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Abstract. We use the gradients of theta functions at odd two-
torsion points — thought of as vector-valued modular forms — to
construct holomorphic differential forms on the moduli space of prin-
cipally polarized abelian varieties, and to characterize the locus of
decomposable abelian varieties in terms of the Gauss images of two-
torsion points.
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Introduction

The geometry of Siegel modular varieties — the quotients of the Siegel upper
half-space Hg by discrete groups — has been under intense investigation for the
last forty years, with various results obtained about their birational geometry,
compactifications, and other properties. Some of the first results in this direc-
tion are due to Freitag, who in [Fre75a, Fre75b] showed that some Siegel modu-
lar varieties are not unirational, by constructing non-zero differential forms on
them. This proof requires two ingredients: suitably compactifying the variety
and arguing that the differential form extends, and actually constructing the
differential forms. Freitag proved the appropriate general extension result for
differential forms. Thanks to [AMRT10], [Tai82], and much subsequent work
on the theory of compactifications of locally symmetric domains, the extension
of differential forms is now well-known in full generality.
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In this paper, we focus on the original problem of constructing differen-
tial forms on Siegel modular varieties. We recall that differential forms on
Siegel modular varieties can be constructed from suitable vector-valued mod-
ular forms. In general, vector-valued modular forms can be constructed using
theta series with pluriharmonic coefficients, but the question of whether the
series thus constructed are identically zero is very complicated. General results
on the existence and non-vanishing of holomorphic differential forms can be
found in [Wei83] and [Wei87]. In connection with the possibility of finding spe-
cial divisors in the Siegel modular varieties in the sense of Weissauer [Wei87],
we will restrict our attention to non-zero differential forms of degree one less
than the top.

In [Fre78] Freitag constructed such forms on Ag for g ≡ 1 (mod 8), for g ≥
17, while the fifth author, in [SM87], gave a completely different construction
for g ≡ 1 (mod 4), g 6= 1, 5, 13. In this paper, we present an easier and more
natural method of constructing such differentials forms, providing also a natural
bridge between methods of [Fre78] and [SM87]. Our tools will be the gradients
of theta functions and expressions in terms of them considered by the third
and fifth author in [GSM04, GSM06]. Our result is the following.

Denote by ∂ :=
(

(1+δij)
2 ∂τij

)

the matrix of partial derivatives with respect

to τ . Let f, h be two scalar modular forms of the same weight, for some mod-
ular group Γ acting on Hg. Then A := h2∂(f/h) is a matrix-valued modular
form. Denote by Aad the adjoint matrix of A (the transpose of the matrix of
cofactors), and denote by dτ̌ij the wedge product of all dτab for 1 ≤ a ≤ b ≤ g
except dτij , with the suitable sign. Denote by dτ̌ the matrix of all dτ̌ij . Then

Theorem 1. Let g ≥ 2, let f := Θ[ε](τ) and h := Θ[δ](τ) be second order
theta constants. Then the modular form

ω := Tr(Aad
ε,δdτ̌ ),

where Aad and dτ̌ are as defined above, is a non-zero holomorphic differential
form on Ag(Γ) := Hg/Γ of degree one less than the top (i.e. of degree g(g +
1)/2− 1). Here, for g odd we have Γ = Γg(2, 4), while for g even it is an index
two subgroup Γ∗

g(2, 4) ⊂ Γg(2, 4).

In what follows, we will discuss the relation of special cases of this construction
to those of Freitag [Fre75b] and the fifth author [SM87]. In a related direction,
we revisit the method of constructing vector-valued modular forms using gra-
dients of odd theta functions with half integral characteristics. Recall that the
gradients at z = 0 of odd theta functions with half integral characteristics can
be thought of as the images of two-torsion points that are smooth points of the
theta divisor under the Gauss map. In this direction, we obtain a proof of the
following geometric statement.

Theorem 2. A principally polarized abelian variety is decomposable (i.e. is a
product of lower-dimensional ones) if and only if the images under the Gauss
map of all smooth two-torsion points in the theta divisor lie on a quadric in
Pg−1.
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The structure of the paper is as follows. In section 1, we recall some basic
facts about theta functions and vector-valued modular forms. In section 2, we
collect several results about gradients of odd theta functions. In section 3, we
prove Theorem 2. In section 4, we recall and improve results of Freitag and the
fifth author about holomorphic differential forms on Siegel varieties. Finally,
in section 5 we prove theorem 1 and explain the relation among the approaches
to constructing differential forms on Siegel modular varieties.

Acknowledgements
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tality in March 2015, when some of the work for this paper was completed.

1. Definitions and notation

We use the standard definitions and notation in working with complex prin-
cipally polarized abelian varieties (ppav), as used in [GSM04], which we now
quickly summarize.

1.1. Siegel modular forms. Let Hg be the Siegel upper-half-space of degree
g, namely the space of g× g complex symmetric matrices with positive definite
imaginary part. The symplectic group Sp(2g,R) acts transitively on Hg via

γ · τ = (Aτ +B)(Cτ +D)−1 where γ =

(

A B
C D

)

,

where A, B, C, D are the g× g blocks of the matrix γ. We will keep this block
notation for a symplectic matrix throughout the paper.

The Siegel modular group is Γg := Sp(2g,Z). The principal congruence
subgroup of level n ∈ N is defined as:

Γg(n) := {γ ∈ Γg | γ ≡ 12g mod n} .

A subgroup of finite index in Γg is called a congruence subgroup of level n
if it contains Γg(n). Notice that if g > 1, every subgroup of finite index
is a congruence subgroup. The Siegel modular varieties obtained by taking
the quotients with respect to the action of congruence subgroups are of central
importance, as they define moduli spaces of ppav with suitable level structures.

More precisely, an element τ ∈ Hg defines the complex abelian variety
Xτ := Cg/Zg + τZg , hence τ is usually called a period matrix of the abelian
variety Xτ . The quotient of Hg by the action of the Siegel modular group is
classically known to be the moduli space of ppav: Ag := Hg/Γg.

We will use the so-called theta groups, which are congruence subgroups of
level 2n defined as

Γg(n, 2n) :=
{

γ ∈ Γg(n) | diag(A
tB) ≡ diag(CtD) ≡ 0 mod 2n

}

.

We will also need the level 4 congruence subgroup

(1) Γ∗
g(2, 4) := {γ ∈ Γg(2, 4) |Tr(A− 1g) ≡ 0mod 4} ,
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which is of index 2 within Γg(2, 4). From now on, we will assume g > 1
and denote by Γ an arbitrary congruence subgroup of Γg. We denote N :=
g(g + 1)/2, so that Ag(Γ) := Hg/Γ is a complex N -dimensional orbifold.

Let ρ : GL(g,C) → End(V ) be an irreducible finite-dimensional rational
representation; such representations are characterized by their highest weight
(λ1, λ2, . . . , λg) ∈ Zg, with λ1 ≥ · · · ≥ λg. It will also be convenient for us to

allow half-integer weights, which means to consider also det1/2 ⊗ρ′ for a rep-
resentation ρ′ with integer weight. Let then [Γ, ρ] be the space of holomorphic
functions f : Hg → Vρ defined by the following property:

[Γ, ρ] := {f : Hg → Vρ | f(γ · τ) = ρ(Cτ +D)f(τ), ∀γ ∈ Γ, ∀τ ∈ Hg}.

Such a function f is called a vector-valued modular form or ρ-valued modular
form with respect to the representation ρ = (λ1, λ2, . . . , λg) and the group Γ.
We call λg the weight of the vector-valued modular form f .

Since Hg is contractible, a ρ-valued modular form is a holomorphic section
of a corresponding vector bundle on Ag(Γ). Denoting by E the rank g vector
bundle over Ag whose fiber over A is the space H1,0(A,C), sections of E are
modular forms for the standard representation of GL(g,C) on Cg and the
group Γg.

More generally, it is possible to define a vector-valued modular form with
a multiplier system for this kind of representation, see [Fre91] for details. We
will make use of them when necessary.

1.2. Theta functions. Many examples of modular forms can be constructed
by means of theta functions. Denote by F2 = Z/2Z. For ε, δ ∈ F

g
2, the

theta function with characteristic m = [ε, δ] is the holomorphic function θm :
Hg × Cg → C defined by the series:

θm(τ, z) :=
∑

p∈Zg

eπi[(p+ε/2)tτ(p+ε/2)+2(p+ε/2)t(z+δ/2)].

We shall write θ [ εδ ] (τ, z) for θm(τ, z) if we need to emphasize the dependence
on the characteristics. The characteristic m is called even or odd depending
on whether the scalar product ε · δ ∈ F2 is zero or one, and the corresponding
theta function is then even or odd as a function of z, respectively. The number
of even (resp. odd) theta characteristics is 2g−1(2g + 1) (resp. 2g−1(2g −
1)). Furthermore, theta functions with characteristics are solutions of the heat
equation:

(2)
∂2

∂zi∂zj
θm(τ, z) = 2πi(1 + δij)

∂

∂τij
θm(τ, z), 1 ≤ i, j ≤ g.

For σ ∈ F
g
2, the corresponding theta function of second order is defined as

Θ[σ](τ, z) := θ

[

σ
0

]

(2τ, 2z).
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A theta constant is the evaluation at z = 0 of a theta function. Throughout the
paper we will drop the argument z = 0 in the notation for theta constants. All
odd theta constants with characteristics vanish identically in τ , as the corre-
sponding theta functions are odd functions of z, and thus there are 2g−1(2g+1)
non-trivial theta constants. All the 2g second order theta functions are even in
z, so there are 2g theta constants of the second order.

As far as we are concerned, we will focus on the behavior of the theta
constants under the action of subgroups of Γg(2). By [Igu72], we have the
following transformation formula:

(3) θm(γ · τ) = κ(γ)e2πiφm(γ) det (Cτ +D)
1/2

θm(τ), ∀γ ∈ Γg(2),

where

φm(γ) = −
1

8
(εtBtDε+ δtAtCδ − 2εtBtCδ) +

1

4
diag(AtB)t(Dε− Cδ),

and κ(γ) is an 8th root of unity, with the same sign ambiguity as det (Cτ +D)
1
2 .

Regarding second order theta constants, we will focus on the action of
subgroups of Γg(2, 4). For every γ ∈ Γg(2, 4), let γ̃ ∈ Γg be such that 2(γ · τ) =

γ̃ · (2τ), that is γ̃ =
(

A 2B
C/2 D

)

. Hence, applying the transformation formula (3)
to the second order theta constants, we get:

(4) Θ[σ](γ · τ) = κ(γ̃) det(Cτ +D)1/2Θ[σ](τ), ∀γ ∈ Γg(2, 4).

The second order theta constants are thus modular forms of weight one half
with respect to the congruence subgroup Γg(2, 4), and vΘ(γ) := κ(γ̃) is a
fourth root of unity. For a fixed τ ∈ Hg, the abelian variety Xτ comes with
a principal polarization given by its theta divisor Θτ , namely the zero locus
of the holomorphic function θ0(τ, z). One can identify, even though in a non-
canonical way, the characteristic m = [ε, δ] ∈ F

g
2 with the two-torsion point

xm = (ετ + δ)/2 on the ppav Xτ . To this divisor we associate the symmetric
line bundle L = OXτ

(Θτ ). Then the theta functions with characteristic m is,
up to a constant factor, the unique section of the line bundle t∗xm

L. A two-
torsion point xm is called even/odd depending on whether the characteristic m
is even or odd. Denoting by Xτ [2] the set of two-torsion points, note that for
any xm ∈ Xτ [2] we have OXτ

(2Θτ) ≃ L⊗2 ≃ (t∗xm
L)⊗2. Thus squares of theta

functions with characteristics can be expressed in terms of a basis of sections
of L⊗2, and such a basis is given by theta functions of the second order. The
explicit formula is Riemann’s bilinear relation:

(5) θ [ εδ ](τ, z)
2 =

∑

σ∈F
g
2

(−1)σ·δΘ[σ + ε](τ, z)Θ[σ](τ, 0).

Similarly, for every α, ε ∈ F
g
2 the following relation holds:

(6) Θ[α](τ)Θ[α + ε](τ) =
1

2g

∑

σ∈(Z/2Z)g

(−1)α·σθ [ εσ ] (τ)
2.

It is easily seen that the character v2Θ is trivial precisely on the subgroup
Γ∗
g(2, 4) ⊂ Γg(2, 4).
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As we are interested in the characterization of the locus of decomposable
abelian varieties, we need to recall the following analytic characterization:

Theorem 3 ([Sas83],[SM94]). A ppav is indecomposable (that is, is not equal
to a product of lower-dimensional ppav) if and only if the matrix

M(τ) :=









. . . Θ[ε] . . . . . .

. . . . . . . . . . . .

. . . ∂τijΘ[ε] . . . . . .

. . . . . . . . . . . .









(with entries taken for all ε ∈ F
g
2 and for all 1 ≤ i ≤ j ≤ g) has maximal rank,

i.e. rank g(g+1)
2 + 1.

We recall also that taking the gradient with respect to z of the holomorphic
function θ0(τ, z), we get the Gauss map

G : Θτ 99K P
g−1

defined on the smooth locus of the theta divisor Θτ ⊂ Xτ . The Gauss map is
dominant if and only if the ppav (Xτ ,Θτ ) is indecomposable.

We will also have to deal with indexing by subsets of the coordinates, and fix
notation for this now. For any set X , we denote by P (X) the collection of all its
subsets, and by Pk(X) the collection of all its subsets of cardinality k. IfX ⊂ Z,
we can view it as an order (i.e. as a set ordered increasingly), and denote by
P ∗
k (X) ⊂ P ∗(X) respectively the collection of its sub-orders (i.e. increasingly

ordered subsets). If I ∈ P ∗
k (X), we denote by Ic its complementary set thought

of as an ordered set. Finally, we denote Xg := {1, . . . , g}, thought of as an
ordered set.

2. Gradients of theta functions

In [GSM04], gradients of theta functions are used to study the geometry of
the moduli space of principally polarized abelian varieties — this study was
further continued in [GSM05, GSM06, GSM09, GH12, GH11]. Indeed, for any
odd m the gradient

(7) vm(τ) := gradz θm(τ, z)|z=0

is a not identically zero vector-valued modular form for the group Γg(4, 8) for

the representation det⊗1/2 ⊗ std, where std is the standard representation of
GL(g,C) on Cg. We have

vm ∈ H0(Ag(4, 8), detE
⊗1/2 ⊗ E).

In [GSM04], it is shown that in fact the set of gradients of theta functions for all
oddm defines a generically injective map ofAg(4, 8) to the set of g×2g−1(2g−1)
complex matrices (and in fact to the corresponding Grassmannian), providing
a weaker analog for ppav of the results of Caporaso and Sernesi [CS03b, CS03a]
characterizing a generic curve by its bitangents or its theta hyperplanes.
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For ε, δ ∈ F
g
2, define the g × g symmetric matrix Cε δ(τ) with entries

(8) Cε δ,ij(τ) := 2∂ziθ [
ε
δ ](τ, 0) ∂zjθ [

ε
δ ](τ, 0),

where ∂zi := ∂
∂zi

. Notice that Cε δ = 2 v[ εδ ]
vt
[ εδ ]

. Moreover, define the g × g

symmetric matrix Aε δ with entries

(9) Aε δ,ij(τ) := Θ[ε](τ)∂zi∂zjΘ[δ](τ) −Θ[δ](τ)∂zi∂zjΘ[ε](τ).

In the current paper, it will be convenient also to write Cε δ and Aε δ as column
vectors of size N = g(g+1)/2, which we will denote Cεδ and Aε δ respectively.

Because of the modularity of the gradients of odd theta functions, both Cε δ

and Aε δ are vector-valued modular forms with respect to the group Γg(4, 8)
(a more careful analysis of the transformation formula shows that it is in fact
modular with respect to Γ∗

g(2, 4)) for the representation det⊗ Sym2(std) —
that is, with highest weight (3, 1, . . . , 1).

Using the fact that both theta functions with characteristic and theta func-
tions of the second order satisfy the heat equation (2), one can express Cεδ in
terms of derivatives of second order theta constants, and vice versa.

Lemma 4 ([GSM04]). We have the following identities of vector-valued modular
forms:

(10) Cεδ =
1

2

∑

α∈F
g
2

(−1)α·δAε+αα;

(11) Aε+αα =
1

2g−1

∑

{δ∈F
g
2 | [ε,δ] odd}

(−1)α·δCεδ .

Of course, we have the same identities relating Aε+αα and Cεδ.

3. Characterization of decomposable ppav

We are now ready to prove our first result on the characterization of decom-
posable ppav. Indeed, recall that if τ =

(

τ1 0
0 τ2

)

, with τi ∈ Hgi , for g1 + g2 = g,
then the theta function with characteristic splits as a product

θm(τ, z) = θm1(τ1, z1) · θm2(τ2, z2),

where zi ∈ Cgi , and we have written m as m1 m2, with mi ∈ F
2gi
2 . Computing

the partial derivatives and evaluating at zero, we get

vm(τ) =
(

vm1(τ1) · θm2(τ2, 0), θm1(τ1, 0) · vm2(τ2)
)

.

Since m is odd, it follows that precisely one of m1 and m2 is odd, and thus
only the corresponding gi entries of the gradient vector are non-zero. Thus, if
we arrange the gradients for all odd m in a matrix, it will have a block form,
with the two non-zero blocks of sizes gi×2gi−1(2gi −1), and two “off-diagonal”
zero blocks. This is simply to say that the set of gradients of all odd theta
functions, at a point τ as above, lies in the union of coordinate linear spaces
Cg1 ∪ Cg2 ⊂ Cg. Since gradz θm(τ, z)|z=0 and gradz θ0(τ, z)|z=m differ by a
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constant factor, and thus give the same point in Pg−1, this implies that the
images of all the smooth two-torsion points of Θτ under the Gauss map lie on
g1g2 reducible quadrics in Pg−1 written explicitly as

XiXj = 0, ∀ 1 ≤ i ≤ g1 < j ≤ g.

This is equivalent to these Gauss images all lying on a union of two hyperplanes,
and a weaker condition is that they all lie on some quadric (not necessarily a
reducible one). We now show that this weak condition is enough to characterize
the locus of decomposable ppav, proving one of our two main results.

Proof of theorem 2. The discussion above proves that for a decomposable
ppav with a period matrix τ =

(

τ1 0
0 τ2

)

the images of all the odd two-torsion
points lie on a quadric. In general, if a ppav is decomposable its period matrix
does not need to have this block shape, and would rather be conjugate to it
under Γg. Since vm(τ) are vector-valued modular forms for the representation

det1/2 ⊗std, they transform linearly under the group action, and hence the
condition that the images of the odd two-torsion points under the Gauss map
lie on a quadric is preserved under the action of Γg. Thus, for any decomposable
ppav the images of all smooth two-torsion points lying on Θτ are contained in
(many) quadrics.

For the other direction of the theorem, we manipulate the gradients to reduce
to the characterization of the locus of decomposable ppav given by Theorem 3.
Indeed, suppose all images of the odd two-torsion points m lie on a quadric
with homogenous equation Q(x1, . . . , xg): this is to say that

Q(vm) = vtmBvm = 0

for all odd m ∈ Xτ [2] that are smooth points of Θτ (where we have denoted
by B the matrix of coefficients of Q). We thus have

Tr(vtmBvm) = Tr(Bvmvtm) = Tr(BCm) = 0

for all odd m (if m ∈ SingXτ , then vm = 0, so Cm = 0, and this still holds).
Since by (11) each Aαβ is a linear combination of the Cm’s, it follows that we
also have

Tr(BAαβ) = 0

for all α, β, and in particular this implies that the matrix

(12) A := (Aαβ)α6=β∈F
g
2
,

where each Aαβ is a column-vector in Cg(g+1)/2, is degenerate. The follow-
ing lemma in linear algebra shows that this implies that the matrix M(τ) in
Theorem 3 is degenerate, and thus that Xτ is decomposable — completing the
proof of the theorem. �

Lemma 5. The g(g+1)
2 × 2g−1(2g − 1) matrix A(τ) in (12) has rank less than

g(g+1)
2 (i.e. non-maximal) if and only if the matrix M(τ) has non-maximal

rank.
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Proof. For 1 ≤ i ≤ j ≤ g, we denote Mij and Aij , correspondingly, the (i, j)
rows of the matrices M(τ) and A(τ), and denote M0 the first row of M(τ) (the
vector of second order theta constants). We then have

M0 ∧Mij = Aij ,

where by the wedge we mean taking the row vector whose entries are all two
by two minors of the matrix formed by two row vectors M0 and Mij . If the
vectors Aαβ are linearly dependent, this means we have some linear relation
0 =

∑

aijAij among the rows of A(τ), which is equivalent to

0 =
∑

i,j

aij(M0 ∧Mij) = M0 ∧





∑

i,j

aijMij



 ,

and thus M0 must be proportional to
∑

aijMij , so that the matrix M does
not have maximal rank. �

Remark 6. The proof above shows that in fact a quadric in Pg−1 contains the
Gauss images of all the two-torsion points lying on the theta divisor if and only
if it contains the entire image of the Gauss map.

4. A review of constructions of holomorphic differential forms

on Siegel modular varieties

For a finite index subgroup Γ ⊂ Γg, we denote, as before, Ag(Γ) := Hg/Γ,
and we are then interested in constructing non-zero degree k differential forms
on it, that is elements of Ωk(Ag(Γ)). It is known that for g ≥ 2

Ωk(Ag(Γ)) ∼= Ωk(Hg)
Γ,

where Ωk(Hg)
Γ is the vector space of elements of Ωk(Hg) equivariant under

the action of Γ. Whenever k < N = g(g + 1)/2 and g ≥ 2, such holomorphic
differential forms always extend to a compactification. More precisely, if H0

g/Γ

is the set of regular points of Hg/Γ, and X̃ denotes the desingularization of the
Satake compactification of Hg/Γ, which contains H0

g/Γ as a dense open subset,

then every holomorphic differential form ω ∈ Ωk(H0
g/Γ) of degree k < N

extends to X̃ (see [FP82]).
Holomorphic differential forms can thus also be thought of as vector-valued

modular forms for a suitable representation. We have the following fundamental
result of Weissauer:

Theorem 7 ([Wei83]). The space Ωk(Ag(Γ)) is zero unless k = gα−α(α−1)/2
for some 0 ≤ α ≤ g, in which case

(13) Ωαg− 1
2α(α−1)(Ag(Γ)) = [Γ, ρα]

is the space of vector-valued modular forms for the representation of GL(g,C)
with highest weight (g + 1, . . . , g + 1, α, . . . , α), with α appearing g − α times.
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The case k = N − 1, corresponding to the representation ρg−1 with high-
est weight (g + 1, . . . , g + 1, g − 1), turns out to be of great interest, as it is
related to the construction of special divisors on the Satake compactification
of Siegel modular varieties. Indeed, Weissauer [Wei87] proved that the zero
locus Dh of a modular form h on the Satake compactification of Ag(Γ) is a
special divisor if and only if there exists a non-vanishing ω ∈ ΩN−1(Hg)

Γ such
that Tr (ω(τ)∂τh(τ)) is identically zero on Dh. Moreover, using theta series
with pluriharmonic coefficients, Weissauer [Wei87] proved that for any g the
space ΩN−1(Ag(Γ)) is non-zero for a suitable Γ. Such differential forms can be
constructed as follows. Let

dτ̌ij = ±
∧

1≤h≤k≤g, (h,k) 6=(i,j)

dτhk,

where the sign is chosen in such a way that dτ̌ij ∧ dτij =
∧

1≤i<j≤g dτij ,

see [Fre78]. Then we have

(14) ω = Tr(A(τ)dτ̌ ) =
∑

1≤i,j≤g

Aij(τ)dτ̌ij ,

with

(15) A(γ · τ) = det(Cτ +D)g+1 (Cτ +D)−tA(τ)(Cτ +D)−1.

In [Fre75a], Freitag provides a method to construct holomorphic differential
(N − 1)-forms in genus g, invariant with respect to any subgroup Γ of finite
index of the symplectic group Γg, starting from two scalar valued modular

forms in genus g, both of weight g−1
2 . We briefly recall this construction and

slightly improve his result. To simplify the notation, we set

(16) ∂ij =
1

2
(1 + δij)

∂

∂τij
; ∂ := (∂ij).

For any I, J ∈ Pk(Xg) with 0 ≤ k ≤ g, we denote by ∂I
J the submatrix of ∂

obtained by taking the rows corresponding to the elements in I and the columns
corresponding to the elements in J :

∂I
J = (∂ij) i∈I

j∈J

and denote by |∂I
J | the determinant |∂I

J | = det(∂I
J). For k = 0, we set both ∂I

J

and |∂I
J | to be the identity operator.

For any congruence subgroup Γ, Freitag [Fre75a] then defines the linear
pairing { , } by

{ , } : [Γ, (g − 1)/2]× [Γ, (g − 1)/2] → ΩN−1(Ag(Γ))

(f, h) 7→ {f, h} := Tr (B(τ)dτ̌ ) ,

where

B(τ)ij := (−1)i+j

g−1
∑

k=0

(−1)k
(

g−1
k

)

∑

I∈P∗

k (Xg\{i})

J∈P∗

k (Xg\{j})

s(I)s(J)
∣

∣∂I
J

∣

∣ f(τ)
∣

∣

∣∂Ic

Jc

∣

∣

∣h(τ),
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where s(I) (resp. s(J)) denotes the sign of the permutation of the elements
of Xg \ {i} (resp. Xg \ {j}) that turns the set I ∪ Ic (resp. J ∪ Jc) into an
increasing ordered set. One then easily checks that the parity of the pairing is
{f, h} = (−1)g+1{h, f}.

In [Fre78], Freitag then proved that the holomorphic differential form

(17) F (g) :=

{

∑

m

θg−1
m (τ),

∑

m

θg−1
m (τ)

}

does not vanish identically when g ≡ 1 (mod 8), for g ≥ 17. We extend this
result to g = 9:

Proposition 8. The vector-valued modular form F (9) does not vanish identi-
cally, and thus gives a non-zero differential form in Ω44(A9).

Proof. Since the set of all dτ̌ij for 1 ≤ i ≤ j ≤ g is a basis of ΩN−1(Hg), it
suffices to prove that at least one B(τ)ij is not identically zero. By Freitag’s
computation [Fre78, eg. 61], the Fourier coefficient of the pairing {f, h} with
respect to a matrix T is given by
(18)

a{f,h}(T )gg =

g
∑

k=1

(−1)k
(

g−1
k−1

)

∑

I,J∈P∗

k−1(Xg−1)

T1+T2=T

s(I)s(J)|T1|
I
J |T2|

Ic

Jcaf (T1)ah(T2),

where Ic = Xg−1 \ I denotes the complement, and af(T1) and ah(T2) are
the Fourier coefficients of f and h corresponding to the matrices T1 and T2

respectively.
For our case this formula can be greatly simplified. Indeed, we recall the

result of Igusa [Igu81] that
∑

m θ8m(τ) = 2gΘ
(g)
E8

. We then choose T :=
(

ζE8 0
0 0

)

,

where ζE8 is the matrix associated with the quadratic form corresponding to
the E8 lattice, given in a suitable basis by

(19) ζE8 :=







2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2






.

By Köcher principle, the Fourier coefficients af(S) or ah(S) with respect to a
non-semidefinite positive matrix S are zero, and thus only the terms with even
semidefinite positive T1 and T2 produce non-zero summands in (18). Whenever
the chosen T is written as T = T1+T2 with T1, T2 positive semidefinite matrices,
one of Ti must be zero. Finally, recall that for g = 9 we have

ΘE8(τ) =
∑

x1,...,x9∈ΛE8

eπiTr(x·x) =
∑

p∈Zg=9,8

eπiTr(pζE8p
tτ) =

∑

M

NM

∏

i≤j

eπimijτij ,

where, for M = (mij) a symmetric g×g integer matrix, NM ∈ N is the number
of integral matrix solutions of the Diophantine system pζE8p

t = M . Setting
M = T and writing p = ( p1

p2 ), where p1 and p2 are respectively 8 × 8 and
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1× 8 integer matrices, it follows that for all solutions p2 = 0, while p1 satisfies
p1ζE8p

t
1 = ζE8 .

The number of solutions of the previous equations equals the order of the
group U(ζE8) of automorphisms of the E8 lattice, i.e. a(ζE8) = #(U(ζE8)) =
4!6!8!, see [CS99, page 121]. Thus, we finally have NT = aF (9)(T )99 = 4!6!8!,
hence there is a non-empty set of summands in (18), all of them positive, so it
follows that A(T )99 is non-zero. �

Remark 9. The argument above generalizes to give an alternative proof of
Freitag’s result for g = 8k+1, for any k ≥ 1, using the modular form ΘE8(τ)

k.

We now recall another construction of holomorphic differentials forms, due
to the fifth author [SM87]. For M = (m1, . . . ,mg−1) a set of distinct odd
characteristics, define

F (m1, . . . ,mg−1)(τ) := vm1(τ) ∧ · · · ∧ vmg−1(τ).

One can then use these wedge products of gradients of theta functions to con-
struct further vector-valued modular forms. We set

(20) W (M)(τ) := π−2g+2F (m1, . . . ,mg−1)(τ)
t F (m1, . . . ,mg−1)(τ),

and then have

Proposition 10 ([SM87]). For g odd, for any matrix of distinct odd charac-
teristics M = (m1, . . . ,mg−1) ∈ M2g×(g−1)(F2)

ω(M)(τ) := Tr (W (m1, . . . ,mg−1)(τ)dτ̌ )

is a non-zero holomorphic differential form in ΩN−1(Ag(2, 4)). If g is even, it
is a non-zero holomorphic differential form in ΩN−1(A∗

g(2, 4))

Remark 11. Symmetrizing the ω(M) constructed above using the action of
the entire modular group, differential forms for the entire modular group were
obtained in [SM87], thus showing that ΩN−1(Ag) is non-zero for any g ≡ 1
(mod 4), g 6= 1, 5, 13.

5. A new construction of differential forms

Our first main theorem, Theorem 1, gives an easy new method to construct
non-zero holomorphic differential forms on Siegel modular varieties, using the
modular forms Aεδ. We prove that it works, and then relate this new construc-
tion to the two constructions discussed above.

Proof of theorem 1. Recall that for fixed ε, δ the matrixAεδ can be written
as

Aε δ(τ) := 4πiΘ[δ]2∂

(

Θ[ε]

Θ[δ]

)

,

and thus its entries are vector-valued modular forms for the representation of
highest weight (3, 1, . . . , 1).

We denote by Aad
ε δ the adjoint matrix — the transpose of the matrix of

cofactors of A. This matrix is then clearly a vector-valued modular form Aad
ε δ ∈
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[Γ, (g + 1, . . . , g + 1, g − 1)] with Γ = Γg(2, 4) for g odd, and Γ = Γ∗
g(2, 4) for g

even, and thus Tr(Aad
ε δ dτ̌ ) defines a differential form of degree N−1 as claimed.

It remains to prove that this differential form is not identically zero. Recalling
that the product of a matrix and the matrix of its cofactors is the determinant
times the identity matrix, if we prove that detAε δ is not identically zero, it
would follow that Aad

ε δ is not identically zero, and thus that Tr(Aad
ε δ dτ̌ ) is not

identically zero. The proof is thus completed by the following proposition. �

Proposition 12. The determinant detAε δ is a not identically zero scalar
modular form of weight g + 2.

Proof. Since Θ[ε] and Θ[δ] are different forms, there exist τ such that Θ[ε](τ) =
0 6= Θ[δ](τ) . We then denote Z := 2τ , and work on the abelian variety XZ ,
where Zε/2 ∈ ΘZ and Zδ/2 6∈ ΘZ are thus two-torsion points. Since the
characteristics are even, the point Zε/2 is then an even two-torsion point lying
on ΘZ , and thus is a singular point of ΘZ . From [GSM09], it follows that
generically the singularity of ΘZ at Zε/2 is an ordinary double point. This is
equivalent, via the heat equations, to the matrix ∂θm(Z, 0), with m = [ε, 0],
having rank g. Moreover, we choose Z such that θn(Z) 6= 0, with n = [δ, 0]
and thus see that detAε δ is not identically zero. �

We will now compare the different constructions of modular forms. In Fre-
itag’s construction, let us consider Freitag’s pairing when f and h are suitable
powers of second order theta constants. For any ε 6= δ ∈ F

g
2 let

(21) ωε δ := {Θ[ε]g−1,Θ[δ]g−1}.

A simple computation on the characters shows that for g odd ωε δ ∈
ΩN−1(Ag(2, 4)), while for g even we only get ωε δ ∈ ΩN−1(A∗

g(2, 4)).
To relate this to the current construction, we first prove the following

Proposition 13. For any ε 6= δ we have

Aad
ε δ(τ) =

(

π2

2g−2

)g−1
∑

α1,...,αg−1∈F
g
2

s.t. [ε+δ, αj ] odd

(−1)δ·(α1+···+αg−1)W ([ε+δ, α1], . . . , [ε+δ, αg−1]),

where W is defined in (20).

Proof. We will need some basic facts from linear algebra. First, we note that
if A and B are an m× n and an n×m matrix, respectively. Then

(22) AB =

n
∑

i=1

AiB
i,

where Ai is the i-th column of A and Bi is the i-th row of B. Furthermore, we
will need that for I, J ∈ P ∗

k (Xm), the following holds:

(23) (AB)IJ = AIBJ ,

where AI is the submatrix obtained from A by taking rows corresponding to
the elements of I, and BJ is the submatrix obtained from B by taking columns
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corresponding to the elements of J . The last identity we need is the following
generalization of the Binet formula:

(24) det(AB) =
∑

S∈P∗

m(Xn)

det(AS) det(B
S).

Notice that if m > n, P ∗
m(Xn) is empty and the right-hamd side of the previous

identity is zero, as should be the case, since the rank of AB is bounded by the
ranks of A and B. Defining the g × 2g matrix

Vε+δ =
(

v[ ε+δ
α ]

)

α∈F
g
2

,

whose columns are the gradients v[ ε+δ
α ] indexed by α ∈ F

g
2, and defining the

2g × g matrix

V −
ε+δ =

(

(−1)δ·α vt
[ ε+δ

α ]

)

α∈F
g
2

,

relations (11) and (22) imply

Aε,δ =
1

2g−2
Vε+δ V

−
ε+δ.

Hence, by a straightforward computation from (23) and (24) the proposition
follows. �

We now compare our construction to that of Freitag, thus also linking the two
previously known methods.

Theorem 14. For ε 6= δ, denote by Bε δ the vector-valued modular form such
that {Θ[ε]g−1,Θ[δ]g−1} = Tr(Bε δ(τ)dτ̌ ). Then we have

(25) Aad
ε δ =

(4πi)g−1

(g − 1)!
Bε δ.

We note that of course the above is an identity of vector-valued modular forms,
which also implies that the holomorphic differential forms constructed from
them are equal in ΩN−1(Ag(2, 4)) and ΩN−1(A∗

g(2, 4)), for g odd and even
respectively.

The proof of Theorem 14 relies on the following

Lemma 15. Let I = {i1, . . . , ik}, J = {j1, . . . , jk} be elements of P ∗
k (Xg) with

k ≤ n. As a consequence of the heat equations, for every ε ∈ F
g
2 the second

order theta constant Θ[ε] satisfies the relation

|∂I
J |Θ[ε]n = n(n− 1) . . . (n− k + 1)Θ[ε]n−k |(∂Θ[ε])IJ |.

Remark 16. We emphasize that the left-hand-side of the lemma means the de-
terminant of the matrix of partial derivatives, considered as a degree k differen-
tial operator, applied to the power of the theta constant, while the right-hand-
side is a different power of the theta constant multiplied by the determinant of
the matrix of partial derivatives of the theta constants. When differentiating
on the left, one would a priori expect terms involving higher order derivatives
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of the theta constant to appear, and the content of the lemma is that such
cancel out.

Proof of lemma 15. The proof will be by induction in k. Clearly, for k = 1

(1 + δi1j1)

2
∂τi1j1

Θ[ε]n = nΘ[ε]n−1 (1 + δi1j1)

2
∂τi1j1

Θ[ε].

The first interesting case is k = 2, where I = {i1, i2} and J = {j1, j2}. In this
case we have

|∂I
J |Θ[ε]n = n(n− 1)Θ[ε]n−2 |(∂Θ[ε])IJ | + nΘ[ε]n−1(|∂I

J |Θ[ε]).

From the heat equation, it easily follows that for every ε ∈ F
g
2

(1 + δi1j1)(1 + δi2j2)∂τi1j1
∂τi2j2

Θ[ε] = (1 + δi2j1)(1 + δi1j2)∂τi2j1
∂τi1j2

Θ[ε],

and hence

(26) |∂I
J |Θ[ε] =

∣

∣

∣

∣

∣

(1+δi1j1 )

2 ∂τi1j1

(1+δi1j2 )

2 ∂τi1j2
(1+δi2j1 )

2 ∂τi2j1

(1+δi2j2 )

2 ∂τi2j2

∣

∣

∣

∣

∣

Θ[ε] = 0.

Computing |∂I
J | by the Laplace expansion along the first column for k > 2,

we have

|∂I
J |Θ[ε]n =

(

k
∑

h=1

(−1)h+1∂ihj1

∣

∣

∣∂
I\{ih}
J\{j1}

∣

∣

∣

)

Θ[ε]n =

=

k
∑

h=1

(−1)h+1∂ihj1

[

n(n− 1) . . . (n− k + 2)Θ[ε]n−k+1
∣

∣

∣(∂Θ[ε])
I\{ih}
J\{j1}

∣

∣

∣

]

=

= n(n− 1) . . . (n− k + 1)Θ[ε]n−k |(∂Θ[ε])IJ |+

+ n(n− 1) . . . (n− k + 2)Θ[ε]n−k+1
k

∑

h=1

(−1)h+1∂ihj1

∣

∣

∣(∂Θ[ε])
I\{ih}
J\{j1}

∣

∣

∣ .

The extra terms cancel out because of the heat equation, so the lemma is
proved. �

We are now ready to prove the above theorem.

Proof of theorem 14. By [Wei83, lemma 4], to prove the identity of such
vector-valued modular forms, it is enough to prove that, for example, the gg-th
entries of the corresponding matrices agree.

We first recall that the determinant of a matrix can be expanded in its block
submatrices as follows: for an n× n matrix M , and for any fixed J ∈ P ∗

k (Xn),
we have

det(M) =
∑

I∈P∗

k
(Xn)

(−1)I+J · |M I
J | · |M

Ic

Jc | ,

where on the right we take the determinants of the corresponding submatrices,
and (−1)I means (−1)i1+···+ik , where I = {i1, . . . , ik}. Applying this to the
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gg-th entry of the cofactor matrix, we get

(Aad
ε δ)gg = (4πi)g−1

g−1
∑

k=0

(−1)kΘ[ε]g−k−1Θ[δ]k·

·
∑

I,J∈P∗

k
(Xg−1)

(−1)I+J |(∂Θ[ε])IJ | · |(∂Θ[δ])I
c

Jc |.

By Lemma 15, it follows that

(Bε δ)gg = (g − 1)!

g−1
∑

k=0

(−1)kΘ[ε]g−k−1Θ[δ]k·

·
∑

I,J∈P∗

k
(Xg−1)

s(I)s(J)|(∂Θ[ε])IJ | · |(∂Θ[δ])I
c

Jc |.

To complete the proof it is enough to check that s(I) s(J) = (−1)I+J .
This can be easily verified by induction in k, noting that for I = {i} it holds
that s(I) = (−1)i−1, since it is the sign of the permutation that turns the set
{i, 1, . . . , i− 1, i+ 1, . . . , g − 1} into the set {1, . . . , g − 1}. �

Remark 17. In all of the constructions above, instead of starting from Aεδ,
one can perform the same construction starting from theta constants of arbi-
trary level, or from two theta constants with characteristic. As a result, one
gets vector-valued modular forms for suitable subgroups, which can be used to
construct holomorphic differential forms on suitable Siegel modular varieties.
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