 @ K — Op ® K of
C*-algebras and a unitary one-cocycle u; in M(Op ® K) relative to pP ® id
such that

(D4 ®C)=DpRC, Do (pf ®id) = Ad(ug) o (pP ®id) o &,
D.([la ®@p1]) = 1 @ p1] in Ko(Op),

then two-sided topological Markov shifts (Xa,64) and (Xp,&5) are topologi-
cally conjugate.

Proof. Suppose that there exist an isomorphism @ : 04 @ K — Op ® K and a
unitary one-cocycle u; in M(Op ® K) relative to pP ® id satisfying the above
equalities. Proposition 5.1 tells us that there exist an isomorphism ¢ : O4 —
Op and a unitary one-cocycle v; € U(Op),t € T relative to pP on Op satisfying
(5.3). Hence the one-sided topological Markov shifts (X4,04) and (Xp,0p)
are strongly continuous orbit equivalent by [14, Theorem 6.7]. It also implies
topological conjugacy of their two-sided topological Markov shifts (X 4,54) and
(Xp,55) by [14, Theorem 5.5]. O

DEFINITION 5.4. An isomorphism £ : Op @ K — O4 ® K of C*-algebras is
said to be induced from strong shift equivalence if there exist a strong shift

equivalence A =~ --- =&~ B and a unitary one-cocycle u; in M (04 ® K)
Cl,Dl CnyDTL

relative to pi' ® id such that
EDp®C)=Da®C,  Eo(pf @id) = Ad(us)o (pi' ®id) o,
f* = 6;‘1 o (I)(Dn---Dng)f o€p : KU(OB) — K()(OA)

In this case, we say that £ : Op ® K — O4 ® K is induced from strong shift

equivalence A ~ .- =~ B.
C1,D, Crn,Dnp

We will define the strong shift equivalence invariant subset KSSE(OA) of
Ky(Oy4) as follows.

DEFINITION 5.5.

K55E(04) = {[p] € Ko(O4) | there exist a square matrix B and
an isomorphism £ : Op ® K — O4 ® K induced from
strong shift equivalence such that &, ([15]) = [p] in Ko(Oa)}.
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We note that the class [14] in Ky(O4) of the unit 14 of O4 always belongs to
the set K5°¥(0,), because we may take B = A and & = id.

PROPOSITION 5.6. Suppose that there ezists a topological conjugacy be-
tween (Xa,04) and (Xp,og). Then there exists an isomorphism 1
Ko(Oa) — Ko(Og) satisfying n(K55%(04)) = K§(Op). Hence the pair
(Ko(O04),K55P(0,4)) is an invariant under topological conjugacy of two-sided
topological Markov shifts.

Proof. Suppose that (X4,64) and (Xp,&p) are topologically conjugate so

that A ~ - ~ B for some nonnegative rectangular matrices
Cl,Dl Cn7Dn

C1,Dq,...,Cp,D,. By Corollary 4.7, the strong shift equivalence induces
an isomorphism €4 : O4 ® K — Op ® K and a unitary one-cocycle u; in
M(Op ® K) relative to pP ® id such that

(pa(Pa®C)=Dp®C,  Epao(pf ®id) = Ad(us)o (pf @id)oépa,
fBA* = (I)(Cl...cn)t : KO(OA) — KO(OB).

Put 7 = €pax : Ko(Oa) = Ko(Op). Take an element [p] € K5°F(04). There

exist a square nonnegative matrix A’ and an isomorphism €44 : Oy @ K —

O A®K of C*-algebras induced from strong shift equivalence A’ =~ .- =
cy.py  c!,.D,

A such that £44/.([1a/]) = [p] in Ko(Oa). Then the isomorphism g4 0 €44/ :
O4 ® K — Op ® K is induced from strong shift equivalence

A o~ . &= N A&
~ ~ ~ ~
c\.p; c,D, CiDi  CnDn

B
such that n([p]) = (€4 0 Eaar)«([14/]) in Ko(Op) so that n([p]) € K5 F(Op).
O

Suppose that two matrices A, B are strong shift equivalent in n-step such as
(4.3). The matrix B in (4.3) is given by B = D,,C,, so that (4.3) is written as

A =

-+~ D,C,. (5.4)
C1,D1 Crn,Dn,

We set the following sequence SSE,,(A),n = 1,2,... of subsets of the group
ZN

SSE,.(A)
={vezZ"|v=D}.--D!_Di[1,1,...,1]", A ~ - ~ D,C,
{U € |’U 1 n—1 n[ ] ) ] ’ Ci.D1 Ch D C }7
where [1,1,...,1]" denotes (the row size of D,,) X 1 matrix whose entries are

all 1’s. We define the sequence Kifg?n(A), n =1,2,... of subsets of the group
ZN /(id — AYZN by

KSPE (A) = {[v] € ZV /(id — AYZN | v € SSE,(4)}, n=1,2,....

alg,n
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We then define the subset KSPF(A) of ZV /(id — AYZN by

alg

Kol (4) = UnZ KGh (A).

By Corollary 4.7, we have the following proposition

PROPOSITION 5.7. Let €4 : Ko(Oa) — ZN /(id — AY)ZN be the isomorphism
defined in (4.2). Then we have

ea(K5°P(04)) = K" (A).

alg

Proof. For [p] € K§5E(0,4), there exist a nonnegative square matrix B with a

strong shift equivalence A ~ --- &~ B, an isomorphism ¢ : Ogp @ K —
C1,Dq CrnyDn

04 ® K of C*-algebras and a unitary one-cocycle u;,t € T relative to p? ® id
such that

EDpRC)=Da®C, Eo(pP @id) = Ad(us) o (p ®id) o0&,  (5.5)

&= 0Qp  pypyo€n i Ko(Op) = Ko(Oa) and  &([15]) = [p]-
(5.6)

Since ep([15]) = [[1,1,...,1])!] in ZM /(id — B*)ZM , we have
ea(lp]) =ea o & ([18]) (5.7)
=®p,..p,p,) ©€8([1B]) = ®(p,...0,p, ) (1,1, ..., 114 5.8

so that ea([p]) € K3F(A) and hence e (K552(04)) € K52 (A).

Conversely, take an arbitrary element [v] € Kilng (A). We may find a strong shift
equivalence A ~ --- =~ D,C, such that v= (D, --- Dng)t[l, 1,...,1]%

C1,D1 CrnyDn
Put B = D, C,,. By Corollary 4.7, there exist an isomorphism £ : Op ® K —
04 ® K of C*-algebras and a unitary one-cocycle u,t € T relative to p? ® id
satisfying (5.5) and & = e;' o ®p . p,p,y 0 €s : Ko(Op) = Ko(Oa). Put
[p] = &([18]) which belongs to K§5¥(04). By the same equalities as (5.7),
(5.8), we get ea([p]) = @(p,..p,pyt([1,1,...,1]") which is the class of [v].
This shows that e4(K55F(04)) D K3PE(4). O

alg

THEOREM 5.8. Let A, B be nonnegative irreducible and non-permutation ma-
trices. The following two assertions are equivalent.

(i) Two-sided topological Markov shifts (X a,04) and (Xp,5g) are topologi-
cally conjugate.

(ii) There exist an isomorphism @ : Oy @ K — Op @ K of C*-algebras and a
unitary one-cocycle u; in M(Op ® K) relative to pP ©id such that

H(Da®C)=DpC,  Po(p®id) = Ad(u) o (p? ®id) o &,
b, (K5"P(04)) = K§°F(Op) in Ko(Op).
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Proof. (i) = (ii): The assertion follows from Corollary 3.11 and Proposition
5.6.

(ii) = (i): Suppose that there exist an isomorphism @ : 04 @ K — Op @ K
of C*-algebras and a unitary one-cocycle u; in M(Op ® K) relative to pP ®
id satisfying the conditions of (ii). Take a projection p; of rank one in K.
Put the projection p = ®(14 @ p1) € Op ® K. As [14] € K§5F(04) and
. (K$5E(04)) = K§SE(Op), the class [p] = @.([14]) of pin Ko(Op) belongs to
K53E(Op). One may take a nonnegative square matrix B’ and an isomorphism
v:0p®K — Op @K with a unitary one-cocycle u} in M (Op' @ K) relative to

ptBl ® id induced from strong shift equivalence B =~ --- =~ B’ satisfying
C1,D1 CnyDn

¥(Pp®C)=Dp ®C,  yol(pf @id) = Ad(uj) o (pf ®id) o,
%) = [lp]  in Ko(Op).

Then the isomorphism yo® : Oy @ K — Op: ® K satisfies the conditions

(vo@)(Da®C)=Dp ®C,
(vo®) o (pft @id) = Ad(v(u)uf) o (pf ®@id) o (y0 ®),
(vo®)u([1a]) =[1p] in Ko(Op).

By Corollary 5.3, the two-sided topological Markov shifts (X A4,04) and
(Xpr,0p/) are topologically conjugate. Since (Xp,05) and (Xp/,0p/) are
topologically conjugate, so are (X4,54) and (Xp,75). O

REMARK 5.9. The unitary one-cocycle u; in M(Op ® K) in (ii) of the above
theorem can be taken as a unitary representation t € T — u; € M(Op ® K)
by Corollary 3.11.

DEFINITION 5.10. A nonnegative square matrix A = [A(4, j)]};—, is said to

have full strong shift equivalent units in Kg-group if KnggE(A) = 7ZN/(id —
AYZN . We simply call it that A has full units.

By Proposition 5.7, A has full units if and only if K55%(04) = K¢(O4). Since
the subset K§F(04) C Ko(O4) is invariant under topological conjugacy of
two-sided topological Markov shifts by Proposition 5.6, we have

PROPOSITION 5.11. Suppose that two-sided topological Markov shifts (Xa,54)
and (Xp,0p) are topologically conjugate. Then A has full units if and only if
B has full units.

As a consequence of Theorem 5.8, we have the following corollary.

COROLLARY 5.12. Suppose that both A and B have full units. Then the fol-
lowing two assertions are equivalent.

(i) Two-sided topological Markov shifts (Xa,64) and (Xp,55) are topologi-
cally conjugate.
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(ii) There exist an isomorphism ® : 04 @ K — Op @ K of C*-algebras and a
unitary one-cocycle u; in M(Op ® K) relative to pP ©id such that

®(Dy®C)=DpRC, P o (p @id) = Ad(uy) o (pP ®id) o @.

EXAMPLE 5.13.

1. If Ko(O4) =0, then A has full units.

2. Let A be the 1 x 1 matriz [N] whose entry is N with 1 < N € N. Then
the matriz A has full units. For any 0 <k < N —1, let C be the 1 x (k+ 1)
matriz [1,...,1, N—k| and D the (k+1) x Imatriz (1,1,...,1)*. Then A= CD
and D'[1,...,1]' = k+ 1. Hence [k +1] € Z/(1 — N)Z so that K5, (A) =
Z)(1 - N)Z = Ko(O.).

There is no known example of irreducible, non permutation matrix A such that
A does not have full units.
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REMARK 5.14. After submitting the paper, there were several progress in the
following papers related to this paper:

1. T. M. Carlsen and J. Rout, Diagonal-preserving gauge invariant isomor-
phisms of graph C*-algebras, preprint, arXiv: 1610.00692 [mathOA].

2. K. Matsumoto, State splitting, strong shift equivalence and stable isomor-
phism of Cuntz—Krieger algebras, preprint, arXiv: 1611.06627 [mathOA].

In the paper 1, the converse implication of [7, Theorem 3.8] was proved, In the
paper 2, strong shift equivalence class of the matrix A was described in terms
of (OA,DA,pA) and (OAt,DAt,pAt).
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