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Abstract. Let X be an irreducible smooth projective curve of genus
g > 2 defined over an algebraically closed field of characteristic dif-
ferent from two. We prove that the natural homomorphism from the
automorphisms of X to the automorphisms of the symmetric product
Symd(X) is an isomorphism if d > 2g− 2. In an appendix, Fakhrud-
din proves that the isomorphism class of the symmetric product of a
curve determines the isomorphism class of the curve.
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1. Introduction

Automorphisms of varieties is currently a very active topic in algebraic geom-
etry; see [Og], [HT], [Zh] and references therein. Hurwitz’s automorphisms
theorem, [Hu], says that the order of the automorphism group Aut(X) of a
compact Riemann surface X of genus g ≥ 2 is bounded by 84(g − 1). The
group of automorphisms of the Jacobian J(X) preserving the theta polariza-
tion is generated by Aut(X), translations and inversion [We], [La]. There is a
universal constant c such that the order of the group of all automorphisms of
any smooth minimal complex projective surface S of general type is bounded
above by c ·K2

S [Xi].
Let X be a smooth projective curve of genus g, with g > 2, over an al-
gebraically closed field of characteristic different from two. Take any integer
d > 2g−2. Let Symd(X) be the d-fold symmetric product of X . Our aim here

is to study the group Aut(Symd(X)) of automorphisms of the algebraic variety

Symd(X). An automorphism f of the algebraic curve X produces an algebraic
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automorphism ρ(f) of Symd(X) that sends any {x1 , · · · , xd} ∈ Symd(X) to
{f(x1) , · · · , f(xd)}. This map

ρ : Aut(X) −→ Aut(Symd(X)) , f 7−→ ρ(f)

is clearly a homomorphism of groups. We prove the following:

Theorem 1.1. The natural homomorphism

ρ : Aut(X) −→ Aut(SymdX)

is an isomorphism.

The idea of the proof of Theorem 1.1 is as follows. The homomorphism ρ
is evidently injective, so we have to show that it is also surjective. The Al-
banese variety of Symd(X) is the Jacobian J(X) of X . So an automorphism

of Symd(X) induces an automorphism of J(X). Using results of Fakhruddin
(Appendix A) and Collino–Ran ([Co], [Ra]), we show that the induced auto-
morphisms of J(X) respects the theta divisor up to translation. Invoking the
strong form of the Torelli theorem for the Jacobian mentioned above, it fol-
lows that such automorphisms are generated by automorphisms of the curve
X , translations of J(X), and the inversion of J(X) that sends each line bundle
to its dual. Using a result of Kempf we show that if an automorphism α of
J(X) lifts to Symd(X), then α is induced by an automorphism of X , and this
finishes the proof.
It should be clarified that we need a slight generalization of the result of Kempf
[Ke]; this is proved in Section 2. The proof of Theorem 1.1 is in Section 3.
In Appendix A by Fakhruddin the following is proved.
Let C1 and C2 be smooth projective curves of genus g ≥ 2 over an algebraically
closed field k. If Symd C1

∼= Symd C2 for some d ≥ 1, then C1
∼= C2 unless

g = d = 2.

2. Some properties of the Picard bundle

The degree of a line bundle ξ over a smooth projective variety Z is the class of
the first Chern class c1(ξ) in the Néron-Severi group NS(Z), so the line bundles
of degree zero on Z are classified by the Jacobian J(Z).
As before, X is a smooth projective curve of genus g, with g > 2, over an
algebraically closed field of characteristic different from two. For any integer
d, let P d = Picd(X) be the abelian variety that parametrizes the line bundles
on X of degree d. It is a torsor for J(X).
A branding of P d is a Poincaré line bundle Q on X × P d [Ke, p. 245]. Two
brandings differ by tensoring with the pullback of a line bundle on P d. A
normalized branding is a branding such that Q|{x}×Pd has degree zero for one
point x ∈ X (equivalently, for all points of X). Two normalized brandings
differ by tensoring with the pullback of a degree zero line bundle on P d.
The natural projection of X ×P d to P d will be denoted by πPd . A normalized
branding Q induces an embedding

IQ : X −→ J(P d) =: J (2.1)
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that sends any x ∈ X to the point of J corresponding to the line bundle
Q|{x}×Pd on P d. If

Q′ = Q⊗ π∗
PdLj ,

where Lj is the line bundle corresponding to a point j ∈ J(P d) = J , then we
have IQ′ = IQ + j.
Assume that d > 2g − 2. Since H1(X, L) = H0(X, L∗ ⊗ KX)∗ = 0 if L
is a line bundle with degree(L) > 2g − 2, the direct image πPd∗Q, where
Q is a branding, is locally free. A Picard bundle W (Q) on P d is the vector
bundle πPd∗Q, where Q is a normalized branding. From the projection formula
it follows that two Picard bundles differ by tensoring with a degree zero line
bundle on P d.
There is a version of the following proposition for d < 0 in [Ke, Corollary 4.4]
(for negative degree, the Picard bundle is defined using the first direct image).

Proposition 2.1. Let d > 2g − 2.

(1) H1(P d, W (Q)) is non-zero (in fact, it is one-dimensional if it is non-
zero) if and only if 0 ∈ IQ(X).

(2) Let Lj be the line bundle on P d corresponding to a point j ∈ J . Then
H1(P d, Lj ⊗W (Q)) is non-zero (in fact, it is one-dimensional if it is
non-zero) if and only if −j ∈ IQ(X).

Proof. Part (1). If 0 /∈ IQ(X), then H1(P d, W (Q)) = 0 by [Ke, p. 252,
Theorem 4.3(c)]. Fix a line bundle M on X of degree one, and consider the
associated Abel-Jacobi map

X −→ J(X), x 7−→ M−1 ⊗OX(x) .

Let NX/J(X) be the normal bundle of the image of X under this Abel-Jacobi
map. If 0 ∈ IQ(X), then using [Ke, p. 252, Theorem 4.3(d)] it follows
that H1(P d, W (Q)) is canonically isomorphic to the space of sections of the
skyscraper sheaf on X

K−1
X ⊗ ∧0NX/J ⊗Md|I−1

Q
(0) = K−1

X ⊗Md|I−1

Q
(0),

where IQ is constructed in (2.1). But the space of sections of this skyscraper
sheaf is clearly one-dimensional, because I−1

Q (0) consists of one point of X .
Part (2) follows from part (1) because Lj ⊗ W (Q) = W (Q ⊗ π∗

PdLj), and
IW (Q⊗π∗

Pd
Lj) = IW (Q) + j. �

For a point j ∈ P d, by −j we denote the point of P−d corresponding to the
dual of the line bundle corresponding to j. Note that for j, j′ ∈ P d, we have
−j + 2j′ ∈ P d.

Proposition 2.2. Assume that g(X) > 1 and d > 2g− 2. Let j be a point of
Pic0(X), and let Tj : P d −→ P d be the translation by j. Let M be a degree
zero line bundle on P d. If

T ∗
j (M ⊗W (Q)) ∼= W (Q) ,

then j = 0 and M = OPd .
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Let i : P d −→ P d be the inversion given by z 7−→ −z + 2z0, where z0 is a
fixed point in P d. If

i∗T ∗
j (M ⊗W (Q)) ∼= W (Q) ,

then X is a hyperelliptic curve.

Proof. The first part is [Ke, Proposition 9.1] except that there it is assumed
that d < 0; the proof of Proposition 9.1 uses [Ke, Corollary 4.4] which requires
this hypothesis. However, the case d > 2g− 2 can be proved similarly; for the
convenience of the reader we give the details.
Let y ∈ J be the point corresponding to the line bundle M . The line bundle on
P d corresponding to any t ∈ J will be denoted by Lt. In particular, M = Ly.
For every t ∈ J , using the hypothesis, we have

T ∗
j (Lt+y ⊗W (Q)) = T ∗

j Lt ⊗ T ∗
j (M ⊗W (Q)) = Lt ⊗W (Q) ; (2.2)

note that the fact that a degree zero line bundle on an Abelian variety is
translation invariant is used above. Combining (2.2) and the fact that Tj is an
isomorphism, we have

H1(P d, Lt⊗W (Q)) ∼= H1(P d, T ∗
j (Lt+y⊗W (Q))) ∼= H1(P d, Lt+y⊗W (Q)) .

Using Proposition 2.1 it follows that t ∈ −IQ(X) if and only if t+y ∈ −IQ(X).
Hence IQ(X) = y + IQ(X). If g(X) > 1, this implies that y = 0. Therefore,
we have W (Q) = T ∗

j (W (Q)). Using the fact that c1(W (Q)) = θ, a theta
divisor, it follows that θ is rationally equivalent to the translate θ − j, hence
j = 0.
The proof of the second part is similar. We have

i∗T ∗
j (Ly−t ⊗W (Q)) = i∗T ∗

j L−t ⊗ i∗T ∗
j (M ⊗W (Q))

= i∗L−t ⊗W (Q) = Lt ⊗W (Q) ; (2.3)

the fact that i∗L−t = Lt is used above. Consequently,

H1(P d, Lt⊗W (Q)) ∼= H1(P d, i∗T ∗(Ly−t⊗W (Q))) ∼= H1(P d, Ly−t⊗W (Q)) ,

and using [Ke, Corollary 4.4] it follows that t ∈ −IQ(X) if and only if y− t ∈
−IQ(X). Hence IQ(X) = −IQ(X)− y. Let

f : X −→ X

be the morphism uniquely determined by the condition

IQ(x) = −IQ(f(x)) − y .

We note that f is well defined because −IQ and y+ IQ are two embeddings of
X in J with the same image, so they differ by an automorphism of X which
is f . In other words, if we identify X with its image under IQ, then f is
induced from the automorphism T−y ◦ i of J . This automorphism T−y ◦ i is
clearly an involution. Let ω ∈ H0(X, ΩX) be an algebraic 1-form on X . Then
f∗ω = −ω, because of the isomorphism H0(X, ΩX) = H0(J, ΩJ) induced by
IQ, and the fact that i∗ acts as multiplication by −1 on the 1-forms on J . It
now follows by Lemma 2.3 that f is a hyperelliptic involution. �
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Lemma 2.3. Let g > 1. Let f : X −→ X be an involution satisfying the
condition that f∗ω = −ω for every 1-form ω. Then X is hyperelliptic with f
being the hyperelliptic involution.

Proof. Consider the canonical morphism

F : X −→ P(H0(X, ΩX))

that sends any x ∈ X to the hyperplane H0(X, ΩX(−x)) in H0(X, ΩX). By
definition,

H0(X, ΩX(−x)) = {ω ∈ H0(X, ΩX) | ω(x) = 0} ,

but the hypothesis implies that ω(x) = 0 if and only if ω(f(x)) = f∗(ω)(x) =
0. Therefore, we have

H0(X, ΩX(−x)) = H0(X, ΩX(−f(x))) ,

and it follows that F (x) = F (f(x)), implying that the canonical morphism is
not an embedding; note that f is not the identity because there are nonzero
algebraic 1-forms. Therefore, X is hyperelliptic, and f is the hyperelliptic
involution. �

We note that Lemma 2.3 is clearly false if the characteristic of the base field
is two. Hence the proof of Proposition 2.2 needs the assumption that the base
field has characteristic different from two.

3. Proof of Theorem 1.1

Using the morphism X −→ Symd(X), y 7−→ dy, it follows that the homo-
morphism ρ in Theorem 1.1 is injective.
Fix a point x ∈ X . Let L be the normalized Poincaré line bundle on X×J(X),
i.e., it is trivial when restricted to the slice {x} × J(X). Let

E := q∗(L ⊗ p∗OX(dx))

be the Picard bundle, where p and q are the projections from X × J(X) to X
and J(X) respectively. Since d > 2g − 2, it follows that E is a vector bundle
of rank d− g + 1.
We will identify Symd(X) with the projective bundle P (E) = P(E∨).
Let θ be the theta divisor of J(X); in particular, we have θg = g!. The Chern
classes of E are given by ci(E) = θi/i! [ACGH].
Let Z be a smooth projective variety and z0 ∈ Z a point. Then there is an
abelian variety Alb(Z) and a morphism

aZ : Z −→ Alb(Z)

such that aZ(z0) = 0, and given any morphism φ : Z −→ A, where A
is an abelian variety and φ(z0) = 0, there is a unique homomorphism h :
Alb(Z) −→ A such that h ◦ aZ = φ. The Alb(Z) is called the Albanese
variety for (Z, z0) while aZ is called the Albanese morphism.
The Albanese variety of (P (E), dx), where x is the fixed point of X , is the

Jacobian J(X), and the Albanese morphism sends an effective divisor
∑d

ℓ=1 Pℓ
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of degree d to the degree zero line bundle OX((
∑d

ℓ=1 Pℓ) − dx). Given an
automorphism

ϕ : P (E) −→ P (E) ,

the universal property of the Albanese variety yields a commutative diagram

P (E) ∼=

ϕ //

��

P (E)

��
J(X) ∼=

α // J(X)

(3.1)

and this produces an automorphism of projective bundles

P (E)
ψ

∼=
//

##●
●●

●●
●●

●●
P (α∗E)

zz✉✉
✉✉
✉✉
✉✉
✉

J(X)

Therefore, there is a line bundle L on J(X) such that there is an isomorphism

α∗E ∼= E ⊗ L . (3.2)

There is a commutative diagram of groups

Aut(P (E))
λ // Aut(J(X))

Aut(X)

ρ

OO

µ

77♦♦♦♦♦♦♦♦♦♦♦

(3.3)

where λ is constructed as above using the universal property of the Albanese
variety given in (3.1), and ρ is the homomorphism in Theorem 1.1. To construct
µ, note that the commutativity of the diagram (3.1) implies that µ(f), f ∈

Aut(X), has to send OX((
∑d

ℓ=1 Pℓ)− dx) to OX((
∑d

ℓ=1 f(Pℓ))− dx). A short
calculation yields

µ(f) = (f−1)∗ ◦ Tdx−df−1(x) , (3.4)

where Ta, a ∈ J(X), is translation on J(X) by a.
Let θ′ = c1(α

∗E) = θ + L. Then

ci(α
∗E) = α∗ci(E) =

α∗θi

i!
=

θ′i

i!
,

and θ′g = α∗θg = g!. Now we apply Lemma A.2; here the condition g > 2 is
used. We obtain that θi = θ′i for all i > 1.
We identify X with the image in J(X) of the Abel-Jacobi map. In particular X
is numerically equivalent to θg−1/(g − 1)!. We calculate the intersection (note
that the condition g > 2 is again used, because we need g − 1 > 1)

θ′X = θ′
θg−1

(g − 1)!
= θ′

θ′g−1

(g − 1)!
= g .
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Invoking a characterization of a Jacobian variety due to Collino and Ran, [Co],
[Ra], it follows that (J(X) , θ′ , X) is a Jacobian triple, i.e., θ′ is a theta divisor
of the Jacobian variety J(X) up to translation. This means that θ and θ′ differ
by translation, in other words, the class of c1(L) in the Néron-Severi group
NS(J(X)) is zero. Consequently, α is an isomorphism of polarized Abelian
varieties, i.e., it sends θ′ to a translate of it.
The strong form of the classical Torelli theorem ([La, Théorème 1 and 2 of
Appendix]) tells us that such an automorphism α is of the form

α = F ◦ σ ◦ Ta , σ ∈ {1 , ι} ,

where F = (f−1)∗ for an automorphism f of X , while Ta is translation by
an element a ∈ J(X) and ι sends each element of J(X) to its inverse. If X
is hyperelliptic, then ι is induced by the hyperelliptic involution, so we may
assume that σ is the identity map of X when X is hyperelliptic.
Let f be an automorphism of X with F = (f−1)∗ being the induced isomor-
phism on J(X). Using the definition of E, it is easy to check that

F ∗E ∼= T ∗
dx′−dxE ,

where x′ = f−1(x).
We claim that α = F ◦ Ta.
To prove this, assume that α 6= F ◦ Ta. Then X is not hyperelliptic, and
α = F ◦ ι ◦ Ta. Hence

α∗E = T ∗
a ι

∗F ∗E = T ∗
a ι

∗T ∗
dx′−dxE ,

and using (3.2),
E ∼= ι∗T ∗

dx′−dx−a(E ⊗ L) .

Now from Proposition 2.2 it follows that X is hyperelliptic, and we arrive at a
contradiction. This proves the claim.
Summing up, we can assume that α = F ◦ Ta. Using (3.2),

E ∼= T ∗
dx−dx′−a(E ⊗ L)

From Proposition 2.2 it follows that L is the trivial line bundle, and a =
dx− dx′. Therefore,

α = (f−1)∗ ◦ Tdx−df−1(x)

for some automorphism f of X , and hence, by (3.4),

Image(λ) ⊂ Image(µ) . (3.5)

We will now show that the morphism λ is injective.
Suppose α = λ(ϕ) = IdJ(X). Using (3.2), the morphism ϕ is induced by an
isomorphism between E and E ⊗ L. We have just seen that L is trivial, the
morphism ϕ is induced by an automorphism of E, and this automorphism has
to be multiplication by a nonzero scalar, because E is stable with respect to
the polarization given by the theta divisor (cf. [EL]). Therefore, the morphism
ϕ is the identity. This proves that the morphism λ is injective.
The homomorphism µ is also injective, since it is a composition of a translation
and the pullback induced by an automorphism of X .
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Combining these it follows that the morphism ρ is also injective (this can also
be checked directly), and hence all the homomorphisms in the diagram (3.3)
are injective. This, combined with (3.5), shows that ρ is an isomorphism.
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Appendix A. Torelli’s theorem for high degree symmetric
products of curves

Najmuddin Fakhruddin

Let k be an algebraically closed field and C1 and C2 two smooth projective
curves of genus g > 1 over k . It is a consequence of Torelli’s theorem that
if Symg−1 C1

∼= Symg−1 C2, then C1
∼= C2. The same holds for the d-th

symmetric products, for 1 ≤ d < g−1 as a consequence of a theorem of Martens
[Mar]. We shall show that with one exception the same result continues to hold
for all d ≥ 1, i.e., we have the following

Theorem A.1. Let C1 and C2 be smooth projective curves of genus g ≥ 2 over
an algebraically closed field k. If SymdC1

∼= Symd C2 for some d ≥ 1, then
C1

∼= C2 unless g = d = 2.

It is well known that there exist non-isomorphic curves of genus 2 over C with
isomorphic Jacobians. Since the second symmetric power of a genus 2 curve is
isomorphic to the blow up of the Jacobian in a point, it follows that our result
is the best possible.

Proof of Theorem. Let C1, C2 be two curves of genus g > 1 with SymdC1
∼=

Symd C2 for some d ≥ 1. Since the Albanese variety of Symd Ci, d ≥ 1, is
isomorphic to the Jacobian J(Ci), it follows that J(C1) ∼= J(C2). If d ≤ g − 1,

the theorem follows immediately from [Mar], since the image of Symd Ci in
J(Ci) (after choosing a base point) is Wd(Ci). Note that in this case it suffices

to have a birational isomorphism from SymdC1 to SymdC2.
Suppose g ≤ d ≤ 2g − 3. Then the Albanese map from SymdCi to J(Ci)
is surjective with general fiber of dimension d − g. Interpreting the fibers as
complete linear systems of degree d on Ci, it follows by Serre duality that the
subvariety of J(Ci) over which the fibers are of dimension > d − g is isomor-

phic to W2g−2−d(Ci). Therefore if Symd C1
∼= Symd C2, then W2g−2−d(C1) ∼=

W2g−2−d(C2), so Martens’ theorem implies that C1
∼= C2.
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Now suppose that d > 2g − 2 and g > 2. By choosing some isomorphism
we identify J(C1) and J(C2) with a fixed abelian variety A. If φ : Symd C1 →

Symd C2 is our given isomorphism, from the universal property of the Albanese
morphism we obtain a commutative diagram

SymdC1
φ //

π1

��

Symd C2

π2

��
A

f // A

where the πi’s are the Albanese morphisms corresponding to some base points
and f is an automorphism of A (not necessarily preserving the origin). By
replacing C2 with f−1(C2) we may then assume that f is the identity.

Since d > 2g − 2, the maps πi, i = 1, 2 make Symd Ci into projective bundles
over A. By a theorem of Schwarzenberger [Sc], Symd Ci ∼= P(Ei), where Ei is
a vector bundle on A of rank d − g + 1 with cj(Ei) = [Wg−j(Ci)], i = 1, 2,
0 ≤ j ≤ g−1, in the group of cycles on A modulo numerical equivalence. Since
φ is an isomorphism of projective bundles, it follows that there exists a line
bundle L on A such that E1

∼= E2 ⊗ L.
Let θi = [Wg−1(Ci)], so by Poincaré’s formula [Wg−j(Ci)] = θji /j!, i = 1, 2,

i ≤ j ≤ g − 1. Lemma A.2 below implies that θg−1
i = θg−1

2 in the group of
cycles modulo numerical equivalence on A. Since θgi = g!, this implies that
θ1 · [C2] = g. By Matsusaka’s criterion [Mat], it follows that Wg−1(C1) is a
theta divisor for C2, which by Torelli’s theorem implies that C1

∼= C2.
If d = 2g − 2 and g > 2, then we can still apply the previous argument. In
this case we also have that Symd(Ci) ∼= P(Ei), i = 1, 2 but Ei is a coherent
sheaf which is not locally free. However on the complement of some point of
A it does become locally free and the previous formula for the Chern classes
remains valid.
The above argument clearly does not suffice if g = 2. To handle this case we
shall use some properties of Picard bundles for which we refer the reader to
[Mu]. Suppose that d > 2 and Ci, i = 1, 2 are two non-isomorphic curves of

genus 2 with Symd C1
∼= Symd C2. Using the same argument (and notation) as

the g > 2 case, it follows that there exist embeddings of Ci, i = 1, 2, in A and
a line bundle L on A such that E1

∼= E2 ⊗ L and L⊗d−1 ∼= O(C1 − C2) (we
identify Ci, i = 1, 2 with their images).
For i ≥ 1, let Gi denote the i-th Picard sheaf associated to C2, so that P(Gi) ∼=
Symi(C2). (Gi is the sheaf denoted by F2−i in [Mu] and Gd ∼= E2). There is
an exact sequence ([Mu, p. 172]):

0 → OA → Gi → Gi−1 → 0 (A.1)

for all i > 1. We will use this exact sequence and induction on i to compute the
cohomology of sheaves of the form E1 ⊗ P ∼= E2 ⊗ L⊗ P , where P ∈ Pic 0(A).
Consider first the cohomology of G1, which is the pushforward of a line bundle
of degree 1 on a translate of C2. Since we have assumed that C1 6∼= C2, it follows
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that C1 · C2 > 2. Since C2
1 = C2

2 = 2, deg(L|C2
) = (C1 − C2) · C2/(d− 1) > 0.

By Riemann-Roch it follows that hj(A,G1 ⊗ L ⊗ P ), j = 1, 2 is independent
of P , except possibly for one P if deg(L|C2

) = 1, and h2(A,G1 ⊗ L ⊗ P ) = 0
since G1 is supported on a curve.
Now C1 ·C2 > 2 also implies that c1(L)

2 < 0. By the index theorem, it follows
that h0(A,L ⊗ P ) = h2(A,L ⊗ P ) = 0 and h1(A,L ⊗ P ) is independent of P .
Therefore by tensoring the exact sequence (A.1) with L ⊗ P and considering
the long exact sequence of cohomology, we obtain an exact sequence

0 → H0(A,Gi ⊗ L⊗ P ) → H0(A,Gi−1 ⊗ L⊗ P ) → H1(A,L⊗ P )

→ H1(A,Gi ⊗ L⊗ P ) → H1(A,Gi−1 ⊗ L⊗ P ) → 0 (A.2)

and isomorphisms H2(A,Gi⊗L⊗P ) → H2(A,Gi−1 ⊗L⊗P ) for all i > 1. By
induction, it follows that H2(A,Gi ⊗ L⊗ P ) = 0 for all i > 0. Since the Euler
characteristic of Gi⊗L⊗P is independent of P , the above exact sequence (A.2)
along with induction shows that for all i > 0 and j = 0, 1, 2, hj(Gi ⊗L⊗P ) is
independent of P , except for possibly one P . In particular, this holds for i = d
hence hj(A,E1 ⊗ P ) is independent of P except again for possibly one P . We
obtain a contradiction by using the computation of the cohomology of Picard
sheaves in Proposition 4.4 of [Mu]: This implies that h1(A,E1 ⊗ P ) is one or
zero depending on whether the point in A corresponding to P does or does not
lie on a certain curve (which is a translate of C1). �

Lemma A.2. Let X be an algebraic variety of dimension g ≥ 3 and let Ei,
i = 1, 2 be vector bundles on X of rank r. Suppose c1(Ei) = θi, cj(Ei) = θji /j!
for i = 1, 2 and j = 2, 3 (j = 2 if g = 3), and E1

∼= E2⊗L for some line bundle

L on X. Then θj1 = θj2 for all j > 1 (j = 2 if g = 3).

Proof. Since E1
∼= E2⊗L, c1(E1) = c1(E2)+rc1(L), hence c1(L) = (θ1−θ2)/r.

For a vector bundle E of rank r and a line bundle L on any variety, we have
the following formula for the Chern polynomial ([Fu], page 55):

ct(E ⊗ L) =

r∑

k=0

tkct(L)
r−kci(E).

Letting E = E1, E ⊗ L = E2, and expanding out the terms of degree 2 and 3,
one easily sees that θj1 = θj2 for j = 2 and also for j = 3 if g > 3. (Note that
this only requires knowledge of cj(Ei) for j = 1, 2, 3.) Since any integer n > 1
can be written as n = 2a+ 3b with a, b ∈ N, the lemma follows. �

Remark A.3. Using Theorem 1.1, one sees that Theorem A.1 holds over all
perfect fields k (of characteristic > 2) if d > 2g − 2: For projective varieties
X,Y over a field let Isom(X,Y ) denote the scheme of isomorphisms. For any
d > 0, there is a natural map

Isom(C1, C2) → Isom(Symd C1, Sym
d C2)

Documenta Mathematica 22 (2017) 1181–1192



Automorphisms of Symmetric Product of a Curve 1191

of finite schemes over k which one sees is a bijection on geometric points by
combining Theorem 1.1 and Theorem A.1. If k is perfect1 this implies that the
map on k-rational points is also a bijection.
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Math., 315, Birkhäuser/Springer, Cham, 2016.

[Ra] Z. Ran, On subvarieties of abelian varieties, Invent. Math. 62 (1981),
459–479.

[Sc] R. L. E. Schwarzenberger, Jacobians and symmetric products, Illi-
nois J. Math. 7 (1963), 257–268.

[Xi] G. Xiao, Bound of automorphisms of surfaces of general type. I, Ann.
of Math. 139 (1994), 51–77.

[We] A. Weil, Zum beweis des Torelli satzes, Nachr. Akad. Wiss.
Göttingen Math.-Phys. Kl. II 2 (1957), 33–53.

[Zh] D.-Q. Zhang, Birational automorphism groups of projective varieties
of Picard number two, Automorphisms in birational and affine ge-
ometry, 231–238, Springer Proc. Math. Stat., 79, Springer, Cham,
2014.

Indranil Biswas
School of Mathematics
Tata Institute of
Fundamental Research
Homi Bhabha Road
Mumbai 400005
India
indranil@math.tifr.res.in

Tomás L. Gómez
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