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Abstract. For a prime number p and a free profinite group S,
let S(n,p) be the nth term of its lower p-central filtration, and S[n,p]

the corresponding quotient. Using tools from the combinatorics
of words, we construct a canonical basis of the cohomology group
H2(S[n,p],Z/p), which we call the Lyndon basis, and use it to obtain
structural results on this group. We show a duality between the Lyn-
don basis and canonical generators of S(n,p)/S(n+1,p). We prove that
the cohomology group satisfies shuffle relations, which for small values
of n fully describe it.
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1. Introduction

Let p be a fixed prime number. For a profinite group G one defines the lower

p-central filtration G(n,p), n = 1, 2, . . . , inductively by

G(1,p) = G, G(n+1,p) = (G(n,p))p[G,G(n,p)].

Thus G(n+1,p) is the closed subgroup of G generated by the powers hp and
commutators [g, h] = g−1h−1gh, where g ∈ G and h ∈ G(n,p). We also set
G[n,p] = G/G(n,p).

Now let S be a free profinite group on the basis X , and let n ≥ 2. Then
S[n,p] is a free object in the category of pro-p groups G with G(n,p) trivial.
As with any pro-p group, the cohomology groups H l(S[n,p]) = H l(S[n,p],Z/p),
l = 1, 2, capture the main information on generators and relations, respectively,

1This work was supported by the Israel Science Foundation (grant No. 152/13).
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in a minimal presentation of S[n,p]. The group H1(S[n,p]) is just the dual
(S[2,p])∨ ∼=

⊕

x∈X Z/p, and it remains to understand H2(S[n,p]).

When n = 2 the quotient S[2,p] is an elementary abelian p-group, and the struc-
ture of H2(S[2,p]) is well-known. Namely, for p > 2 one has an isomorphism

H1(S[2,p])⊕
∧2H1(S[2,p])

∼
−→ H2(S[2,p]),

which is the Bockstein map on the first component, and the cup product on the
second component. Furthermore, taking a basis χx, x ∈ X , of H1(S[2,p]) dual
to X , there is a fundamental duality between pth powers and commutators in
the presentation of S and Bockstein elements and cup products, respectively,
of the χx (see [NSW08, Ch. III, §9] for details). These facts have numer-
ous applications in Galois theory, ranging from class field theory ([Koc02],
[NSW08]), the works by Serre and Labute on the pro-p Galois theory of p-adic
fields ([Ser63], [Lab67]), the structure theory of general absolute Galois groups
([MS96], [EM11]), the birational anabelian phenomena ([Bog91], [Top16]), Ga-
lois groups with restricted ramification ([Vog05], [Sch10]), and mild groups
([Lab06], [For11], [LM11]), to mention only a few of the pioneering works in
these areas.

In this paper we generalize the above results from the case n = 2 to arbitrary
n ≥ 2. Namely, we give a complete description of H2(S[n,p]) in terms of a
canonical linear basis of this cohomology group. This basis is constructed using
tools from the combinatorics of words – in particular, the Lyndon words in
the alphabet X , i.e., words which are lexicographically smaller than all their
proper suffixes (for a fixed total order on X). We call it the Lyndon basis,
and use it to prove several structural results on H2(S[n,p]), and in particular
to compute its size (see below).

The Lyndon basis constructed here can be most naturally described in terms
of central extensions, as follows: For 1 ≤ s ≤ n let U denote the group of all
unipotent upper-triangular (s+ 1)× (s+ 1)-matrices over the ring Z/pn−s+1.
There is a central extension

0→ Z/p→ U→ U[n,p] → 1

(Proposition 6.3). It corresponds to a cohomology element γn,s ∈ H2(U[n,p]).
For a profinite group G and a continuous homomorphism ρ : G → U we write
ρ̄ : G[n,p] → U[n,p] for the induced homomorphism, and ρ̄∗γn,s for the pull-

back to H2(G[n,p]). Now for any word w = (x1 · · ·xs) in the alphabet X
we define a homomorphism ρw : S → U by setting the entry (ρw(σ))ij to be
the coefficient of the subword (xi · · ·xj−1) in the power series Λ(σ), where
Λ: S → (Z/pn−s+1)〈〈X〉〉× is the Magnus homomorphism, defined on the
generators x ∈ X by Λ(x) = 1+x (see §3 and §6 for more details). The Lyndon
basis is now given by:

Main Theorem. The pullbacks αw,n = (ρ̄w)∗γn,s, where w ranges over all
Lyndon words of length 1 ≤ s ≤ n in the alphabet X, form a linear basis of
H2(S[n,p]) over Z/p.
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We further show a duality between the Lyndon basis and certain canonical
elements σw ∈ S(n,p), with w a Lyndon word of length ≤ n, generalizing the
above mentioned duality in the case n = 2 (see Corollary 8.3).

The cohomology elements ρ̄∗γn,s include the Bockstein elements (for s = 1),
the cup products (for n = s = 2), and more generally, the elements of n-fold
Massey products in H2(G[n,p]) (for n = s ≥ 2); see Examples 7.4. The full
spectrum ρ̄∗γn,s, 1 ≤ s ≤ n, appears to give new significant “external” objects
in profinite cohomology, which to our knowledge have not been investigated so
far in general.

Lyndon words are known to have tight connections with the shuffle algebra,
and indeed, the αw,n for arbitrary words w of length ≤ n in X satisfy natu-
ral shuffle relations (Theorem 9.4). In §10-§11 we show that for n = 2, 3
these shuffle relations fully describe H2(S[n,p]), provided that p > 2, p > 3,
respectively (for n = 2 this was essentially known). Interestingly, related con-
siderations arise also in the context of multiple zeta values, see e.g. [MP00],
although we are not aware of a direct connection.

The Lyndon words on X form a special instance of Hall sets, which are well-
known to have fundamental role in the structure theory of free groups and
free Lie algebras (see [Reu93], [Ser92]). In addition, the Lyndon words have a
triangularity property (see Proposition 4.4(b)). This property allows us
to construct certain upper-triangular unipotent matrices that express a (semi-
)duality between the σw and the cohomology elements αw,n.

We now outline the proof that the αw,n form a linear basis of H2(S[n,p]). For
simplicity we assume for the moment that X is finite. To each Lyndon word
w of length 1 ≤ s ≤ n one associates in a canonical way an element τw of the
s-th term of the lower central series of S (see §4). The cosets of the powers

σw = τp
n−s

w generate S(n,p)/S(n+1,p) (Theorem 5.3). Using the special structure
of the lower p-central filtration of U we define for any two Lyndon words w,w′

of length ≤ n a value 〈w,w′〉n ∈ Z/p (see §6). The triangularity property of
Lyndon words implies that the matrix

(

〈w,w′〉n
)

is unipotent upper-triangular,
whence invertible. Turning now to cohomology, we define a natural perfect
pairing

(·, ·)n : S
(n,p)/S(n+1,p) ×H2(S[n,p])→ Z/p.

Cohomological computations show that, for Lyndon words w,w′ of length ≤
n, one has 〈w,w′〉n = (σw, αw′,n)n. Hence the matrix

(

(σw , αw′,n)n
)

is also

invertible. We then conclude that the αw′,n form a basis ofH2(S[n,p]) (Theorem
8.5). This immediately determines the dimension of the latter cohomology
group, in terms of Witt’s necklace function, which counts the number of
Lyndon words over X of a given length (Corollary 8.6).

In the special case n = 2, the theory developed here generalizes the above de-
scription of H2(S[2,p]) in terms of the Bockstein map and cup products (see
§10 for details). Namely, the matrix (〈w,w′〉2) is the identity matrix, which
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gives the above duality between pth powers/commutators and Bockstein ele-
ments/cup products. Likewise, the shuffle relations just recover the basic fact
that the cup product factors via the exterior product.
In §11 we describe our theory explicitly also for the (new) case n = 3.

While here we focus primarily on free profinite groups, it may be interesting
to study the canonical elements ρ̄∗γn,s for more general profinite groups G, in
particular, when G = GF is the absolute Galois group of a field F . For instance,
when n = 2, they were used in [EM11] (following [MS96] and [AKM99]) and

[CEM12] to describe the quotient G
[3,p]
F . Triple Massey products for GF (which

correspond to the case n = s = 3) were also extensively studied in recent years –
see [EM15], [MT15b], [MT16], [MT17], and [Wic12] and the references therein.
I thank Claudio Quadrelli and the anonymous referee for their careful reading of
this paper and for their very valuable comments and suggestions on improving
the exposition.

2. Words

Let X be a nonempty set, considered as an alphabet. Let X∗ be the free
monoid on X . We view its elements as associative words on X . The length of
a word w is denoted by |w|. We write ∅ for the empty word, and ww′ for the
concatenation of words w and w′.
Recall that a magma is a setM with a binary operation (·, ·) :M×M→M.
A morphism of magmas is a map which commutes with the associated binary
operations. There is a free magmaMX on X , unique up to an isomorphism;
that is, X ⊆MX , and for every magma (·, ·) : N×N → N and a map f0 : X →
N there is a magma morphism f :MX → N extending f0. See [Ser92, Ch. IV,
§1] for an explicit construction of MX . The elements ofMX may be viewed
as non-associative words on X .
The monoid X∗ is a magma with respect to concatenation, so the universal
property ofMX gives rise to a unique magma morphism f :MX → X∗, called
the foliage (or brackets dropping) map, such that f(x) = x for x ∈ X .
Let H be a subset ofMX and ≤ a total order on H. We say that (H,≤) is a
Hall set in MX , if the following conditions hold [Reu93, §4.1]:

(i) X ⊆ H;
(ii) If h = (h′, h′′) ∈ H \X , then h < h′′;
(iii) For h = (h′, h′′) ∈ MX \X , one has h ∈ H if and only if

• h′, h′′ ∈ H and h′ < h′′; and
• either h′ ∈ X , or h′ = (v, u) where u ≥ h′′.

Given a Hall set (H,≤) inMX we call H = f(H) a Hall set in X∗.
Every w ∈ H can be written as w = f(h) for a unique h ∈ H [Reu93, Cor. 4.5].
If w ∈ H \X , then we can uniquely write h = (h′, h′′) with h′, h′′ ∈ H, and call
w = w′w′′, where w′ = f(h′) and w′′ = f(h′′), the standard factorization

of w [Reu93, p. 89].
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Next we fix a total order ≤ on X , and define a total order ≤alp (the alpha-

betical order) on X∗ as follows: Let w1, w2 ∈ X∗. Then w1 ≤alp w2 if and
only if w2 = w1v for some v ∈ X∗, or w1 = vx1u1, w2 = vx2u2 for some words
v, u1, u2 and some letters x1, x2 ∈ X with x1 < x2. Note that the restriction
of ≤alp to Xn is the lexicographic order.
In addition, we order Z≥0 × X∗ lexicographically with respect to the usual
order on Z≥0 and the order ≤alp on X∗. We then define a second total order
� on X∗ by setting

(2.1) w1 � w2 ⇐⇒ (|w1|, w1) ≤ (|w2|, w2)

with respect to the latter order on Z≥0 ×X∗.
A nonempty word w ∈ X∗ is called a Lyndon word if it is smaller in ≤alp

than all its non-trivial proper right factors. Equivalently, no non-trivial rota-
tion leaves w invariant, and w is lexicographically strictly smaller than all its
rotations 6= w ([CFL58, Th. 1.4], [Reu93, Cor. 7.7]). We denote the set of all
Lyndon words on X by Lyn(X), and the set of all such words of length n (resp.,
≤ n) by Lynn(X) (resp., Lyn≤n(X)). The set Lyn(X), totally ordered with
respect to ≤alp, is a Hall set [Reu93, Th. 5.1].

Example 2.1. The Lyndon words of length ≤ 4 on X are

(x) for x ∈ X,

(xy), (xxy), (xyy), (xxxy), (xxyy), (xyyy) for x, y ∈ X, x < y,

(xyz), (xzy), (xxyz), (xxzy), (xyxz), (xyyz), (xyzy), (xyzz),

(xzyy), (xzyz), (xzzy) for x, y, z ∈ X, x < y < z,

(xyzt), (xytz), (xzyt), (xzty), (xtyz), (xtzy) for x, y, z, t ∈ X, x < y < z < t

The necklace map (also called theWitt map) is defined for integers n,m ≥ 1
by

ϕn(m) =
1

n

∑

d|n

µ(d)mn/d.

Here µ is the Möbius function, defined by µ(d) = (−1)k, if d is a product of
k distinct prime numbers, and µ(d) = 0 otherwise; Alternatively, 1/ζ(s) =
∑∞

n=1 µ(n)/n
s, where ζ(s) is the Riemann zeta function and s is a complex

number with real part> 1. Whenm = q is a prime power, ϕn(q) also counts the
number of irreducible monic polynomials of degree n over a field of q elements
[Reu93, §7.6.2]. We also define ϕn(∞) =∞. One has [Reu93, Cor. 4.14]

(2.2) |Lynn(X)| = ϕn(|X |).

3. Power series

We fix a commutative unital ring R. Recall that a bilinear map M ×N → R
of R-modules is non-degenerate if its left and right kernels are trivial, i.e.,
the induced maps M → Hom(N,R) and N → Hom(M,R) are injective. The
bilinear map is perfect if these two maps are isomorphisms.
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Let R〈X〉 be the free associative R-algebra on X . We may view its elements
as polynomials over R in the non-commuting variables x ∈ X . The additive
group of R〈X〉 is the free R-module on the basis X∗. We grade R〈X〉 by
total degree. Let R〈〈X〉〉 be the ring of all formal power series in the non-
commuting variables x ∈ X and coefficients in R. For f ∈ R〈〈X〉〉 we write
fw for the coefficient of f at w ∈ X∗. Thus f =

∑

w∈X∗ fww. There are
natural embedings X∗ ⊆ R〈X〉 ⊆ R〈〈X〉〉, where we identify w ∈ X∗ with the
series f such that fw = 1 and fw′ = 0 for w′ 6= w. There is a well-defined
non-degenerate bilinear map of R-modules

(3.1) R〈〈X〉〉 ×R〈X〉 → R, (f, g) 7→
∑

w∈X∗

fwgw;

See [Reu93, p. 17]. For every integer n ≥ 0, it restricts to a non-degenerate
bilinear map on the homogenous components of degree n.
We may identify the additive group of R〈〈X〉〉 with RX∗

via the map f 7→
(fw)w. When R is equipped with a profinite ring topology (e.g. when R is

finite), the product topology on RX∗

induces a profinite group topology on
R〈〈X〉〉. Moreover, the multiplication map of R〈〈X〉〉 is continuous, making
it a profinite ring. The group R〈〈X〉〉× of all invertible elements in R〈〈X〉〉 is
then a profinite group.
Next we recall from [FJ08, §17.4] the following terminology and facts on free
profinite groups. Let G be a profinite group and X a set. A map ψ : X → G
converges to 1, if for every open normal subgroupN of G, the setX\ψ−1(N)
is finite. We say that a profinite group S is a free profinite group on basis

X with respect to a map ι : X → S if

(i) ι : X → S converges to 1 and ι(X) generates S as a profinite group;
(ii) For every profinite groupG and a map ψ : X → G converging to 1, there

is a unique continuous homomorphism ψ̂ : S → G such that ψ = ψ̂ ◦ ι
on X .

A free profinite group on X exists, and is unique up to a continuous isomor-
phism. We denote it by SX . The map ι is then injective, and we identify X
with its image in SX .
We define the (profinite) Magnus homomorphism ΛX,R : SX → R〈〈X〉〉× as
follows (compare [Efr14, §5]):
Assume first that X is finite. For x ∈ X one has 1 = (1 + x)

∑∞
i=0(−1)

ixi in
R〈〈X〉〉, so 1 + x ∈ R〈〈X〉〉×. Hence, by (ii), the map ψ : X → R〈〈X〉〉×, x 7→
1+x, uniquely extends to a continuous homomorphism ΛX,R : SX → R〈〈X〉〉×.
Now suppose that X is arbitrary. Let Y range over all finite subsets of X . The
map ψ : X → SY , which is the identity on Y and 1 on X \ Y , converges to 1.
Hence it extends to a unique continuous group homomorphism SX → SY . Also,
there is a unique continuous R-algebra homomorphism R〈〈X〉〉 → R〈〈Y 〉〉,
which is the identity on Y and 0 on X \ Y . Then

SX = lim
←−

SY , R〈〈X〉〉 = lim
←−

R〈〈Y 〉〉, R〈〈X〉〉× = lim
←−

R〈〈Y 〉〉×.
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We define ΛX,R = lim
←−

ΛY,R. It is functorial in both X and R in the natural

way. Note that ΛX,R(x) = 1 + x for x ∈ X .
In the sequel, X will be fixed, so we abbreviate S = SX and ΛR = ΛX,R.

For σ ∈ S and a word w ∈ X∗ we denote the coefficient of w in ΛR(σ) by
ǫw,R(σ). Thus

ΛR(σ) =
∑

w∈X∗

ǫw,R(σ)w.

By the construction of ΛR, we have ǫ∅,R(σ) = 1. Since ΛR is a homomorphism,
for every σ, τ ∈ S and w ∈ X∗ one has

(3.2) ǫw,R(στ) =
∑

w=u1u2

ǫu1,R(σ)ǫu2,R(τ).

We will also need the classical discrete version of the Magnus homomorphism.
To define it, assume that X is finite, and let FX be the free group on basis
X . There is a natural homomorphism FX → SX . The discrete Magnus

homomorphism Λdisc
Z

: FX → Z〈〈X〉〉× is defined again by x 7→ 1 + x. There
is a commutative square

(3.3) FX
//

Λdisc
Z

��

SX

ΛZp

��

Z〈〈X〉〉× �

�

// Zp〈〈X〉〉×.

4. Lie algebra constructions

Recall that the lower central filtration G(n,0), n = 1, 2, . . . , of a profinite
group G is defined inductively by

G(1,0) = G, G(n+1,0) = [G(n,0), G].

Thus G(n+1,0) is generated as a profinite group by all elements of the form
[σ, τ ] with σ ∈ G(n,0) and τ ∈ G. One has [G(n,0), G(m,0)] ≤ G(n+m,0) for every
n,m ≥ 1 (compare [Ser92, Part I, Ch. II, §3]).

Proposition 4.1. Let S = SX and let σ ∈ S. Then:

(a) σ ∈ S(n,0) if and only if ǫw,Zp
(σ) = 0 for every w ∈ X∗ with 1 ≤ |w| <

n;
(b) σ ∈ S(n,p) if and only if ǫw,Zp

(σ) ∈ pn−|w|Zp for every w ∈ X∗ with
1 ≤ |w| < n.

Proof. In the discrete case (a) and (b) are due to Grün and Magnus (see [Ser92,
Part I, Ch. IV, th. 6.3]) and Koch [Koc60], respectively. The results in the
profinite case follow by continuity.
For other approaches see [Mor12, Prop. 8.15], [CE16, Example 4.5], and
[MT15a, Lemma 2.2(d)]. �

We will need the following profinite analog of [Fen83, Lemma 4.4.1(iii)].
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Lemma 4.2. Let σ ∈ S(n,0) and τ ∈ S(m,0), and let w ∈ X∗ have length n+m.
Write w = u1u2 = u′2u

′
1 with |u1| = |u′1| = n and |u2| = |u′2| = m. Then

ǫw,Zp
([σ, τ ]) = ǫu1,Zp

(σ)ǫu2,Zp
(τ) − ǫu′

2,Zp
(τ)ǫu′

1,Zp
(σ).

Proof. By Proposition 4.1(a), we may write ΛZp
(σ) = 1 + P + O(n + 1) and

ΛZp
(τ) = 1+Q+O(m+1), where P,Q ∈ Zp〈〈X〉〉 are homogenous of degrees

n,m, respectively, and where O(r) denotes a power series containing only terms
of degree ≥ r. Then

ΛZp
([σ, τ ]) = 1 + PQ−QP +O(n +m+ 1).

(compare e.g., [Mor12, Proof of Prop. 8.5]). By (3.2), it follows that

ǫw,Zp
([σ, τ ]) = (PQ−QP )w = Pu1Qu2 −Qu′

2
Pu′

1

= ǫu1,Zp
(σ)ǫu2,Zp

(τ) − ǫu′
2,Zp

(τ)ǫu′
1,Zp

(σ).

�

The commutator map induces on the graded ring
⊕∞

n=1 S
(n,0)/S(n+1,0) a

graded Lie algebra structure [Ser92, Part I, Ch. II, Prop. 2.3]. Let d be
the ideal in the Zp-algebra Zp〈〈X〉〉 generated by X . Then

⊕∞
n=1 d

n/dn+1

is a Lie algebra with the Lie brackets defined on homogenous components by
[f̄ , ḡ] = fg − gf for f ∈ d

n, g ∈ d
m [Ser92, p. 25]. By Proposition 4.1(a), ΛZp

induces a graded Zp-algebra homomorphism

gr ΛZp
:

∞
⊕

n=1

S(n,0)/S(n+1,0) →
∞
⊕

n=1

d
n/dn+1, σS(n+1,0) 7→

∑

|w|=n

ǫw,Zp
(σ)+d

n+1.

Then Lemma 4.2 means that gr ΛZp
is a Lie algebra homomorphism.

For w ∈ Lyn(X) we inductively define an element τw of S and a non-
commutative polynomial Pw ∈ Z〈X〉 ⊆ Zp〈X〉 as follows:

• If w = (x) has length 1, then τw = x and Pw = x;
• If |w| > 1, then we take the standard factorization w = w′w′′ of w with
respect to the Hall set Lyn(X) (see §2), and set

τw = [τw′ , τw′′ ], Pw = Pw′Pw′′ − Pw′′Pw′ .

For w ∈ Lynn(X) one has τw ∈ S(n,0). Moreover:

Proposition 4.3. Let n ≥ 1. The cosets of τw, with w ∈ Lynn(X), generate
S(n,0)/S(n+1,0).

Proof. See [Reu93, Cor. 6.16] for the discrete version. The profinite version
follows by taking closure. �

Let ≤alp and � be the total orders on X∗ defined in §2. The importance of
the Lyndon words in our context, beside forming a Hall set, is part (b) of the
following Proposition, called the triangularity property.

Proposition 4.4. Let w ∈ Lyn(X). Then

(a) ΛZp
(τw)− 1− Pw is a combination of words of length > |w|.

Documenta Mathematica 22 (2017) 973–997



Cohomology and Lyndon Words 981

(b) Pw−w is a combination of words of length |w| which are strictly larger
than w with respect to ≤alp.

(c) ΛZp
(τw)−1−w is a combination of words which are strictly larger than

w in �.

Proof. (a) Since grΛZp
is a Lie algebra homomorphism, for w ∈ Lynn(X) we

have by induction

(grΛZp
)(τwS

(n+1,0)) = Pw + d
n+1,

and the assertion follows. See also [Reu93, Lemma 6.10(ii)].

(b) See [Reu93, Th. 5.1] and its proof.

(c) This follows from (a) and (b). �

5. Generators for S(n,p)/S(n+1,p)

Let π be an indeterminate over the ring Z/p and let Z/p[π] be the polynomial
ring. Let A• =

⊕∞
n=1An be a graded Lie Z/p-algebra with Lie bracket [·, ·].

Suppose that there is a map Z/p[π] × A• → A•, (α, ξ) 7→ αξ, which is Z/p-
linear in Z/p[π], such that πξ ∈ As+1 for ξ ∈ As, and such that for every
ξ1, ξ2 ∈ As,

(5.1) π(ξ1 + ξ2) =

{

πξ1 + πξ2, if p > 2 or s > 1,

πξ1 + πξ2 + [ξ1, ξ2], if p = 2, s = 1.

By induction, this extends to:

Lemma 5.1. Let r, k, s ≥ 1 and let ξ1, . . . , ξk ∈ As. Then

πr(

k
∑

i=1

ξi) =

{

∑k
i=1 π

rξi, if p > 2 or s > 1,
∑k

i=1 π
rξi +

∑

i<j π
r−1[ξi, ξj ], if p = 2, s = 1.

We write 〈T 〉 for the submodule of A• generated by a subset T .

Lemma 5.2. Let n ≥ 2 and for each 1 ≤ s ≤ n let Ts be a subset of As. When
p = 2 assume also that [τ1, τ2] ∈ T2 ∪ {0} for every τ1, τ2 ∈ T1. If the sets
πn−s〈Ts〉, s = 1, 2, . . . , n, generate An, then the sets πn−sTs, s = 1, 2, . . . , n,
also generate An.

Proof. When p > 2 or s > 1 Lemma 5.1 shows that πn−s〈Ts〉 = 〈πn−sTs〉.
When p = 2 and s = 1, it shows that

πn−1〈T1〉 ⊆ 〈π
n−1T1〉+ 〈π

n−2T2〉 ⊆ An.

Therefore the subgroup of An generated by the sets πn−sTs, s = 1, 2, . . . , n,
contains the sets πn−s〈Ts〉, s = 1, 2, . . . , n, and hence equals An. �

Motivated by e.g., [Laz54], [Ser63], [Lab67], we now specialize to a graded Lie
algebra defined using the lower p-central filtration. We refer to [NSW08, Ch.
III, §8] for the following facts. For the free profinite group S on the basis X and
for n ≥ 1 we set grn(S) = S(n,p)/S(n+1,p). It is an elementary abelian p-group,
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which we write additively. The commutator map induces a map [·, ·] : grn(S)×
grm(S)→ grn+m(S), which endows a graded Lie algebra structure on gr•(S) =
⊕∞

n=1 grn(S). The map τ 7→ τp maps S(r,p) into S(r+1,p), and induces a map
πr : grr(S) → grr+1(S). The map (πr , ξ) 7→ πr(ξ) for ξ ∈ grr(S) extends to a
map Z/p[π]× gr•(S)→ gr•(S) which is Z/p-linear in the first component and
which satisfies (5.1).

Theorem 5.3. Let n ≥ 1. The cosets of τp
n−s

w , with 1 ≤ s ≤ n and w ∈
Lyns(X), generate S(n,p)/S(n+1,p).

Proof. The case n = 1 is immediate, so we assume that n ≥ 2. For every
1 ≤ s ≤ n let Ts be the set of cosets of τw, w ∈ Lyns(X), in grs(S). By
Proposition 4.3, 〈Ts〉 is the image of S(s,0) in grs(S). Hence π

n−s〈Ts〉 consists
of the cosets in grn(S) of the p

n−s-powers of S(s,0). One has

S(n,p) =

n
∏

s=1

(S(s,0))p
n−s

[NSW08, Prop. 3.8.6]. Thus the sets πn−s〈Ts〉, s = 1, 2, . . . , n, generate grn(S).
Further, T1 consists of the cosets of x, with x ∈ X , and T2 consists of the cosets
of commutators [x, y] with x < y in X . Moreover, when p = 2 the cosets of
[x, y] and [y, x] = [x, y]−1 in gr2(S) coincide. Lemma 5.2 therefore implies that
even the sets πn−sTs, s = 1, 2, . . . , n, generate grn(S), as required. �

6. The pairing 〈w,w′〉n

For a commutative unitary ring R and a positive integer m, let Um(R) be the
group of all m×m upper-triangular unipotent matrices over R. We write Im
for the identity matrix in Um(R), and Eij for the matrix with 1 at entry (i, j)
and 0 elsewhere. As above, X will be a totally ordered set.
For the following fact we refer, e.g., to [Efr14, Lemma 7.5]. We recall from §3
that ǫu,R(σ) is the coefficient of the word u ∈ X∗ in the formal power series
ΛR(σ) ∈ R〈〈X〉〉×.

Proposition 6.1. Given a profinite ring R and a word w = (x1 · · ·xs) in X∗

there is a well defined homomorphism of profinite groups

ρwR : S → Us+1(R), σ 7→ (ǫ(xi···xj−1),R(σ))1≤i<j≤s+1 .

Remark 6.2. In particular, for each x ∈ X the map χx,R = ǫ(x),R : S →
R is a group homomorphism, where R is considered as an additive group.
The homomorphisms χx,R, x ∈ X , are dual to the basis X , in the sense that
χx,R(x) = 1, and χx,R(y) = 0 for x 6= y in X .

Proposition 6.3. Let 1 ≤ s ≤ n. For R = Z/pn−s+1 one has:

(a) Us+1(R)
(n,p) = Is+1 + Zpn−sE1,s+1.

(b) Us+1(R)
(n,p) is central in Us+1(R).
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Proof. (a) We follow the argument of [MT15a, Lemma 2.4]. Take X =
{x1, . . . , xs} be a set of s elements, let S = SX , and let w = (x1 · · ·xs). The
matrices ρwR(xi) = Is+1 + Ei,i+1, i = 1, 2, . . . , s, generate Us+1(R) [Wei55, p.

55], so ρwR is surjective. Therefore it maps S(n,p) onto Us+1(R)
(n,p).

By Proposition 4.1(b), for σ ∈ S(n,p) and u ∈ X∗ of length 1 ≤ |u| ≤ s one has
ǫu,Zp

(σ) ∈ pn−|u|Zp.

If |u| < s, then ǫu,Zp
(σ) ∈ pn−|u|Zp ⊆ pn−s+1Zp. Hence ǫu,R(σ) = 0 in this

case.
If |u| = s, then ǫu,Zp

(σ) ∈ pn−sZp, so ǫu,R(σ) ∈ pn−sR.

Moreover, τp
n−s

w ∈ (S(s,0))p
n−s

≤ S(n,p). By Proposition 4.4(c), ΛZp
(τw) =

1+w+f , where f is a combination of words strictly larger than w in �. Hence

ΛZp
(τp

n−s

w ) = 1 + pn−sw + g, where g is also a combination of words strictly

larger than w in �, which implies that ǫw,R(τ
pn−s

w ) = pn−s · 1R.
Consequently, Us+1(R)

(n,p) = ρwR(S
(n,p)) = Is+1 + Zpn−sE1,s+1.

(b) It is straightforward to see that Is+1 +ZE1,s+1 is central in Us+1(R), so
the assertion follows from (a). �

See [Bor04, §2] for a related analysis of the lower p-central filtration of
Us+1(Z/p

n−s+1).

Consider the obvious isomorphism

ιn,s : p
n−sZ/pn−s+1Z

∼
−→ Z/p, apn−s (mod pn−s+1) 7→ a (mod p).

In view of Proposition 6.3(a), we may define a group isomorphism

ιUn,s : Us+1(Z/p
n−s+1)(n,p)

∼
−→ Z/p, (aij) 7→ ιn,s(a1,s+1).

Next let w,w′ ∈ X∗ be words of lengths 1 ≤ s, s′ ≤ n, respectively,

where w is Lyndon. We have τp
n−s

w ∈ (S(s,0))p
n−s

≤ S(n,p). By Propo-

sition 4.1(b), ǫw′,Zp
(τp

n−s

w ) ∈ pn−s′Zp, and therefore ǫw′,Z/pn−s′+1(τp
n−s

w ) ∈

pn−s′Z/pn−s′+1Z. We set

(6.1) 〈w,w′〉n = ιn,s′(ǫw′,Z/pn−s′+1(τp
n−s

w )) ∈ Z/p.

Alternatively,

(6.2) 〈w,w′〉n = ιUn,s′(ρ
w′

Z/pn−s′+1(τ
pn−s

w )).

Let � be as in (2.1).

Proposition 6.4. Let w,w′ be words in X∗ of lengths 1 ≤ s, s′ ≤ n, respec-
tively, with w Lyndon.

(a) If w′ ≺ w, then 〈w,w′〉n = 0;
(b) 〈w,w〉n = 1;
(c) If w′ contains letters which do not appear in w, then 〈w,w′〉n = 0;
(d) If s < s′ < 2s, then 〈w,w′〉n = 0.
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Proof. (a), (b) Proposition 4.4(c) implies that ΛZp
(τp

n−s

w ) − 1 − pn−sw is a
combination of words strictly larger than w with respect to �, and the same
therefore holds over the coefficient ring Z/pn−s′+1. Hence, if w′ ≺ w, then

ǫw′,Z/pn−s′+1(τp
n−s

w ) = 0, so 〈w,w′〉n = 0. If w = w′, then ǫw,Z/pn−s+1(τp
n−s

w ) =

pn−s · 1Z/pn−s+1, whence 〈w,w〉n = 1.

(c) Here we clearly have ǫw′,Z/pn−s′+1(τp
n−s

w ) = 0.

(d) Since τw ∈ S(s,0), one may write ΛZp
(τw) = 1 + P +O(s′ + 1), where P

is a combination of words w′′ of length s ≤ |w′′| ≤ s′, and O(s′ + 1) denotes a
combination of words of length ≥ s′+1 (Proposition 4.1(a)). Since s′ < 2s, this

implies that ΛZp
(τp

n−s

w ) = 1+pn−sP +O(s′+1). In particular, ǫw′,Zp
(τp

n−s

w ) ∈
pn−sZp, and therefore

ǫw′,Z/pn−s′+1(τp
n−s

w ) ∈ pn−s(Z/pn−s′+1) = {0},

since s < s′. Hence 〈w,w′〉n = 0. �

7. Transgressions

Given a profinite group G and a discrete G-module A, we write as usual
Ci(G,A), Zi(G,A), and Hi(G,A) for the corresponding group of continu-
ous i-cochains, group of continuous i-cocycles, and the ith profinite cohomol-
ogy group, respectively. For x ∈ Zi(G,A) let [x] be its cohomology class in
Hi(G,A).
For a normal closed subgroup N of G, let trg : H1(N,A)G → H2(G/N,AN ) be

the transgression homomorphism. It is the map d0,12 of the Lyndon–Hochschild–
Serre spectral sequence associated with G and N [NSW08, Th. 2.4.3]. We recall
the explicit description of trg, assuming for simplicity that the G-action on A is
trivial [NSW08, Prop. 1.6.6]: If x ∈ Z1(N,A), then there exists y ∈ C1(G,A)
such that y|N = x and (∂y)(σ1, σ2) depends only on the cosets of σ1, σ2 modulo
N , so that ∂y may be viewed as an element of Z2(G/N,A). For any such y
one has trg([x]) = [∂y].
We fix for the rest of this section a finite group U and a normal subgroup N of
U satisfying:

(i) N ∼= Z/p; and
(ii) N lies in the center of U.

We set Ū = U/N , and let it act trivially on U. We denote the image of u ∈ U

in Ū by ū. We may choose a section λ of the projection U → Ū such that
λ(1̄) = 1. We define a map δ ∈ C2(Ū, N) by

δ(ū, ū′) = λ(ū) · λ(ū′) · λ(ūū′)−1.

It is normalized, i.e., δ(ū, 1) = δ(1, ū) = 1 for every ū ∈ Ū.
We also define y ∈ C1(U, N) by y(u) = uλ(ū)−1. Note that y|N = idN .

Lemma 7.1. For every u, u′ ∈ U one has

δ(ū, ū′) · y(u) · y(u′) = y(uu′).

Documenta Mathematica 22 (2017) 973–997



Cohomology and Lyndon Words 985

Proof. Since y(u) and y(u′) are in N , they are central in U, so

δ(ū, ū′) · y(u) · y(u′) = λ(ū) · λ(ū′) · λ(ūū′)−1 · y(u) · y(u′)

= y(u) · λ(ū) · y(u′) · λ(ū′) · λ(ūū′)−1

= uu′λ(ūū′)−1 = y(uu′).

�

For the correspondence between elements of H2 and central extensions see e.g.,
[NSW08, Th. 1.2.4].

Proposition 7.2. Using the notation above, the following holds.

(a) δ ∈ Z2(Ū, N);
(b) One has trg(idN ) = −[δ] for the transgression map trg : H1(N,N)U →

H2(Ū, N).
(c) The cohomology class [δ] ∈ H2(Ū, N) corresponds to the equivalence

class of the central extension

(7.1) 1→ N → U→ Ū→ 1.

Proof. (a), (b): For u, u′ ∈ U Lemma 7.1 gives

(∂y)(u, u′) = y(u) · y(u′) · y(uu′)−1 = δ(ū, ū′)−1.

This shows that δ is a 2-cocycle, and that (∂y)(u, u′) depends only on the cosets
ū, ū′. Further, idN ∈ Z1(N,N). By the explicit description of the transgression
above, trg(idN ) = −[δ].

(c) Consider the set B = N × Ū with the binary operation

(u, v̄) ∗ (u′, v̄′) = (δ(v̄, v̄′)uu′, v̄v̄′).

The proof of [NSW08, Th. 1.2.4] shows that this makes B a group, and [δ]
corresponds to the equivalence class of the central extension

(7.2) 1→ N → B → Ū→ 1.

Moreover, the map h : U→ B, u 7→ (y(u), ū) is clearly bijective. We claim that
it is a homomorphism, whence an isomorphism. Indeed, for u, u′ ∈ U Lemma
7.1 gives:

h(u) ∗ h(u′) = (y(u), ū) ∗ (y(u′), ū′) = (δ(ū, ū′)y(u)y(u′), ūū′)

= (y(uu′), ūū′) = h(uu′).

We obtain that the central extension (7.2) is equivalent to the central extension
(7.1). �

Next let Ḡ be a profinite group, and let ρ̄ : Ḡ→ Ū be a continuous homomor-
phism. Let ι : N

∼
−→ Z/p be a fixed isomorphism (see (i)). Set

(7.3) α = (ρ̄∗ ◦ ι∗)([δ]) = −(ρ̄
∗ ◦ ι∗ ◦ trg)(idN ) ∈ H2(Ḡ,Z/p),
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where the second equality is by Proposition 7.2(b). Then α corresponds to the
equivalence class of the central extension

(7.4) 0→ Z/p
ι−1×1
−−−−→ U×Ū Ḡ→ Ḡ→ 1,

where U×Ū Ḡ is the fiber product with respect to the natural projection U→ Ū

and to ρ̄; See [Hoe68, Proof of 1.1].
Suppose further that there is a profinite group G, a closed normal subgroup
M of G, and a continuous homomorphism ρ : G → U such that Ḡ = G/M ,
ρ(M) ≤ N , and ρ̄ : Ḡ→ Ū is induced from ρ. The functoriality of transgression
yields a commutative diagram

H1(N,N)U
ι∗

∼
//

trg

��

H1(N,Z/p)U
ρ∗

//

trg

��

H1(M,Z/p)G

trg

��

H2(Ū, N)
ι∗
∼

// H2(Ū,Z/p)
ρ̄∗

// H2(Ḡ,Z/p).

The image of idN ∈ H1(N,N) in H1(M,Z/p)G is

(7.5) θ = ι ◦ (ρ|M ) ∈ H1(M,Z/p).

By (7.3) and the commutativity of the diagram,

(7.6) α = − trg(θ) ∈ H2(Ḡ,Z/p)

Remark 7.3. Suppose that Ū is abelian and that Ḡ acts trivially on Ū. A
2-cocycle representing α is

(σ̄, σ̄′) 7→ ι(λ(ρ̄(σ̄)) · λ(ρ̄(σ̄′)) · λ(ρ̄(σ̄σ̄′))−1).

But λ(ρ̄(σ̄)) · λ(ρ̄(σ̄′)) · λ(ρ̄(σ̄σ̄′))−1 is a 2-cocycle representing the image of
ρ̄ under the connecting homomorphism H1(Ḡ, Ū) → H2(Ḡ,N) arising from
(7.1). Thus α is the image of ρ̄ under the composition

H1(Ḡ, Ū)→ H2(Ḡ,N)
ι∗−→ H2(Ḡ,Z/p).

Example 7.4. We give several examples of the above construction with the
group U = Us+1(Z/p

n−s+1) (where 1 ≤ s ≤ n), a continuous homomorphism
ρ : G → U, where G is a profinite group, and the induced homomorphism
ρ̄ : G[n,p] → U[n,p]. Note that assumptions (i) and (ii) then hold for N =
U(n,p), by Proposition 6.3. We will be especially interested in the case where
G = S = SX is a free profinite group, M = S(n,p), ρ = ρw

Z/pn−s+1 for a word

w ∈ X∗ of length 1 ≤ s ≤ n, and ρ̄ = ρ̄w
Z/pn−s+1 : S[n,p] → U[n,p] is the induced

homomorphism. In this setup we write αw,n for α.

(1) Bocksteins. For a positive integerm and a profinite group Ḡ, the connect-
ing homomorphism arising from the short exact sequence of trivial Ḡ-modules

0→ Z/p→ Z/pm→ Z/m→ 0

is the Bockstein homomorphism

Bockm,Ḡ : H1(Ḡ,Z/m)→ H2(Ḡ,Z/p).
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Let U = U2(Z/p
n) (i.e., s = 1). There is a commutative diagram of central

extensions

1 // U(n,p) //

≀

��

U //

≀

��

U[n,p] //

≀

��

1

0 // pn−1Z/pnZ // Z/pn // Z/pn−1 // 0.

For a profinite group Ḡ and a homomorphism ρ̄ : Ḡ → Z/pn−1, Remark 7.3
therefore implies that α = Bockpn−1,Ḡ(ρ̄).
In particular, for x ∈ X take

ρ̄ = ρ̄
(x)
Z/pn : Ḡ = S[n,p] → U2(Z/p

n)[n,p].

Identifying U2(Z/p
n)[n,p] = Z/pn−1, we obtain

α(x),n = Bockpn−1,S[n,p](ǫ(x),Z/pn−1).

(2) Massey products. Let n = s ≥ 2, so U = Un+1(Z/p). Let Ḡ be a
profinite group, let ρ̄ : Ḡ → U[n,p] be a continuous homomorphism, and let
ρi,i+1 : Ḡ→ Z/p denote its projection on the (i, i+1)-entry, i = 1, 2, . . . , n. By
a result of Dwyer [Dwy75, Th. 2.6], the extension (7.4) then corresponds to a
defining system for the n-fold Massey product

〈ρ12, ρ23, . . . , ρn,n+1〉 ⊆ H
2(Ḡ,Z/p)

(see [Efr14, Prop. 8.3] for the profinite analog of this fact). Thus, for a fixed
Ḡ and for homomorphisms ρ̄1, . . . , ρ̄n : Ḡ → Z/p, with ρ̄ varying over all ho-
momorphisms such that ρ̄i,i+1 = ρ̄i, i = 1, 2, . . . , n, the cohomology element α
ranges over the elements of the Massey product 〈ρ̄1, . . . , ρ̄n〉.
In particular, for Ḡ = S[n,p] and for a word w = (x1 · · ·xn) ∈ X∗ of
length n, the cohomology elements αw,n range over the Massey product

〈ǫ(x1),Z/p, . . . , ǫ(xn),Z/p〉 ⊆ H2(S[n,p],Z/p), where the ǫ(xi),Z/p are viewed as

elements of H1(S[n,p],Z/p).

(3) Cup products. In the special case n = s = 2, the Massey product
contains only the cup product. Hence for every profinite group Ḡ and a ho-
momorphism ρ̄ : Ḡ→ U3(Z/p) the cohomology element α ∈ H2(Ḡ,Z/p) is the
cup product ρ̄12 ∪ ρ̄23. In particular, for w = (xy) we have

α(xy),Z/p = ǫ(x),Z/p ∪ ǫ(y),Z/p ∈ H
2(S[2,p],Z/p).

8. Cohomological duality

Let S = SX be again a free profinite group on the totally ordered set X , and
let it act trivially on Z/p. Let n ≥ 2, so S(n,p) ≤ Sp[S, S]. Then the inflation
map H1(S[n,p],Z/p)→ H1(S,Z/p) is an isomorphism. Further, H2(S,Z/p) =
0. By the five-term sequence of cohomology groups [NSW08, Prop. 1.6.7],
trg : H1(S(n,p),Z/p)S → H2(S[n,p],Z/p) is an isomorphism.
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There is a natural non-degenerate bilinear map

S(n,p)/S(n+1,p) ×H1(S(n,p),Z/p)S → Z/p, (σ̄, ϕ) 7→ ϕ(σ)

(see [EM11, Cor. 2.2]). It induces a bilinear map

(·, ·)n : S
(n,p) ×H2(S[n,p],Z/p)→ Z/p, (σ, α)n = −(trg−1(α))(σ),

with left kernel S(n+1,p) and trivial right kernel.
Now let w ∈ X∗ be a word of length 1 ≤ s ≤ n. As in Examples 7.4, we apply
the computations in Section 7 to the group U = Us+1(Z/p

n−s+1), the open
normal subgroup N = U(n,p), the homomorphism ρ = ρw

Z/pn−s+1 : S → U, the

induced homomorphism ρ̄ = ρ̄w
Z/pn−s+1 : S[n,p] → U[n,p], and the closed normal

subgroup M = S(n,p) of S. We write θw,n, αw,n for θ, α, respectively.

Lemma 8.1. For σ ∈ S(n,p) and a word w ∈ X∗ of length 1 ≤ s ≤ n one has

(σ, αw,n)n = ιn,s(ǫw,Z/pn−s+1(σ)).

Proof. By (7.6) and (7.5),

(σ, αw,n)n = θw,n(σ) = ιUn,s(ρ
w
Z/pn−s+1(σ)) = ιn,s(ǫw,Z/pn−s+1(σ)). �

This and (6.1) give:

Corollary 8.2. Let w,w′ be words in X∗ of lengths 1 ≤ s, s′ ≤ n, respectively,
with w Lyndon. Then

(τp
n−s

w , αw′,n)n = 〈w,w′〉n.

Proposition 6.4(a)(b) now gives:

Corollary 8.3. Let Lyn≤n(X) be totally ordered by �. The matrix
(

(τp
n−|w|

w , αw′,n)n

)

,

where w,w′ ∈ Lyn≤n(X), is upper-triangular unipotent.

In general the above matrix need not be the identity matrix – see e.g., Propo-
sition 11.2 below. Next we observe the following general fact:

Lemma 8.4. Let R be a commutative ring and let (·, ·) : A×B → R be a non-
degenerate bilinear map of R-modules. Let (L,≤) be a finite totally ordered
set, and for every w ∈ L let aw ∈ A, bw ∈ B. Suppose that the matrix
(

(aw, bw′)
)

w,w′∈L
is invertible, and that aw, w ∈ L, generate A. Then aw,

w ∈ L, is an R-linear basis of A, and bw, w ∈ L, is an R-linear basis of B.

Proof. Let b ∈ B, and consider rw′ ∈ R, with w′ ∈ L. The assumptions
imply that b =

∑

w′ rw′bw′ if and only if (aw, b −
∑

w′ rw′bw′) = 0 for every
w. Equivalently, the rw′ solve the linear system

∑

w′(aw, bw′)Xw′ = (aw, b),
for w ∈ L. By the invertibility, the latter system has a unique solution. This
shows that bw, w ∈ L, is an R-linear basis of B.
By reversing the roles of aw, bw, we conclude that the aw, w ∈ L, form an
R-linear basis of A. �
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Theorem 8.5. (a) The cohomology elements αw,n, where w ∈ Lyn≤n(X),

form a Z/p-linear basis of H2(S[n,p],Z/p).

(b) When X is finite, the cosets of the powers τp
n−s

w , w ∈ Lyn≤n(X), form

a basis of the Z/p-module S(n,p)/S(n+1,p).

Proof. When X is finite, the set Lyn≤n(X) is also finite. By Theorem

5.3, the cosets aw of τp
n−|w|

w , where w ∈ Lyn≤n(X), generate the Z/p-

module S(n,p)/S(n+1,p). We apply Lemma 8.4 with the Z/p-modules A =
S(n,p)/S(n+1,p) and B = H2(S[n,p],Z/p), the non-degenerate bilinear map
A × B → Z/p induced by (·, ·)n, the generators aw of A, and the elements
bw = αw,n of B.
Corollary 8.3 implies that the matrix (aw, bw′) is invertible. Therefore Lemma
8.4 gives both assertions in the finite case.
The general case of (a) follows from the finite case by a standard limit argument.

�

We call αw,n, w ∈ Lyn≤n(X), the Lyndon basis of H2(S[n,p],Z/p).
Recall that the number of relations in a minimal presentation of a pro-p group
G is given by dimH2(G,Z/p) [NSW08, Cor. 3.9.5]. In view of (2.2), Theorem
8.5 gives this number for G = S[n,p]:

Corollary 8.6. One has

dimFp
H2(S[n,p],Z/p) = dimFp

(S(n,p)/S(n+1,p)) =

n
∑

s=1

ϕs(|X |),

where ϕs is the necklace map.

9. The shuffle relations

We recall the following constructions from [CFL58], [Reu93, pp. 134–135]. Let
u1, . . . , ut ∈ X

∗ be words of lengths s1, . . . , st, respectively. We say that a word
w ∈ X∗ of length 1 ≤ n ≤ s1+ · · ·+st is an infiltration of u1, . . . , ut, if there
exist sets I1, . . . , It of respective cardinalities s1, . . . , st such that {1, 2, . . . , n} =
I1 ∪ · · · ∪ It and the restriction of w to the index set Ij is uj, j = 1, 2, . . . , t.
We then write w = w(I1, . . . , It, u1, . . . , ut). We write Infil(u1, . . . , ut) for the
set of all infiltrations of u1, . . . , ut. The infiltration product u1 ↓ · · · ↓ ut
of u1, . . . , ut is the polynomial

∑

w in Z〈X〉, where the sum is over all such
infiltrations, taken with multiplicity.
If in the above setting, the sets I1, . . . , It are pairwise disjoint, then
w(I1, . . . , It, u1, . . . , ut) is called a shuffle of u1, . . . , ut. We write
Sh(u1, . . . , ut) for the set of all shuffles of u1, . . . , ut. It consists of the
words in Infil(u1, . . . , ut) of length s1 + · · · + st. The shuffle product

u1x · · ·xut is the polynomial
∑

w(I1, . . . , It, u1, . . . , ut) in Z〈X〉, where the
sum is over all shuffles of u1, . . . , ut, taken with multiplicity. Thus u1x · · ·xut
is the homogenous part of u1 ↓ · · · ↓ ut of (maximal) degree s1 + · · ·+ st. For
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instance

(xy) ↓ (xz) = (xyxz) + 2(xxyz) + 2(xxzy) + (xzxy) + (xyz) + (xzy),

(xy)x(xz) = (xyxz) + 2(xxyz) + 2(xxzy) + (xzxy)

(x) ↓ (x) = 2(xx) + (x), (x)x(x) = 2(xx).

We may view infiltration and shuffle products also as elements of Zp〈X〉. Let
Shuffles(X) be the Z-submodule of Z〈X〉 generated by all shuffle products uxv,
with ∅ 6= u, v ∈ X∗. Let Shufflesn(X) be its homogenous component of degree
n.

Examples 9.1. Shuffles1(X) = {0},

Shuffles2(X) = 〈(xy) + (yx) | x, y ∈ X〉,

Shuffles3(X) = 〈(xyz) + (xzy) + (zxy) | x, y, z ∈ X〉.

Let (·, ·) be the pairing of (3.1) for the ring R = Zp. As before, S = SX is
the free profinite group on the set X . The following fact is due to Chen, Fox,
and Lyndon in discrete case [CFL58, Th. 3.6] (see also [Mor12, Prop. 8.6],
[Reu93, Lemma 6.7]), as well as [Vog05, Prop. 2.25] in the profinite case.

Proposition 9.2. For every ∅ 6= u, v ∈ X∗ and every σ ∈ S one has

ǫu,Zp
(σ)ǫv,Zp

(σ) = (ΛZp
(σ), u ↓ v).

Corollary 9.3. Let u, v be nonempty words in X∗ with s = |u|+ |v| ≤ n. For
every σ ∈ S(n,p) one has (ΛZp

(σ), uxv) ∈ pn−s+1Zp.

Proof. If w is a nonempty word of length |w| < s, then by Proposition 4.1(b),
ǫw,Zp

(σ) ∈ pn−|w|Zp ⊆ pn−s+1Zp. In particular, this is the case for w = u,
w = v, and when w ∈ Infil(u, v) \ Sh(u, v). It follows from Proposition 9.2 that
(ΛZp

(σ), uxv) ∈ pn−s+1Zp. �

We obtain the following shuffle relations (see also [Vog04, Cor. 1.2.10] and
[FS84, Th. 6.8]). We write Xs for the set of words in X∗ of length s.

Theorem 9.4. For every ∅ 6= u, v ∈ X∗ with s = |u|+ |v| ≤ n one has
∑

w∈Xs

(uxv)wαw,n = 0.

Proof. For σ ∈ S(n,p), Corollary 9.3 gives
∑

w∈Xs

(uxv)wǫw,Zp
(σ) =

∑

w∈X∗

(uxv)wǫw,Zp
(σ) = (ΛZp

(σ), uxv) ∈ pn−s+1Zp.

Therefore, by Lemma 6.2,

(σ,
∑

w∈Xs

(uxv)wαw,n)n =
∑

w∈Xs

(uxv)w(σ, αw,n)n

=
∑

w∈Xs

(uxv)w ιn,s(ǫw,Z/pn−s+1(σ))

= ιn,s

(

∑

w∈Xs

(uxv)wǫw,Z/pn−s+1(σ)
)

= 0.
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Now use the fact that (·, ·)n : S(n,p)×H2(S[n,p],Z/p)→ Z/p has a trivial right
kernel. �

Corollary 9.5. There is a canonical epimorphism
n

⊕

s=1

(

(

⊕

w∈Xs

Z
)

/Shuffless(X)
)

⊗ (Z/p)→ H2(S[n,p],Z/p)

(r̄w)w 7→
∑

w

rwαw,n.

Proof. By Theorem 9.4 this homomorphism is well defined. By Theorem 8.5(a),
it is surjective. �

Remark 9.6. In view of Lemma 6.2, the epimorphism of Corollary 9.5 and the
canonical pairing (·, ·)n induce a bilinear map

S(n,p) ×
n

⊕

s=1

(

(

⊕

w∈Xs

Z
)

/ Shuffless(X)
)

→ Z/p,

(σ, (rw)w) =
∑

w

rwιn,s(ǫw,Z/pn−s+1(σ))

with left kernel S(n+1,p).

Example 9.7. We show that for every x1, x2, . . . , xk ∈ X one has

(x1x2 · · ·xk) + (−1)k−1(xk · · ·x2x1) ∈ Shufflesn(X).

We may assume that x1, x2, . . . , xk are distinct. For 1 ≤ l ≤ k − 1 let
ul = (xl · · ·x2x1) and vl = (xl+1 · · ·xk). We consider the polynomial
∑k−1

l=1 (−1)
l−1ulxvl in Z〈X〉. It is homogenous of degree k. If w ∈ Sh(ul, vl),

then either:

(1) xl appears before xl+1 in w, and then w appears with an opposite sign
also in Sh(ul−1, vl−1); or

(2) xl+1 appears before xl in w, and then w appears with opposite sign
also in Sh(ul+1, vl+1).

The only exceptions are w = (x1x2 · · ·xk) ∈ Sh(u1, v1) and w = (xk · · ·x2x1) ∈
Sh(uk−1, vk−1). This shows that

(x1x2 · · ·xk) + (−1)k(xk · · ·x2x1) =
k−1
∑

l=1

(−1)l−1ulxvl.

For 1 ≤ k ≤ n Corollary 9.5 therefore implies that

α(x1x2···xk),n = (−1)k−1α(xk···x2x1),n.
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10. Example: The case n = 2

Our results in this case are fairly well known, and are brought here in order to
illustrate the general theory.
As before let S = SX with X totally ordered. Here S(2,p) = Sp[S, S] and
S̄ = S[2,p] is the maximal elementary p-abelian quotient of S. We may identify
H1(S,Z/p) = H1(S̄,Z/p) ∼=

⊕

x∈X Z/p. Let χx,Z/p = ǫ(x),Z/p, x ∈ X , be the

basis of H1(S,Z/p) dual to X (see Remark 6.2).
The Lyndon words w of length ≤ 2 are (x), where x ∈ X , and (xy), where
x, y ∈ X and x < y. For these words we have τ(x) = x and τ(xy) = [x, y]. By
Examples 7.4(1)(3),

α(x),2 = Bockp,S̄(χx,Z/p), α(xy),2 = χx,Z/p ∪ χy,Z/p.

Hence, by Theorem 8.5, Bockp,S̄(χx,Z/p) and χx,Z/p ∪ χy,Z/p, where x < y,

form a Z/p-linear basis of H2(S̄,Z/p). Furthermore, when X is finite, the
elements of the form xp and [x, y] with x, y ∈ X , x < y, form a Z/p-linear
basis of S(2,p)/S(3,p). In view of Examples 9.1 and Corollary 9.5, the map
(r̄w) 7→

∑

w rwαw,2 induces an epimorphism
⊕

x∈X

Z/p⊕
(

(

⊕

x,y∈X

Z
)

/〈(xy) + (yx) | x, y ∈ X〉
)

⊗ (Z/p)→ H2(S̄,Z/p).

It coincides with the map

H1(S̄,Z/p)⊕
∧2

H1(S̄,Z/p)→ H2(S̄,Z/p)

which is Bockp,S̄ on the first component and ∪ on the second component. When
p 6= 2 the direct sum is a free Z/p-module on Lyn≤2(X), and by comparing
dimensions we see that the epimorphism is in fact an isomorphism (compare
[EM11, Cor. 2.9(a)]). However when p = 2 one has Bock2,S̄(χ) = χ∪χ [EM11,
Lemma 2.4], so the above epimorphism is not injective.
Next, Proposition 6.4 shows that the matrix (〈w,w′〉2), where w,w′ ∈
Lyn≤2(X), is the identity matrix. In view of Corollary 8.2, it coincides with

the matrix
(

(τp
2−|w|

w , αw′,2)2
)

. Thus

(xp,Bockp,S̄(χx,Z/p))2 = 1 for every x ∈ X,

(xp,Bockp,S̄(χy,Z/p))2 = 0 for every x, y ∈ X, x 6= y,

(xp, χy,Z/p ∪ χz,Z/p)2 = 0 for every x, y, z ∈ X,

([x, y],Bockp,S̄(χz,Z/p))2 = 0 for every x, y, z ∈ X,

([x, y], χz,Z/p ∪ χt,Z/p)2 = 0 for every x, y, z, t ∈ X, (xy) 6= (zt), (tz),

([x, y], χx,Z/p ∪ χy,Z/p)2 = 1 for every x, y ∈ X with x < y.

This recovers well known facts from [Lab66, §2.3], [Koc02, §7.8] and [NSW08,
Th. 3.9.13 and Prop. 3.9.14]

Documenta Mathematica 22 (2017) 973–997



Cohomology and Lyndon Words 993

11. Example: The case n = 3.

Here S(3,p) = Sp2

[S, S]p[S, [S, S]]. We abbreviate S̄ = S[3,p]. Recall that
Lyn≤3(X) consists of the words

(x) for x ∈ X,

(xy), (xxy), (xyy) for x, y ∈ X with x < y,

(xyz), (xzy) for x, y, z ∈ X with x < y < z.

For these words

τ(x) = x, τ(xy) = [x, y], τ(xxy) = [x, [x, y]], τ(xyy) = [[x, y], y],

τ(xyz) = [x, [y, z]], τ(xzy) = [[x, z], y].

By Theorem 5.3, the cosets of

xp
3

, [x, y]p, [x, [x, y]], [[x, y], y], [x, [y, z]], [[x, z], y],

with x, y, z as above, generate S(3,p)/S(4,p). When X is finite, they form a
linear basis of S(3,p)/S(4,p) over Z/p (Theorem 8.5(b)). Furthermore, Theorem
8.5(a) gives:

Theorem 11.1. The following cohomology elements form a Z/p-linear basis of
H2(S̄,Z/p):

α(x),3, α(xy),3, α(xxy),3, α(xyy),3, α(xyz),3, α(xzy),3,

where x, y, z ∈ X and we assume that x < y < z.

By Examples 7.4, α(x),3 = Bockp2,S̄(χx,Z/p2), and for every x, y, z ∈ X , α(xyz),3

belongs to the triple Massey product 〈χx,Z/p, χy,Z/p, χz,Z/p〉 ⊆ H
2(S̄,Z/p).

We further recall that α(xy),3 is the pullback to H2(S̄,Z/p) under ρ̄
(xy)
Z/p2 : S̄ →

U3(Z/p
2)[3,p] of the cohomology element in H2(U3(Z/p

2)[3,p],Z/p) correspond-
ing to the central extension

0→ Z/p→ U3(Z/p
2)→ U3(Z/p

2)[3,p] → 1.

Alternatively, it has the following explicit description: By Proposition 6.3(a),

U3(Z/p
2)(3,p) = I3 + ZpE13, and let ι = ιU3,2 : U3(Z/p

2)(3,p)
∼
−→ Z/p be

the natural isomorphism. By (7.5) and (7.6), α(xy),3 = − trg(θ), where

θ = ι ◦ (ρ
(xy)
Z/p2 |S(3,p)) and trg : H1(S(3,p),Z/p)S

∼
−→ H2(S̄,Z/p) is the trans-

gression isomorphism.

Next we compute the matrix ((τp
3−|w|

w , αw′,3)3) = (〈w,w′〉3), where w,w′ ∈
Lyn≤3(X):

Proposition 11.2. For w,w′ ∈ Lyn≤3(X) one has

〈w,w′〉3 =











1, if w = w′;

−1, if w = (xyz), w′ = (xzy) for some x, y, z ∈ X, x < y < z;

0, otherwise.
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Proof. In view of Proposition 6.4, it is enough to show the assertion when
w 6= w′, either |w| = |w′| or 2|w| ≤ |w′|, and the letters of w′ appear in w.
Furthermore, when |w| = |w′| we may assume that w ≤alp w

′.
Thus when w has one of the forms (x), (xy), (xyy), (xzy) (where x < y < z)
there is nothing more to show.
When w = (xxy) with x < y we need to check only the word w′ = (xyy). Then
Lemma 4.2 gives

〈(xxy), (xyy)〉3 = ǫ(xyy),Z/p([x, [x, y]])

= ǫ(x),Z/p(x) · ǫ(yy),Z/p([x, y])− ǫ(y),Z/p(x) · ǫ(xy),Z/p([x, y])

= 1 · 0− 0 · 1 = 0.

When w = (xyz) with x < y < z we need to check only the word w′ = (xzy).
Then Lemma 4.2 gives

〈(xyz), (xzy)〉3 = ǫ(xzy),Z/p([x, [y, z]])

= ǫ(x),Z/p(x) · ǫ(zy),Z/p([y, z])− ǫ(y),Z/p(x) · ǫ(xz),Z/p([y, z])

= 1 · (−1)− 0 · 0 = −1.

This completes the verification in all cases. �

In view of Examples 9.1, Corollary 9.5 gives rise to an epimorphism

⊕

x∈X

Z/p⊕
(

(

⊕

x,y∈X

Z(xy)
)

/〈(xy) + (yx) | x, y ∈ X〉
)

⊗ (Z/p)

⊕
(

(

⊕

x,y,z∈X

Z(xyz)
)

/〈(xyz) + (xzy) + (zxy) | x, y, z ∈ X〉
)

⊗ (Z/p)

→ H2(S̄,Z/p).

(11.1)

Moreover, for x, y, z ∈ X , x < y < z, we have

(yx) = (x)x(y)− (xy)

2(xx) = (x)x(x)

(xyx) = (x)x(xy) − 2(xxy)

(yxx) = (x)x(yx) − (xx)x(y) + (xxy)

(yxy) = (xy)x(y)− 2(xyy)

(yyx) = (yy)x(x)− (y)x(xy) + (xyy)

(yxz) = (y)x(xz)− (xyz)− (xzy)

(zxy) = (z)x(xy)− (xzy)− (xyz)

(yzx) = (zx)x(y)− (x)x(zy) + (xzy)

(zyx) = (yx)x(z)− (x)x(yz) + (xyz)

3(xxx) = (x)x(xx).
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These congruences and Example 2.1 imply that
∑

w∈X2

Zw ≡
∑

w∈Lyn2(X)

Zw + 2-torsion (mod Shuffles2(X)),

∑

w∈X3

Zw ≡
∑

w∈Lyn3(X)

Zw + 3-torsion (mod Shuffles3(X)).

Therefore, for p > 3, the direct sum in (11.1) is the free Z/p-module on the
basis Lyn≤3(X). Thus the epimorphism (11.1) maps the Z/p-linear basis 1w,
w ∈ Lyn≤3(X), bijectively onto the Z/p-linear basis αw,3, w ∈ Lyn≤3(X) (see
Theorem 8.5). Consequently we have:

Theorem 11.3. For n = 3 and p > 3, (11.1) is an isomorphism. Thus all
relations in H2(S[3,p],Z/p) are consequences of the shuffle relations of Theorem
9.4.
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[For11] P. Forré, Strongly free sequences and pro-p groups of cohomological
dimension 2, J. reine angew. Math. 658 (2011), 173–192.

[Hoe68] K. Hoechsmann, Zum Einbettungsproblem 229 (1968), 81–106.
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[Lab66] J. P. Labute, Demuškin groups of rank ℵ0, Bull. Soc. Math. France

94 (1966), 211–244.
[Lab67] J. Labute, Classification of Demuškin groups, Can. J. Math. 19
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