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INTRODUCTION

Let K be a finite extension of Q,, and let Gx = Gal(Q,,/K). In this article, we
use the theory of (p,I')-modules in the Lubin-Tate setting to construct some
classes in H!(K, V), for “F-analytic” representations V of Gk. If in addition
V is crystalline, we describe these classes explicitly using Bloch and Kato’s
exponential maps and generalize Perrin-Riou’s period map to the Lubin-Tate
setting.

We now describe our constructions in more detail, and introduce some notation
which is used throughout this paper. Let F' be a finite Galois extension of Q,,
with ring of integers O and maximal ideal mp, let m be a uniformizer of Op
and let kp = Op/m and ¢ = Card(kp). Let LT be the Lubin-Tate formal group
[LT65] attached to m. We fix a coordinate T' on LT, so that for each a € Op
the multiplication-by-a map is given by a power series [a](T) = aT + O(T?) €
Or[T]. Let log 1(T') denote the attached logarithm and exp;(T) its inverse
for the composition. Let x : Gp — OF be the attached Lubin-Tate character.
If K is a finite extension of F, let K,, = K(LT[7"]) and Ko = U,>1 K, and
Ik = Gal(K/K).

Let Ap denote the set of power series ZieZ a;T* with a; € Op such that
a; — 0 as i — —oo and let Bp = Ap[l/x], which is a field. It is endowed
with a Frobenius map ¢, : f(T) — f([#](T)) and an action of I'p given by
g: f(T)— f([x=(g))(T)). If K is a finite extension of F', the theory of the field
of norms ([FW79a, FW79b] and [Win83]) provides us with a finite unramified
extension Bi of Bp. Recall [Fon90] that a (¢, T")-module over By is a finite
dimensional Bx-vector space endowed with a compatible Frobenius map ¢,
and action of I'. We say that a (¢, T')-module over By is étale if it has a
basis in which Mat(y,) € GL4(A k). The relevance of these objects is explained
by the result below (see [Fon90], [KR09]).

THEOREM. There is an equivalence of categories between the category of F'-
linear representations of Gy and the category of étale (p,T')-modules over By .

Let B} denote the set of power series f(T) € Bp that have a non-empty
domain of convergence. The theory of the field of norms again provides us
[Mat95] with a finite extension BTK of B;ﬂ. We say that a (¢,I')-module over
By is overconvergent if it has a basis in which Mat(p,) € GLq(BL) and
Mat(g) € GLd(B}() for all g € Tx. If F = Qp, every étale (o, I')-module over
Bk is overconvergent [CC98]. If F' # Q,, this is no longer the case [FX13].
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Let us say that an F-linear representation V of G is F-analytic if for all
embeddings 7 : F' — Q,,, with 7 # Id, the representation C, ®% V is trivial (as
a semilinear Cp-representation of G ). The following result is known [Berl6).

THEOREM. IfV is an F-analytic representation of G, it is overconvergent.

Another source of overconvergent representations of Gy is the set of repre-
sentations that factor through I'x (see §1.3). Our first result is the following
(theorem 1.3.1).

THEOREM A. IfV is an overconvergent representation of Gk, there exists an
F-analytic representation X, of Gk, a representation Yr of Gg that factors
through Ui, and a surjective Gk -equivariant map Xan Qp Yr — V.

We next focus on F-analytic representations. Let BLg, r denote the Robba
ring, which is the ring of power series f(T) = Y, 7 a;T" with a; € F such
that there exists p < 1 such that f(7T") converges for p < |T| < 1. We have
BTF C Biig p- The theory of the field of norms again provides us with a finite
extension BLgyK of BLgﬁF, If V is an F-linear representation of G, let D(V)
denote the (p,I')-module over By attached to V. If V' is overconvergent, there
is a well defined (¢, I')-module D (V) over Bl attached to V, such that D(V) =

Bx ®pi Df (V). We call D! (V) the (¢,T')-module over BL&K attached to V,

rig
given by Diig(V) = BLg,K Dpi DT(V).

The ring BiigK is a free goq(BIigK)-module of degree gq. This allows us to

define [FX13] a map v : Biig K = Biig i that is a I'g-equivariant left inverse
of ¢q, and likewise, if V' is an overconvergent representation of Gx, a map
Py Diig(V) — Diig(V) that is a I'x-equivariant left inverse of ¢,.

The main result of this article is the construction, for an F-analytic represen-
tation V of Gk, of a collection of maps

having a certain number of properties. For example, these maps are compatible
with corestriction: corg, /K, © h}gﬂ,v = h}g,v if n > 1. Another property
is that if F' = Q,, and m = p (the cyclotomic case), these maps coincide with
those constructed in [CC99] (and generalized in [Ber03]).

If now K = F and V is a crystalline F-analytic representation of Gr, we give
explicit formulas for h},ﬂmv using Bloch and Kato’s exponential maps [BK90].
Let V be as above, let Dis(V) = (Beris,r QF V)Gr (note that because the ® is
over F', this is the identity component of the usual D,;s) and let ¢, = log; (7).
Let {upn}n>0 be a compatible sequence of primitive 7"-torsion points of LT.
Let B:gg r denote the positive part of the Robba ring, namely the ring of
power series f(T) = 3 .5, a;T* with a; € F such that f(T) converges for
0 < [T] < 1. Ifn >0, we have a map ¢, " : B:Eg,F — F,[[tz] given by
f(T) = f(un ® exprp(tz/7™)). Using the results of [KR09], we prove that
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1002 LAURENT BERGER AND LIONEL FOURQUAUX

there is a natural (p,I')-equivariant inclusion DLg(V)‘”q:1 — B;’i’gyF[l/tﬂ] ®F
Deris(V). This provides us, by composition, with maps ¢, " : DIig(V)wq:1 —
Fo((tz)) ®F Dexis(V) and 9y 0 o™ : DI (V)¥1=! — F,, ® p Dexis(V) where y
is the “coefficient of t2” map. Recall finally that we have two maps, Bloch
and Kato’s exponential expp, v : Fy, ®p Deris(V) = H'(F,,V) and its dual
eXPh v (1) HY(F,,V) — F, ®p Deis(V) (the subscript V*(1) denotes the dual
of V twisted by the cyclotomic character, but is merely a notation here). The
first result is as follows (theorem 3.3.1).

THEOREM B. IfV is as above and y € DLg(V)qul, then

q "Ov (e (y)) ifn>1

(1—qte Dov(y) ifn=0.

Let V =t -d/dty, let V;, = V —iif i € Z and let h > 1 be such that
Fil " Deyis (V) = Deris(V). We prove that if y € (B, » @ Deyis(V))¥e=1, then

rig,
Vh_10---0Vq(y) € DLg(V)d’q:l, and we have the following result (theorem
3.3.2).

eXP}n,V*u)(h;ﬂmv(y)) = {

THEOREM C. If V is as above and y € (B:Eg,F ®F Deris(V))¥a=1, then

hi, v(Vi-10:- 0 Vo(y)) =

(—1)"Y(h —1)! expp, v(@7"Ov (pg " (Y))) ifn>1
exppy((1—q o )ov(y) ifn=0.

Using theorems B and C, we give in §3.5 a Lubin-Tate analogue of Perrin-
Riou’s “big exponential map” [PR94] using the same method as that of [Ber03]
which treats the cyclotomic case. It will be interesting to compare this big
exponential map with the “big logarithms” constructed in [Fou05] and [Fou08].
It is also instructive to specialize theorem C to the case V' = F(x), which cor-
responds to “Lubin-Tate” Kummer theory. Recall that if L is a finite extension
of F, Kummer theory gives us a map ¢ : LT(my) — H'(L, F(xx)). When L
varies among the F),, these maps are compatible: the diagram

LT(mp,,,) —— H'(Fpy1, V)

n+1

T | [eorrsnsrn
LT(mp,) —— HY(FE,,V)
commutes. Let S denote the set of sequences {z,}n>1 with z,, € mp, and
such that TrI};EH/Fn (Tn41) = [g/7)(xy) for n = 1. We prove that S is big,
in the sense that (if F' # Q) the projection on the n-th coordinate map
S®op F — F, is onto (this would not be the case if we did not have the factor
g/ in the definition of S). Furthermore, we prove that if € S, there exists
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a power series f(T) € (B;EgﬁF)wq:l/’r such that f(un) = logp(x,) for n > 1.
We have d/dt,(f(T)) € (B:qgﬁF)wq:1 and the following holds (theorem 3.4.5),
where u is the basis of F'(xr) corresponding to the choice of {un}n>0-

THEOREM D. We have h}% F(XW)(d/dtw(f(T)) cu) = (g/7)™™ - 8(zn) for all
n>1.

In the cyclotomic case, there is [Col79] a power series Col,(T) such that
Coly(upn) = x, for n > 1. We then have f(T') = log Col,(T'), and theorem D
is proved in [CC99]. In the general Lubin-Tate case, we do not know whether
there is a “Coleman power series” of which f(T') would be the logp. This
seems like a non-trivial question.

It would be interesting to compare our results with those of [SV17]. The
authors of [SV17] also construct some classes in H'(K, V'), but start from the
space D(V (xx - xc_ylc))wq:”/q. In another direction, is it possible to extend our
constructions to representations of the form V ®p Yr with V' F-analytic and
Yr factoring through I'k, and in particular recover the explicit reciprocity law
of [Tsu04]?

1 LUBIN-TATE (¢,I')-MODULES

In this chapter, we recall the theory of Lubin-Tate (¢, T')-modules and classify
overconvergent representations.

1.1 NOTATION

Let F' be a finite Galois extension of Q, with ring of integers O, and residue
field kp. Let m be a uniformizer of Op. Let d = [F : Qp] and e be the
ramification index of F/Q,. Let ¢ = p! be the cardinality of kr and let
Fy = W(kr)[1/p] be the maximal unramified extension of Q, inside F'. Let o
denote the absolute Frobenius map on Fj.

Let LT be the Lubin-Tate formal Or-module attached to m and choose a co-
ordinate T for the formal group law, such that the action of 7 on LT is given
by [#|(T) = T*+ «T. If a € Op, let [a|(T) denote the power series that
gives the action of @ on LT. Let log;(T) denote the attached logarithm and
exprr(T) its inverse. If K is a finite extension of F, let K,, = K(LT[r"]) and
let Koo = Upz1K,. Let Hg = Gal(Qp/Koo) and I'x = Gal(K./K). By
Lubin-Tate theory (see [LT65]), I'k is isomorphic to an open subgroup of O3
via the Lubin-Tate character x. : Tx — OF.

Let n(K) > 1 be such that if n > n(K), then x : Tk, — 1+ 7"OF is an
isomorphism, and log,, : 1 + 7"Op — 7" OF is also an isomorphism.

Since log;(T") converges on the open unit disk, it can be seen as an element
of Bng and we denote it by t,. Recall that g(t;) = x«(g) - tx if g € Gk and
that @q(tx) = m - trx. Let 0 = d/dtr so that Of(T) = a(T) - df (T')/dT, where
a(T) = (dlogyp(T)/dT)~t € Op[T]*. We have do g = xr(g9) -godif g€ 'k
and Qo @, =T - pq00.
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1004 LAURENT BERGER AND LIONEL FOURQUAUX
Recall thaﬁ Biig 7 denotes the Robba ring, the ring of power series f(T') =
> icz @i T" with a; € F such that there exists p < 1 such that f(T') converges
for p < |T| < 1. We have B} - BiigF and by writing a power series as the
sum of its plus part and its minus part, we get BIig’F = B;'EgF + BTF.

Each ring R € {BiigyF,B;quF,Bt},BF} is 'equipped with a Frobenius map
g f(T) — f([7](T)) and an action of I'p given by g : f(T) — f([x=(9)](T)).
Moreover, the ring R is a free ¢,(R)-module of rank ¢, and we define ¢, : R —
R by the formula o, (¢4 (f)) = 1/q-Trgr/p,(r)(f). The map 1, has the following
properties (see for instance §2A of [FX13] and §1.2.3 of [Col16]): 1q(z-¢q(y)) =
¥q(z)-y, the map 1, commutes with the action of I'p, doth, = 7~ 1-9),00 and if
F(T) € B, p then oq004(f) = 1/q-3 . cippm f(T®2). If M is a free R-module
with a semilinear Frobenius map ¢, such that Mat(y,) is invertible, then any
m € M can be written as m = Y, i - pq(m;) with r; € R and m; € M and the
map g : m = Y. q(r;) - m; is then well-defined. This applies in particular to

the rings B! B

vig 10 Blig i BTK7 By and to the (p,I')-modules over them.

1.2 CONSTRUCTION OF LUBIN-TATE (¢, I')-MODULES

A (p,T')-module over Bg (or over BTK or over BL&K) is a finite dimensional

Bx-vector space D (or a finite dimensional B}(-vector space or a free Biig K-
module of finite rank respectively), along with a semilinear Frobenius mapytpq
whose matrix (in some basis) is invertible, and a continuous, semilinear action
of I'x that commutes with ¢,.

We say that a (p,T')-module D over Bk is étale if D has a basis in which
Mat(yp,) € GLg(Ak). Let B be the p-adic completion of Uy, pBas where M
runs through the finite extensions of F. By specializing the constructions of
[Fon90], Kisin and Ren prove the following theorem (theorem 1.6 of [KR09]).

THEOREM 1.2.1. The functors V +— D(V) = (B @ V)% and D — (B ®p,
D)¥a=t give rise to mutually inverse equivalences of categories between the
category of F-linear representations of Gk and the category of étale (o,T')-
modules over B .

We say that a (¢, T')-module D is overconvergent if there exists a basis of D in
which the matrices of ¢, and of all g € I'k have entries in BTK. This basis then
generates a BTK—vector space DT which is canonically attached to D. If V is a p-
adic representation, we say that it is overconvergent if D(V') is overconvergent,
and then DT(V) denotes the corresponding (¢, T')-module over Bi.. The main
result of [CCI8] states that if F' = Q,, then every étale (¢,I')-module over
By is overconvergent (the proof is given for m = p, but it is easy to see that
it works for any uniformizer). If F' # Q,, some simple examples (see [FX13])
show that this is no longer the case.

Recall that an F-linear representation of G is F-analytic if C,®7% V is the triv-
ial C,-semilinear representation of G for all embeddings 7 # Id € Gal(F/Qp).
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This definition is the natural generalization of Kisin and Ren’s notion of F-
crystalline representation. Kisin and Ren then show that if K C F, and if V
is a crystalline F-analytic representation of G, the (¢, T')-module attached to
V is overconvergent (see §3.3 of [KR09]; they actually prove a stronger result,
namely that the (p,I')-module attached to such a V' is of finite height).

If DLg is a (p,I')-module over BL&K, and if ¢ € 'k is close enough to 1,
then by standard arguments (see §2.1 of [KR09] or §1C of [FX13]), the series
log(g) = log(1+ (g — 1)) gives rise to a differential operator V, : Diig — Djig.
The map v — exp(v) is defined on a neighborhood of 0 in LieT'k; the map
Liel'x — End(DLg) arising from v = Veyp(v) I8 Qp-linear, and we say that
D!, is F-analytic if this map is F-linear (see §2.1 of [KR09] and §1.3 of [FX13]).

rig
If V is an overconvergent representation of Gg, we let Diig(V) = BLg x gt
’ K

D (V). The following is theorem D of [Ber16].
THEOREM 1.2.2. The functor V — Diig(V) gives rise to an equivalence of
categories between the category of F-analytic representations of Gk and the

category of étale F-analytic Lubin-Tate (¢,T')-modules over BLg’K.

In general, representations of Gk that are not F-analytic are not overconver-

gent (see §1.3), and the analogue of theorem 1.2.2 without the F-analyticity
condition on both sides does not hold.

1.3 OVERCONVERGENT LUBIN-TATE (¢,I')-MODULES

By theorem 1.2.2, there is an equivalence of categories between the category of
F-analytic representations of Gx and the category of étale F-analytic Lubin-
Tate (¢,T)-modules over BLg - The purpose of this section is to prove a
conjecture of Colmez that describes all overconvergent representations of Gk .
Any representation V of Gg that factors through I'x is overconvergent, since
Hy acts trivially on V so that D(V) = Bg®pV and therefore D(V') has a basis
in which Mat(p,) = Id and Mat(g) € GL4(OF) if g € T'x. If X is F-analytic
and Y factors through I', X ® p Y is therefore overconvergent. We prove that
any overconvergent representation of Gy is a quotient (and therefore also a
subobject, by dualizing) of some representation of the form X ®r Y as above.

THEOREM 1.3.1. If V is an overconvergent representation of G, there exists
an F-analytic representation X of Gk, a representation Y of Gk that factors
through Ui, and a surjective Gk -equivariant map X Qp Y — V.

Proof. Recall (see §3 of [Berl6]) that if » > 0, then inside BTig,K we have

the subring BI{; i of elements defined on a fixed annulus whose inner radius
depends on r and whose outer raidus is 1, and that (¢, T")-modules over BL o K

can be defined over BL’;_’ i if r is large enough, giving us a module DL" (V).

rig
[r;s]
K

We also have rings B of elements defined on a closed annulus whose radii

depend on r < s. One can think of an element of BL’;_ i as a compatible family
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1006 LAURENT BERGER AND LIONEL FOURQUAUX

of elements of {BZL }; where I runs over a set of closed intervals whose union is
[r; +00[. In the rest of the proof, we use this principle of glueing objects defined
on closed annuli to get an object on the annulus corresponding to Bii’; K-

Choose r > 0 large enough such that DL’;(V) is defined, and s > ¢r. Let

DInsl(V) = B[I?S] ®BI£K DL’;(V). If a € Op, and if val,(a) = n for n = n(r,s)
large enough, the series exp(a-V) converges in the operator norm to an operator
on the Banach space D["*(V). This way, we can define a twisted action of T',
on DI"#l(V), by the formula h * = exp(log,(x~(h)) - V)(z). This action is
now F-analytic by construction.

Since s > ¢r, the modules D974 sI(V) for m > 0 are glued together (using
the idea explained above) by ¢, and we get a new action of ', on DT’T(V) =

rig
DI+°l[(V) and hence on DLg(V). Since ¢, is unchanged, this new (¢, I')-
module is étale, and therefore corresponds to a representation W of Gk,,. The
representation W is F-analytic by theorem 1.2.2; and its restriction to Hx is
isomorphic to V.

Let X = indgg W. By Mackey’s formula, X |z, contains Wy, ~ V|m, as a

direct summand. The space Y = Hom(indggn W, V)Hx is therefore a nonzero
representation of I'i, and there is an element y € Y whose image is V. The
natural map X ®pY — V is therefore surjective. Finally, X is F-analytic since
W is F-analytic. O

By dualizing, we get the following variant of theorem 1.3.1.

COROLLARY 1.3.2. IfV is an overconvergent representation of G, there exists
an F-analytic representation X of Gk, a representation Y of Gk that factors
through Ui, and an injective Gk -equivariant map V — X Qp Y.

1.4 EXTENSIONS OF (p,I')-MODULES

In this section, we prove that there are no non-trivial extensions between an
F-analytic (¢,I')-module and the twist of an F-analytic (¢, ')-module by a
character that is not F-analytic. This is not used in the rest of the paper, but
is of independent interest.

If §: Tk — OF is a continuous character, and g € Tk, let ws(g) =
log §(g)/log xx(g). Note that § is F-analytic if and only if ws(g) is independent
of geT'k.

We define the first cohomology group H*(D) of a (¢,I')-module D as in §4 of
[FX13]. Let D be a (p,I')-module over BIig,K' Let G denote the semigroup
@?20 x ' and let Z'(D) denote the set of continuous functions f: G — D
such that (h —1)f(g) = (g — 1)f(h) for all g,h € G. Let B}(D) be the subset
of Z1(D) consisting of functions of the form g — (¢ — 1)y, ¥y € D and let
HY(D) = Z}(D)/BY(D). If g € G and f € Z!, then [h + (g — 1)f(h)] = [h —
(h—1)f(g)] € B!. The natural actions of I'x and ¢, on H' are therefore trivial.
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If Dp and D; are two (¢,I')-modules, then Hom(D;,Dg) =
Dy, Dyp) is a free BLgﬁK-module of rank rk(Dg) rk(D1) which is

easily seen to be itself a (¢, ')-module. The space H!(Hom(Dy, Dy)) classifies
the extensions of D; by Dg. More precisely, if D is such an extension and if
s:Dy = Disa BLg’K—linear map that is a section of the projection D — Dy,
then g — s — g(s) is a cocycle on G with values in Hom(Dy, Dg) (the element
g(s) € Hom(Dq, D) being defined by ¢(s)(g(z)) = g(s(z)) for all g € G and all
x € D1). The class of this cocycle in the quotient H*(Hom(D;,Dg)) does not
depend on the choice of the section s, and every such class defines a unique
extension of Dy by Dy up to isomorphism.

HomBT. -mod (
rig,

THEOREM 1.4.1. If D is an F-analytic (p,T')-module, and if §: T'x — OF is
not locally F-analytic, then H*(D(5)) = {0}.

Proof. If g € Tk and x(6) € D(J) with « € D, we have
Vo (2(9)) = V(2)(0) + ws(g) - 2(6).

If g,h € I', this implies that Vy(z(6)) — Vn(2(0)) = (ws(g) —ws(h)) - z(0). If
f € HY(D(8)) and g € T'k, then g(f) = f and therefore V,(f) = 0. The formula
above shows that if k£ € T'f, then V,(f(k)) — Vi (f(k)) = (ws(g) —ws(h))- f(k),
so that 0 = (V, — V) (f) = (ws(g) —ws(h)) - f, and therefore f = 0 if § is not

locally analytic. O

2 ANALYTIC COHOMOLOGY AND IWASAWA THEORY

In this chapter, we explain how to construct classes in the cohomology groups
of F-analytic (¢,T')-modules. This allows us to define our maps h}(mv.

2.1 ANALYTIC COHOMOLOGY

Let G be an F-analytic semigroup and let M be a Fréchet or LF space with a
pro-F-analytic (§2 of [Ber16]) action of G. Recall that this means that we can
write M = H_I)ni @j M;; where M;; is a Banach space with a locally analytic
action of G. A function f : G — M is said to be pro-F-analytic if its image
lies in ]gle for some 7 and if the corresponding function f : G — M;; is
locally F-analytic for all j.

The analytic cohomology groups H: (G, M) are defined and studied in §4
of [FX13] and §5 of [Col16]. In particular, we have H? (G, M) = M% and
HL(G,M) = Z!l (G,M)/BL,(G,M) where Z! (G, M) is the set of pro-F-
analytic functions f : G — M such that (g — 1)f(h) = (h — 1)f(g) for all
g,h € G and Bl (G, M) is the set of functions of the form g — (g — 1)m.

Let M be a Fréchet space, and write M = im M,, with M,, a Banach space
such that the image of M,; in M,, is dense for all j > 0.

PROPOSITION 2.1.1. We have Hy, (G, M) = lim H, (G, M,).
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1008 LAURENT BERGER AND LIONEL FOURQUAUX

Proof. By definition, we have an exact sequence
0 — BL.(G,M,) — ZL.(G, M,) — H., (G, M,) — 0.

It is clear that Bl (G,M) = @nB;n(G,Mn) and that Z! (G, M) =
lim 7L (G, M,), since these spaces are spaces of functions on G satisfying

certain compatible conditions. The Banach spaces Bl (G, M,,) satisfy the
Mittag-Leffler condition: B, (G, M,) = M, /MS and the image of M, ; in
M, is dense for all j > 0. This implies that the sequence

0 = lim By, (G, My) — lim Z;,, (G, My,) — lim Hy, (G, My) — 0

n n n

is exact, and the proposition follows. o

In this paper, we mainly use the semigroups 'k, I'x X ® where & = {(pg,
n € Zzo} and T'e x ¥ where W = {¢j', n € Z>o}. The semigroups ® and ¥
are discrete and the F-analytic structure comes from the one on I'k.

DEFINITION 2.1.2. Let G be a compact group and let H be an open subgroup
of G. We have the corestriction map cor : H! (H, M) — HL (G, M), which
satisfies cor ores = [G : H]. This map has the following equivalent explicit
descriptions (see §2.5 of [Ser94] and §I1.2 of [CC99]). Let X C G be a set of
representatives of G/H and let f € Z! (H, M) be a cocycle.

1. By Shapiro’s lemma, H! (H, M) = H! (G,ind§ M) and cor is the map
induced by i — > o x-i(z™!);

2. if M C N where N is a G-module and if there exists n € N such that
f(h) = (h—1)(n), then cor(f)(g9) = (¢ — 1)(X_,ex Tn);

3. if g€ G, let 75 : X — X be the permutation defined by 7,(z)H = gzH.
We have cor(f)(g) = 3, cx 7o(@) - f(7y(x)~" g2).

If g € Tk, let £(g) = log, xx(g). If M is a Fréchet space with a pro-F-analytic
action of T'x and if g € ' is such that x,(g) € 14 2pOF, then lim,, . (¢*" —
1)/(p™€(g)) converges to an operator V on M, which is independent of g thanks
to the F-analyticity assumption. If ¢ : T — M is an F-analytic map, let ¢/(1)
denote its derivative at the identity.

PROPOSITION 2.1.3. If M is a Fréchet space with a pro-F-analytic action of
Tk, the map c — /(1) induces an isomorphism HL (T, M) = (M/VM)'x,
under which cory,/i corresponds to Trp k.

Proof. Assume for the time being that M is a Banach space. We first show that
the map induced by ¢ +— ¢/(1) is well-defined and lands in (M/VM)'5. The
map ¢+ /(1) from Z! (T'g, M) — M is well-defined, and if ¢(g) = (g — 1)m,
then ¢/(1) = Vm so that there is a well-defined map H! (U'x, M) — M/VM. If
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h € T'g then (h—1)c/(1) = limg1(h—1)c(g)/€(g) = limg—,1(g—1)e(h)/4(g) =
Ve(h) so that the image of ¢~ ¢/(1) lies in (M/VM)'x.

The formula for the corestriction follows from the explicit descriptions above:
if h € 'y, then 7,,(z) = x so that cor(c)(h) = > . x - c(h) and

cor(c)' (1) = }111_>ml cor(c)(h)/e(h) = Z z-c (1) =Trp (¢ (1)).

zeX

We now show that the map is injective. If ¢/(1) = Vm, then the derivative of
g—c(g) — (g—1)m at g =1 is zero and hence ¢(g) = (g9 — 1)m on some open
subgroup I'y, of I' and ¢ = [L : K] 'cory, /x oresgr(c) = 0.

We finally show that the map is surjective. Suppose now that y € (M/VM)'x.
The formula g — (exp(¢(g)V)—1)/V -y defines an analytic cocycle ¢z, on some
open subgroup I'y, of I'k. The image of [L : K] !c; under cory i gives a
cocyle ¢ € H. (g, M) such that /(1) = y.

We now let M = lim M, be a Fréchet space. The map H! Tk, M) —
(M/VM)'% induced by ¢ + ¢/(1) is well-defined, and in the other direction
we have the map y — ¢y:

(M/VM)" > lim(M, /M) — lim I, (T, M,) — HL, (i, M),

These two maps are inverses of each other. o

Remark 2.1.4. Compare with the following theorem (see [Tam15], corollary 21):
if G is a compact p-adic Lie group and if M is a locally analytic representation
of G, then H! (G, M) = H*(Lie(G), M)<.

2.2 COHOMOLOGY OF F-ANALYTIC (¢, I')-MODULES

If V is an F-analytic representation, let H. (K,V) C HY(K,V) classify the
F-analytic extensions of F by V. Let D denote an F-analytic (¢, T')-module
such as DI (V).

T
over B rig

rig, K’
PROPOSITION 2.2.1. If V is F-analytic, then Hl (K,V) = HL Tk x
q)vDrig(V))'

Proof. The group H! (I'x x ®,DI._(V)) classifies the F-analytic extensions of

rig
Biig, x by Diig(V), which correspond to F-analytic extensions of F' by V by
theorem 1.2.2. O

THEOREM 2.2.2. If D is an F-analytic (¢,T')-module over BLg,K andi=0,1,
then H ,(T'x, D¥a=%) = 0.

Proof. Since BIig’F C BjigK, the BLg’K-module D is a free BiigF—module of

finite rank. Let R denote BIig,F and let R¢, denote CP®FBIig,F the Robba
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ring with coefficients in C,. There is an action of Gr on the coefficients of
Rc, and REE = Rp.

Theorem 5.5 of [Coll6] says that H: (I'x, (Rc, ®r, D)¥+=%) = 0. For i =0,
this implies our claim. For i = 1, it says that if ¢ : T'x — D¥¢=9 is an F-
analytic cocycle, there exists m € (R¢, ®r, D)¥*=" such that c(g) = (¢ — 1)m
forall g € T'g. If & € G, then ¢(g) = (9 — 1)a(m) as well, so that a(m) —m €
((Rc, ®r, D)¥a=0)'x = 0. This shows that m € ((R¢, ®r, D)¥a=0)¢r =
DY¥a=0, o

COROLLARY 2.2.3. The groups Hi (T'x x ®,D) and H: (I'x x ¥,D) are iso-
morphic fori=0,1.

Proof. If i = 0, then we have an inclusion D?«=1I'x C D¥«=LIx  If g €
D¥a=LTx then x — p,(z) € D¥a=0Tx = {0} by theorem 2.2.2, so that x =
@q(x) and the above inclusion is an equality.

Now let i = 1. If f € ZL (T x ®,D), let Tf € ZL (U'x x ¥, D) be the function
defined by T'f(g) = f(g) if g € I'x and T'f(¥q) = —1bq(f(0g))-

If feZ Tk x ¥,D) and g € Tk, then (41, —1)f(g9) € D¥=° and the map
g+ (pqg—1)f(g) is an element of Z! (T'x, D¥+=?). By theorem 2.2.2, applied
once for existence and once for unicity, there is a unique my € D¥«=% such that
(g —1)f(9) = (g—1)mys. Let Uf € Z} (I'x x ®,D) be the function defined
by Uf(g) = f(g) if g € Tk and U f(pq) = —@q(f(1q)) +my.

It is straightforward to check that U and T are inverses of each other (even at
the level of the Z! ) and that they descend to the H} . O

THEOREM 2.2.4. The map f > f(1) from ZL,(Tx x ¥,D) to D gives rise to
an ezact sequence:

D \'*
0— H! (T, D¥=1) = HL (T'k x ¥,D) — (1/} 1)
.

Proof. 1f f € Z3,(Tx x ¥,D) and g € Tk, then (g —1)f(g) = (Vg —1)f(g) €
(14 — 1)D so that the image of f is in (D/(¢0, — 1))'%. The other verifications
are similar. O

2.3 THE SPACE D/(¢), — 1)

By theorem 2.2.4 in the previous section, the cokernel of the map
Hl, (Tg,D¥=1) — HI (T'x x ¥,D) injects into (D/(p, — 1))I'%. Tt can
be useful to know that this cokernel is not too large. In this section, we bound
D/(¢g — 1) when D = BLg,F, with the action of ¢, twisted by a=!, for some
a€ F*.

THEOREM 2.3.1. If a € F*, then 1, —a : BIig,F — BIig,F is onto unless

a=q '™ for some m € Zx1, in which case Biig 7/ (g — a) is of dimension

1.
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In order to prove this theorem, we need some results about the action of 1, on
Bl Recall that the map 0 = d/dt, was defined in §1.1.

rig,F'*

LEMMA 2.3.2. Ifa € F*, then apg — 1 : B:Zg F B

unless a = =™ for some m € Zxq, in which case

rig, F’ 8 an zsomorphzsm,

ker(apg —1: Bt P Brlg r)=Ft"

rig,
m(a‘Pq_l Bj;gF%BrlgF _{f( eB:gF |am(f)(0):0}

Proof. This is lemma 5.1 of [FX13]. O

LEMMA 2.33. If m € Zxo, there is an h(T) € (B;tg, )¥4=0 such that
0™ ()(0) 0.

Proof. We have ¢4,(T) = 0 by (the proof of) proposition 2.2 of [FX13]. If
there was some mg such that 9™(7T)(0) = 0 for all m > myg, then T would
be a polynomial in ¢, which it is not. This implies that there is a sequence
{m;}; of integers with m; — 400, such that 9™:(T")(0) # 0, and we can take
MT) = 0™i—™(T) for any m; > m. O

COROLLARY 2.3.4. Ifa € F*, then ¢y —a: Brlg P Bng is onto.

Proof. It f(T) € B“gF and if we can write f = (1 — apq)g, then f = (g —
a)(q(g)). If this is not possible, then by lemma 2.3.2 there exists m > 0 such
that a = #=™ and 0™ (f)(0) # 0. Let h be the function provided by lemma
2.3.3. The function f — (0™ (f)(0)/0™(h)(0)) - h is in the image of 1 — ap, by
lemma 2.3.2, and h = (¢, — a)(—a~'h) since ¢, (h) = 0. This implies that f is
in the image of ¥4 — a. O

LEMMA 2.3.5. Ifa™t € ¢- OF, then ¢, —a: B! P B!

rig, r 18 onto.

rig,
Proof. We have Brlg P= Brlg F—i—BTF (by writing a power series as the sum of its
plus part and of its minus part) and by corollary 2.3.4, ¢, —a : B;tg r— B
is onto. Take f(T) € B > choose some r > 0 and let B;?’T] be the set of
f(T) € BTF that converge and are bounded on the annulus 0 < val,(z) < r.

It follows from proposition 1.4 of [Coll6] that if n > 0, then ¢7(f) € BY"
and by proposition 2.4(d) of [FX13], the sequence (q/7 - 14)™(f) is bounded in

B! The series > ons0a b (f) therefore converges in B! and we can
write f = (¢, — a)g where g = a™ (1 —a~1,) " f = 27@0 ail’”i/);’(f). O

Let Res : B, or — I be defined by Res(f) = a—_i where f(T)dtr =
I dT "The following lemma combines propositions 2.12 and 2. 13 of
[FX13].

rig,F’

Res

LEMMA 2.3.6. The sequence 0 — F — BTlg F 9, Bt — F' — 0 is exact,

rig,
and Res(vq(f)) = m/q - Res(f).
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Proof of theorem 2.3.1. Since d o1, = w1 1)4 0 8, the map 9 induces a map:

T T
Brig,F 17} Brig,F (Der)
Yg—a g —am’

Take x € BLg,F such that Res(z) = 1. We have Res((¢q — am)z) = 7/q — an.

If a # ¢~!, this is non-zero and if f € BLg =, proposition 2.3.6 allows us to

write f = 0g+ Res(f)/(n/q— am) - (g — am)z. This implies that (Der) is onto

if a # q 1.

Combined with lemma 2.3.5, this implies that BLg,F/(wq —a) =0if a is not

of the form ¢~ '™ for some m € Z>;.

When a = ¢~ !, we have an exact sequence
B! B!

rig, F' 0 rig,F Res
—1 —1
Vg —q g —q 7w

F—0,

which now implies that BLg,F/(wq —q~'7) = F, generated by the class of z.
We now assume again that a # ¢~ and compute the kernel of (Der). If
fe BIig,F is such that 0f = (¢4 — am)g, then ResOf = Res(y), — am)g =
(r/q — am) Res(g), so that Res(g) = 0 and we can write g = dh. We have
O(f — (g —a)h) = 0, so that f = (g —a)h+ ¢, with ¢ € F. By corollary 2.3.4,
there exists b € Bng such that (¢ — a)(b) = ¢, so that f = (¢ —a)(h+ D)
and (Der) is bijective. We then have, by induction on m > 1, that BIig,F/(wq —

q~17™) = F, generated by the class of 9™ (z). O

Remark 2.3.7. More generally, we expect that the following holds: if D is a
(¢, T')-module over BLg > the F-vector space D/(1)4 — 1) is finite dimensional.

2.4 THE OPERATOR O,

The power series FI(X) = X/(exp(X)—1) belongs to Q,[X] and has a nonzero
radius of convergence. If M is a Banach space with a locally F-analytic action
of 'k and h € 'k is close enough to 1, then

\Y \Y

h—1 exp(l(W)V)—1

((h)"EE(L(R)V)

converges to a continuous operator on M. If g € 'k, we then define

\Y% \Y% 1—g"

l—-g 1—g® 1-—g

This operator is independent of the choice of n such that g™ is close enough to
1, and can be seen as an element of the locally F-analytic distribution algebra
acting on M.
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If M is a Fréchet space, write M = 1&11 M; and define operators Tvg on each
M; as above. These operators commute with the maps M; — M; (because n
can be taken large enough for both M; and Mj). This defines an operator %
on M itself. The definition of Tvg extends to an LF space with a pro-F-analytic
action of I'k.
Assume that K contains Fy and let »(K) = f + val,([K : Fi]). For example,
p"(Fr) = ¢ if n > 1. Assume further that K contains Fo(ky,sothat xr : 'k —
O is injective and its image is a free Zy-module of rank d. If b = (by,...,bq)
is a basis of T'k (that is, T'x = b1Zp - bde), then let £*(b) = £(by) - - - £(bg) /p" )
and

Vd
(= 1) (b~ 1)

LEMMA 2.4.1. If K=F, and m >0 and x € F, 1, then

Oy = L*(b) -

Op(x) = ¢~ ™" - Trp, ., /F,(2).
Proof. Since V = limkﬁoo(bpk —1)/p*€(b), we have

1 - —1)
. N R
O = Jim by — 1) (bg— 1)

The set {b* --- b3} with 0 < a; < p* — 1 runs through a set of representatives
of Iy /T?" =T, /Ty ier so that

R (/G POR (A R | 1

: - Tr =— T :
P (b= 1) by — 1) qrphd e/ P T ek e/ B

The lemma follows from taking k large enough so that ek > m. o

ForieZ,let V;, =V —i.

LEMMA 2.4.2. If b is a basis of T'p, and if f(T) € (Bj;g,F)d’q:O, then
O,(f(T)) € (tw/gag(T))~B;Eg7F, and if h > 2 then V,_10---0V100,(f(T)) €
(tz /05 (T))" - B, p-

Proof. If m > 1, then by lemma 2.4.1 and using repeatedly the fact (see §1.1)
that ¢q 0 9e(f) =1/q- ZZGLT[ﬂ] f(T & 2),

G)b(f(uner)) = 1/qm+n ' TrFm+n/an(um+n) = "/);n(f)(un) =0.
This proves the first claim, since an element f(T) € B$g1 r is divisible by
tr /@y (T) if and only if f(upym) = 0 for all m > 1. The second claim follows
easily. O
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Let D be a ¢,-module over F. Let o ™: B;tg rll/tz] ®F D — Fo((tx)) ®F D
be the map

gt F(T) @ @ o M f (un @ exprp (/7)) © 07" (2).
If f(tr) € Fo((tz) ®F D, let Op(f) € F,, @ D denote the coefficient of 2.

LEMMA 2.4.3. Ify € (B, p[l/tz] ©F D)¥s=" and if m > n, then

) —n 3 >1
qa " Trp,, /r,0p(p, " (v) = {((11 _ q[)_(f(;—l()ya)) (y) ZZ =0.

Proof. 1ty =t;¢3,20 axT* € B,

vig.p[1/tz] ®F D, then (by definition of ;™)

o™ (y) =7 EZ% (ax) (um ® exppp(te/7™))F,
and ¢,(y) = y means that:

y(T' dw).

If m > 2, the conjugates of u,, under Gal(F,,/Fn,_1) are the {w @ U }x](w)=0
so that:

Trp, /F, .0

Z o EZQO,] (ar) (W ® Um ® exppp(te/7™))"
m](w)=0

— o (T & w)
(w) 0
an((Pq (m= 1)

For m = 1, the computation is similar, except that the conjugates of u; under
Gal(Fy/F) are the w, where [r](w) = 0 but w # 0, which results in:

Trprop(ey ' @) =0p |0 | D, v(Tow) || =0dnlay v, ).

[7](w)=0
w#0
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2.5 CONSTRUCTION OF EXTENSIONS

Let D be an F-analytic (p, I')-module over Biig,K' The space D¥a=1 is a closed
subspace of D and therefore an LF space. Take K such that K contains F, k)
and let b be a basis of I'k.

PROPOSITION 2.5.1. If y € DY~ there is a unique cocycle cy(y) €
7l (T, D¥e=L) such that for all 1 < j < d and k > 0, we have

We then have cy(y)' (1) = Op(y).

Proof. There is obviously one and only one continuous cocycle satisfying the
conditions of the proposition. It is Qp-analytic, and in order to prove that it is
F-analytic, we need to check that the directional derivatives are independent
of j. We have

cb(y)(b5) v
lim ——2 3 — ). — () = O
which is indeed independent of j, and thus ¢;(y)' (1) = O(y). O

LEMMA 2.5.2. Ifn 2 n(K) and L = K,, and M = K. and b is a basis of
L'p, then bP is a basis of T'ay and corpg/pcor (y) = co(y).

Proof. The Lubin-Tate character maps I'y, to 1 +7"Op, and I'j; = 1"’2 because
(1+7"0Op)? =1+ 7"t¢Op. Since {b}* ---bi*} with 0 < k; < p — 1 is a set of
representatives for I'z, /T'as, and since [M : L] = ¢° = p?, the explicit formula
for the corestriction (definition 2.1.2) implies (here and elsewhere [z] is the
smallest integer > )

cornr/r(cor () (b5)
k—k.,;
> Bk bf( ml g
- byt .. bt R (BP) - 5 : 5 (v)
0<k1,. ka<p—1 by —1 H#J‘(bi -1
-
= b7 =1 b’ —1 Vit
=) [ S L——— | ]2 : — ()
bk —1 vi-1
=0 (b) 77— (v)
MRS  PROESY
= c(y) (V)
This proves the lemma. O
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LEMMA 2.5.3. If a and b are two bases of T' i, then c.(y) and cy(y) are coho-
mologous.

Proof. If a,...,aq and [, ..., B4 are in F'*, the Laurent series

al...ad.Td_l /Bl/Bde_l

(exp(arT) = 1) - -+ (exp(aqT) = 1) (exp(5iT) —1)-- - (exp(B4T) — 1)

is the difference of two Laurent series, each having a simple pole at 0 with equal
residues, and therefore belongs to F[T]. Let a and b be two bases of I'k and
take y € D¥a=1,

Let N be a I'k-stable Fréchet subspace of D that contains y and write N =
@Mj. Since M = Mj is F-analytic, we have g = exp({(¢g)V) on M for g
in some open subgroup of I'x. Let k > 0 be large enough such that a? ’ and
bfk are in this subgroup, and let «; = p*f(a;) and B; = p*f(b;). Taking k
large enough (depending on M), we can assume moreover that the power series
T/(exp(T) — 1) applied to the operators o;V and j3;V converges on M. The
element

_ Bi---fa- V! )(y)
(exp(f1V) = 1) --- (exp(faV) — 1)

of M is well defined. By proposition 2.5.1, we have
Cort (1) (1) = o (1) (1) = © i () = Opi () = p "V (w)

where L is the extension of K such that 'y, = F];(k . Thus, for g close enough
to 1, we have c_,» (y)(9) — ¢,.x (¥)(9) = (9 — D(p~""w). Lemma 2.5.2 now
implies by corestricting that this holds for all g, and, by corestricting again,
that ¢,(y) and ¢,(y) are cohomologous in M. By varying M, we get the same
result in N, which implies the proposition. O

LEMMA 2.54. If L/K is a finite extension contained in Ko, and if b is a basis
of I'rc and a is a basis of I'r, then cory,/kcq(y) = co(y).

Proof. The groups I'x- and I', are both free Z,-modules of rank d, so that by
the elementary divisors theorem, we can change the bases a and b in such a
way that there exists eq, ..., eq with a; = b¥ ‘.

Since {b]f1 . ~b§d} with 0 < k; < p® — 1 is a set of representatives for 'k /T,
and since [L : K| = p® T e the explicit formula for the corestriction implies
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corp, (ca(y)) (b5)

5]

P

a; -1

_ k1 kq * J

= > AN AR :
0k <p©1 —1
0<ka<p®a—1

a; —1 vi-1
={7(b) : - (v)
ka_o aj—l by bi—l Hi;ﬁj(ai_l)
bk —1 vi-1
=07(b) - —- v)
( bj—1 Hi;ﬁj(bi - 1)(

= e (y)(05)-

O

DEFINITION 2.5.5. Let hl., : Dii (V)¥=! — HL (K,V) denote the map

obtained by composing y + (y) with H;n(I‘K,Djig(V)qul) — HL Tk x
¥,DI,(V)) (theorem 2.2.4) and with HL,(Tx x ¥,D},(V)) ~ HL(K,V)
(proposition 2.2.1 and corollary 2.2.3).

PROPOSITION 2.5.6. We have CorM/Loh}M,V = hlL,V if M/ L is a finite extension
contained in Koo/ Kp(xy. In particular, corg, . /x, © h}(th = h}(mv ifn>

Proof. This follows from the definition and from lemma 2.5.4 above. O

Remark 2.5.7. Proposition 2.5.6 allows us to extend the definition of h%{,v to
all K, without assuming that K contains F,, k), by corestricting.

Some of the constructions of this section are summarized in the following the-
orem. Recall (see §3 of [Berl6]) that there is a ring Biig that contains BiigF,
is equipped with a Frobenius map ¢, and an action of Gr and such that

V=Bl g Dl(V)#

rig

THEOREM 2.5.8. Ify € DLg(V)qul and K contains K, k) and b is a basis of
I'x, then

1. there is a unique cy(y) € ZL,(Tx, DY (V)¥a=1) such that for k € Z,,

rig
k _

. by —1 . vi-1
by —1 Hi;&j(bi - 1)

co(y)(05) = £°(b) (¥);
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2. there is a unique m. € Diig(V)d’q:O such that (pq—1)cp(y)(g) = (g—1)me
forall g € T'k;

3. the (p,T')-module corresponding to this extension has a basis in which
Matlg) = (5 YUY goeri wnd Maite) = (5 )

4. ifz € Eiig ®F V is such that (pq — 1)z = m,, then the cocycle

g ay)(g) —(g—1)z
defined on Gy has values in V and represents hkv(y) in HL (K, V).

Proof. Ttems (1), (2) and (3) are reformulations of the constructions of this
chapter. Let us prove (4). Let us write the (p,T')-module corresponding to
the extension in (3) as D’ = Diig(V) & BLgVF e It is an étale (¢,I")-module
that comes from the p-adic representation V' = (BIig ®@gt  D)#e=1. We have
rig, F'

V' =V &F - (e— z)as F-vector spaces since gq(e —z) = e — z. If g € Gk,
then

gle=2) =e+ay)g) —9(z) =e—z+aly)(9) - (¢- 1=

This proves (4). O

Let F' = Q, and m = p = ¢, and let V' be a representation of Gg. In §II.1
of [CC99], Cherbonnier and Colmez define a map Logy.(;, : DI(V)¥=! —

H}, (K, V), which is an isomorphism (theorem II.1.3 and proposition II1.3.2 of
[CC99)).

PROPOSITION 2.5.9. If F = Q,, and m = p, then the map

Di(V)¥=! — D,

hi n
(vyp=t Dhonvines, lim HY, (K, V) = Lim H' (K, V)

coincides with the map Logy .y : DI (V)¥=! - Hl (K,V) C Hm HY(K,,V).

Proof. The map Log*{/*(l) is contructed by mapping x € DT(V)¥=! to the
sequence (..., by n(2),...) € Jm HY(K,,V) (see theorem I1.1.3 in [CC99] and
the paragraph preceding it), where

L) = [a s e () (;,1_11"”” . 1)b>}

on Gk, and where (see proposition I.4.1, lemma 1.5.2 and lemma 1.5.5 of ibid.)

1. v, = ﬂK":KI] and 7, is a fixed generator of 'k ;
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2. Lk, (yn) = 1(;%("7;:’;) where r(K,,) is the integer such that log x(T'k,) =
prEZy;

3. b e Bf ®q, V is such that (¢ — 1)b = a and a € DT(V)¥=! is such that
(Yo —1)a = (¢ — 1)z (using the fact that -y, — 1 is bijective on Df(V)¥=0).

The theorem follows from comparing this with the explicit formula of theorem
2.5.8. O

3 EXPLICIT FORMULAS FOR CRYSTALLINE REPRESENTATIONS

In this chapter, we explain how the constructions of the previous chapter are
related to p-adic Hodge theory, via Bloch and Kato’s exponential maps. Let
Bar be Fontaine’s ring of periods [Fon94] and let B$ax7  be the subring of
B that is constructed in §8.5 of [Col02] (recall that B . . = F ®p, B,
where Fy = F'N Q;m and B is a ring that is similar to Fontaine’s B.yis).

We assume throughout this chapter that K = F' and that the representation

V' is crystalline and F-analytic.

3.1 CRYSTALLINE F-ANALYTIC REPRESENTATIONS

If V is an F-analytic crystalline representation of Gpg, let Dgs(V) =
(Bmax,F ®F V)EF (this is the “component at identity” of the usual Deys).
By corollary 3.3.8 of [KR09], F-analytic crystalline representations of Gp are
overconvergent. Moreover, if M(D) C BIg7F[1/tW] ®p D is the object con-
structed in §2.2 of ibid., then by §2.4 of ibid., M(Dg;is(V)) contains a ba-
sis of Df(V) and Diig(V) = BiigF ®B: M(Deyis(V)). This implies that
Diig(v) C BIig,F[l/tﬂ'] QF Dcris(V)-

THEOREM 3.1.1. We have D}, (V)%+=! C B, p[1/tx] ®F Deris(V).

Proof. Take h > 0 such that the slopes of 7T_h(,0q on D,is(V) are < —d. Let E
be an extension of F' such that E contains the eigenvalues of ¢, on Des(V).
We show that DLg(V)"’q:1 Ct:"E®r B;ﬁg’F ®F Deris(V). Let e1,..., e, be a
basis of ;" E @ Deyis(V) in which the matrix (p; ;) of ¢, is upper triangular.
If y = 2?21 Yi @ @qle;) with y; € EQp BL&F, then 1¢q(y) = y if and only if
Ye(yk) = prryr + Ej>k pi,;y; for all k. The theorem follows from applying
lemma 3.1.2 below to k =n,n—1,...,1. o
LEMMA 3.1.2. Take y € EQp BIig’F and o € F such that val,(a) < —d. If

Ye(y) —ay € EQp B;’;gﬁF, theny € EQp B;’;gﬁF.

Proof. This is lemma 5.4 of [FX13]. O
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3.2 BLOCH-KATO’S EXPONENTIALS FOR ANALYTIC REPRESENTATIONS

We now recall the definition of Bloch-Kato’s exponential map and its dual, and
give a similar definition for F-analytic representations.

LEMMA 3.2.1. We have an exact sequence

0— F— (Bl

max, F'

[l/tﬂ])qul — BdR/B(J{R — 0.
Proof. This is lemma 9.25 of [Col02]. O

If V is a de Rham F-linear representation of G, we can ® p the above sequence
with V and we get a connecting homomorphism expy y : (Bar ®r V)95 —
HY(K,V). Recall that if W is an F-vector space, there is a natural injective
map WQrV — W Rq, V.

LEMMA 3.2.2. IfV is F-analytic, the map expy - : (Bar®p V)% — HY (K, V)
defined above coincides with Bloch-Kato’s exponential via the inclusion (Bar®
V)65 C (Bar ®q, V)9, and its image is in HL, (K,V).

Proof. Bloch and Kato’s exponential is defined as follows (definition 3.10 of
[BK90]): if ¢, denotes the Frobenius map that lifts 2 +— 2P and if 2 € (Bar®q,

V)Gx | there exists & € Bi’;ilqp ®q, V such that z —z € BZ{R ®q, V, and
exp(x) is represented by the cocyle g — (g — 1)z.
Lemma 3.2.1 says that we can lift * € (Bqr ®p V)% to some & €

(B p[1/tz])?s=! @p V such that & — 2 € Bl @ V C Bl ®q, V. In

max, F'

addition, Bi‘;}QP = I} Qq, Bﬁﬂ;,lQp (see lemma 1.1.11 of [Ber08]) so that
(B,

max, p[1/tx])?=1 C F @q, B%;}Qp. We can therefore view & as an element

m.

p=1 — 7] —
of B’ o, ®q, V, and expy () = [g = (¢ — 1)T] = exp(a).
The construction of exp 1-(x) shows that the cocycle expy v (z) is de Rham.
At each embedding 7 # Id of F', the extension of F' by V' given by expy y (z) is

therefore Hodge-Tate with weights 0. This finishes the proof of the lemma. [
Recall the following theorem of Kato (see §II.1 of [Kat93]).

THEOREM 3.2.3. If V is a de Rham representation, the map from (B4r ®q,
V)G to HY(K,Bar ®q, V) defined by x — [g — log(Xey<(9))z] is an isomor-
phism, and the dual exponential map exp},v*(l) :HYK,V) — (Bar ®q, V)G
is equal to the composition of the map H'(K,V) — HY(K,Bar ®q, V) with
the inverse of this isomorphism.

Concretely, if ¢ € Z' (K, Bar ®q, V) is some cocycle, there exists w € Bqr ®q,
V such that ¢(g) = log(xcyc(7)) - exp}y*(l)(c) + (g — D) (w).

COROLLARY 3.2.4. If ¢ € ZYK,Bar ®r V), and if there exist v € (Bqr @
V9K and w € Bar ®r V such that c(g) = £(3) - = + (g — 1)(w), then

exPie e q)(€) = 2.
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Proof. This follows from theorem 3.2.3 and from the fact that g —
log (X (7)/Xeyc(9)) is Bar-admissible, since t./t € (BIz)* so that log(t:/t) €
By is well-defined. O

3.3 INTERPOLATING EXPONENTIALS AND THEIR DUALS
Let V be an F-analytic crystalline representation. By theorem 3.1.1, we have

Dfi, (V)¥a=1 € B, p[1/tx] ®p Daris(V). Let Oy denote the map dp of §2.4 for

= Ucris

THEOREM 3.3.1. Ify € Df; (V)¥=", then

q "Ov(pg"(y)) ifn>1

* 1 _
eXpFn,V*(l)(thV(y)) = {(1 B qilsﬁfl)av(y) ifn=0
4 .

Proof. Since the diagram

*
EXpFn+1vV*(1)

H1 (Fn+1, V) Fn-‘,—l KF DCriS(V)
coranrl/Fnl TTFn+1/Fnl
H1 (Fn, V) M Fn QF Dcris(v)

is commutative, we only need to prove the theorem when n > n(F) by lemma
2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have
k _
. by —1 . AV
bj—1 Hi;&j(bi —-1)
with z € f’»Lg ®p V so that if m > 0, then ¢, (z) € Bl ®p V (see §3 of
[Ber16] and §2.2 of [Ber02]). Moreover, ¢ (y) € F,((tr)) @F Deris(V). Let
W = {w € F((tz)) ®pF Deis(V) such that dy(w) = 0}. The operator V is

bijective on W, and F,,((tx)) ®F Deris(V) injects into Bgr ® ¢ V, hence there
exists u € Bqr ® p V such that

1 k . by — 1 vt —m k
b, v(y)(b5) =£°(b) - T T 1)(8V(g0q (1)) — (b5 — Du
= 0(b%) - ©4(3v (9, ™ (1)) — (BF — 1)u
= ((B)) - a7 Ov (9, " () — (B — D,

hi, v (y)(65) = £*(b)

by lemmas 2.4.1 and 2.4.3. This proves the theorem by corollary 3.2.4. O
We now give explicit formulas for expp . Take h > 0 such that
Fil "Deris(V) = Deris(V), so that (B » ®p Das(V)) € DI (V) (in the
notation of §2.2 of [KR09], we have t};(BIg,F QF Daris(V)) C M(Dais(V))).
In particular, if y € (B:gg,F QQF Dcris(V))qul, then Vj_1 0---0Vo(y) €
Diig(v)qul-
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THEOREM 3.3.2. Ify € (Bji_g,F ®F Deris(V))¥a=1, then

h}fn,v(vh—l o---0Vy(y)) =

Ch=1g v Jexpr, v(@TOv (9" (y)) ifn>1
S ”'{expm(l—q Loy () ifn=0.

Proof. Since the diagram

CXPFy, 41,V

FnJrl ®F Dcris(v> Hl (FnJrl; V)
TTF.,H,I/Fnl Coan+1/Fnl
Fn ®F Dcris(v) oY Hl (Fn; V)

is commutative, we only need to prove the theorem when n > n(F) by lemma
2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have

hp, v (Va-1 00 Vo(y)(05)

i —1 N

bj—1 Hi;&j(bi —-1)
= (B 1) (Vho1 00 Vi 0@)(y) — (B — 1),

so that h},ﬂmv(vh_l o---0Vo(y))(g) = (g—1)(Vp_10---0V100)(y)—(g—1)z
if g € I'x. By lemma 2.4.2, we have

= 0*(b) -

(Va-10--0Vo(y)) — (b — 1)z

(Vh—10:+0V10604)((pq — 1)y)
€ (tﬂr/%?( )) (B+ F ®F Dcris(v))quo C DI] (V)wq:o,

rig,

so that (in the notation of theorem 2.5.8) m, = (Vh 10---0V; o@b V(g —1)y).
Since (¢4 — 1)z = m,, we have (¢, —1)((Vp—10---0V1004)(y) —2) =0, and
therefore

(Vho10---0V100)(y) —z € (BT [1/t:)P=  @p V

rig

[1/ta])?e= C
(B rlg[l/t )?a=1 is an equality (proposition 3.2 of [Ber02]). This implies that

The ring B! rig contains B ., and the inclusion (B$ax F

(Vho10:--0V100)(y) —2 C (B;;ax F[l/tﬂ])qul Qr V.

Moreover, we have z € ﬁiig®pV so that if m >> 0, then ;™ (2) € Blz®rV. In
addition, ¢, ™ (y) belongs to Fyy, [tz] @ F Deris(V'), so that ¢ ™ (y) — v (v, ™ (v))
belongs to t; Fy, [tr] ® F Deris(V') and therefore

(vh—l o---0 vl o @b) (Soq—m(y) — 8V(goq_m(y))) € tﬁFm[[tTr]] RF DCriS(V)
C B(J{R Qe V.

DOCUMENTA MATHEMATICA 22 (2017) 999-1030



IwaSAWA THEORY AND LUBIN-TATE (¢, I')-MODULES 1023

We can hence write
i, v(Vh-10---0V0())(9) = (9= 1)(Va-10-- -0 V100409 (v, ™ (y)) —(9—1)u,
with v € B:{R ®p V. The theorem now follows from the fact that

Oy 0 Ay (0, ™(y) = q v (p;"(¥)) € Fr @F Deris(V)

by lemmas 2.4.2 and 2.4.3, that Vj,_j0---0V; = (=1)""}(h — 1)l on F, ®F
Deis(V), and from the reminders given in §3.2, in particular the fact that
expg y is the connecting homomorphism when tensoring the exact sequence of
lemma 3.2.1 with V' and taking Galois invariants. O

3.4 KUMMER THEORY AND THE REPRESENTATION F'(xr)

Throughout this section, V' = F(xx). Let L C Qp be an extension of K. The
Kummer map & : LT(my) — HY(L, V) is defined as follows. Choose a generator
u = (up)kso of T LT = Jm, LT[#*]. If x € LT(my), let ), € LT(map) be such
that [7%](x) = 2. If g € G, then g(x3) — 2, € LT[7*] so that we can write
g(wk) — 1 = [ex(9)](ug) for some cx(g) € Op/m*. If ¢(g) = (ck(9))k=0 € OF
then §(x) = [g — c(g9)] € HY(L, V).

If x € LT(mg), and L/K is finite Galois, let Tr%l/}( be the map defined by
TrlﬁK(x) = defGa](L/K) g(x) where the superscript LT means that the sum-
mation is carried out using the Lubin-Tate addition. If F' = Q, and LT = Gy,
we recover the classical Kummer map, and TrILIfK (r) =Np/g(l+2) -1

LEMMA 3.4.1. We have the following commutative diagram:

LT(mg, ) —— HY(K, 1,V)

nit)

Tr%(rl;z,+1/Kn l lcorkn+1/1<n
LT(mg,) —— HY(Kn,V).
Proof. This is a straightforward consequence of the explicit description of the
corestriction map. O

Recall that ¢, 01, (f) = L

¢ 2werrx f (T ®w), so that for n > 1:

) =7 3 S ©0) = ZTrr s, )

4 w€eLT[n]

In particular, if f(T) € B:gg,F is such that ¢ (f(T)) = 1/7 - f(T) and y, =

f(un), then Trp, /5, (Ynt1) = ¢/ - Yn.

PROPOSITION 3.4.2. Assume that F' # Qp. If {yn}n>1 s a sequence with
Yn € F and Trg, /5, (Yns1) = @/ - yn, there exists f(T) € B:gg,F such that
Y (f(T)) =1/ f(T) and yn, = f(uy) for all n > 1.
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Proof. By [Laz62], there exists a power series g(T) € Bt

tig, 7 Such that g(u,) =
yn for all n > 1. We also have

1 1
Yq9(0) = 69(0) + gTI“Fl/FOg(Ul),
and since g # 7 (because F # Q,), we can choose ¢g(0) such that

1 1
;9(0) = 59(0) + ETrFl/Foyl-
This implies that (14(g) —1/7-g)(un) = 0 for all n > 0, so that ¥,(g)—1/7-g €
tr -Bng. It is therefore enough to prove that ¢, —1/7 : ¢ -Bng — tr -Bj;g,F
is onto. Since Yq(txf) = 1/m - tz1bg(f), this amounts to proving that ¢, — 1 :

B:gg,F — B:gg,F is onto, which follows from corollary 2.3.4. (|

DEFINITION 3.4.3. Let S denote the set of sequences {x,}n>1 with x,, € mp,
and TrIIj{H/FH (Xn+1) = [¢/7](2y) for n > 1.

The following proposition says that if F' # Q,, then S is quite large: for any
k > 1, the “k-th component” map F ®p, S — Fj is surjective (if F' = Q,,
there are restrictions on “universal norms”).

PROPOSITION 3.4.4. Assume that F' # Q,. If z € mp,, there exists £ > 0 and
x € S such that zy, = [1°](2).

Proof. We claim that Trg, ., /r, (OF,,,) = 7OF,. Indeed, let D denote the
different. We have (see for instance proposition 7.11 of [Iwa86])

1 1 1 1
Valp(,DFn+1/Fn) = ; <n+ 1-— q——l) - = <7’L —1> = valp(ﬂ).

e q—

This implies that Trg, ., /5, (OF,.,) = 7OF, by proposition 7 of Chapter IIT
of [Ser68].

Since 7 divides g/, this shows that given y € Op,, there exists a sequence
{Yn}n>1 with x, € OF, such that yy =y, and Trg, ., /p, (Ynt1) = q/7 - yn for
n > 1. Take £1,f5 > 0 such that ﬂélocp is in the domain of exp;r and such
that 72 log;1(2) € OF,. Let y = 2 log;r(2). Let {yn}n>1 be a sequence as
above, let x,, = expyp(7’1y,) and £ = £ 4 £5. The elements z; © [7¢](2), as
well as TrIj;fH/Fn (Tnt1)©lg/7](xy) for all n, have their log; equal to zero and
are in a domain in which log; is injective. This proves the proposition. O

If z € S and y, = logr(wn), then y, € F,, and Trg, /5, (Yns1) = ¢/ Yn,
so that by proposition 3.4.2, there exists f(T') € Bng such that ¢, (f(T)) =
7=l f(T) and y, = f(uy,) for all n > 1. If f(T) € B:gg,F is such that
be(f(T)) = n=" - f(T), then Of € (B

rlg,F)wQZI and Jf - u can be seen as an
(V)qul.

element of DL o
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THEOREM 3.4.5. Ifx € S, and if f(T) € B:’i_g,F is such that f(u,) = logp(zn)

and o (f(T)) = 7L f(T), then bl ,(OF(T) - w) = (q/m)~" - 8(xa) for all
n>1.

Proof. Let y = f(T) ®t;'u, so that y € (B:Eg,F ®F Deris(V))¥2=1. By theorem
3.3.2 applied to y with h = 1, we have hp, 1 (V(y)) = expp, v (¢7"0v (@, ™ (y)))
if n > 1. Since ;" 0d =7" -9 o p ", this implies that

h}?n,v(af(T)'U) =expp, v(¢ "Ov(p, " (y)) = (¢/7) " expp, v (logpr(wn)u).

By example 3.10.1 of [BK90] and lemma 3.2.2, we have d(z,) =
expp, v (logpr(zn) - u). This proves the theorem. O

Remark 34.6. If F = Q, and 7 = ¢ = p and # = {xp}n>1, this the-
orem says that Expg (6(z)) = 9dlogCol,(T'), which is (iii) of proposition
V.3.2 of [CC99] (see theorem II.1.3 of ibid for the definition of the map
Expg, : Hi, (F, Q,(1)) = D, (Q,(1))¥+=1).

Remark 3.4.7. If x € S, then by proposition 3.4.2, there is a power series f(T')
such that f(u,) = logyr(z,) for n > 1. Is there a power series g(T') € Op[T]
such that g(u,) = 2, so that f(T) =logg(T)?

If F = Q,, such a power series is the classical Coleman power series [Col79]. If
F # Qpand z € S and z is a [¢/7]-torsion point, and k > d — 1 so that z € Fy,
then the sequence 2’ = {z],},,>1 defined by z;, = x,, if n # k and 2}, = 2, & =z
also belongs to S. This means that we cannot naively interpolate x.

3.5 PERRIN-RIOU’S BIG EXPONENTIAL MAP

In this last section, we explain how the explicit formulas of the previous sections
can be used to give a Lubin-Tate analogue of Perrin-Riou’s “big exponential

map” [PR94]. Take h > 1 such that Fil " Deyis (V) = Deris(V). If f € B}, p@p

Deis(V), let A(f) be the image of @Zzoﬁk(f)(()) in @ZZODcris(V)/(l - Wk‘Pq)-

LEMMA 3.5.1. There is an exact sequence:

- =1 1_ q
0 — Bt Desis (V) 2= " (B:qgf ®F DmS(V)) N
Dcris V
DeslV)

_ A
)wq—O XRp Dcris(v) — @ZZO — Fk(pq

(Bji_g,F
Proof. Note that the map ¢, acts diagonally on tensor products. It is easy to
see that ker(l — ¢4) = @ZzotﬁDcris(V)‘Pq:“%, that A is surjective, and that
im(1 — ¢4) C ker A, so we now prove that im(1 — ¢,) = ker A.

If f,g € Bj;g’F ®F Dais(V) and f = (1 — ¢q)g, then ¢,(f) = 0 if and only if
qe(g) = g. It is therefore enough to show that if f € B . ®p Dais(V) is such

rig,
that A(f) =0, then f = (1 — ¢,)g for some g € B:gg,F ®F Deris(V).
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The map 1—¢, : Th“Bjig’F ®F Deris(V) — Th“Bj;g’F@F Deris(V) is bijective
because the slopes of ¢, on T’”‘lB;E&F ®p D are > 0. This implies that 1 — ¢,
induces a sequence

B:Eg,F QF Dcris(v) 1—pq
TthlB:gg’F ®F Dcris(v)
B:;g,p QF Dcris(v) A h Dcris (V)

— 0T
THIBY, ; Or De(V) 1=t

_——k
0 — @p_othDeys(V)$r=T

We have ker(l — ¢,) = EBZ:OtfrDcris(V)‘/’q:”% and by comparing dimensions,
we see that coker(T — @) = ®F_Deris(V) /(1 —7¥¢,). This and the bijectivity

of 1 — ¢, on ThHB:EgF ®F Deris(V) imply the claim. O
If fe (Bl " ®Fr Deris(V))2=0, then by lemma 3.5.1 there exists y €

(B, r @F Deris(V))¥e=" such that f = (1 — ¢g)y. Since V1 0--- 0V kills
@Z;ét,’ﬁDcﬁs(V)%:’fk we see that Vi1 0+ 0 Vy(y) does not depend upon
the choice of such a y (unless DcriS(V)%:”% #0).

DEFINITION 3.5.2. Let h > 1 be such that Fil ™" Deis(V) = Deyis(V) and such

that Dcris(V)‘/’q:fh = 0. We deduce from the above construction a well-
defined map:
Qv (B, )"~ @ Deris (V)20 — Dl (V)=

given by Qv n(f) = Vp_1 0--- 0 Vo(y) where the element y € (Bxg,F RF
Deyis(V))¥a=1 is such that f = (1 — ¢,)y and is provided by lemma 3.5.1.
If DCris(V)%:”% £ 0, we get a map

Qv (B )"0 @p Deris(V)A=0 — DI (V) ¥e=t /v Gr=xr,

rig
Let u be a basis of F/(xr) as above, and let e; = u®7 if j € Z.

THEOREM 3.5.3. Take y € (B:Eg,F ®F Deris(V))¥a=! and let h > 1 be such that

Fil "Deris(V) = Dexis(V). Let f = (1 — @)y so that f € (B}, p)¥=° @r
Dcris(v))A:O-
Ifje€Z and h+j > 1, then

h; (Qua(f) ®@ej) = ()" (h+j —1)!x

Fnav(X-jr;-)
XD vy (0" O0p ) (g "0y @t e;)))  ifn>1
exPp vy (1 =470 )y (1) (07 y @ 177 €y)) if n=0.
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If j€eZ and h+ j <0, then

exp}n,v*(lfj)(h}.rnyv(xjr)(QVﬁ(f) ® ej)) =

1 47"y (i (0 MO Ty @ 1 ey)) ifn=1
(=h=5! | (1~ qfl‘%’;l)av(xz;)(aﬂy ®tle;) ifn=0.

Proof. If h+ j > 1, the following diagram is commutative:

f =1 ®ej 1 V) e=1
Drig(V)w Drlg(V(XZr))w
Vh,lo---oVOT Vh+j,1o~~~oVoT

B+

IRt e . =1
— ( rig,F OF DcriS(V(XZr))) )

+ he=1
(Brig,F F Dcris(V))
and the theorem is a straightforward consequence of theorem 3.3.2 applied to

0 Iy®@t~Iej, h+ jand V(xZ) (which are the j-th twists of y, h and V).
If h+ 45 <0, and I', is torsion free, then theorem 3.3.1 shows that

eXp*Fn,V*(lfj)(h‘;ﬂmv(xzr)(vh—l o0 Vo(y) ®ej))
= qinav(xgr)(@qin(vhfl o---0Vo(y) ®ej))

in Deyis(V (x2)), and a short computation involving Taylor series shows that
By (i) (g (V1020 Vo(y) ®e)) = (=h= )71 0y () (0" (0 Ty ® 7 ey)).

To get the other n, we corestrict. o

COROLLARY 3.5.4. We have Qy;(z) ® e; = Q,
VioQupn(r) = Qv ().

(Xi)7h+j(8_j$ ® t;le;) and

Remark 3.5.5. The notation 977 is somewhat abusive if j > 1 as 0 is not
injective on B;qg r (it is surjective as can be seen by “integrating” directly a
power series) but the reader can check that this leads to no ambiguity in the

formulas of theorem 3.5.3 above.

If F = Q, and 7 = p, definition 3.5.2 and theorem 3.5.3 are given in §IL.5 of
[Ber03]. They imply that Qv coincides with Perrin-Riou’s exponential map
(see theorem 3.2.3 of [PR94]) after making suitable identifications (theorem
I1.13 of [Ber03]).

Our definition therefore generalizes Perrin-Riou’s exponential map to the F-
analytic setting. We hope to use the results of [Fou05] and [Fou08] to relate
our constructions to suitable Iwasawa algebras as in the cyclotomic case.
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