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Abstract. Given a fixed tensor triangulated category S we con-
sider triangulated categories T together with an S-enrichment which
is compatible with the triangulated structure of T. It is shown that,
in this setting, an enriched analogue of Brown representability holds
when both S and T are compactly generated. A natural class of ex-
amples of such enriched triangulated categories are module categories
over separable monoids in S. In this context we prove a version of
the Eilenberg–Watts theorem for exact coproduct and copower pre-
serving S-functors, i.e., we show that any such functor between the
module categories of separable monoids in S is given by tensoring with
a bimodule.
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1 Introduction

Over the last three decades, the importance and strength of compatible
monoidal structures on triangulated categories has been continually highlighted.
This is, for instance, exemplified in classification theorems of Devinatz, Hop-
kins, and Smith [7], Neeman [14], and Thomason [17], which describe various
lattices of thick tensor ideals in terms of associated topological spaces. Of
particular motivational relevance for us is the article of Thomason where it is
shown that the thick tensor ideals in the category of perfect complexes over
a reasonable scheme are classified by certain subsets of the topological space
underlying the scheme. In fact, one can even recover the space if one knows
the lattice of tensor ideals. More recently, Balmer [2] has produced a very el-
egant framework into which these classifications fit, and shown that from the
perfect complexes on a reasonable scheme, together with the left derived tensor
product, one can actually reconstruct the scheme and not just the space. This
is a very striking result; rephrasing slightly, it implies that from this data one
can recover anything one could produce from the original scheme. In particu-
lar, one can get an enhancement of the derived category. This indicates that
the existence of an exact monoidal structure somehow rigidifies the otherwise
frequently rather floppy derived category.

It thus seems natural to ask exactly how much one can extract from the
existence of an exact monoidal structure on a triangulated category or, more
generally, from an action of such a category on another triangulated category.
One way of formalising this setting is to consider enriched categories: given a
rigidly compactly generated tensor triangulated category S and a well behaved
action of S on a compactly generated triangulated category T, one can produce
an S-enrichment of T which is compatible with the triangulated structures. The
aim of this paper is to begin exploring this setting and to do some advertising
by showing that the presence of such an enrichment actually allows one to prove
some “enhancement-flavoured” statements.

The first main part of the paper deals with extending Brown representabil-
ity to our enriched context. Classically, representability theorems have been
important in algebraic topology, dating back to Brown’s result on the rep-
resentability of certain functors out of the homotopy category. The study of
representability of cohomological functors out of triangulated categories is more
recent, but has been very fruitful, starting with the pioneering work of Bousfield
[5] and flourishing with Bökstedt–Neeman [4] and Neeman [15]. It is in this last
paper that Neeman proves the Brown representability theorem for compactly
generated triangulated categories, which is an immensely useful tool. The fun-
damental importance of Brown representability has led to it being generalised
in related directions, see for instance [6], and prompted us to ask if one could
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adapt it to the enriched setting. It turns out that the answer is ‘yes’ as we
show in Theorem 3.10 — Neeman’s original proof is easily modified once one
finds the correct hypotheses in the enriched setting.

Theorem 1.1 (see Theorem 3.10). Let S be a compactly generated tensor trian-
gulated category. Assume that T is a copowered S-category whose underlying cat-
egory T is compactly generated triangulated. Then any S-functor F : Top −→ S

which preserves powers and has an underlying exact and coproduct preserving
functor is representable.

The precise conditions on the compatibility of the triangulated structures
(given below) immediately shows that any representable functor is precisely of
this form.

The second part of the paper deals with a tensor triangular version of
the Eilenberg–Watts theorem. The classical Eilenberg–Watts theorem asserts
that, given rings A and B, any colimit preserving functor from A-modules
to B-modules is given by tensoring with a bimodule, namely the image of A
under said functor. The proof of this theorem is rather elegant, and has been
generalised to many other situations including to the setting of model categories
by Hovey [9]. The key abstract components are a suitable ambient category
(abelian groups in the classical setting) in which to consider bimodule objects
and an enrichment (again in abelian groups in the classical setting) in order to
define the desired natural transformation.

There is, in general, no ambient triangulated category that could play the
role of the category of abelian groups. However, given a separable monoid A in
a fixed tensor triangulated category S, it has been shown by Balmer that the
category of A-modules in S (in the naive sense) is triangulated [1]. Thus, given
two such monoids A and B, we can consider tensor products and bimodules in
the ambient category S. Moreover, in this context, one can naturally view the
module categories over A and B as enriched in S, and we show that there is an
analogue of the Eilenberg–Watts theorem for S-functors between them.

Theorem 1.2 (see Theorem 4.16). Let A and B be separable monoids in a
tensor triangulated category S compactly generated by the tensor unit 1. An
S-functor F : ModSA −→ ModSB preserves copowers and has an exact and
coproduct preserving underlying functor if and only if F ∼= − ⊗A Y , for some
A-B-bimodule Y .

The paper is organized as follows: In Section 2 we give the necessary back-
ground on enriched categories for stating and proving the main theorems. In
Section 3 we prove our enriched analogue of Brown representability, namely that
certain power preserving functors out of enriched categories are representable.
In Section 4 we recall, with significant detail, the relevant facts from the theory
of separable monoids and prove our enriched Eilenberg–Watts theorem.

Acknowledgements. We are grateful to the anonymous referee for several
thoughtful comments which improved the exposition.
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2 Preliminaries on enriched categories

Let (V,⊗,1) be a closed symmetric monoidal category, whose internal hom we
denote by V(−,−). We recall that a V-category (or a category enriched in V)
A is a collection of objects obA, for each a, a′ ∈ obA an object of morphisms
A(a, a′) ∈ V, composition maps for each a, a′, a′′ ∈ obA

A(a′, a′′)⊗A(a, a′)
◦
−→ A(a, a′′)

and units ia : 1 −→ A(a, a) such that the natural associativity and unitality
constraints are satisfied. The category V naturally gives rise to a V-category V

whose objects of morphisms for x, y ∈ V are V(x, y). For the precise diagrams
that must be satisfied, further details on the self-enrichment of V, and a more
complete treatment of the facts we recall here the reader can consult [11].

Given V-categories A and B a V-functor F : A −→ B is given by an assign-
ment, which is also denoted by F,

F : obA −→ obB

together with maps in V for all a, a′ ∈ A

Fa,a′ : A(a, a′) −→ B(Fa,Fa′).

These maps must be compatible with composition in the sense that the dia-
grams

A(a′, a′′)⊗A(a, a′) A(a, a′′)

B(Fa′,Fa′′)⊗B(Fa,Fa′) B(Fa,Fa′′)

◦A

◦B

Fa′,a′′ ⊗ Fa,a′ Fa,a′′

commute for all a, a′, a′′ ∈ A. They must also be unital, i.e., for all a ∈ A the
triangle

1 A(a, a)

B(Fa,Fa)

ia

iFa

Fa,a

commutes. Suppose G : A −→ B is an additional V-functor. A V-natural
transformation α : F −→ G is given by components

αa : 1 −→ B(Fa,Ga), a ∈ A
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such that the following hexagons, which express the naturality of α, commute
for all a, a′ ∈ A:

A(a, a′)⊗ 1 B(Ga,Ga′)⊗B(Fa,Ga)

A(a, a′) B(Fa,Ga′)

1⊗ A(a, a′) B(Fa′,Ga′)⊗B(Fa,Fa′)

Ga,a′ ⊗ αa

αa′ ⊗ Fa,a′

◦

◦

Let A be a V-category. The underlying category A0 of A is the usual
category with objects obA and

A0(a, a
′) = V

(

1,A(a, a′)
)

.

The composition and units in A0 are induced from A in the obvious way. This
construction defines a 2-functor from V-categories to categories: given a V-
functor F : A −→ B, its underlying functor F0 : A0 −→ B0 has the same as-
signment on objects, its action on maps is given by V(1,F−,−) and the natural
transformations essentially do not change.

Given a ∈ A and v ∈ V the copower of a by v, if it exists, is an object
v ⊙ a of A together with natural isomorphisms in V

A(v ⊙ a, a′) ∼= V
(

v,A(a, a′)
)

for all a′ ∈ A. Dually the power of a by v, if it exists, is an object v ⋔ a of A
together with natural isomorphisms in V

A(a′, v ⋔ a) ∼= V
(

v,A(a′, a)
)

for all a′ ∈ A.
If all (co)powers exist we say that A is a (co)powered V-category.

Example 2.1. One sees easily from the definition that all copowers and powers
exist in V. Indeed, one has the equalities for x, y ∈ V

x⊙ y = x⊗ y and x ⋔ y = V(x, y);

the defining isomorphisms for (co)powers express the adjunction between ⊗
and V(−,−).

We will not require much technology concerning powers and copowers.
However, we will need the following, rather standard, lemma.
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Lemma 2.2. Let A and B be powered V-categories and let F : A −→ B be a
V-functor. Given v ∈ V and a ∈ A there is a natural map

F(v ⋔ a) −→ v ⋔ Fa.

Proof. The desired morphism is given by following the identity map through
the following diagram:

A(v ⋔ a, v ⋔ a) B
(

F(v ⋔ a), v ⋔ Fa
)

V
(

v,A(v ⋔ a, a)
)

V
(

v,B(F(v ⋔ a),Fa)
)

∼=

∼ =

V(v,Fv⋔a,a)

Using the lemma we can make sense of the statement that the functor F

preserves powers, i.e., that for all v ∈ V and a ∈ A the morphism of the lemma
is an isomorphism. Of course there is the following dual statement which we
shall also use.

Lemma 2.3. Let A and B be copowered V-categories and let F : A −→ B be a
V-functor. Given v ∈ V and a ∈ A there is a natural map

v ⊙ Fa −→ F(v ⊙ a).

3 Enriched Brown representability

This section is devoted to the first of our main results, namely that Brown
representability holds in the enriched setting. Let us begin by introducing the
players and formulating what we mean by enriched Brown representability.

Setup 3.1. Let S be a compactly generated tensor triangulated category, i.e.,
S is a compactly generated triangulated category with a closed symmetric
monoidal structure (⊗, S(−,−),1) such that ⊗ is exact in both variables. We
moreover assume that the internal hom S(−,−) is exact in both variables. We
assume throughout that the compact objects of S form a tensor subcategory,
i.e., the unit 1 is compact and the tensor product of two compacts is compact.
Following our earlier conventions we denote by S the self-enrichment of S.

We fix an S-category T with copowers (i.e., Top has powers) such that the
underlying category, denoted T, carries the structure of a compactly generated
triangulated category (which is also fixed throughout this section). We will
assume that the triangulated structure of T is compatible with the S-enrichment
in the sense that the functors

T(t,−)0 and T(−, t)0

underlying the S-functors corepresented and represented by t ∈ T, are exact for
all t. We also require that for a compact object c ∈ S and a compact object
t ∈ T the copower c⊙ t is again compact in T.
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Remark 3.2. One source, at least morally, of such T is the theory of actions
of compactly generated tensor triangulated categories. Given S as above with
a sufficiently nice action, in the sense of [16], on a compactly generated trian-
gulated category T one obtains an S-category T whose underlying category is
canonically identified with T. Further details concerning this intuition can be
found in [10] and also in Section 4 (see in particular Lemma 4.4 and Proposi-
tion 4.5).

Definition 3.3. We say that T satisfies enriched Brown representability if ev-
ery power preserving functor S-functor F : Top −→ S, such that the underlying
functor F = F0 is exact and preserves products, is isomorphic to a representable
S-functor.

Remark 3.4. Since products in T
op are precisely the coproducts in T, the

phrase “F preserves products” means that it sends coproducts to products,
which is precisely the assumption in the usual Brown representability theorem.
Similarly, the power preservation hypothesis can be unwound as saying F sends
copowers to powers.

The assumption in Definition 3.3 that the enriched functor F preserve
powers is a novelty of the enriched world — there is no analogous requirement
in the unenriched formulation of Brown representability. In some situations,
as the following lemma shows, this requirement is for free and can hence be
omitted.

Lemma 3.5. If S is generated by the tensor unit 1 then every enriched func-
tor F : Top −→ S, whose underlying functor is exact and product preserving,
automatically preserves powers.

Proof. Recall from Lemma 2.2 that there is, given s ∈ S and t ∈ T, a natural
comparison map

γs,t : F(s⊙ t) −→ s ⋔ Ft.

Let us fix a t ∈ T and consider the collection in S defined by

M = {s ∈ S | γs,t is an isomorphism}.

One checks, without much difficulty, that M is localizing in S: the comparison
maps are compatible with suspensions, coproducts, and triangles by virtue
of F having an exact and product preserving underlying functor. Moreover,
the category M contains 1 as in that case the comparison map is the obvious
isomorphism

F(1⊙ t)
∼=
−→ Ft

∼=
−→ 1 ⋔ Ft.

As 1 generates S we conclude that M = S, i.e., γs,t is an isomorphism for all
s ∈ S. Finally, as the object t ∈ T was arbitrary and played no role, we see
that F preserves powers.

Before proceeding one final remark is in order.
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Remark 3.6. Given t ∈ T the functor it represents always preserves powers.
This is essentially the definition of powering:

T(s⊙ t′, t)
∼=
−→ S(s,T(t′, t))

Thus power preservation is a necessary condition for an enriched functor to be
representable. However, it is possible, by a quirk of triangulated categories,
that power preservation could follow in some way from the requirement that
the underlying functor be exact and product preserving. While we suspect this
is not the case we have been unable to construct an example demonstrating
this.

We shall prove that, given S and T as in Setup 3.1, the category T satisfies
enriched Brown representability. Our argument parallels Neeman’s proof [15,
Theorem 3.1] of the usual Brown representability theorem for compactly gen-
erated triangulated categories. The only real adaptation required is to avoid
using morphisms in T (as there is not necessarily such a notion), and this is
fairly standard. The most important observation is, in some sense, that the cor-
rect condition for enriched representability is not just that F should commute
with products but that F also should preserve powers; this is not visible when
the tensor unit generates S, as pointed out in Lemma 3.5, but is crucial for our
method of extending from the case that S is generated by 1 to the general case
(see the proof of Theorem 3.10).

Let S and T be as in Setup 3.1 and fix an S-functor F : Top −→ S whose
underlying functor we denote by F. As indicated above we shall assume that
F preserves powers and that F is exact and commutes with products. As
in Neeman’s proof we begin by constructing a tower of objects in T whose
corresponding representable functors approximate F.

Let G be a suspension closed compact generating set for T, for example
one could take G to be a skeleton for the compacts Tc. Set

U0 = {(g, f) | g ∈ G, f : 1 −→ Fg}

and form the corresponding coproduct

X0 =
∐

(g,f)∈U0

g

in T. By the weak form of the enriched Yoneda lemma we have isomorphisms

Hom
(

T(−, X0),F
)

∼= S(1,FX0)

∼= S
(

1,F(
∐

(g,f)∈U0

g)
)

∼= S(1,
∏

(g,f)∈U0

Fg)

∼=
∏

(g,f)∈U0

S(1,Fg)
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and so
∏

(g,f)∈U0

f ∈
∏

(g,f)∈U0

S(1,Fg)

gives a canonical enriched natural transformation φ0 : T(−, X0) −→ F.
We now assume, inductively, that we have constructed objects Xi ∈ T

together with morphisms

ψi ∈ T(Xi−1, Xi) and φi ∈ Hom
(

T(−, Xi),F
)

such that the triangles

T(−, Xi−1)

F

T(−, Xi)

φi−1

T(−, ψi)

φi

commute. The object Xi+1 and maps φi+1 and ψi+1 are constructed as follows:
Set

Ui+1 =
∐

g∈G

kerS
(

1,T(g,Xi)
) S(1,φi

g)
−−−−−→ S(1,Fg)

and consider the coproduct

Ki+1 =
∐

(g,f)∈Ui+1

g,

where (g, f) ∈ Ui+1 is our notation for the morphism

f ∈ S
(

1,T(g,Xi)
)

= T(g,Xi)

occurring in Ui+1. There is a canonical morphism Ki+1 −→ Xi in T and we
complete it to a triangle

Ki+1 −→ Xi
ψi+1

−−−→ Xi+1 −→ ΣKi+1

definingXi+1. We now produce the morphism φi+1. Applying the exact functor
F gives a triangle in S

∏

(g,f)∈Ui+1

Fg ∼= FKi+1 ←− FXi
Fψi+1

←−−−− FXi+1 ←− Σ−1FKi+1.

By the Yoneda lemma the map φi corresponds to a morphism, which we also
call φi, 1 −→ FXi. We claim that the latter map factors via FXi+1 giving, by
Yoneda, the desired natural transformation φi+1.
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By construction FXi −→ FKi+1 corresponds to the components

1
f
−→ T(g,Xi)

Fg,Xi−−−−→ S(FXi,Fg).

Applying the ⊗-S(−,−) adjunction

S
(

T(g,Xi), S(FXi,Fg)
)

∼= S
(

FXi ⊗ T(g,Xi),Fg
)

to
Fg,Xi : T(g,Xi) −→ S(FXi,Fg),

the component at (g, f) of the composite 1
φi

−→ FXi −→ FKi+1 can be written
as the composite

1
∼=
−→ 1⊗ 1

φi
⊗f

−−−→ FXi ⊗ T(g,Xi) −→ Fg.

On the other hand, the above composite can be identified with

1
f
−→ T(g,Xi)

φi
g
−→ Fg,

which is zero by construction as f ∈ kerS
(

1,T(g,Xi)
) S(1,φi

g)
−−−−−→ S(1,Fg). This

shows

1
φi

−→ FXi −→ FKi+1

is zero in S and thus φi can be factored via a morphism φi+1 : 1 −→ FXi+1.
Equivalently, we have a natural transformation of enriched functors, which we
also denote by φi+1, making the following triangle commute

T(−, Xi)

F.

T(−, Xi+1)

φi

T(−, ψi+1)

φi+1

Indeed, this triangle commutes by construction since the triangle

FXi

1

FXi+1

φi

Fψi+1

φi+1

commutes in S.
We now define an object X of T by

X = hocolimiXi,

Documenta Mathematica 22 (2017) 1031–1062



Enriched Representability Theorems 1041

i.e., by the triangle in T

∐

i

Xi
1−ψi

−−−→
∐

i

Xi −→ X −→ Σ
∐

i

Xi.

Applying F to this defining triangle yields a triangle in S

∏

i

FXi
1−Fψi+1

←−−−−−−
∏

i

FXi ←− FX ←− Σ−1
∏

i

FXi.

By the compatibility conditions between the φi and ψi, the composite

1 −→
∏

i

FXi
1−Fψi

−−−−→
∏

i

FXi,

where the first morphism is induced by the φi, vanishes and so the triangle
gives us a factorization of 1 −→

∏

i FXi via φ : 1 −→ FX . This map φ is
compatible with the φi and ψi in the obvious way.

Corresponding to φ we have an enriched natural transformation

φ : T(−, X) −→ F.

We will prove that φ is an isomorphism of S-functors, i.e., each of the compo-
nents

φY : 1 −→ S
(

T(Y,X),FY
)

or, more precisely, the maps they correspond to

φY : T(Y,X) −→ FY

are isomorphisms in S. First we observe that it is enough to check this on
generators.

Lemma 3.7. The full subcategory

M = {Y ∈ T | φY is an isomorphism}

is localizing in T. In particular, if G ⊆ M then M = T and so φ is an isomor-
phism.

Proof. The underlying natural transformation of φ, whose components are just
the φY , is a natural transformation between the exact product preserving func-
tors T(−, X) and F (recall product preservation here means sending coproducts
to products). The usual argument shows M is localizing: the suspension of an
isomorphism is an isomorphism, as is any product of isomorphisms, and any
completion of two isomorphisms to a morphism of triangles.

The final statement is then clear, as any localizing subcategory of T con-
taining G must be T itself. By definition of M this says that φY is an isomor-
phism for all Y ∈ T, i.e., φ is a natural isomorphism.
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Our strategy to check that the φg are isomorphisms for g ∈ G is as follows.
We can complete φg to a triangle in S

T(g,X)
φg
−→ Fg −→ Zg −→ ΣT(g,X)

and it is sufficient to show Zg ∼= 0. The first step in proving that Zg vanishes
is the following lemma.

Lemma 3.8. There are no morphisms from 1 to ΣiZg for any i ∈ Z, i.e.,

S(1,ΣiZg) = 0 ∀ i ∈ Z.

Proof. Applying S(1,−) to the triangle defining Zg gives a commutative dia-
gram

S(1,Σi−1Zg) S
(

1,ΣiT(g,X)
)

S(1,ΣiFg) S(1,ΣiZg)

S
(

1,T(Σ−ig,X)
)

S
(

1,F(Σ−ig)
)

∼= ∼=

where the top row is exact and Σ−ig ∈ G by the assumption that G is suspen-
sion closed. Suspension closure of G together with the above diagram means
it is sufficient to consider the case i = 0, i.e., show that

S
(

1,T(g,X)
)

−→ S(1,Fg)

is an isomorphism. We now use the identifications

S(1,T(g,X)) = T(g,X)

= T(g, hocolimiXi)
∼= colimi T(g,Xi).

By construction T(g,X0) −→ S(1,Fg) is surjective and fits into the commuta-
tive triangle

T(g,X0) S(1,Fg)

T(g,X)

showing that T(g,X) −→ S(1,Fg) is also surjective.
Now we prove that it is also injective. Suppose we are given

f ∈ ker
(

colimi T(g,Xi) −→ S(1,Fg)
)

.

It can be represented by some fi ∈ T(g,Xi) which is then necessarily in the
kernel of the composite

S
(

1,T(g,Xi)
)

= T(g,Xi) −→ colimi T(g,X) −→ S(1,Fg).
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Hence fi is an element of the set Ui+1 which we used in defining Xi+1. Com-
mutativity of

T(g,Xi)

T(g,X)

T(g,Xi+1)
T(g, ψi+1)

then implies, by the way ψi+1 was defined, that the image of fi in T(g,X),
which is none other than f , is zero. Thus the map T(g,X) −→ S(1,Fg) is
injective.

So we have proved that T(g,X) −→ S(1,Fg) is an isomorphism for any
g ∈ G. The exact sequence considered at the beginning of the proof then forces
S(1, Zg) to be zero as claimed.

Remark 3.9. This is already enough to prove representability in the case S is
generated by 1. We have not yet invoked the power preservation hypothesis,
but this is to be expected, as the condition that F preserve powers is redundant
by Lemma 3.5.

Theorem 3.10. Let S be a compactly generated tensor triangulated category
whose compact objects are a tensor subcategory and denote by S the self-
enrichment of S. Let T be a copowered S-category whose underlying category
T carries a fixed structure of compactly generated triangulated category. Fi-
nally, suppose the operation of copowering by an object of Sc sends compacts
to compacts in T. Then any power preserving S-functor F : Top −→ S whose
underlying functor is exact and preserves products is representable, i.e., there
is an X ∈ T with

T(−, X) ∼= F.

Proof. We shall prove that the map φ : T(−, X) −→ F which we constructed
earlier is an isomorphism. By Lemma 3.7 it is enough to check this on our
compact generating set G for T. Let c be a compact object of S, and let g ∈ G.
Both F and T(−, X) preserve powers so we get a diagram

S
(

c,T(g,X)
)

S(c,Fg)

S
(

1, S
(

c,T(g,X)
))

S
(

1, S(c,Fg)
)

S
(

1,T(c⊙ g,X)
)

S
(

1,F(c⊙ g)
)

∼=
∼=

∼=
∼=

which commutes by naturality. Without loss of generality we may assume our
generating setG is closed under copowering with objects of Sc. Thus Lemma 3.8
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applies to show, by considering the triangle in S

T(c⊙ g,X) −→ F(c⊙ g) −→ Zc⊙g −→ ΣT(c⊙ g,X),

that the bottom morphism in the above diagram is an isomorphism. Hence for
any compact object c ∈ Sc

S
(

c,T(g,X)
)

−→ S(c,Fg)

is an isomorphism. Compact generation of S then implies φg : T(g,X) −→ Fg

is an isomorphism. Since g ∈ G was arbitrary this completes the proof.

4 Triangulated module categories

We now turn to the question of representing covariant functors via bimodule
objects. This is a more delicate question as, in general, an abstract triangulated
category is not some subcategory of objects with extra structure in a “universal
ambient” triangulated category where such bimodules could exist. However,
we are still able to prove representability results for functors between certain
triangulated categories. Let us begin by fixing the setup and some conventions.

Throughout S will denote a compactly generated tensor triangulated cat-
egory and S will denote S considered as a category enriched in itself. We will
always make the assumption that S is generated by the tensor unit, i.e.,

S = 〈1〉.

Finally, we will assume that S is ∞-triangulated in the sense that one has
higher octahedra and the corresponding compatibility axioms for them. Let us
allay any potential worry this last sentence could have caused by pointing out
right away that we shall not explicitly deal with this higher structure. It is a
technical assumption required in the work of Balmer [1] which forms the basis
for our results. The reader who desires further details should consult the work
of Künzer [12] and Maltsiniotis [13]; a compact presentation of the axioms can
also be found in [1].

As S is monoidal one can consider monoid objects in S. We briefly recall
that a monoid consist of an object, say, A, a multiplication µ : A⊗A −→ A and
a unit η : 1 −→ A subject to the usual associativity and unitality diagrams.

Given such a monoid A, we define the category of right A-modules in S,
denoted by ModSA, to have as objects pairs (x, ρ), where ρ : x ⊗ A −→ x is
compatible with the monoid structure in the natural way, i.e., the following
two diagrams commute:

x⊗A⊗A x⊗A

x⊗A x

x⊗ 1 x⊗A

x

ρ ⊗ 1

1 ⊗ µ ρ

ρ

1 ⊗ η

ρ
∼=

(4.1)
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A morphism f : (x, ρx) −→ (y, ρy) is merely an A-linear morphism, i.e., a
morphism f : x −→ y such that

x⊗A y ⊗A

x y

f ⊗ 1

ρx ρy

f

commutes. Note in particular that (A, µ) is a right module. One defines the
category of left A-modules and, given another monoid B, the category of A-B-
bimodules similarly.

As S is symmetric monoidal, there are isomorphisms cx,y : x⊗ y
∼=
−→ y⊗x,

natural in both x and y. Thus any monoid A admits another product, namely
µ◦cA,A. We shall denote this opposite monoid by Aop. This allows us to view a
left A-module in S as an object of ModS A

op and an A-B-bimodule as an object
of ModSA

op ⊗B.

Definition 4.1. A monoid A with multiplication µ is separable if the multi-
plication map µ admits a bimodule section, i.e., a morphism σ : A −→ A ⊗ A
such that µσ = 1 and the following diagram commutes:

A⊗A

A⊗A⊗A A A⊗A⊗A

A⊗A

σ ⊗ 1
µ

1 ⊗ σ

1 ⊗ µ
σ

µ⊗ 1

Remark 4.2. A monoid A gives rise to the extension of scalars functor

FA = −⊗A : S −→ ModSA,

which admits as a right adjoint the forgetful functor UA : ModSA −→ S. By
[1, Prop. 3.11] a monoid is separable if and only if UA is separable as a functor,
i.e., the counit εA : FAUA −→ IdModS A admits a section.

We recall the following theorem due to Balmer, showing that the category
of A-modules inherits a triangulated structure from S provided A is separable.

Theorem 4.3 ([1, Cor. 5.18]). Let S be tensor ∞-triangulated and let A ∈ S

be a separable monoid. Then ModSA has a unique ∞-triangulation such that
an n-triangle in ModS A is distinguished if and only if its image under UA is
distinguished in S.
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In particular ModSA is triangulated, and a triangle

(x, ρx) −→ (y, ρy) −→ (z, ρz) −→ (Σx,Σρx)

is distinguished precisely when x −→ y −→ z −→ Σx is.
By the exactness of ⊗ on S, this observation yields an action of S on

ModSA in the sense of [16]. Indeed, Balmer’s description of the triangulated
structure immediately implies that for s ∈ S the functor

s⊗− : ModS A −→ ModSA

sends distinguished triangles to distinguished triangles (since s⊗− is exact as
an endofunctor of S).

We now sketch that such an action gives rise to an enrichment. Note that
this observation is certainly not new, and details can be found for instance in
[10].

Lemma 4.4. Let T be a triangulated category which admits an S-action

⊙ : S× T −→ T

such that ⊙ is exact and coproduct preserving in each variable. Then T admits
an enrichment T, in S, such that T0 = T. Moreover, T is copowered over S.

Proof. We only give a sketch of the proof to fix ideas. Further details can be
found in [10].

Fix x ∈ T and consider the functor − ⊙ x : S −→ T. It is exact and
commutes with coproducts, and thus, by the usual (i.e., unenriched) Brown
representability theorem, admits a right adjoint which we denote

T(x,−) : T −→ S.

To be a bit more precise, this adjoint is constructed by applying (the usual)
Brown representability theorem to the functors

T(−⊙ x, y) : S −→ ModZ

for y ∈ T and defining T(x, y) to be the representing object. In particular,
since these are all functors S −→ T we only need that S is compactly generated
— it is not necessary for T to be compactly generated. That the representing
objects T(x, y) can be assembled into the object assignment of a bifunctor is a
standard argument; the idea is that one defines the action on morphisms via
the Yoneda lemma and the natural isomorphisms

T(−⊙ x, y)
∼=
−→ S(−,T(x, y)).

We claim that evaluating the functor T(x,−) we have constructed at y ∈ T

gives the hom object T(x, y) of a category T enriched in S. First note that there
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is a natural evaluation morphism εx,y : T(x, y) ⊙ x −→ y given by the counit.
One defines a composition, using these evaluation maps, as the image of the
identity of z traced through

1z ∈ T(z, z) −→ T
(

T(y, z)⊙ y, z
)

−→T
(

T(y, z)⊙
(

T(x, y) ⊙ x
)

, z
)

∼= T
((

T(y, z)⊗ T(x, y)
)

⊙ x, z
)

∼= S
(

T(y, z)⊗ T(x, y),T(x, z)
)

The unit ix : 1 −→ T(x, x) is given via the isomorphism

1x ∈ T(x, x) ∼= T(1⊙ x, x) ∼= S
(

1,T(x, x)
)

,

which also shows that T0 = T. One then needs to check that the composition de-
fined above is in fact associative and unital, which is a (mostly) straightforward
exercise in diagram chasing. That T is copowered over S is immediate from the
construction of the enrichment as copowers are just given by the S-action.

One can also give an interpretation of enriched functors in terms of actions.
We next sketch (in detail) a version of this sort of result which is relevant to our
work. A more general treatment can be found in [8]. We recall that an S-action
provides us with unitors, that is, natural isomorphisms lx : 1⊙ x −→ x.

Proposition 4.5. Let F : T −→ U be an exact coproduct preserving functor of
triangulated categories admitting S-actions as in Lemma 4.4. The following are
equivalent:

1. F is the underlying functor of an S-functor F : T −→ U.

2. There are natural morphisms s⊙ Fx
γs,x
−→ F(s⊙ x) for all s in S and x in

T verifying the following unitor and cocycle conditions (up to associators
which we omit):

lFx = (Flx)γ1,x

γs⊗s′,x = γs,s′⊙x(s⊙ γs′,x).

If these conditions are satisfied, the S-functor F : T −→ U preserves copowers
if and only if each γs,x is an isomorphism.

Proof. If F is an S-functor then one has natural comparison maps, as in
Lemma 2.3, s ⊙ Fx −→ F(s ⊙ x). As they arise via the universal property
of copowers, they satisfy the required unitor and cocycle conditions yielding
compatibility of F with the action. Assuming that F preserves copowers just
says that these natural maps are isomorphisms.

Now let us suppose we are given an F together with coherent comparison
maps γs,x for all s ∈ S and x ∈ T. We construct a candidate F by taking
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the same object assignment as for F and defining Fx,y to be the image of the
composite

T(x, y)⊙ Fx F(T(x, y) ⊙ x) Fy
γT(x,y),x Fεx,y

under the adjunction isomorphism

U
(

T(x, y)⊙ Fx,Fy
)

∼= S
(

T(x, y),U(Fx,Fy)
)

.

We then have to verify that F is in fact an S-functor, i.e., the above morphisms
are compatible with units and composition.

From the unitor condition and naturality of γ, we obtain

lFx = (Flx)γ1,x

= (Fεx)
(

F(ix ⊙ 1)
)

γ1,x

= (Fεx)γT(x,x),x(ix ⊙ 1): 1⊙ Fx −→ Fx,

and passing through the adjunction yields iFx = Fx,xix : 1 −→ U(Fx,Fx), show-
ing that F preserves units.

To show that F preserves compositions, it is sufficient to show equality of
the two adjunct morphisms T(y, z)⊗ T(x, y)⊙ Fx −→ Fz; namely that

εFy,Fz(1 ⊙ εFx,Fy)(Fy,z ⊙ Fx,y ⊙ 1) = εFx,FzFx,z(◦ ⊙ 1).

Using that εFx,Fy(Fx,y ⊙ 1) = (Fεx,y)γT(x,y),x, naturality of γ and the cocycle
condition, we compute

εFy,Fz(1⊙ εFx,Fy)(Fy,z ⊙ Fx,y ⊙ 1)

= (Fεy,z)γT(y,z),y(1⊙ Fεx,y)(1 ⊙ γT(x,y),x)

= (Fεy,z)F(1⊙ εx,y)γT(y,z),T(x,y)⊙y(1⊙ γT(x,y),x)

= (Fεx,z)F(◦ ⊗ 1)γT(y,z)⊗T(x,y),x

= (Fεx,z)γT(x,z),x(◦ ⊙ 1)

= εFx,FzFx,z(◦ ⊙ 1).

Thus F is an S-functor. By its construction, it automatically preserves copowers
provided each γs,x is an isomorphism.

We now consider the canonical action of S on ModSA given by s⊗ (x, ρ) =
(s⊗x, 1⊗ρ). Using the abstract result on actions giving enrichments we see that
ModSA admits a corresponding enrichment which we shall denote by ModSA,
and whose hom objects we denote by [−,−]A.

We note, as a particular consequence of the construction, that the functor
[A,−]A : ModS A −→ S arises as the right adjoint of FA = −⊗A : S −→ ModSA,
and therefore [A,−]A must be isomorphic to UA, the forgetful functor. This
isomorphism can be made explicit by considering the adjunction isomorphism

ModSA(X ⊗A,X)
∼=
−→ S(X, [A,X ]A),
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for any A-module (X, ρ). The isomorphism X
∼=
−→ [A,X ]A is then given by ρ♭,

the right adjunct to ρ (where ρ giving a map of right modules just expresses
associativity of the right action of A on X). We will keep this notation in the
sequel, denoting the right adjunct of f , say, by f ♭ and the left adjunct by f ♯.
We omit the adjunction from the notation, as in all cases it will be clear from
the context.

We also note that

◦ : [Y, Z]A ⊗ [X,Y ]A −→ [X,Z]A

by definition arises as the right adjunct to the composite

[Y, Z]A ⊗ [X,Y ]A ⊗X
1⊗εX,Y
−−−−−→ [Y, Z]A ⊗ Y

εY,Z
−−−→ Z

of counits.
The module structure is tightly connected with composition in the enrich-

ment in the following way.

Lemma 4.6. Let (X, ρ) be a right A-module. Then the following diagram in S

commutes:

X ⊗A X

[A,X ]A ⊗ [A,A]A [A,X ]A

ρ

ρ♭ ⊗ µ♭

∼ = ρ♭∼ =

◦

Proof. We consider the left adjuncts, and compute

(ρ♭ρ)♯ = εA,X(ρ♭ρ⊗ 1)

= εA,X(ρ♭ ⊗ 1)(ρ⊗ 1)

= ρ(ρ⊗ 1),

and, on the other hand
(

◦ (ρ♭ ⊗ µ♭)
)♯

= εA,X(◦ ⊗ 1)(ρ♭ ⊗ µ♭ ⊗ 1)

= εA,X(1⊗ εA,A)(ρ
♭ ⊗ µ♭ ⊗ 1)

= εA,X(ρ♭ ⊗ µ)

= εA,X(ρ♭ ⊗ 1)(1⊗ µ)

= ρ(1 ⊗ µ).

As (X, ρ) is a right A-module these two expressions are equal. Consequently
the diagram commutes.

Our aim is to determine when a functor between module categories of
separable monoids is given by tensoring with a bimodule. We will make precise
what this means momentarily, but let us emphasize that it should at least be
“S-linear”. Thus by Lemma 4.4 and Proposition 4.5 we are really making a
statement about enriched functors.
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4.1 Tensor products over separable monoids

In order to make sense of the statement in Theorem 1.2 we need to define the
tensor product over a separable monoid A in S.

First let us fix a right A-module (X, ρ) and a left A-module (Y, λ). The
endomorphism e

X ⊗ Y
∼=
−→ X ⊗ 1⊗ Y

1⊗η⊗1
−−−−→ X ⊗A⊗ Y

1⊗σ⊗1
−−−−→ X ⊗A⊗A⊗ Y

ρ⊗λ
−−−→ X ⊗ Y

is an idempotent, which one sees by considering the following commutative
diagram (where we omit the intermediate objects, which can be deduced from
the morphisms, for space reasons)

X ⊗ Y

X ⊗ Y

1 ⊗ ση ⊗ 1 1⊗2
⊗ η ⊗ 1⊗2

1⊗2
⊗ σ ⊗ 1⊗2 ρ ⊗ 1⊗2

⊗ λ

ρ ⊗ λ

1 ⊗ µ⊗ 1⊗2 1 ⊗ µ⊗ 1⊗3

1 ⊗ µ⊗ 1 1⊗2
⊗ µ⊗ 1

1 ⊗ σ ⊗ 1⊗2

1 ⊗ σ ⊗ 1

1⊗4

1 ⊗ η ⊗ 1

ρ ⊗ λ

where the composition along the top is e2 and the one along the bottom is e.
As idempotents in S split, im(e) is a summand of X ⊗ Y and we define the
tensor product over A as

X ⊗A Y := im(e),

following Balmer [3].
We fix notation for the splitting as follows

ker(e) X ⊗ Y im(e)
j p

iq

where both the upper and lower row are split exact triangles which satisfy

pi = 1, ip = e; qj = 1, jq = 1− e.

The next lemma shows that this definition of the tensor product over A
coincides with the usual one.

Lemma 4.7 ([3]). The diagram

X ⊗A⊗ Y X ⊗ Y im(e)
ρ⊗ 1

1 ⊗ λ

p

is a coequalizer in S.
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Proof. Composing with the monomorphism i, one sees that p(ρ⊗ 1) = p(1⊗λ)
is equivalent to e(ρ⊗ 1) = e(1⊗ λ). The composite e(ρ⊗ 1) is

X ⊗A⊗ Y
1⊗2

⊗ση⊗1
−−−−−−−→ X ⊗A⊗A⊗A⊗ Y

ρ⊗1⊗3

−−−−→ X ⊗A⊗A⊗ Y
ρ⊗λ
−−−→ X ⊗ Y.

Replacing ρ⊗1⊗3 by 1⊗µ⊗1⊗2, and interchanging µ and σ as per the definition
of a separable monoid, we can rewrite this as

X ⊗A⊗ Y
1⊗σ⊗1
−−−−→ X ⊗A⊗A⊗ Y

ρ⊗λ
−−−→ X ⊗ Y.

The composite e(1 ⊗ λ) can also be rewritten this way and hence e(ρ ⊗ 1) =
e(1⊗ λ).

Next we show that the idempotent e precisely detects when a morphism
coequalizes ρ ⊗ 1 and 1 ⊗ λ. More precisely, we claim that for a morphism
f : X ⊗ Y −→ Z, f(ρ⊗ 1) = f(1⊗ λ) if and only if f = fe.

First assume that f(ρ ⊗ 1) = f(1 ⊗ λ). Thus we have a commutative
diagram

X ⊗ Y X ⊗ Y

X ⊗ Y Z

1 ⊗ η ⊗ 1 1 ⊗ σ ⊗ 1 ρ⊗ 1⊗2
1 ⊗ λ

fρ⊗ 1

ρ⊗ 1 f

1 ⊗ µ⊗ 1
1⊗3

whose top row is e, showing that fe = f . For the converse we use the first part
of the proof and obtain

f(ρ⊗ 1) = fe(ρ⊗ 1) = fe(1⊗ λ) = f(1⊗ λ).

Lastly, we need to show that the universal property holds under the as-
sumption fe = f . This equality can be rewritten as fjq = f(1 − e) = 0,
implying fj = 0 since q is an epimorphism. It follows that there is a unique
morphism f̄ : im(e) −→ Z such that f̄ p = f .

The tensor product constructed above is a left adjoint in two variables to
the internal homs we constructed to enrich the module categories over separable
monoids. The next proposition makes this precise.

Proposition 4.8. Let A and B be separable monoids in S. Given a right A-
module X, an A-B-bimodule Y and a right B-module Z there is an isomorphism

ModSB(X ⊗A Y, Z) ∼= ModSA(X, [Y, Z]B)

natural in all three variables.
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Proof. It is clear that X ⊗A Y is a right B-module. We begin by showing
[Y, Z]B is indeed a right A-module. The left A-module structure of Y produces
a morphism in ModB

[Y, Z]B ⊗A⊗ Y
1⊗λY−−−−→ [Y, Z]B ⊗ Y

εY,Z
−−−→ Z,

which by adjunction yields the right A-module structure on [Y, Z]B

[Y, Z]B ⊗A

(

εY,Z(1⊗λY )
)♭

−−−−−−−−−−→ [Y, Z]B.

Fix a morphism f : X ⊗A Y −→ Z in ModSB. Precomposing with the
split epimorphism p : X ⊗ Y −→ X ⊗A Y we obtain a morphism

X
(fp)♭

−−−→ [Y, Z]B

in S. Showing that this is a morphism in ModSA amounts to showing the
commutativity of

X ⊗A [Y, Z]B ⊗A

X [Y, Z]B.

(fp)♭ ⊗ 1

ρX

(fp)♭

(

εY,Z (1 ⊗ λY )
)♭

Taking left adjuncts reduces this to the following computation

ε(1⊗ λY )
(

(fp)♭ ⊗ 1⊗2
)

= ε
(

(fp)♭ ⊗ 1
)

(1⊗ λY )

= fp(1⊗ λY )

= fp(ρX ⊗ 1),

where Lemma 4.7 yields the last equality. It follows that the assignment f 7→
(fp)♭ yields a morphism of A-modules.

On the other hand, starting with a morphism g : X −→ [Y, Z]B in ModS A

it is clear that

X ⊗A Y
i
−→ X ⊗ Y

g♯

−→ Z

is a morphism of B-modules.
We claim that these assignments are mutually inverse. In one direction,

we have

(fp)♭♯i = fpi = f,

since pi = 1. Lastly we show that

(g♯ip)♭ = (g♯e)♭
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equals g, or equivalently that g♯e = g♯. By Lemma 4.7 it suffices to show that
g♯(1⊗ λY ) = g♯(ρX ⊗ 1). The commutativity of

X ⊗A⊗ Y X ⊗ Y

[Y, Z]B ⊗A⊗ Y [Y, Z]B ⊗ Y

X ⊗ Y

[Y, Z]B ⊗ Y Z

ρX ⊗ 1

g ⊗ 1⊗2 g ⊗ 1

(

εY,Z(1 ⊗ λY )
)♭

⊗ 11 ⊗ λY

1 ⊗ λY εY,Z

εY,Z
g ⊗ 1

yields this equality and so completes the argument.

4.2 A triangulated Eilenberg–Watts theorem

We now prove one direction of the main result; Theorem 4.16 below.

Proposition 4.9. Let A and B be separable monoids in S and Y an A-B-
bimodule. Then

−⊗A Y : ModSA −→ModSB

is a copower preserving S-functor.
Moreover, the underlying functor is exact and preserves coproducts.

Proof. For ease of notation, let us denote this functor-to-be by G. For A-
modules M and N we first construct a morphism

GM,N : [M,N ]A −→ [M ⊗A Y,N ⊗A Y ]B.

Consider the diagram

[M,N ]A ⊗M ⊗A⊗ Y N ⊗A⊗ Y

[M,N ]A ⊗M ⊗ Y N ⊗ Y

[M,N ]A ⊗M ⊗A Y N ⊗A Y

εM,N ⊗ 1 ⊗ 1

εM,N ⊗ 1

uM,N

1 ⊗ ρ ⊗ 1 − 1 ⊗ 1 ⊗ λ ρ ⊗ 1 − 1 ⊗ λ

where the upper square commutes by naturality of the counit and the columns
are coequalizers. Since the composite along the top then right edge is 0, there
is thus a unique morphism of right B-modules uM,N making the lower square
commute. From this we obtain the adjunct

GM,N = u♭M,N : [M,N ]A −→ [M ⊗A Y,N ⊗A Y ]B.
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Now assume that M = N . The composition

M ⊗ Y ∼= 1⊗M ⊗ Y
1♭M⊗1⊗1
−−−−−−→ [M,M ]A ⊗M ⊗ Y

εM,M⊗1
−−−−−→M ⊗ Y

is the identity on M ⊗ Y . It follows that the composition

M ⊗A Y ∼= 1⊗M ⊗A Y
1♭M⊗1
−−−−→ [M,M ]A ⊗M ⊗A Y

uM,M
−−−−→M ⊗A Y

is the identity on M ⊗A Y . Consequently, G preserves the unit, i.e.,

1 −→ [M,M ]A
GM,M
−−−−→ [M ⊗A Y,M ⊗A Y ]B

is the unit 1 −→ [M ⊗A Y,M ⊗A Y ]B.

One shows that G is compatible with composition in ModSA and ModSB
by a similar argument. Thus G is an S-functor.

We now show that this functor preserves copowers. Recall from Lemma 4.4
that both ModSA and ModSB are copowered over S so this statement is
reasonable. Preservation of copowers follows from the fact that associativity of
the tensor product in S descends to summands, i.e.,

s⊗ (M ⊗A Y ) ∼= (s⊗M)⊗A Y,

where this isomorphism is the canonical morphism of Lemma 2.3.

Lastly, assume that A and B are separable. The underlying functor G0

is a summand of the exact coproduct preserving functor − ⊗A Y . Triangles
(respectively coproducts) in both ModSA and ModSB are characterized by
being triangles (respectively coproducts) in S, and so the result follows from
exactness and coproduct preservation of ⊗ in S.

We now embark on the proof that the properties of the previous proposition
are sufficient to guarantee that the functor is isomorphic to a tensor product
over A.

Proposition 4.10. Let F : ModSA −→ ModSB be an S-functor. The object
FA is an A-B-bimodule.

Proof. As FA is an object ofModSB, it is a rightB-module via some ρFA : FA⊗
B −→ FA. Furthermore, as F is enriched there is a morphism in S

FA,A : [A,A]A −→ [FA,FA]B ,

which in turn gives rise to the morphism

λFA : A⊗ FA
µ♭

⊗1
−−−→ [A,A]A ⊗ FA

F
♯
A,A
−−−→ FA,
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where µ denotes the multiplication on A, in ModSB. We claim this endows
FA with a left A-module structure; we need only check the commutativity of
the following diagram:

A⊗A⊗ FA A⊗ FA

A⊗ FA FA

1 ⊗ λFA

µ⊗ 1 λFA

λFA

Via the adjunction, commutativity of this diagram is equivalent to that of

A⊗A [A,A]A ⊗ [A,A]A [FA,FA]B ⊗ [FA,FA]B

A [A,A]A [FA,FA]B .

µ♭
⊗ µ♭ FA,A ⊗ FA,A

µ♭ FA,A

µ ◦ ◦

This diagram is readily seen to commute: the commutativity of the first square
is Lemma 4.6, while the second commutes since F is an enriched functor.

It remains to check that the left and right module structures are compati-
ble, i.e., that

A⊗ FA⊗B FA⊗B

A⊗ FA FA

λFA ⊗ 1

1 ⊗ ρFA ρFA

λFA

commutes. This is precisely the statement that λ is a morphism in ModSB,
which is true by construction. Hence FA is an A-B-bimodule as claimed.

Let F : ModS A −→ ModSB be an S-functor. In order to prove the theo-
rem, we must first exhibit an enriched natural transformation

α : −⊗AFA −→ F.

The next two lemmas dispose of this task.

Lemma 4.11. Let (M,ρM ) be a right A-module. There is a canonical morphism
M ⊗ FA −→ FM in ModSB such that the composite

M ⊗A⊗ FA
ρM⊗1−1⊗λFA
−−−−−−−−−−→M ⊗ FA −→ FM

is zero.
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Proof. The morphism is given as the composite

M ⊗ FA
ρ♭M⊗1
−−−−→ [A,M ]A ⊗ FA

F
♯
A,M
−−−−→ FM,

and we have previously (see Lemma 4.6) established the commutativity of the
left square in the following diagram:

M ⊗A⊗ FA M ⊗ FA FM

[A,M ]A ⊗ [A,A]A ⊗ FA [A,M ]A ⊗ FA FM

ρM ⊗ 1 − 1 ⊗ λFA

◦ ⊗ 1 − 1 ⊗ F
♯
A,A F

♯
A,M

ρ♭M ⊗ µ♭
⊗ 1 ρ♭M ⊗ 1

in which the vertical arrows are all isomorphisms. It is enough to show that
the composite of the two morphisms in the bottom row is zero (in fact going
down and then along the bottom row is the map we want on the nose). This
follows from following commutative diagram

[A,M ]A ⊗ [A,A]A ⊗ FA

[FA,FM ]B ⊗ [FA,FA]B ⊗ FA

[FA,FM ]B ⊗ FA

[A,M ]A ⊗ FA

[FA,FM ]B ⊗ FA

FM

FA,M ⊗ FA,A ⊗ 1

1 ⊗ εFA

FA,M ⊗ 1

εFA

◦ ⊗ 1

◦ ⊗ 1

εFA

which shows that F♯A,M (1 ⊗ F
♯
A,A) equals F

♯
A,M (◦ ⊗ 1).

By the construction of M ⊗A FA (as a cokernel) there is a unique factor-
ization in ModSB of M ⊗ FA −→ FM via a morphism

αM : M ⊗A FA −→ FM.

Lemma 4.12. The αM are the components of an enriched natural transforma-
tion

α : −⊗AFA −→ F.

Proof. Recall from Section 2 that naturality of α is expressed by the commu-
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tativity of the diagram

[M,N ]A ⊗ 1 [FM,FN ]B ⊗ [M ⊗A FA,FM ]B

[M,N ]A [M ⊗A FA,FN ]B

1⊗ [M,N ]A [N ⊗ FA,FN ]B ⊗ [M ⊗A FA,N ⊗A FA]B

FM,N ⊗ α♭
M

α♭
N ⊗ (− ⊗A FA)M,N

◦

◦

for all M,N ∈ModSA. Since we have a better grasp on the αM s than we have
on their adjuncts, it is convenient to rewrite this diagram. Via the adjunction,
naturality can also be expressed by the commutativity of

[M,N ]A ⊗M ⊗A FA

[M,N ]A ⊗ FM

N ⊗A FA

FN

1 ⊗ αM

εM,N ⊗A 1

F
♯
M,N

αN

To see that this commutes, consider the following expanded diagram:

[M,N ]A ⊗M ⊗A FA N ⊗A FA

[M,N ]A ⊗M ⊗ FA

[M,N ]A ⊗ [A,M ]A ⊗ FA

[M,N ]A ⊗ FM

N ⊗ FA

[A,N ]A ⊗ FA

FN

εM,N ⊗A 1

1 ⊗ ρ♭M ⊗ 1

1 ⊗ F
♯
A,M

εM,N ⊗ 1

◦ ⊗ 1

F
♯
M,N

ρ♭N ⊗ 1

F
♯
A,N

The upper two squares commute by naturality of the counit. The adjunct of
the bottom square just expresses the fact that F is an enriched functor and so
it also commutes.

Thus the outer rectangle commutes, proving that α is an enriched natural
transformation.

It remains to show that each αM is an isomorphism in ModSB. The
following lemma does most of the work.
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Lemma 4.13. For any left A-module (Y, λ) there is a canonical isomorphism

A⊗A Y ∼= Y.

Moreoever, the component of α at A,

αA : A⊗A FA −→ FA,

is precisely this canonical map for Y = FA and hence is an isomorphism.

Proof. Consider the morphisms

λ̄ : A⊗A Y
i
−→ A⊗ Y

λ
−→ Y

and
η̄ : Y

∼=
−→ 1⊗ Y

η⊗1
−−→ A⊗ Y

p
−→ A⊗A Y,

where the notation is as in the definition of ⊗A (see the diagram before
Lemma 4.7). Our claim is that λ̄ and η̄ are inverse isomorphisms. We re-
call that since e2 = e, we have e(1⊗ λ) = e(µ⊗ 1), so that in one direction we
have

iη̄λ̄p = e(1⊗ λ)(η ⊗ 1⊗ 1)e

= e(µ⊗ 1)(η ⊗ 1⊗ 1)e

= e2 = e = ip.

Since i is a monomorphism and p is an epimorphism, we conclude that η̄λ̄ = 1.
Going the other way, we have

λ̄η̄ = λe(η ⊗ 1)

= λ(µ⊗ λ)(1 ⊗ σ ⊗ 1)(1⊗ η ⊗ 1)(η ⊗ 1)

= λ(1 ⊗ λ)(σ ⊗ 1)(µ⊗ 1)(1⊗ η ⊗ 1)(η ⊗ 1)

= λ(1 ⊗ λ)(1 ⊗ η ⊗ 1)(η ⊗ 1)

= 1,

proving the first part of the statement.
For the second claim, we simply note that the component of α at A can

be written as
A⊗A FA

i
−→ A⊗ FA

λFA−−−→ FA.

Up to this point, we have not fully utilized our assumptions on the S-
functor F. Now, however, we will use that the underlying functor of F, which
we denote by F, is exact and preserves coproducts. With these hypotheses we
can use the standard trick to prove our analog of the Eilenberg–Watts theorem.

Lemma 4.14. The full subcategory

M = {M ∈ ModSA | αM is an isomorphism}

is localizing.
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Proof. The underlying natural transformation of α, whose components are just
the αM , is a natural transformation between the exact coproduct preserving
functors (− ⊗A FA)0 and F. Thus, as in Lemma 3.7, M is localizing.

Lemma 4.15. Suppose S is a compactly generated tensor triangulated category
such that the unit 1 is a compact generator. Then if A is a separable monoid
in S, the regular representation (A, µ) is a compact generator for ModSA.

Proof. Consider the free-forgetful adjunction

S ModSA
FA

UA

where FA = −⊗A and UA just forgets the action. Since UA preserves coprod-
ucts the functor FA sends compacts to compacts by [15, Theorem 5.1]. Thus
FA(1) = (A, µ) is compact in ModSA.

To see that it generates observe that for M ∈ ModS A we have isomor-
phisms

S
(

Σi1, UA(M)
)

∼= ModSA
(

ΣiFA(1),M
)

∼= ModS A(Σ
iA,M).

If M is non-zero then clearly UA(M) is also non-zero and so we can find a
non-zero morphism Σi1 −→ UA(M) for some i ∈ Z by the assumption that
1 generates S. Using the above isomorphisms we find a non-zero map from
ΣiA −→M in ModS A and so A generates ModS A as claimed.

We now come to the main theorem of this section, our (enriched) triangu-
lated version of the Eilenberg–Watts theorem.

Theorem 4.16. Let S be a compactly generated tensor ∞-triangulated category
such that the tensor unit 1 is a compact generator. Let A and B be separable
monoids in S and let F be an S-functor

F : ModSA −→ModSB.

Then F preserves copowers and the underlying functor F is exact and preserves
coproducts if and only if there exists an A-B-bimodule Y such that

F ∼= −⊗A Y.

Furthermore, if this is the case then Y ∼= FA.

Proof. We have already proved one direction in Proposition 4.9, namely that
given an A-B-bimodule Y the functor −⊗A Y verifies the required properties.

Suppose on the other hand that F is an S functor as in the statement. By
Lemma 4.12 there is an enriched natural transformation

α : −⊗A FA −→ F
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and we claim this is a natural isomorphism. From Lemma 4.14 we know that
the full subcategory M consisting of those objectsM ∈ ModSA for which αM is
an isomorphism is localizing in ModS A. We learned in Lemma 4.13 that αA is
an isomorphism and hence A is an object of this localizing subcategory. Thus
by the previous lemma we have

ModSA = 〈A〉 ⊆ M,

proving that α is indeed a natural isomorphism.

Remark 4.17. The theorem provides further moral support for the notion
that tensor products on, and enrichments of, triangulated categories should
be somehow connected to more conventional enhancements, for instance by dg-
categories or model categories. The vague idea is that, in the case where one has
a suitable enhancement, tensoring with a bimodule object should automatically
admit an enhancement and so showing a functor is enriched (as in the theorem)
also shows it admits an enhancement. On the other hand there are various
results showing that enhanced functors are given by the appropriate notion of
bimodules and so their induced functors on homotopy categories should lift to
enriched functors.

We finish by sketching a relatively simple application of the theorem.

Corollary 4.18. Let k be a field and let A and B be separable k-algebras.
Then any coproduct preserving exact k-linear functor F : D(A) −→ D(B) be-
tween the unbounded derived categories is given by tensoring with the A-B-
bimodule FA.

Proof. Being flat over k, A and B, viewed as stalk complexes, are separable
monoids in D(k). By [1, Theorem 6.5], there is a canonical equivalence D(A) ≃
ModD(k)A as ∞-triangulated categories (and similarly for B).

In order to apply Theorem 4.16 we thus need to produce a copower pre-
serving D(k)-functor

F : ModD(k)A −→ModD(k) B

lifting F. By Proposition 4.5 it is sufficient to produce coherent comparison
maps

x⊙ FM
∼=
−→ F(x ⊙M)

for all x ∈ D(k) and M ∈ ModD(k)A. As every object in D(k) is a sum of
suspensions of copies of k, copowers by objects of D(k) are just given by taking
direct sums and suspensions. Since F preserves the suspension and coproducts
one can construct such a family of coherent comparison maps using ΣF ∼= FΣ
and the universal property of coproducts in the evident way. The cocycle
condition is essentially for free due to the universal property of coproducts.
Thus there is an enriched lift F of F to which we can apply the theorem and
we conclude that

F ∼= −⊗A FA
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by taking underlying functors.

Remark 4.19. We have been unable to extend the above corollary to more gen-
eral settings while maintaining reasonable hypotheses. Although the condition
of Proposition 4.5 appears very mild it seems very difficult to find checkable as-
sumptions that allow one to verify it in abstract settings. However, we believe
that in concrete situations the theorem could be of use. Moreover, provided
one restricts from the beginning to the enriched setting it should also allow
one to develop some Morita theory for separable monoids and perfom Tannaka
type reconstruction at the level of enriched triangulated categories.
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