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ABSTRACT. We prove the equality of two non-logarithmic ramifica-
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INTRODUCTION

Let K be a complete discrete valuation field with residue field Fx and
Gr = Gal(K®P/K) the absolute Galois group of K. In [Se], the definition
of (upper numbering) ramification filtration of Gk is given in the case where
Fy is perfect. In the general residue field case, Abbes-Saito ([AS1]) have given
definitions of two ramification filtrations of Gx geometrically, one is logarith-
mic and the other is non-logarithmic. In Saito’s recent work ([Sal], [Sa2]) on
characteristic cycle of a constructible sheaf, the non-logarithmic filtration in
equal characteristic plays important roles to give an example of characteristic
cycle.
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918 YURI YATAGAWA

Assume that K is of positive characteristic. Let H*(K, Q/Z) be the character
group of Gk . In this case, Matsuda ([M]) has defined a non-logarithmic ramifi-
cation filtration of H'(K, Q/Z) as a non-logarithmic variant of Brylinski-Kato’s
logarithmic filtration ([B], [K1]) using Witt vectors. In this paper, we prove
that the abelianization of Abbes-Saito’s non-logarithmic filtration {G% }req-,
is the same as Matsuda’s filtration {fil, H(K,Q/Z)}mez., by taking dual,
which enable us to compute abelianized Abbes-Saito’s filtration by using Witt
vectors. This is stated as follows and proved in Section 3:

THEOREM 0.1. Let m > 1 be an integer and r a rational number such that
m<r<m-+1. For x € H'(K,Q/Z), the following are equivalent:
(i) x € fil,, H'(K,Q/Z).

(i) X(G}") =0.

(i1i) x(G3) = 0.
For m > 2, Theorem 0.1 has been proved by Abbes-Saito ([AS3]). The proof
goes similarly as the proof by Abbes-Saito (loc. cit.). The proof in this paper
relies on the characteristic form defined by Saito ([Sal]) even in the exceptional
case where p = 2 and an explicit computation of the characteristic form.
Let X be a smooth separated scheme over a perfect field of positive character-
istic and U = X — D the complement of a divisor D on X with simple normal
crossings. The characteristic form of a character of the abelianized fundamen-
tal group 73" (U) is an element of the restriction to a radicial covering of a sub
divisor Z of D of a differential module of X. We compute the characteristic
form using sheaves of Witt vectors. By taking X and D so that the local field at
a generic point of D is K and using the injections defined by the characteristic
form from the graded quotients of {fil,, H'(K,Q/Z)}mez-, and the modules
of characters of the graded quotients of {G% },eq-,, We obtain the proof of
Theorem 0.1. -
This paper consists of three sections. In Section 1, we recall Kato and Mat-
suda’s ramification theories in positive characteristic. We give some comple-
ments to these theories to compute the refined Swan conductor ([K1]) and the
characteristic form for a character of the fundamental group of a smooth sep-
arated scheme over a perfect field of positive characteristic in terms of sheaves
of Witt vectors. In Section 2, we recall Abbes-Saito’s non-logarithmic ramifi-
cation theory in positive characteristic in terms of schemes over a perfect field.
We recall the definition of the characteristic form defined by Saito and show
that this characteristic form is computed with sheaves of Witt vectors. Section
3 is devoted to prove Theorem 0.1.
This paper is a refinement of a part of the author’s thesis at University of
Tokyo. The author would like to express her sincere gratitude to her supervisor
Takeshi Saito for suggesting her to refine the computation of characteristic form
using sheaves of Witt vectors, reading the manuscript carefully, and giving a
lot of advice on the manuscript. The research was partially supported by the
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Program for Leading Graduate Schools, MEXT, Japan and JSPS KAKENHI
Grant Number 15J03851.
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1 KATO AND MATSUDA’S RAMIFICATION THEORIES AND COMPLEMENTS

1.1 LOCAL THEORY: LOGARITHMIC CASE

We recall Kato’s ramification theory ([K1], [K2]) and prove some properties
of graded quotients of some filtrations for the proof of Proposition 1.29 in
Subsection 1.3.

Let K be a complete discrete valuation field of characteristic p > 0. We re-
gard H},(K,Z/nZ) as a subgroup of H(K,Q/Z) = lim HL(K,Z/nZ). Let
W, (K) be the Witt ring of K of length s > 0. By definition, Wp(K) = 0 and
Wi (K) = K. We write

F:Wy(K) = Ws(K); (as—1,--+,a0) — (ab_,--+ ,ap)

for the Frobenius. By the Artin-Schreier-Witt theory, we have the exact se-
quence

0 — WL(F,) = Wo(K) Z=% W,(K) — HY(K,Z/p°Z) — 0. (1.1)
We define
5s : Wo(K) — H'(K,Q/Z) (1.2)

to be the composition
Wi(K) — H'(K,Z/p°Z) — H'(K,Q/Z),

where the first arrow is the fourth morphism in (1.1).
Let Ok be the valuation ring of K and Fx the residue field of K. We write
Gk for the absolute Galois group of K.
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DEFINITION 1.1 ([K1, Definition (3.1)]). Let s > 0 be an integer.

(i) Let a = (as—1,...,a0) be an element of W,(K). We define ordg(a) by
ordK(a) = minogigs_l{pl ordK(ai)}.

(ii) We define an increasing filtration {fil, Ws(K)},ecz of W (K) by

fil, Ws(K) = {a € Ws(K) | ordg(a) > —n}. (1.3)
The filtration {fil,, Ws(K)},cz in Definition 1.1 is first defined by Brylinski ([B,
Proposition 1]) and fil, W,(K) is a submodule of W (K) for n € Z (loc. cit.).

Let n > 0 be an integer and put s’ = ord,(n). Suppose that s’ < s. Let V
denote the Verschiebung

V: WS(K> — Werl(K); (asflv e 7a0) = (0,(15,1, e 7a0)-
Since (as_1,...,a0) = (@s—1,-..,a541,0,...,0)+V*"5"(ay, ... ag), we have
fil, W, (K) = fil,, -y W, (K) + V=5 i, W 41 (K). (1.4)

DEFINITION 1.2 ([K1, Corollary (2.5), Theorem (3.2) (1)]). Let d§, be as in
(1.2).

(i) We define an increasing filtration {fil,H'(K,Z/p*Z)}nez., of
HY(K,Z/p*Z) by

ﬁlnHl(Ka Z/psz) = s (ﬁans (K))

(ii) We define an increasing filtration {fil, H' (K, Q/Z)}nez., of H'(K,Q/Z)
by

fil, H'(K,Q/Z) = H'(K,Q/Z){p'} + | ] 6.(fil.W.(K)),  (L.5)

s>1
where H'(K,Q/Z){p'} denotes the prime-to-p part of H*(K,Q/Z).

DEFINITION 1.3 ([K1, Definition (2.2)]). Let x be an element of H(K,Q/Z).
We define the Swan conductor sw(x) of x by sw(x) = min{n € Z>o | x €
fil, H'(K,Q/Z)}.

We recall the definition of refined Swan conductor of x € H'(K,Q/Z) given
by Kato ([K2, (3.4.2)]). Let Q) be the differential module of K over K? C K.

DEFINITION 1.4. We define an increasing filtration {fil, Qf }nez., of Qf by
il Q) = {(adr/m+ §)/7" | a € Ok, B € o, } =m ™", (log),  (1.6)

where 7 is a uniformizer of K and m is the maximal ideal of Ok.
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We consider the morphism

s—1 .
—F Tl W(K) = Qs (a1, a0) = — > af " Hday. (1.7)
i=0
The morphism —F*~1d (1.7) satisfies —F*~1d(fil,W,(K)) C fil, QL. We put
gr,, = fil,, /fil,,_; for n € Z>q. Then, for n € Z>1, the morphism (1.7) induces

s gr, W (K) — gr, Q.
Let 6™ gr,Ws(K) — gr,H'(K,Q/Z) denote the morphism induced by
d0s (1.2) for n € Z>y. For n € Z>q, there exists a unique injection

o™ gr, HY(K,Q/Z) — gr, Q% such that the diagram

(n)
gr, Wy(K) = gr, Ok (1.8)

gr, 1'(K,Q/Z)

is commutative for any s € Z>o by [M, Remark 3.2.12], or [AS3, §10] for more
detail. We note that gr, Q. ~ m~"Qg, (log) ®o, Fk is a vector space over
Fr.

DEFINITION 1.5 ([K2, (3.4.2)], [M, Remark 3.2.12], see also [AS3, Définition
10.16]). Let x be an element of H'(K,Q/Z). We put n = sw(x). If n > 1,
then we define the refined Swan conductor rsw(x) of x to be the image of x by
#™ in (1.8).

In the rest of this subsection, we prove some properties of graded quotients of
filtrations.
For g € R, let [q] denote the integer n such that ¢ — 1 <n < q.

LEMMA 1.6. Let m and r > 0 be integers.

(i) Im/p"] = [(m — 1)/p"] + 1 if m € p"Z and [m/p"] = [(m —1)/p"] if
m ¢ p"Z.

(it) [[m/p"]/p] = [m/p"*] = [[m/p] /p"].

Proof. (i) We put m = p"q + a, where g,a € Z and 0 < a < p". Then
[m/p"] = q. Further [(m —1)/p"] = ¢+ [(a —1)/p"]. Since [(a —1)/p"] = —1 if
a=0and [(a—1)/p"] =0if 0 < a < p", the assertion holds.

ii) We put m = p"t1¢ + a’, where ¢’,a’ € Z and 0 < o’ < p"*t!. Then
[m/p"] = pq’ + [a'/p"] and 0 < [a’/p"] < p. Further [m/p] = p"q' + [a’/p] and
0 < [a’/p] < p". Hence we have [[m/p"]/p] = ¢’ = [m/p" 1] and [[m/p]/p"] =
¢ =[m/p*]. O
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LEMMA 1.7. Let a be an element of Ws(K).
(i) ordx (F(a)) = p-ordk(a).

(i) ordg ((F —1)(a)) = p-ordg(a) if ordg(a) < 0 and ordx ((F —1)(a)) >0
if ordg (a) > 0.

(iii) For an integer n > 0, we have F~1(fil,Ws(K)) = (F—1)"(fil,Ws(K)) =
£l W (K.

Proof. (i) We put a = (as—1,...,ap). Since F(a) = (a”_,, ..., a), the assertion
holds.

(ii) Suppose that ordx(a) > 0. Then, since both a and F(a) belong to
filoWs(K), we have (F —1)(a) € filyW(K). Hence we have ordg ((F —1)(a)) >
0 by (1.3).

Suppose that ordg(a) < 0. We put ordg(a) = —n. Since both a and F(a)
belong to fil,, W, (K), we have (F — 1)( ) € fil,, Ws(K). Since ordg (F(a)) =
—pn < ordg(a) = —n, we have (F — 1)(a) ¢ ﬁl,m 1Ws(K). Hence we have
ordg ((F —1)(a)) = —pn.

(iii) By (i), we have F(a) € fil, W (K) if and only if ordx(a) > —n/p for
a € Wy(K). Hence we have F~!(fil, W,(K)) = filp,, /,; W, (K). By (ii), we have
(F — 1)1 (fil,W(K)) = fil}, /) W (K) similarly. O

Let » > 1 be an integer. By Lemma 1.7 (iii), the Frobenius F': Ws(K) —
W, (K) induces the injection

F: ﬁl[n/p]Ws(K)/ﬁl[(n_l)/p]WS(K> — gI‘nWS(K). (19)

By Lemma 1.6 (i), the domain of (1.9) is equal to gr,,, W, (K) if n € pZ and
it is 0 if n ¢ pZ.
By Lemma 1.7 (iii), the morphism F — 1: W (K) — W (K) induces the injec-

tion

n/p

Since [n/p] < nif n > 1, the morphlsms (1.9) and (1.10) are the same.

LEMMA 1.8 (cf. [K1, Theorem (3.2), Corollary (3.3)]). Let n > 1 be an integer.
Then we have the exact sequence

F )
0— ﬁl[n/p]Ws(K)/ﬁl[(nfl)/p]WS(K) — gI‘nWs(K) L} gI‘nQ}(,
where filpy, jpy W (K) /filj(n—1) /W (K) is gt,, ,, Ws(K) if n € pZ and 0 if n ¢ pZ.

n/p

Proof. As in the proof of [AS3, Proposition 10.7], the morphism gogn) factors
through

gr, H'(K,Z/p*Z) ~ fil, W,(K)/((F — 1)(Wy(K)) N fil, W, (K) + fil,_ s W, (K)).

Since this factorization defines the injection ™ in (1.8) by [AS3, Proposition
10.14] and since the morphism F' (1.9) is equal to the morphism F' — 1 (1.10),
the assertion holds. O
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DEFINITION 1.9. Let s > 0 and r > 0 be integers. We define an increasing
filtration {1 W (K)}nez., of Wi(K) by

8 W,(K) = {a € W(K) | ordg(a) > —n/p"} = filp, jpr We(K).  (1.11)

By (1.11), we have 81O W, (K) = fil, W,(K) for n € Zx.
For integers 0 <t < s, let pr, denote the projection

pry: Wo(K) = Wi(K); (as—1,---,a0) = (Qs—1,...,Qs—¢)- (1.12)

We put gr'r) = il /"), for r € Zso and n € Zs.

LEMMA 1.10. Let r > 0 and 0 <t < s be integers. Let pr,: W (K) — Wi(K)
be as in (1.12). Let n > 0 be an integer.

(i) pr,(fl, Wy (K)) = 1~ W, (K).
(ii) (F = 1)~ (W, (K)) = il W,(K).

Proof. (i) By (1.3), we have pr,(fil,W,(K)) = fil;,, /ps—)W;(K). Hence the
assertion holds by (1.11).

(i) By Lemma 1.7 (iii) and (1.11), we have (F — 1)"*(H"W(K)) =
fil{r/pr1/p)Ws (K). By Lemma 1.6 (ii) and (1.11), the assertion holds. O

Let n > 0 and 0 < ¢ < s be integers. Since pr,(fil, W,(K)) = fil*~)W,(K) by
Lemma 1.10 (i), we have the exact sequence

0 = fil, Wy () L5 6L, W, (K) 2% 6159w, (K) — 0. (1.13)

LEMMA 1.11. Let n > 1 be an integer. Then the exact sequence (1.13) induces
the exact sequence

0 = gr, Wy_y () L gr, Wi (K) 25 gre=OW,(K) — 0,

where grgf_t)Wt(K) is equal to gr,, -~ Wi(K) if n € p*"'Z and 0 if n ¢ p*~'Z.

n/p

Proof. We consider the commutative diagram

pry

0 — il We_t(K) Lo il Wy (K) 24 810 DOW (K) —= 0 (1.14)

| | |

0 — fil, We_ o (K) —L > L, W, (K) 2 615 DW, (K) — 0,

where the horizontal lines are exact and the vertical arrows are inclusions. By
applying the snake lemma to (1.14), we obtain the exact sequence which we

have desired. The last supplement to grgfft)Wt(K ) follows by Lemma 1.6 (i)
and (1.11). O
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1.2 LOCAL THEORY: NON-LOGARITHMIC CASE

We recall a non-logarithmic variant, given by Matsuda ([M]), of Kato’s log-
arithmic ramification theory recalled in Subsection 1.1, and we consider the
exceptional case of Matsuda’s theory. We also consider the graded quotients of
filtrations. We keep the notation in Subsection 1.1.

DEFINITION 1.12 (cf. [M, 3.1]). We define an increasing filtration
{ﬁl’lrnWS(K)}"TLGZ21 of Wy (K) by

fil! Wo(K) = filyy_y Wi (K) 4+ V% fil,, Wy (K). (1.15)

Here s’ = min{ord,(m), s}.

The definition of {fil, W(K)}mez., in Definition 1.12 is shifted by 1 from
Matsuda’s definition ([M, 3.1]). Since fil,,W,(K) is a submodule of W (K) for
n € Z, the subset fil,, W,(K) is a submodule of Wy (K) for m € Z>.

By (1.15), we have

fil,, 1 W (K) C fill,,Ws(K) C fil,, W,(K) (1.16)
for m € Z>,. Since min{ord,(1),s} =0 for s € Z>(, we have
fily W, (K) = fil, W, (K). (1.17)
DEFINITION 1.13 (cf. [M, Definition 3.1.1]). Let J, be as in (1.2).

(i) We define an increasing filtration {fil, H'(K,Z/p*Z)}mez., of
HY(K,Z/p*Z) by

i, H' (K, Z/p*Z) = 5,(1,W,(K)).

(i) We define an increasing filtration {fil}, H'(K,Q/Z)}mez., of
HY(K,Q/Z) by

ﬁlmel(Ka Q/Z) = Hl(K7 Q/Z){p/} + U 55(ﬁ1;nWé(K))a (1'18)

s>1
where HY(K,Q/Z){p'} denotes the prime-to-p part of H(K,Q/Z).
By (1.16), we have
fil,,_1H'(K,Q/Z) C fil,, H'(K,Q/Z) C fil,, H'(K,Q/Z) (1.19)
for m € Z>1. By (1.17), we have filyH' (K, Q/Z) = fil; H (K, Q/Z).

DEFINITION 1.14 (cf. [M, Definition 3.2.5]). Let x be an element of
HY(K,Q/Z). We define the total dimension dt(x) of x by dt(x) = min{m €
Z> | x € fil, H'(K,Q/Z)}.
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DEFINITION 1.15. We define an increasing filtration {fil,,Qj }mez., of Qf by
fil, Qg = {7/7™ | ¥ € Qo, .} =m ",
where 7 is a uniformizer of K and m is the maximal ideal of Ok.
Since mg, _(log) C Qp,. C Q4 (log), we have
fil,, 19 C fil), QF C fil,,QF (1.20)

for m € Zzl.

We consider the morphism (1.7). The morphism (1.7) satisfies
—FPs7ld(fl,Wy(K)) C fil, QL for m € Z>;. We put grl, = fill /il _;
for m € Z>5. Then, for m € Z>,, the morphism (1.7) induces

o, ™ g, W () = grl, Q. (1.21)
Let 65™): g/ W (K) — gr', H'(K,Q/Z) denote the morphism induced by
0s (1.2) for m € Zsy. If (p,m) # (2,2), there exists a unique injection
¢’ gr! HY(K,Q/Z) — gr!,Qk such that the diagram

Pl

g, Ws(K)

gr, H'(K,Q/Z)

grh, QL (1.22)

is commutative for any s € Zso by [M, Proposition 3.2.3]. We note that
g, Qe ~m~ "0, o, Fg is a vector space over Fi.
We consider the exceptional case where (p,m) = (2,2).

LEMMA 1.16. Let s > 1 be an integer. Assume that p=2. Then V5~ 1: K —
W, (K) induces an isomorphism gry K — groWo(K).

Proof. Since p = 2, we have s’ = min{ord,(2), s} = 1. Hence we have
Al W, (K) = il W, (K) + VS Hil, K
= fili W, (K) + VS Hil, K

by applying (1.15) for the first equality and (1.4) and (1.17) for the second
equality. Since fil, K = fil, K by (1.15), the assertion holds. o

PROPOSITION 1.17. Assume that p = 2. Let F[l</2 C Fx denote the subfield of
an algebraic closure Fi of Fi consisting of the square roots of Fi .

(i) There exists a unique morphism
G gryWi(K) — grhQc Oy Fi?
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such, that @) (@) = —dag + V72agdr /7% for every a € grhW(K) whose
lift in fl,Ws(K) is a = (0,...,0,a0) and for every uniformizer T € K.
Here \/72ag € Fll(/2 denotes the square oot of the image m2aqg of m2ag in
Fi.

(ii) There exists a unique injection ¢'® : gry HY(K, Q/Z) — gryQk @ pyc Fll(/2
such that the following diagram is commutative for every s > 0:

/ A 1Ol 1/2
groWs(K) g1y Qpy Iy (1.23)

M%

gryHY (K, Q/Z).

Proof. By Lemma 1.16, we may assume that s = 1.

(i) Let a be an element of fil, K and 7 a uniformizer of K. Since p = 2,
we have fil, K = fil, K by (1.15). Hence we have n2a € Ok by (1.3). Since
—d(fl,K) C f1)QL, we have —da + V72adr /7% € gryQ @, Fi/% Ifa €
fil} K, we have a € Ok by (1.3) and (1.17). Since —d(fil}K) C filjQL, we
have —da + V n2adr/7? = 0 in gryQk @p, Fjl(/2. For a,b € fil,K, we have

\/72(a+b) = V72a + V72b, since p = 2.

We prove that Vv %dﬂ/ 72 is independent of the choice of a uniformizer 7 of
K. Let u € O} be a unit. Then, in gryQk ®p, Fi/°, we have

\/ (um)2ad(ur) /(ur)? = u\/7r—7aud7r/(u7r)2 = \/ﬁdﬂ/ﬂQ.

Hence the assertion holds.

(ii) Since p = 2 and fil, K = filb K, we have fil, K N (F —1)(K) = (F —1)(ilh K)
by Lemma 1.7 (iii). Hence it is sufficient to prove that Ker 32/1(2)
of (F—1)(filhK) in gry K.

Let a be an element of fil; K. By (1.3), we may put a = a’/m, where o’ € Ok.
Then we have

is the image

P (@2 - a) = —adr/7* + \/a'’dr /7 = 0. (1.24)

Conversely, let a € fil, K be a lift of an element of Ker @1(2). Since fily K = fil, K,
we can put a = a’ /7%, where a’ € Ok, by (1.3). Suppose that ordg(a’) > 0,
that is a € fil; W, (K). Since @;(2) (@) = —(a’7=Y)dr/m? = 0, we have a/7~! = 0
in Fg. Hence a € filyK = fil; K, that is @ = 0 in gry K.

Assume that a’ € O is a unit. Since we have

@;(2) (@) = —da + \/Edﬂ'/ﬂj =0, (1.25)
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we have Va' € Fi. Hence there exist a unit a” € O and an element b € fil; K
such that a = (F — 1)(a”/7) + b. By (1.24) and (1.25), we have @;(2) (b) = 0.
Hence we have b € filj K by the case where ordg(a’) > 0, which is proved
above. Therefore @ € gry K is the image of an element of (F — 1)(filkK). O

Let m > 2 be an integer. By abuse of notation, we write
¢ ! HY(K,Q/Z) — grly, Qk @p, P (1.26)

for the composition of ¢'™ in (1.22) and the inclusion gr/, Q% — gr/, Qk @ p,
Fll(/p if (p,m) # (2,2) and ¢'® in Proposition 1.17 (ii) if (p,m) = (2,2).

DEFINITION 1.18. Let x be an element of H' (K, Q/Z). We put m = dt(x) and
assume that m > 2. We define the characteristic form char(x) € grl, Qk @,

Fll(/p of x to be the image of x by ¢/(™ (1.26).

By (1.22) and Proposition 1.17, we need Fll(/p only in the case where p = 2 and
x € il,HY K, Q/Z) — filLH (K, Q/Z).

In the rest of this subsection, we prepare some lemmas for the proof of Propo-
sition 1.29.

DEFINITION 1.19. Let s > 0 and r > 0 be integers. We put ' =
min{ord,(m),s + r} and s = max{0,r" — r}. We define increasing filtrations
{8 W (K) ez, and {A1 W, (K)} ez, of Wi(K) by

AW, (K) = 617 W (K) + Vo810 W, (K), (1.27)
1(r) _ pq(r) s—s" 1(r)
RLWL(K) = 1)) We(K) + V"l W (K). (1.28)

If r = 0, then we simply write fill W(K) for ﬁl%o) W,(K).

If r = 0, since s” = s = min{ord,(m), s}, we have 8l\YW,(K) = fil, W,(K).
Further we have

ﬁlxlws (K) = ﬁl[(m—l)/p]Ws (K) + Vsislﬁl[m/p]wsl (K) (1.29)

LEMMA 1.20. Let r > 0 and 0 <t < s be integers. Let pr,: Ws(K) — Wi(K)
be as in (1.12). Let m > 1 be an integer.

(i) pr,(fil, W,(K)) = Al DW,(K).

1) We have the exact sequence
(1) q

0 il W,_o(K) s 61, W, (K) 2% GUCDW,(K) — 0. (1.30)
(iii) pr, (L, W, (K)) = 61O Wi (K),
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(iv) We have the exact sequence
0= 1 Wy_y (K) s 617 W, (K) 2% 6176w, (K) - 0. (1.31)

() AW (K) = (F — 1) (6D W,(K)). Especially, i1, W,(K) = (F —
1)~ 1AL, Wi (K)).

Proof. We put ¢’ = min{ord,(m),s}, ' = min{ord,(m),s + r}, and s’ =
max{0,r" —r}.

(i) By (1.27), we have Al YW, (K) = "YW, (K) if t < s — s and
ACDW,(K) = A1STOW,(K) + Voo il )Wt oo (K)ift > s—s. By
Lemma 1.10 (i), we have pr, (fl,_,W,(K)) = 81 "VW,(K) and, if t > s — ¢/,
we have pr, (V=% fil,, Wy (K)) = V5= fil(5~ t)Wt_s+s (K). Hence the assertion
holds by (1.15).

(ii) The assertion holds by (1.15) and (i).

(iii) The assertion holds similarly as the proof of (i) by (1.28) and (1.29).

(iv) The assertion holds by (1.29) and (iii).

(v) Since V*=% and pr,_,, commute with F — 1, the morphisms
Vs W (K)  —  We(K) and pry_g.: Wo(K) — W o (K) in-
duce V=" (F — D' HOW,(K) — (F — DY\ W,(K)) and
pry_gt (F = DT EDWLK) = (F = )7 6 W (K)) respec-
tively.

We prove that 817 W,(K) c (F — 1)~ (W, (K)). By (1.11) and (1.28),
we have ﬁl;:L(T)Wé(K) = ﬁl[[(mil)/p]/pT]Ws(K) + Vs_s//ﬁ [[m/p]/p ]Wéu(K).
By (1.11) and (1.27), we have fI"W,(K) = filj(m—1)/prWs(K) +
Vs_s//ﬁl[m/pr]Wsu(K). Hence, by Lemma 1.6 (ii) and Lemma 1.7 (iii),
we have fil’ "W, (K) c (F — 1)~ (6" W, (K)).

We put A, = 1 W, (K) and B, = il W,_ . (K) for n € Z>o. We also
put C,, = il W,(K) and D,, = fil’™WW,(K) for n € Z>;. We consider the
commutative diagram

s—s Pry_gm

”
Apm/p) D, Bim—1)/p) —0

L l

Pro_ g/

(F=1)""Ap)— (F = 1)"Y(Cp) — (F = 1) (Bm-1),

where the left and right vertical arrows are the identities by Lemma 1.10 (ii), the
middle vertical arrow is the inclusion, and the lower horizontal line is exact.
Since the upper horizontal line is exact by Lemma 1.10 (i) and (1.28), the
assertion holds by applying the snake lemma. O

COROLLARY 1.21. Let m > 2 and 0 <t < s be integers.
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(i) The exact sequence (1.30) induces the exact sequence

0 = gl W o(K) Lo gl W, (K) 2 g/ C=OW, (K) — 0.
(i) The exact sequence (1.31) induces the exact sequence

0 — grlh Ws_+(K) AR g W (K) 2 gD W, (K) — 0.

Proof. The assertion holds similarly as the proof of Lemma 1.11. O
Let m > 2 be an integer. By abuse of notation, let
@™ - gl Wa(K) = gy O ©r Fi”

be the composition of ™ (1.21) and the inclusion gr/, QL — gr/, QL @y, F/”

if (p,m) # (2,2) and ¢ in Proposition 1.17 (i) if (p,m) = (2,2).
Let 7 > 0 be an integer. By Lemma 1.20 (v), the morphism F —1: W (K) —
W, (K) induces the injection
F—1: g"MW(K) — gr'("W,(K).
Especially, the morphism F' — 1 induces the injection

F—1: gl Ws(K) — grl, Ws(K).

LEMMA 1.22 (cf. [M, Proposition 3.2.1, Proposition 3.2.3]). Let m > 2 be an
integer. Then we have the exact sequence

" F-1_ e ey 1/p
0 — gry Ws(K) — gr, Ws(K) —— gr, Qf @p F/P.

Proof. As in the proof of [M, Proposition 3.2.1] and Proposition 1.17 (ii), the

morphism ™ factors through

gty H' (K, Z/p°Z) = fil, W, (K) /((F=1) (W (K))Nfil,, W, (K) +il}, , W,(K)).

Since this factorization defines the injection ¢/(™ by [M, Proposition 3.2.3] and
Proposition 1.17 (ii), the assertion holds. O

LEMMA 1.23. Let m > 1 and r > 0 be integers.

(i) ﬁljj(:?K = fily/pr K if m € p"H'Z and A1\ K = 1)/, K if m ¢
prTZ.

(ii) ALK = fil, ) K
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Proof. (i) By (1.27), we have il K = A1V K if m € p"*'Z and iV K =
A1) K if m ¢ p"T1Z. Hence the assertion holds by (1.11).

(ii) By Lemma 1.20 (v), we have fil’/'"K = (F — 1)~} K). By (i)
and Lemma 1.7 (iii), we have )" K = fil,, -1 W,(K) if m € p"+'Z and
'K = filij(m—1)/pr) /) Ws(K) if m ¢ p"t1Z. Hence the assertion holds by
Lemma 1.6. O

COROLLARY 1.24. Let m > 2 and r > 0 be integers.

7 ssume that r > 1. en Sry, =gor .- ifmep or ord,(m —
A h 1. Then gr K = gty K if m € p"H'Z or ord,,
1) =r, and gr;g)K = 0 otherwise.

(ii) ern K = &ty e K if m € p"tZ, and ern K =0 ifm ¢ ptiz.

Proof. (i) Assume that m € p"T!Z. Since r > 1, we have m — 1 ¢ p"Z. Hence
gr;g)K = filjp /pr) K /il (-2 /pr) K by Lemma 1.23 (i). By Lemma 1.6 (i), the
assertion holds in this case.

Assume that m ¢ p'T'Z. By Lemma 1.23 (i), we have gri'K =
ﬁl[(m_l)/p'r]K/ﬁl[(m_Q)/pr]K ifm—1 ¢ pTJrlZ and gr;(f)K =0ifm—-1¢ pTJrlZ.
Suppose that m — 1 ¢ p'*'Z. By Lemma 1.6 (i), we have grif/K =
8l ((m—1)/p) K if m —1 € p"Z and et VK =0ifm—1¢pZ Ifm—1¢€pZ,
then we have m ¢ p"Z, since r > 1. Hence the assertion holds by Lemma 1.6
(i)

(ii) By Lemma 1.23 (ii), we have gr%T)K = il jpr+1] K /fil (1) jpr+1) K. Hence
the assertion holds by Lemma 1.6 (i). O

We note that if r = 0 and if m € pZ then griv K = gr’ K = fil,, K /film_o K.

1.3 SHEAFIFICATION: LOGARITHMIC CASE

Let X be a smooth separated scheme over a perfect field k of characteristic
p > 0. Let D be a divisor on X with simple normal crossings and {D;}cr
the irreducible components of D. The generic point of D; is denoted by p; for
1€1. Weput U =X —D and let j: U — X be the canonical open immersion.
For i € I, let O, denote the completion Ox ,, of the local ring Ox p, at p;
and K; the fractional field of Ok, called local field at p;.

Let €: X¢ — Xyzar be the canonical mapping from the étale site of X to the
Zariski site of X. We use the same notation j, for the push-forward of both
étale sheaves and Zariski sheaves. We consider the exact sequence

0 — WL(Fp) = Wa(Ou,,) —5 W(Op,,) — 0

of étale sheaves on U for s € Z>q. Since R'(e 0 j).W,(Op,,) = 0, we have an
exact sequence

0= . Wa(F,) = j.We(Or) =5 j.Wo(Ou) — R0 §).Z/p°Z — 0 (1.32)
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We write
8s: 3« Ws(Op) — RY(e0j).Z/p°Z (1.33)

for the fourth morphism in (1.32).

Let V be an open subset of X. Since we have the spectral sequence EY? =
HE (V,RY(e 0 j).Z/p°Z) = HYTY(UNV,Z/p°Z) and E,° = E3° = 0, the
canonical morphism

Hi{(UNV,Z/p*Z) — T(V,R" (€0 j).Z/p°Z)

is an isomorphism. By the exact sequence (1.32), the morphism &5 (1.33)
induces an isomorphism

JeWs(Ov)/(F = 1)jW(Ou) = R (e © j)2/p" 2.
IfD;NV #Qandif a e T(UNV,Ws(Or)), let a|k, denote the image of a by
L(U NV, W, (Op)) — Wi(K,).

Similarly, if D; NV # 0 and if x € HL (U NV,Z/p°Z), let x
image of x by

K, denote the

HL(UNV,Z/p°Z) — H (K;,Z/p°Z).

DEFINITION 1.25. Let R = )7, ;n;D;, where n; € Zx¢ for i € I, and let
Ji: Spec K; — X denote the canonical morphism for ¢ € I.

(i) We define a subsheaf filpj,Ws(Oy) of Zariski sheaf j,W,(Oy) to be
the pull-back of @,c; jixfiln, Ws(K;) by the morphism j.W,(Oy) —
@iejji*WS(Ki)-

(ii) We define a subsheaf filg R (€ 0 §).Z/p°Z of R'(e o j)«Z/p°Z to be the
image of filgj. W, (Op) by ds (1.33).

(iii) We define a subsheaf filrj. 2}, of j.Qf to be Q% (log D)(R).
We consider the morphism

s—1 .
—F*7d: 5. W,(Ou) = 5.98 5 (as—1,...,a0) — — Zafuldai. (1.34)
i=0
Let R =

morphism

ser MiDi, where n; € Zxg for i € I. Then (1.34) induces the

Let R' =}, ; niD;, where nj € Z>q such that nj < n; fori € I. Then we have
filg D filp and put gryp,p = filg/filg:. Then the morphism (1.34) induces the
morphism

@gR/R ): grR/R’j*WS(OU) - grR/R’j*Qllj' (1.35)
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If R = R'+ D; for some i € I, then we simply write gpgR’i) for gpgR’R/)
fOI" gI“R/R/ .

Let 0 < t < s be integers. We put [R/p’] = 3, ;[ni/p']Di. We consider the
projection

and grp ;

pry: j*Wé(OU) — j*Wt(OU) ) (as_l, R ,ao) d (as_l, ey as_t). (136)

Since we have pr;(filrj. Ws(Ov)) = filjg/ps—+)7«W:(Ov) by (1.11) and Lemma
1.10 (i), we have the exact sequence

0— ﬁle*Ws_t(OU) V—t> ﬁle*Wé(OU) & ﬁl[R/ps—t]j*Wt(OU) — 0. (137)

LEMMA 1.26. Let R = ), ;niD; and R = Y, niD;, where ng,n; € Zxo
and n};, < n; for every i € I. Then the exact sequence (1.37) induces the exact
sequence

. vt .
0= grp pisWs—t(Ov) — gt/ p j«Ws(Ou) (1.38)
i gI‘[R/psft]/[R//psft]j*Wt(OU) — 0.

Especially, if R = R' 4+ D; for some i € I, we have the exact sequence

ot
0— ng,ij*Ws—t(OU) 1A grR,ij*Ws(OU)
pT .
*t—) gr[R/ps715]/[(R_Di)/ps—t]j*Wt(OU) — 0.

Proof. The assertion holds similarly as the proof of Lemma 1.11. In fact, we
consider the commutative diagram

0 > fil . Wa s (Our) % filg ju Wi (Our) 22 Bl g ey ju Wi (Ou) == 0 (1.39)

| l |

0 — filpju Wy—t (Or) 2> filpjs Wy (Op) 2= fil{g/ps—+)3« Wi (Ov) — 0,

where the horizontal lines are exact and the vertical arrows are inclusions.
Then this diagram induces the sequence (1.38). By taking stalks of (1.39), the
exactness of (1.38) follows. O

Let R =) ,.;niD; and R' = 37, niD;, where n;,n; € Z>¢ and nj < n; for
every ¢ € I. We consider the morphism

F:grippyir 03+ Ws(Ov) = gt p 3 Ws(Ou) (1.40)

induced by the Frobenius F: 7 W (Oy) — 5.Ws(Op). Since
F~Y(filgj, Ws(Oy)) = filig/p)j«Ws(Ou) by Lemma 1.7 (iii) and similarly
for R’, the morphism (1.40) is injective.
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We consider the morphism

F—1: gr[R/p]/[R//p]j*Ws(OU) — grR/R’j*WS(OU) (141)

induced by F—1: j,W,(Oy) — j.Ws(Oy). If R = R'+ D, for some i € I, then
the morphisms (1.40) and (1.41) are the same, since [R/p] < R’ with respect
to product order.

LEMMA 1.27. Let A be a smooth ring over k. Let t1,...,t. be elements of A
such that (t1---t. = 0) is a divisor on Spec A with simple normal crossings
whose irreducible components are {(t; = 0)}_,. Let a be an element of Frac A.
Assume that aPt}t - - -t € A, where ny,...,n, are integers such that 0 < n; <
p fori=1,...,r. Then we have a € A.

Proof. Since aPty*---tm € A, the valuation of aPt}" ---#]" in A,y is non-
negative for s = 1,...,r. Since the normalized valuation of a? in Frac A, for
t=1,...,7 is divided by p and 0 < n; < p for ¢ = 1,...,r, the valuation of
a in Frac Ay, for i = 1,...,r is non-negative. Since A is factorial, we have
AlL/ty---t,] N1 Aw,) = A. Hence the assertion holds. O

LEMMA 1.28. Let F, G, and H be sheaves of abelian groups on X and let F;,
Gi, and H; be subsheaves of F, G, and H respectively for i = 1,2,3. Assume
that F3 = F1 N Fa, Hy = H1 NHs, and that Gs C G1 N Gs. If we have an exact
sequence 0 - F — G — H — 0 and if this ezact sequence induces the exact
sequence 0 = F; — G; — H; — 0 for i =1,2,3, then we have G3 = G1 N Gs.

Proof. We consider the commutative diagram

0 0 0 (1.42)

0 F g H 0,

where the bottom vertical arrows are defined by the difference. Since F3 =
Fi1 N Fy and Hg = H1 N Ha, the left and right vertical columns are exact. By
applying the snake lemma to the lower two lines, we have G3 = G; N Gs. O

PROPOSITION 1.29. Let R =), ;n;D;, where n; € Z>q for i € I. Let s >0
be an integer and let i be an element of I such thatn; > 1. We put R’ = R—D;.
Then we have the exact sequence

(R,i)

0 = 8 ir/p/ R /p) 0+ Ws(Ou) — grg 3« Ws(Ou) e Nt
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where grig 1 /1R p13xWs(Ou) 18 81y i3+ Ws(Ov) if ni € pZ and 0 if n; ¢ pZ.

Proof. We may assume that s > 1, I = {1,...,r}, and that ¢ = 1. Let
J1: Spec K1 — X be the canonical morphism. We consider the commutative
diagram

(R,1)

. F . 2% .
0 ——= &t (r/p/ (R /p)Jx Ws(Ov) —— g 17:Ws(Ov) == grp 1.9 (1.43)

l L

0 = J14(88n, /911001 — 1) /) W (K1) = J1a8T,, W (K1) > jragr,, Q.

where we put gri,, /1/1(n1—1)/p] = flina/p)/flj(n,—1)/p) and the vertical arrows
are inclusions. Since the lower line is exact by Lemma 1.8, it is sufficient to
prove that the left square in (1.43) is cartesian.

If n1 ¢ pZ, then the assertion holds since grig ./ (r/pJ+Ws(Ov) = 0 and
gr[nl/p]/[(nlfl)/p]WS(Kl) =0 by Lemma 1.6 (1)

Assume that n; € pZ. Then we have grig /i /pd<Ws(Ov) =
gr[R(/p)],lj*WS(OU) and gr[nl/p]/[(nlfl)/p]WS(Kl) = grnl/pWs(Kl) by Lemma
1.6 (i).

We prove the assertion by induction on s. Suppose that s = 1. Since the
assertion is local, we may assume that X = Spec A is affine and that D; = (¢; =
0) for i € I, where t; € A for i € I. Further we may assume that the invertible
Op,-modules grg 17.Ov and grig/, 1j+Ov are gererated by co = 1/t1" - ¢]r

and ¢; = 1/1571“/’)t72"/2 -7 respectively, where m), = [n;/p] for i € I —{1}. Let
k(D1) denote the functional field of D;. We identify gr, K; with k(D7) - co
and gr,, ,, K1 with k(Dy) - cq.

Let a be an element of k(D) such that F(ac;) = afcf € grp,j.Oy. Since
(@Pcf /co) - co € grp 1J+Ov = Op, - ¢o, we have aPcf/co € Op,. Since ¢ /co =

t;lrpmé ---tfﬁpm; and 0 < n; —pm) < p for i € I — {1}, we have a € Op,
by Lemma 1.27. Hence we have ac; € Op, - ¢; = gr[R/lej*OU. Hence the
assertion holds if s = 1.

If s > 1, we put F = jl*grmWS,l(Kl), Fi1 = grRJj*stl(OU)y Fo =
91488, ;pWs—1(K1), and F3 = gr(g /. 17«Ws—1(Op). Since the canonical mor-
phisms F; — F and F3 — Fo are injective and both F: Fs —» F; and
F: Fy — F are injective, we may identify F; with a subsheaf of F for i = 1,2, 3.

We also put G = ji.gr,, Ws(K1), G1 = grR,lj*WS(OU), Gy = jl*grm/pWS(Kl),

and Gz = grg/p1J«Ws(Ov). We further put H = jl*(grgf_l)Kl), H, =

. . s—1 .
gr[R/pS*1]/[R//p5*1].7*OU7 HQ = ]1*(gr§n/p)K1)’ and Hg = gr[R/pS]/[R’/ps]j*OU'

Similarly as F;, we may identify G, and H; with subsheaves of G and H respec-
tively for ¢ = 1,2, 3.

By the induction hypothesis, we have F5 = F1 N Fa. If ny ¢ p°Z, then Ho =
Hs =0 by Lemma 1.6 (i) and (1.11). If n; € p°Z, then we have Hg = Hi NHo
by Lemma 1.6 (i), (1.11), and the induction hypothesis. By the commutativity
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of (1.43), we have Gs C G; N Gy. Since exact sequences in Lemma 1.11 and
Lemma 1.26 in the case where ¢t = 1 are compatible with the inclusions of
sheaves above, the assertion holds by Lemma 1.28. O

LEMMA 1.30. Let f: F — G be a surjection of sheaves of abelian groups on
X. Let g: G — H be a morphism of sheaves of abelian groups on X. We
put I' = (Zso)", where r > 0 is an integer, and let 1; € T' be the element
whose i-th component is 1 and the others are O fori=1,...,r. Let {fil,F}ner
and {fil,H}ner be increasing filtrations of F and H respectively with respect
to product order. Assume that |J,cpfilnF = F and U, o fil,H = H. We
put fil,G = f(fil,F) for n € T, which define an increasing filtration of G.
If g(fil,G) C fil,H for every n € T and if the morphism fil,+1,G/fil,G —
fily 41, H /il H induced by g is injective for everyn € T and i =1,...,r, then
we have fil,G = g~ 1(fil,H) for every n € T.

Proof. Let n € T be an element. We prove that the morphism G/fil,G —
H/fil,H is injective. Since F = |J,cpfil,F and f is surjective, we have
g = UnEF fil,,G and hence G/fil,,G = lign, fil,»G/fil,,G, where n’ runs through
the elements of I' greater than n with respect to product order. Since
H = UperfilnH, we have H/fil,H = lim_, il H/fil, ", where n' runs
through the elements of ' greater than n. Hence it is sufficient to prove that
fil, G /fil,G — fil,, H /fil, H is injective for every n’ € T such that n’ > n. We
prove this assertion by induction on n/’.

If n” = n, the assertion holds since fil,,»G/fil,,G = 0 and fil,,,’H /fil,H = 0. For
n' > n, take ¢ such that n’ — 1; > n. We consider the commutative diagram

00— ﬁln/_lig/ﬁlng —_— ﬁln/g/ﬁlng I ﬁln/g/ﬁln/_lig —0

| | l

0 — fily_ 1, H/fil,H — fil,y H/fil,H — fil,, H /Al 1, H —= 0,

where the horizontal lines are exact. By the induction hypothesis, the left
vertical arrow is injective. Since the right vertical arrow is injective, the middle
vertical arrow is injective. Hence the assertion holds. O

PROPOSITION 1.31. Let R = ), ;n;D;, where n; € Zso for i € I. Let
Ji: Spec K; — X be the canonical morphism for ¢ € 1.

(i) The subsheaf filgR'(e o 7).Z/p°Z is equal to the pull-back of
@D,c; jisfiln, HY(K;, Q/Z) by the morphism R'(e o j).Z/p°Z —
@iejji*Hl(KiaQ/Z)'

(ii) Let R" = ) ,c;n;D;, where nj € Z>o and n; —1 < nj < n; fori e I.

Then there exists a unique injection ¢§R/R'): grR/R,Rl(e 0 j)Z/p°Z —
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grR/R,j*Qllj such that the following diagram is commutative:

. p(R/R A1
grR/R’]*WS(OU) grR/R’J*QU (1.44)

5§R/R’) ¢2R/R’)

grR/R/Rl(f © j)«Z/p"Z.

Proof. Let ¢ be an element of I such that n; > 1. Since the kernel of
5" is the image of F —1 (1.41) and the morphisms F (1.40) and F — 1
(1.41) are the same, the kernel of ISR equal to the kernel of gpgR’l) by

Proposition 1.29. Since 5§R’i) is surjective, there exists a unique injection
(), grp R (e 0 j)+Z/p°Z — grg,;j.Q such that the diagram (1.44) for

R' = R — D; is commutative.

(i) Let i be an element of I such that n; > 1. We consider the commutative

diagram

grR,iRl(e 0 j)«Z/p°Z ﬁji*grmHl(Ki, Q/Z)

¢§Rwi)l l¢(ni)

8T R, iJx QA ————— Jix8n, Q..

where the lower horizontal arrow is the inclusion and ¢("#) is as in (1.8). Since
the left vertical arrow is injective as proved above, the upper horizontal arrow
is injective. Hence the assertion holds by applying Lemma 1.30 to the case
where F = j,W,(Ov), G = R' (€0 j).Z/p°Z, and H = @, ji H' (K, Q/Z).
(ii) Let J be the subset of I consisting of ¢ € I such that n} # n;. We consider
the commutative diagram

. Q(R/R) A1
grR/R'J*Ws(OU) grR/R'J*QU

JER/R,) l l
®¢("1)

grR/R’Rl (6 © j)*Z/psZ - @ie]ji*grniHl (Ki, Q/Z) - @'LEJ ji*grniﬂ}(“

where (™) is as in (1.8) for i € J. By (i), the left lower horizontal arrow is
injective. Since gr,, Q. is the stalk of gry, g j.Q at the generic point of D;
for i € J, the kernel of the canonical morphism filgj.2}, — Pics ji*grmﬂ}(i
is the intersection of filg_p,j.Q}; for i € J. Hence the right vertical arrow
is injective. Since the right lower horizontal arrow is injective, the kernel of
gpgR/R/) is equal to that of 5§R/R/). Since 5§R/R/) is surjective, the assertion
holds. O

DEFINITION 1.32. Let x be an element of H}, (U, Q/Z). We define the Swan
conductor divisor Ry of x by Ry =3, ;sw(x|k,)D;.
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DEFINITION 1.33. Let x be an element of H}(U,Q/Z). Assume that
sw(x|k,) > 0 for some i € I. Let p® be the order of the p-part of xy. We
put Z = Supp(Ry). We define the refined Swan conductor rsw(x) of x to be
the image of the p-part of x by the composition

D(X,filp R (e 0 ). Z/p°Z) = T(X,grp /(r,—z) R (¢ 0 )Z/p°Z)

X/ (Rx=2)) (o . )

— (X, grRx/(Rx—Z)j*QU) =T'(Z,Qx(log D)(Ry) ®oy Oz).
By the construction of ¢§Rx/(RX*Z)), the germ rsw(x)y, of rsw() at the generic
point p; of D; contained in Z is equal to rsw(x|k,). This implies that rsw(x)
in Definition 1.33 is none other than the refined Swan conductor of x in the
sense of [K2, (3.4.2)].

1.4 SHEAFIFICATION: NON-LOGARITHMIC CASE

We recall the definition of the radicial covering S'/? of a scheme S over a
perfect field k of characteristic p > 0. We consider the commutative diagram

Fs

Si/p S S

]

Speck > Speck Speck,
Fo Fy,

where the left square is the base change over k by the inverse I L of Fj,. The
symbols Fg and F}, denote the absolute Frobenius of S and Spec k respectively.
We define the radicial covering S*/? — S as the composition of morphisms in
the upper line.

We keep the notation in Subsection 1.3.

DEFINITION 1.34. Let R = ), ;n;D;, where n; € Z>; for i € I, and let
ji: Spec K; — X denote the canonical morphism for i € I. Let r > 0 be an
integer.

(i) We define subsheaves ﬁlllgr)j*Ws(OU) and ﬁllllz(T)j*Ws(OU) of Zariski
sheaf j.Ws(Oy) to be the pull-back of @ielji*ﬁlgf)Ws(Ki) and
D, il W (K;) by the morphism j. W, (Op) — @ic g Ws(K)
respectively.

If » = 0, then we simply write filj.Ws(Op) and fil};j.Ws(Oy) for
ﬁl/l(zo) 7« Ws(Op) and ﬁl};(o) J«Ws(Oy) respectively.

(ii) We define a subsheaf fily R! (e 0 j).Z/p°Z of R'(e o j).Z/p*Z to be the
image of filj.Ws(Op) by ds (1.33).

(iii) We define a subsheaf fil 5.0, of j.Q} to be Q% (R).
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Similarly as in the logarithmic case, we consider the morphism —F*~1d (1.34).
Let R = Y ,.; niD;, where n; € Z>, for i € I. Then —F*'d (1.34) induces
the morphism

fil'y j. W (Op) — filg 5. Q.

For R = Zzeln D;, where n} € Z>y such that n, < n; for i € I, we put
grR/R, = fil’y /fil’z,. Then the morph1sm —F371d (1. 34) induces the morphism

I(R/R).

Ps grR/RfJ* Ws(Ou) — gflR/R'j*Qllj- (1.45)

For R' =} .., n;D;, where nj € Z>y such that n; — 1 < nj <n; fori e I, we
put DB/E) — R — R’ © D. If p # 2 or there is no i € I such that (ni,nl) =

~I(R/R .
(2,1), let @ R/, grR/R,j* Ws(Oy) — gr’R/R,j*QlU RO (nynry O ryry/2 be
the composition

/(R/R)
gr/R/R/j* (OU) = grR/R/j*QU — grR/R/]*QU XRo Db(R/R) OD(R/R’)1/2 .

Otherwise, as in the proof of Proposition 1.17 (i), there exists a unique mor-
phism

@s(R/R ).

gr;%/R/j*WS(OU) - gr;?,/R/j*Q%J QO (r/rr O prymiyre (1.46)
such that locally @\ (/% )(a) = —Se T ab "“lda; + 2 (nin)=(2,1) 2agdt; /12
for every a € grly ., j«Ws(Ou) whose lift is a = (as-1,.. ., a0) € filf 5. Ws(Op)
and for every local equation ¢; of D; for i € I such that (nz, 0= (2 1).

If R = R+ D, for some i € I, then we simply write grRJ for grR/R/, @' (Fot)

R/R) n(r)

forcp( R/R

and similarly for g7 p., gr/}g/)R/, and gr

LEMMA 1.35. Let R = ), n;D;, where n; € Z>y fori € I, and let r > 0

be an integer. Then we have ﬁllllz(T)j,k (OU) = (F - 1)’1(ﬁ111({)]* Ws(Ov)).
Especially, we have filj.Ws(Oy) = (F — 1)~ (filz 7. Ws(Ov)).

Proof. Let j;: Spec K; — X be the canonical morphism for ¢ € I. Since F — 1
is compatible with the canonical morphism j.W,(Ov) — @, jix Wi (K;), the
assertions hold by Lemma 1.20 (v). O

LEMMA 1.36. Letr > 0 be an integer. Let R =3, ;niD; and R’ =, niD;,
where n;,n); € Z>1 such that n}, = n;/p" if n; € p"Z and n; = [(n; — 1)/p"]
if ng ¢ p"Z for everyi € I.

(i) ﬁll({)]*ou = filr j.Ou .

(ii) 15" j.0u = filig prs1)7. Ovr.
Proof. The assertions hold by Lemma 1.23. O
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COROLLARY 1.37. Let the notation be as in Lemma 1.36. Let i be an element
of I such that n; > 2.

(i) Assume that r > 1. Then grR j*OU = grp 1J+Ov if n; € »HZ or
ordy(n; — 1) =r, and grR ) 5,00 = 0 otherwise.

(i) grsz*OU = glp/pr11,10+O0 = 8 piyp.id«Ov if ni € p"H'Z, and
e .00 =0 if n; & pIZ.

Proof. Since [R/p"t1] = [R'/p] by Lemma 1.6, the assertions hold by Corollary
1.24 and Lemma 1.36. O

Let R =) ,c;niD; and R = ), niD;, where n;,n; € Z>y and n; < n; for
every i € I. Let 0 < t < s be integers. Since we have pr,(fil’zj.Ws(Oy)) =
ﬁl/l(zsft)j*Wt (Ov) by Lemma 1.20 (i), we have the exact sequence

0 — il We_t(On) L5 illyju Wa(Op) 25 1605, Wy (Oy) — 0. (1.47)

Similarly, since pr, (fil'}h7. Ws(Op)) is ﬁlﬂ(s—t)j* Wi (Op) by Lemma 1.20 (iii), we
tUllpR R
have the exact sequence

0 — %5, Wu_ o (Op) L5 6147, W, (Oy) oy G0 5 W, (Op) — 0. (1.48)

LEMMA 1.38. Let R = ;. ;niD; and R = Y .. n;D;, where n;,n; € Z>,
and n; —1 <n} <n; for everyi € I. Let 0 <t < s be integers.

(i) The exact sequence (1.47) induces the exact sequence
0 , W o) vt WO Pry  (s—t) . W.(O 0
_>grR/R/]* sft( U)_>grR/R/.7* s( U)_>grR/R/ Jx t( U)+
(i) The exact sequence (1.48) induces the exact sequence
0= g1 e Womt(O0) Y g1 5. W, (O0) B gt W, (Op) = 0
+gr}:{/}:{/}k sft( U)égrR/R/]* s( U)_>grR/R/ I t( U)+

Proof. The assertions hold similarly as the proof of Lemma 1.26. O

Let » > 0 be an integer. By Lemma 1.35, the morphism F — 1: j. W (Oy) —
J«Ws(Op) induces the injection

F—1: gr%(;l)%,]* W4 (Op) — grg/)R/j* W4(Op).
Especially, the morphism F' — 1 induces the injection
F—1: gr/II%/R,j*Ws(OU) — gI“IR/R/j*Wé(OU)
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LEMMA 1.39. Let R = Zie[ n;D;, where n; € Z>y fori € 1. Let s > 0 be an
integer and let i be an element of I such that n; > 2. Then we have the exact
sequence

T ~/(R,i)
0 — gr'h Wi (Ov) T=5 grhe 1 W (Ov) T gt 1 @05, Opare.
) 5 ) i D

Proof. We may assume that s > 1, I = {1,...,r}, and that ¢ = 1. Let
j1: Spec K1 — X be the canonical morphism. We consider the commutative
diagram

. F—1 . oD :
0 = g 1« Ws(Ov) = 8 13« Ws (Ov) = g1 1322 ®0p, Opryn (1.49)

A

. —1 . s .
0 — gttt We(E1) = jragrly, W (K1) > ji.(grh, k., O, i),

where F, denotes the residue field of K; and the vertical arrows are canonical
injections. By Lemma 1.22, the lower horizontal line is exact. Hence it is
sufficient to prove that the left square in (1.49) is cartesian.

We prove the assertion by induction on s. Suppose that s = 1. If ny ¢ pZ,
then we have gr;; Ws(K1) = 0 and gr ,7.Ov = 0 by Corollary 1.24 (ii) and
Corollary 1.37 (ii). Hence the assertion holds in this case.

Assume that n; € pZ. By (1.15), we have gr;, K; = fil,, K;/fil,, 2K;. By
Corollary 1.24 (ii), we have grj; K1 = gr,,, ,,/{1. Since the assertion is a local
property, we may assume that X = Spec A is affine and that D, = (¢; = 0) for
i € I, where t; € A for i € I. Further we may assume that the invertible Osp, -
module gry ,7.Op is generated by co = 1/t ---t", and that the invertible

Op,-module gr% ,7.Oy is generated by ¢ = 1/1&71“/}’15?,2 ---t;n;, where m} =
[n;/p] for i € I—{1}. Let R(2D;) denote the stalk of O2p, at the generic point
of 2D; and let k(D7) denote the functional field of D;. Then we may identify
gry, K1 with R(2Dy) - co and gr;, K with k(D1) - c1.

Let @ be an element of k(D;) such that (F'—1)(aci) € gry,j«Ov. Since

we have (F —1)(ac1) = ((@Pc] — ac1)/co) - co € grip15:0v = Oap, - co, we
have (aPc] — acy1)/co € Osp,. Since c1/cy = t’fl_nl/pt;”_m/2 T and
n1 —ni/p > 1, we have (aPc] — acy)/co = aPcl/co in Op,. Since /ey =
t;lrpmé . -tfﬁpm; and 0 <n; —pm} < pfori eI — {1}, we have a € Op, by
Lemma 1.27. Hence we have ac; € Op, - ¢1 = gr’éﬁlj* Oyp. Thus the assertion
holds if s = 1.

If s > 1, we put F = jugr, We_1(K1), F1 = gr’l%’lj*Ws_l(OU), Foy =
Jregry, Ws—1(K1), and F3 = gr'z 15« Ws—1(Op). Since the canonical morphisms
F1 — F and F3 — F5 are injective and both F-1:F3—>FiandF —1: F» —
F are injective, we may identify F; with a subsheaf of F for ¢« = 1,2,3. We
also put G = jr.gr, Ws(K1), G1 = gr’Rﬁlj*Ws(OU), Go = ji«gry Ws(K7), and
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o o Furth . /(s=1) pe o 1(s=1) . o
Gs = grR,lj*Ws( v). Further we put H = j1.8rn; 1, H1=grg, j:Ou,

Ho = jrogrnC VK, and Hz = gr;%(sl_l)j*OU. Similarly as F;, we may identify

G; and H; with subsheaves of G and H respectively for ¢ = 1,2, 3.

By the induction hypothesis, we have F5 = F1 N Fa. If ny ¢ p°Z, then we have
Ho = Hz = 0 by Corollary 1.24 (ii) and Corollary 1.37 (ii). If ny € p°Z, then
we have Hz = Hy N Ho by Corollary 1.24, Corollary 1.37, and the case where
s = 1 in the proof of Proposition 1.29. By the commutativity of (1.49), we
have G3 C G NG,. Since exact sequences in Corollary 1.21 and Lemma 1.38 in
the case where ¢t = 1 are compatible with the inclusions of sheaves above, the
assertion holds by Lemma 1.28. O

PROPOSITION 1.40. Let R = . ;n;D;, where n; € Zxy for i € I. Let
Ji: Spec K; — X be the canonical morphism for ¢ € 1.

(i) The subsheaf filpR'(e o j).Z/p°Z is equal to the pull-back of
@D,c; jinfil, HY(K;,Q/Z) by the morphism R'(e o j).Z/p’Z —
@Bic,jiH' (Ki, Q/Z).

(ii) Let R' =3, n;D;, where nj € Z>y such that n;—1 < nj < n; forieI.
Then there exists a unique injection (b;(R/R,): gr’R/R,Rl(e 0 J)Z/p°Z —
(gr/R/R’j*Qllj)lD(R/R’)l/P = gr;a{/Rfj*Q%]@OD(R/R/) Opr/riiyp such that the

following diagram is commutative:

@’S(R/R,)

8/ pJxWs(Ov) (8t rrd« ) | D/

6;(12/12’) ¢/S(R/R’)

gty i (€0 ))Z/p 2.
(1.50)

Proof. Let i be an element of I such that n; > 2. By Lemma 1.39, the kernel
of 5;(R’i) is equal to the kernel of @;(R’i). Since 5;(R’i) is surjective, there exists
a unique injection ¢ grp RN (€0 j)«Z/p°Z — g1y 1701 ®o,, O p1/e such
that the diagram (1.50) for R’ = R — D; is commutative. l

(i) Let i be an element of I such that n; > 2. We consider the commutative
diagram

gr;ﬂiRl (6 o j)*z/psz - jl*granl(K’bv Q/Z>

¢/(R,i)l ld(ni)

. . 1
grlRyij*Q%] ®ODi OD?/P — Jix (gI‘;MQ}(I ®FKi FK/ip)a

where F, is the residue field of K;, the lower horizontal arrow is the inclusion,
and ¢'(") is as in (1.26). Since the left vertical arrow is injective as proved
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above, the upper horizontal arrow is injective. Hence the assertion holds by
Lemma 1.30 similarly as the proof of Proposition 1.31 (i).

(ii) Let J be the subset of I consisting of ¢ € I such that n} # n;. Since
gy, Jix i, Ory, Fll(/ip is the stalk of gr;%/R,j*Q%] ®0_ pynry Optrranisy at the

generic point of Di1 P fori e J , the assertion holds similarly as the proof of

Proposition 1.31 (ii). O

DEFINITION 1.41. Let x be an element of HZ (U, Q/Z). We define the total
dimension divisor R, of x by R} =), dt(x|k,)D;.

We note that we have Supp (R}, — D) = Supp(Ry) by (1.17).

DEFINITION 1.42. Let x be an element of H}(U,Q/Z). Assume that
dt(x|k,) > 1 for some ¢ € I. Let p°® be the order of the p-part of xy. We
put Z = Supp(R}, — D). We define the characteristic form char(x) of x to be
the image of the p-part of x by the composition

(X, ﬁl/RXRl (€0j)Z/p°Z) — I'(X, gr;%;(/(R;(—Z)Rl(e 0 j)+Z/p°Z)

¢r(R’X/<R;(fZ>>(X) )
s / .
— (X, gYR;(/(R;(_z)]*QU ®0, Oz1/p)

=T(Z"7 QNR)) @0y Ozi/m).

2 ABBES-SAITO’S RAMIFICATION THEORY AND WITT VECTORS

2.1 ABBES-SAITO’S RAMIFICATION THEORY

We briefly recall Abbes-Saito’s non-logarithmic ramification theory ([Sal, Sec-
tion 2, Subsection 3.1]).

DEFINITION 2.1 ([Sal, Definition 1.12]). Let P be a scheme. Let D be a Cartier
divisor on P and X a closed subscheme of P. We define the dilatation PP X)
of P with respect to (D, X) to be the complement of the proper transform of
D in the blow-up of X along DN X.

Let X be a smooth separated scheme over a perfect field k£ of characteristic
p > 0. Let D be a divisor on X with simple normal crossings and {D;};cs the
irreducible components of D. We put U = X — D. Let R = Ziel r;D; be a
linear combination with integral coefficients r; > 1 for every i € I. Let Z be
the support of R — D.

We put P = X X, X. Let A: X — P be the diagonal and pr;: P — X the i-th
projection for ¢ = 1,2. We identify D C X with closed subschemes of P by the
diagonal. We put P(P) = ﬂ?:l periDX) where the intersection is taken in
the blow-up of P along D C P.

Let DED) be the inverse image of D; by P(?) — P. Then D(P) = dier DgD) is
a divisor on P(P) with simple normal crossings. The diagonal A is canonically
lifted to the closed immersion X — PP) and we identify X with a closed
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subscheme of P(P) by the lift. We define P to be the dilatation of P(P)
with respect to (3;c;(ri — 1)D§D), X). Let T®) ¢ DU be the inverse image
of Z € D by P — P. Then the complement P®) — D) is U x;, U ([Sal,
Lemma 2.4.3]) and T is TX(—R) x x Z ([Sal, Corollary 2.9]), where TX =
Spec S*Q% denotes the tangent bundle of X and TX (—R) = Spec S*Q% (R).
Let G be a finite group and V' — U a G-torsor. We consider the open immersion
UxpU=PE DB 5 PR The quotient (V x5, V)/AG of V x;, V by the
diagonal action of G is finite étale over U x;, U. Let Q) be the normalization
of P in the finite étale covering (V x;V)/AG — U x3U. Then the canonical
lift X — PU of the diagonal is canonically lifted to X — Q).

DEFINITION 2.2 ([Sal, Definition 2.12]). Let V' — U be a G-torsor for a finite
group G and R = >_._;r;D; a linear combination with integral coefficients
r; > 1 for every i € I.

icl

(i) We say that the ramification of V over U at a point = on D is bounded
by R+ if the finite morphism Q(Y) — P(1) is étale on a neighborhood of
the image of x by the lift X — QU¥.

(ii) We say that the ramification of V over U along D is bounded by R+ if
the finite morphism Q) — P(R) is étale on a neighborhood of the image
of the lift X — Q).

LEMMA 2.3. Let V' — U be a G-torsor for a finite group G and R =), r:D;
a linear combination with integral coefficients r; > 1 for every i € I. Let p; be

the generic point of D; for i € I. Then the following are equivalent:
(i) The ramification of V' over U at p; is bounded by R+ for every i € I.
(i) The ramification of V' over U along D is bounded by R+.

Proof. Since Q) — P is an isomorphism outside of the inverse image of
D, the assertion holds by the purity of Zariski-Nagata. o

In [Sal], the notion of the bound of ramification of V over U is defined for
R = Zie ; 7:D; of rational coefficients 7; > 1. The next proposition relates the
ramification of G-torsor to the ramification of local field.

PROPOSITION 2.4 ([Sal, Proposition 2.27]). Assume that D is irreducible. Let
K be the local field at the generic point p of D. Let {G}req., be the ramifi-
cation filtration of the absolute Galois group Gk of K ([AS1, Definition 3.4]).

Let v > 1 be a rational number and let Gt} = U GY% denote the closure of
s>r

the union of G for s > r. For a G-torsor V.— U for a finite group G, the
following are equivalent:
(i) The ramification of V' over U at p is bounded by rD+.

(i) G7 acts trivially on the finite étale K-algebra L =T(V xy K, Oy, k).
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We note that the filtration {G% }req., is decreasing.

We recall the characteristic form defined in [Sal, Subsection 2.4]. Let W) be
the largest open subscheme of Q) étale over P9, We define a scheme E(1)
over T to be the fiber product T x py W), Then there is a unique
open sub group scheme E)0 of a smooth group scheme EM) over Z such that
for every x € Z the fiber EMWO %, 2 is the connected component of EWR x,z
containing the unit section ([Sal, Proposition 2.16]). Further E(0 is étale
over TU9),

Assume that the ramification of V' over U along D is bounded by R+. Then,
we say that the ramification of V over U along D is non-degenerate at the
multiplicity R if the étale morphism E(0 — T is finite. We note that this
condition is satisfied if we remove a sufficiently large closed subscheme of X
of codimension > 2. Assume that the ramification of V over U along D is
non-degenerate at the multiplicity R. Then the exact sequence 0 — GR
EWRO 5 7(B) 5 0 defines a closed immersion GV — TRV of commutative
group schemes to the dual vector bundle defined over Z'/?" where n > 0 is an
integer.

DEFINITION 2.5 ([Sal, Definition 2.19]). Let V' — U be a G-torsor for a finite
group GG. Assume that the ramification of V' over U along D is bounded by
R+ and non-degenerate at the multiplicity R. We define the characteristic
form Charg(V/U) to be the morphism GV — TV = (T*X x x Z)(R) over
ZYP" for a sufficiently large integer n > 0.

PROPOSITION 2.6 (cf. [Sal, Corollary 2.28.2]). Let the notation be as in Propo-
sition 2.4. Let O be the valuation ring of K and Fi the residue field of
K. We put ZV(T) = m/m7", where my, = {a € K | ordg(a) > r} and
mr ={a € K | ordg(a) > r}. Let r > 1 be a rational number. Assume that
the ramification of V' over U along D is bounded by R+ and non-degenerate at

the multiplicity rD. Then the following are equivalent:

(i) The characteristic form Char,p(V/U) defines the non-zero mapping by
taking the stalk at the generic point of D.

(i1) G acts non-trivially on L.

Proof. The assertion holds by [Sal, Corollary 2.28.2] and its proof. O

2.2  VALUATION OF WITT VECTORS

We keep the notation in Subsection 2.1. In this subsection, we assume that X
is a smooth affine scheme Spec A over k and that D is an irreducible divisor
defined by m € A. We put U = Spec B and R = rD, where r > 1 is an integer.
Let J C A be the kernel of the multiplication A ®; A — A. Following the
construction of P recalled in the previous section, we have

P = Spec(A @y, A)[J/ (7" @ 1), (1@ 7)/(r ®1))7].
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The divisor DM is defined by 7 @ 1.

We put PU) = Spec A Let A denote the completion of the local ring Ox
at the generic point p of D and A the completion of the local ring Opn) 4 at
the generic point q of DU respectively. Let w: A— A and v: A — A™ be
the morphisms induced by the first and second projections P — X respectively.
We put K = Frac A and L(") = Frac A(™.

LEMMA 2.7. Let Fi be the residue field of K. Let a = a'm" € K be an element,
where n is an integer and o' € A* is a unit. Let r > 1 be an integer.

(i) If n =0 and if r = 1, then we have ord;m (v(a)/u(a)) =
(i) If n ¢ pZ or r =1, then ordy ) (v(a)/u(a) — 1) =r — 1.

(i11) If n € pZ and if r > 1, then ordo (v(a)/u(a) — 1) > r. Further if o’ is
not a p-power in Fi, the equality holds.

Proof. We put w = (v(7) —u(n))/u(m)” and w' = (v(a’) —

we have v(7)/u(r) = 1+ u(r)""lw and v(a’)/u(a’) =

Hence we have

u(a’)
1+ u(a ) 1u(7r)Tw’.

v(a)/u(a) — 1 (2.1)
_{(1+u(a') fu(m w)(1+u(7f)r fw)" — >
(1 4+ u(r) " tw)™ ( 1+ u(a) tu(n) w ) (1 +u(m)" 1w)_n) (n < 0).

Suppose that n = 0 and 7 = 1. Then we have v(a)/u(a) = 1 + u(a’) ™ u(m)w'.
Since u(m) = m ® 1 is a uniformizer of A("), the assertion (i) holds.

Suppose that n ¢ pZ. Then we have ordLm( (a)/u(a) = 1) =r — 1.

Assume that n € pZ. Suppose that n = 0. Then we have ord; ) (v(a)/u(a) —
1) > r, and the equality holds if w’ is a unit in A,

Suppose that n #% 0. We put n = p’/n where s’ = ord,(n) > 1. Then
we have ord,m (v(a)/u(a) — 1) > min{r, p* "(r —1)}. If r = 1, then we have
r>p (r—1)=0=r—1. Since w € A is a unit, the assertion holds if
r=1.

If » > 1, then p¥ (r — 1) > r. Further the equality holds only if (p,r,s’) =
(2,2,1). Hence we have ordLm( (a)/u(a) — 1) > r. Further, if (p,r,s") #
(2,2,1) and if w' is a unit in A the equality holds. If (p,r,8) = (2,2,1),
then we have ord - (v(a)/u(a) — 1) = r if and only if u(a’) 1w’ # n'w?.
Assume that a is not a p-power in Fi. Then the elements m and a’ are p-
independent over K?. Hence the images in A" /u(7)A") of w and w’ form a
part of a basis of the Fi-vector space 7~ "QL ® 4 F, since TW) ig TX(—R)xx
D. Hence w' is a unit in A and u(a’)~'w’ # n'wP. Thus the assertions (ii)
and (iii) follow. O

Let s > 0 be an integer and put Z[T, S|y = Z[Ty,...,Ts—1,Sd,.-.,Ss-1] for
an integer d such that 0 < d < s — 1. We define polynomlals Qd( ,S)
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Z[T, S)q[1/p] for 0 < d < s — 1 inductively by the relation

s—1 s—1 s—1

s—1—i i—d s—1—imp' ¢ s—1—ip' ¢
SpTUHTA+S)P T =) p T ) p Y . (2.2)
i=d i=d i=d

It is well-known in the theory of Witt vectors that Q4 is an element of Z[T, S]4.
For elements © = (x5_1,...29) and y = (Yys—1,..-,Y0) of Ws(A) for a ring A,
we put &’ = (2_q,...,x(), where 2} = x;(1+y;) for i =0,...,5s—1. Then we

have

:L'/ —T= (Qs—l(‘ra y)a QS—Q(CEa y)a SRR QO(CE, y)) (23)
LEMMA 2.8 (cf. [AS3, Lemma 12.2]). Let the notation be as above.

(i) Qa(T,S) belongs to the ideal of Z[T,S)a generated by (S;)a<i<s—1 for
d=0,...,s—1.

(i) Qu(T,S) — Zf:_; TipiidSi belongs to the ideal of Z[T,S]q generated by
(SiSj)d§i1j3571 fOT’ d = 0, ey S — 1.

(iii) If we replace T; by TipSiH in Qu(T,S), the polynomial Qq(T,S) is
homogeneous of degree p>~'~% as a polynomial of multi-value T for
0<d<s—1.

Proof. The assertions (i) and (ii) are the same as (i) and (ii) in [AS3, Lemma
12.2] respectively.

We prove (iii) by induction on d. If d = s — 1, we have Qs—1 = Ts_155-1.
Hence the assertion holds.

If d < s—1, we have

s—1 s—1
. i—d i—d . i—d
Qd _ pdferl (ZpslzTip ((1 + Si)p _ 1) _ Z p57171Q€ ) )

i=d i=d+1

By the induction hypothesis, the polynomial Q;(T, S) is homogeneous of degree
p* 1=t for T for d+1 < i < s—1 with T} replaced by TJP& Tfori<j<s—1.
Hence Q;(T, S)phd is homogeneous of degree p*~1=% for T for d+1 <i < s—1

with the same replacement of T; for ¢ < j < s — 1. Hence the assertion
holds. O

LEMMA 2.9. Let a = (as—1,...,a0) be an element of W (K) and put b =
(bs—1,...,b0) € WS(L(T)), where b; = v(a;)/u(a;) =1 if a; # 0 and b; = 0
ifa;, = 0 for 0 < i < s—1. Let m > 1 be an integer and assume that
a € fill, Ws(K). Let r > 1 be an integer.

(i) If (m,r) = (1,1), then p‘ord,w (Qa(u(a),b)) > —m + 1 for every 0 <
d<s-—1.
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(ii) If r > 1, then p' ord ) (Qa(u(a),b)) > —m +1r for every 0 < d < s—1,
and ord (Qo(u(a),b)) > —m+r.

Proof. We put s’ = min{ord,(m),s}. Let a’ = (a,_;,...,a;) be an element
of Ws(K) such that a = 0 if p’ ordg (a;) = —m and a; = a; if p’ ordg (a;) >
—(m —1) for 0 <i < s—1. We note that if s’ <4 < s—1 then a}, = a; by
(1.15). Let a” = (aZ,_4,...,ay) be an element of Wy (K) such that a} = 0 if
plordg(a;) > —(m — 1) and a = a; if p*ordg(a;) = —m for 0 < i < s’ — 1.
Then we have a = o/ + V=" (a”). Let b/ € W (L) and b’ € W,/ (L") be
the elements defined from a’ and a” respectively similarly as b defined from
a. Since we have Q(u(a),b) = (Qs—1(u(a),b),...,Qo(u(a),b)) = v(a) — u(a)
and similarly for ¢’ and o” by (2.3), we have Q(u(a),b) = Q(u(da’),d") +
Vo= (Q(u(a”),b")). Since fil, W,(L(")) is a submodule of W,(L(")) for n € Z,
the assertions for a hold if the assertions for @’ and a” hold. Hence we prove
the assertions for o’ and a”.

By the definitions of @’ and a”, we have ord; ) (u(al)) > —(m — 1)/p* for
0 <i<s—1andord,m(u(a))) > —m/p' for 0 < i < s —1. If r > 1,
then we have ordy(b;) > r—1for 0 < i < s—1 and ord;m (b)) > r for
0 <i<s —1by Lemma 2.7 (ii) and (iii). If (m,r) = (1,1), then we have
s’ =0and ordy (b)) >r—1for 0 <i<s—1by Lemma 2.7 (ii). Hence, by
Lemma 2.8 (i) and (iii), we have

plordpoy (Qa(u(a’),b)) = —(m — 1) +p*(r—1) > —m+r.  (2.4)
Further we have
p? ordy ) (Qa(u(a”), b)) > —m + plr > —m+r. (2.5)

If » > 1, then the equality holds in the right inequality in (2.4) only if d = 0
and so in (2.5). Hence the assertions hold. O

LEMMA 2.10. Let the notation be as in Lemma 2.9. Let m > 2 be an in-
teger and assume that a € fil,, W,(K). Then we have ordwm)(Qo(u(a),b) —

S u(ai)? bi) > 0.

Proof. We put &/ = min{ord,(m),s}. Let a’ = (a’._;,...,a5) and a’ =
P 0

s—1»
(@2, _y,...,ay) be as in the proof of Lemma 2.9. We have a = d +

Ve=s'(a"). Let ' € Wy(L™) and b’ € Wy (L™) be the elements de-
fined from o' and @ respectively simﬂarly as b defined from a. Since
Q(u(a),b) = Qu(a'), V') + V5= Q(u(a”),b") as in the proof of Lemma 2.9 and
S u(a)P by =30 Olu( P+ 61 w(a)P'b/, it is sufficient to prove the
assertion for o’ and a”

As in the proof of Lemma 2.9, we have ordp m) (u(a;)) > —(m —1)/p® for
0<i<s—1and ord;m (u(a!)) > —m/p’ for 0 <i < s’ — 1. Further we have
ordL<m)(b)>m—1forO<z<s—1andordL<m)(b y>mfor0<i<s —1.
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Hence, by Lemma 2.8 (ii) and (iii), we have

s—1
ordy om (Qo(u(a’),v') =S w(@)P' b)) > —(m —1)+2(m—1) =m—1> 0.

%

Il
o

Further we have

s’ —1
ordy m) (Qo(u(a”),b") — Z w(a! P! > —m +2m =m > 0.
i=0
Hence the assertion holds. O

2.3 CALCULATION OF CHARACTERISTIC FORMS

Let X be a smooth separated scheme over a perfect field k of characteristic
p > 0. Let D be a divisor on X with simple normal crossings and {D;};cs the
irreducible components of D. We put U = X — D and let j: U — X denote
the canonical open immersion. Let K; be the local field at the generic point of
D; for ¢ € I and let Ok, be the valuation ring of K; for i € I.

Let x be an element of H} (U, Q/Z). In this subsection, we prove the equality
of the characteristic form char(x) of x and the characteristic form Charr(V/U)
of the Galois torsor V' — U corresponding to x.

Let p;: P — X be the morphism induced by the i-th projection for i = 1, 2.
Let u: pl_l(QX — Opw and v: pQ_IOX — Opmr) be the canonical morphisms
of sheaves on PU® by abuse of notation. Let LER) be the fractional field of
the completion of the local ring Opn) 4,, where R = ., r;D; is a linear
combination with integer coefficients r; > 1 for every i € I and q; is the generic
point of the pull-back D! of D{P) by PR®) — P(P)_If D = Dy is irreducible,
then we simply write L(") for LgR) as in the previous section.

We first consider the tamely ramified case.

LEMMA 2.11. Assume that the order n of x is prime to p and regard x as an
element of H(U,Z/nZ). We put G = Z/nZ. Let V. — U be the G-torsor
corresponding to x. Let R = ), r:D; be a linear combination with integral
coefficients r; > 1 for every i € I.

(i) The ramification of V' over U along D is bounded by D+.
(i) The characteristic form Charr(V/U) is the zero mapping.

Proof. (i) By Lemma 2.3, we may assume that D = Dy is irreducible. Since the
assertion is local, we may assume that X = Spec A is affine and D is defined by
an element of A. Since G, is the inertia group of G, ([AS1, Proposition 3.7
(1)]), we may assume that k contains a primitive n-th root of unity by Lemma
2.3 and Proposition 2.4. Since ordy ) (v(a)/u(a)) = 0 for every unit a € O,
by Lemma 2.7 (i), the assertion holds.
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(ii) Let Z be the support of R— D. By (i) and Proposition 2.4, the ramification
group G;{" acts trivially on L; = T'(V xy K;, Ovx,k,) for D; contained in
Z. By Proposition 2.6, the stalk of the characteristic form Charr(V/U) at the
generic point of D; defines the zero mapping for D; contained in Z. Hence the
assertion holds. O

By Lemma 2.11, the bound of the ramification of the Galois torsor V. — U
corresponding to x and its characteristic form Charg(V/U) does not depend
on the prime-to-p-part of y, that is, they are dependent only on the p-part of

X-

PROPOSITION 2.12. Assume that the order of x is p® and regard x as an el-
ement of HY,(U,Z/p*Z). We put G = Z/p*Z. Let V — U be the G-torsor

corresponding to x.

(i) The ramification of V over U along D is bounded by R\ +, where R, is
the total dimension divisor of x (Definition 1.41).

(ii) Assume that R\ # D and put Z = Supp(R, — D). Then the scheme
ER) o 7B = TX(-R),) xx Z is defined by the Artin-Schreier equa-
tion t? — t = char(x).

Proof. We put m; = dt(x|g,) for ¢ € I. Let a = (as—1,...,a0) €
ﬁl;%(j*Ws(OU) be an element whose image by s (1.33) is x. Then V xy
V/AG — U xy, U is the G-torsor defined by the Artin-Schreier-Witt equation
(F —1)(t) =v(a) — u(a).

(i) By Lemma 2.3, we may assume that D is irreducible. Since the assertion is
local, we may assume that X = Spec A is affine and that D is defined by an
element of A. By (2.3) and Lemma 2.9, the difference v(a) — u(a) is a regular
function on PP, Hence the assertion holds.

(ii) By (i), (2.3), Lemma 2.9 (i), and Lemma 2.10, the scheme E(%) —
TED s the G-torsor defined by the Artin-Schreier equation t¥ — ¢t =
Z;;é u(a;)” ' (v(a;) — u(aj)). We put n;; = ordg,(a;) for i € I and
0 < j < s—1. As calculating in the proof of Lemma 2.7, we have the fol-

lowing on a neighborhood of the generic point of Dng) for ¢+ € I such that
m; > 1:

(a) If ny; ¢ pZ, we have u(aj)pjfl(v(aj) —u(aj)) = niju(aj)pju(ti)mi’lwi;

(b) If n;; € pZ and if (p, m;, ordy(ni;)) # (2,2,1), we have u(aj)pj’l(v(aj) -

u(a)) = u(a;)? ulah) = ult;) ™ wl;

() If (p,my, ordy(nig)) = (2,2,1), we have u(a;)"’ ~*(v(a;) — u(ay)) =

u(a;)? (u(ay) " u(ts)?wi; + (nij/2)ults)*w?),

where ¢; is a local equation of D;, a} = a;/t;", w; = (v(t;) — u(ts))/u(t)™,
0,.

and wj; = (v(a}) — u(a}))/u(t;)™ for every j = .., — 1. Since
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a € ﬁl'R;(j*WS(OU), we have p/ ord  (m; (a;) > —(m; — 1) if ny; ¢ pZ and
pord; my(aj) > —m; if ny; € pZ. If (p,my, ordy(nij), p'nij) = (2,2,1,-2),

we have (p, j,mij) = (2,0, —2). Hence the assertion holds by identifying w; and
wi; with dt;/t]"" and da;/t]"* respectively. B

COROLLARY 2.13. Let V. — U be the Galois torsor corresponding to x. Assume
that the ramification of V over U along D is non-degenerate at the multiplicity

R,

(i) The image of the generator 1 € GFIY = F, by Charg, (V/U) is equal
to char(y).

(i) Assume that D = D; is irreducible and that dt(x|k,) > 1. Then the
ramification of V over U at the generic point of D is mot bounded by
rD+ for any rational number r such that 1 <r < dt(x|k, ).

Proof. (i) The assertion holds by Lemma 2.11 and Proposition 2.12 (ii).

(ii) We put K = K;. Assume that G} acts triviallyon L = T(Vxy K, Oy« i)
for a rational number r such that 1 < r < dt(x|x). Then, by (i) and Propo-
sition 2.6, the stalk char(x|x) of char(x) at the generic point of D must be 0.
However char(y) is non-zero. Hence the assertion holds by Proposition 2.4. O

3 EQUALITY OF RAMIFICATION FILTRATIONS

Let K be a complete discrete valuation field of characteristic p > 0 and Fx the
residue field. Let Gk be the absolute Galois group of K. We show that the
abelianization of Abbes-Saito’s filtration {G% }req>0 ([AS1, Definition 3.4]) is
the same as {fil,, H' (K, Q/Z)}mez-, (Definition 1.2) by taking dual. If m > 2,
then it has been proved by Abbes-Saito ([AS3, Théoreme 9.10]).

THEOREM 3.1. Let x be an element of H*(K,Q/Z). Let m > 1 be an integer.
Let r be a rational number such that m < r <m+1. If Fi is finitely generated
over a perfect subfield k C Fg, then the following are equivalent:

(i) x € fil,, H' (K, Q/Z).

(ii) x(GE™) =0.
(i) X(G37) = 0.
Proof. Since G3 is a pro-p-subgroup of G ([AS1, Proposition 3.7.1]), we may
assume that the order of x is a power of p. Let p® be the order of x and regard
x as an element of H}, (U, Z/p°Z). We put G = Z/p°Z. As in [AS3, 6.1],
we take a smooth affine connected scheme X over k and a smooth irreducible
divisor D on X such that the completion Ox , of the local ring Ox , at the
generic point p of D is isomorphic to Ok. By shrinking X if necessary, we take

a G-torsor V. — U = X — D corresponding to a character of 73(U) whose
restriction to Gk is .
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By Proposition 2.12 (i) and Corollary 2.13 (ii), the ramification of V' over U
at the generic point of D is bounded by rD+ for a rational number r > 1
if and only if » > dt(y). Further, by Proposition 2.4, the former condition
is equivalent to that G? acts trivially on L = T'(V xy K, Oy x, k). Hence
x(G7) = 0 if and only if 7 > dt(x).

Since the condition (i) holds if and only if m > dt(x), the equivalence of (i) and
(ii) follows. Since m < r, the condition (ii) deduces the condition (iii). Suppose
that the condition (iii) holds. Since r > dt(x), we have m = [r] > dt(x). Hence
the condition (ii) holds. O

Proof of Theorem 0.1. We may identify K with Fx((7)) by taking a uni-
formizer of K. Let K; = Frac(Fk [7‘(]?71_)) be the fractional field of the
henselization of the localization Fi[r]r) of Fg[r] at the prime ideal ().
Since the completion of K} is K, the canonical morphisms Gx — Gk, and
HY(Kn,Q/Z) — H'Y(K,Q/Z) are isomorphisms.

Let k be a perfect subfield of Fix and take a separating transcendental basis .S
of F over k. For a finite subextension F of Fx over k(S”), where S’ is a finite
set of S, let Kg  denote the fractional field of the henselization of the local
ring Elr](y). Since Fi = h_H}lE, we may identify K with the inductive limit
h_H)lKE,h and H'(Kp,Q/Z) with h_H}lHl(KE,h, Q/Z), where E runs through
such subfields of Fk.

Let x be an element of H'(K,Q/Z). Take a subfield E of Fx such that
E is a subextension of Fx over k(S’) for a finite subset S’ C S and that
x € H' (Kgn, Q/Z). Let Kg denote the completion of K. We identify
HY(Kg,Q/Z) with HY(Kg 5, Q/Z) and x € HY(Kg 5, Q/Z) with an element
of HY (K, Q/Z). We prove that each condition in Theorem 3.1 holds for K if
and only if it holds for Kg.

Let dtx(x) and dtx,(x) denote the total dimension of y as an element
of HY(K,Q/Z) and H'(Kg,Q/Z) respectively. We put dtx(x) = n and
dtr,(x) = n’ and prove that n = n’. Since fil, Wy (Kg) C fil,, W (K) for
every integer m > 1, we have fil,, H,(Kg, Q/Z) C fil,, H'(K,Q/Z). Hence we
have 1 < n < n’, which proves that n =1if n’ = 1.

Assume that n’ > 1. Take an element a of gr/,, Ws(E(w)) whose image in
gr' \HY(Kp,Q/Z) is x. Let chark(x) and charg, (x) denote the characteristic
form of x as an element of H'(K,Q/Z) and H'(Kg, Q/Z) respectively. Let
Ok and Ok, denote the valuation rings of K and Kg respectively. Since Fi
is separable over E, we have an injection QEW - Qp. emy” This injection
induces the injection Q}QKE — Qp,, and further the injection gr/, Q. —
grl, Q.. Hence the canonical morphism gr/, Q. ®p, FYP = gl QY @, Fi/P
is injective. Since charg, (x) # 0, the image of charg, (x) in gr/, Q% @F, Ffl(/p
is not 0. This implies that charg () is the image of charg, (x) in grl, Qk @ p,
Fll(/p. Hence we have n = n/. Since the condition (i) in Theorem 3.1 holds for
K if and only if m > n and similarly for Kg, the condition (i) in Theorem 3.1
for K is equivalent to that for K.
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Let » > 1 be a rational number. Since K is an extension of K g of ramification
index 1 and the extension of residue fields is separable, by applying [AS2,
Lemma 2.2], the canonical morphism G — Gk, induces the surjection G5, —
G, for every s € Q>1. Hence we have x(G%) = 0 if and only if X(G;;;) =0,
which proves the assertions for conditions (ii) and (iii) in Theorem 3.1. O
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