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Abstract. Let G be a split semisimple linear algebraic group over a
field and let X be a generic twisted flag variety of G. Extending the
Hilbert basis techniques to Laurent polynomials over integers we give
an explicit presentation of the Grothendieck ring K0(X) in terms of
generators and relations in the case G = Gsc/µ2 is of Dynkin type
A or C (here Gsc is the simply-connected cover of G); we compute
various groups of (indecomposable, semi-decomposable) cohomologi-
cal invariants of degree 3, hence, generalizing and extending previous
results in this direction.
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1 Introduction

Let G be a split semisimple linear algebraic group over a field F . Let U/G be
a classifying space of G in the sense of Totaro [18, Rem.1.4], i.e. U is an open
G-invariant subset in some representation of G with U(F ) 6= ∅ and U → U/G
is a G-torsor. Consider the generic fiber U ′ of U over U/G. It is a G-torsor over
the quotient field F ′ of U/G called the versal G-torsor [4, Ch.I, §5]. We denote
by X the respective flag variety U ′/B over F ′, where B is a Borel subgroup
of G, and call it the versal flag. The variety X appears in many different
contexts, e.g. related to cohomology of homogeneous G-varieties (see [6] for an
arbitrary oriented theory; Karpenko [7], [8], [9] for Chow groups; Panin [17] for
K-theory) and cohomological invariants of G (see Merkurjev [14] and [5], [15]).
It can be viewed as a generic example of the so called twisted flag variety.
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In the first part of the paper (Sections 2-4) we give an explicit presentation of
the ring K0(X) in terms of generators modulo a finite number of relations in
cases when G = Gsc/µ2, where G

sc is the product of simply-connected simple
groups of Dynkin types A or C and µ2 is a central subgroup of order 2.
Observe that for simply-connected G the ring K0(X) can be identified with
K0(G/B) (e.g., see Panin [17]), and by Chevalley theorems there is a surjective
characteristic map c : R(Tsc) → K0(G/B) from the representation ring of the
split maximal torus Tsc such that the kernel ker(c) = IWsc is generated by
augmented classes of fundamental representations. So, all relations in K0(X)
correspond to W -orbits of fundamental weights.
If G is not simply-connected (as in the Gsc/µ2-case), then the situation changes
dramatically as by [6, Ex.5.4] we have

K0(X) ≃ R(T )/(IWsc ∩R(T ))

and a finite set of generators of IWsc ∩R(T ) is not known in general. Note that by
definition we have inclusions of abelian groups IW ⊆ IWsc ∩R(T ) ⊆ IWsc which all
coincide if taken with Q-coefficients. However, there are examples of semisimple
groups (see [15, Ex.3.1] and [1]) where both quotients (IWsc ∩ R(T ))/IW and
IWsc /(I

W
sc ∩R(T )) are non-trivial.

Our Theorem 3.4 provides a complete list of generators (Definition 3.2) of
the ideal IWsc ∩R(T ) assuming the root system of Gsc satisfies the generalized
flatness condition (see Definition 2.9). In Section 4 we show that this condition
holds for types A and C.
In the second part of the paper we study cohomological invariants of degree 3
of G. According to Garibaldi-Merkurjev-Serre [4, p.106], a degree d cohomo-
logical invariant is a natural transformation of functors

a : H1( · , G) → Hd( · ,Q/Z(d− 1))

on the category of field extensions over F , where the functor H1( · , G) classi-
fies G-torsors, Hd( · ,Q/Z(d− 1)) is the Galois cohomology. Following Merkur-
jev [14], an invariant is called decomposable if it is given by a cup-product of
invariants of smaller degrees; the factor group of (normalized) invariants mod-
ulo decomposable is called the group of indecomposable invariants. For d = 3
the latter (denoted by Inv3ind(G)) has been computed for all simple split groups
in [14] and [2]; for some semi-simple groups of type A in [13] and [1]; for adjoint
semisimple groups in [12].
Another key subgroup of semi-decomposable invariants introduced in [15] con-
sists of invariants given by a cup-product of invariants up to some field exten-
sions. For d = 3 it coincides with the group of decomposable invariants for
all simple groups [15]. It was also shown that these groups are different for
G = SO4 [15, Ex.3.1] and for some semisimple groups of type A (see [1]).
The relationships between the subgroups IW ⊆ IWsc ∩ R(T ) ⊆ IWsc and the
groups of cohomological invariants are explained in Section 5.
In Sections 6-11, we compute the groups of decomposable, indecomposable
and semi-decomposable invariants of degree 3 for new examples of semisimple
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groups (e.g. Gsc/µ2, products of adjoint groups), hence, extending the results
of [14], [2], [1], [15], [13]; to compute semi-decomposable invariants we use the
generators of Definition 3.2. We show that
• The factor group Inv3sd(G) of semi-decomposable invariants of G modulo
decomposable is nontrivial if and only if G is of classical type A, B, C, D.
Moreover, we compute both groups Inv3sd(G) and Inv3ind(G) for an arbitrary
product of simply-connected simple groups of the same Dynkin type modulo
central subgroups of order 2 (see Corollaries 6.5, 7.2, 8.2, 9.2, and Proposi-
tion 11.2).
• If G is of type A, then both these groups can have an arbitrary order and
contain any direct product of cyclic p-group (see Corollary 6.6). IfG is of type B
or C, then it is always a product of cyclic groups of order 2 (see Corollaries 7.2,
8.2).
• The group Inv3sd(G) is trivial for the simple group G = PGO8, i.e., any
semi-decomposable invariant is decomposable (Corollary 10.4).
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Planning (2016R1C1B2010037). The first author also would like to thank the
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2 Syzygies and divisibility for Laurent polynomials

Let Λ be a free abelian group of rank n with a fixed basis {x1, . . . , xn}. Let R be
one of the rings Z or Z/mZ, m ≥ 2. Consider the group ring R[Λ]. It consists
of finite linear combinations

∑
j aje

λj , aj ∈ R, λj ∈ Λ. We identify R[Λ] with

the Laurent polynomial ring R[x±1
1 , . . . , x±1

n ] via exi 7→ xi and e
−xi 7→ x−1

i . By
a polynomial we mean always a Laurent polynomial, i.e., an element of R[Λ].
We denote by Λi a free subgroup with the basis {x1, . . . , xi}, 1 ≤ i < n. Hence,
R[Λi] = R[x±1

1 , . . . , x±1
i ].

Definition 2.1. Given f ∈ R[Λ], we can express it uniquely as

f = fkx
k
n + fk−1x

k−1
n + . . .+ fmx

m
n , where fi ∈ R[Λn−1], k,m ∈ Z, k ≥ m.

The integer k is called the highest degree of f with respect to xn and denoted
hdegn(f). The integer m is called the lowest degree of f with respect to xn and
denoted ldegn(f). The difference k −m is called the degree of f with respect
to xn and denoted wdegn(f).

By definition, if wdegn(f) = 0, then f is a product of xkn and a polynomial in
x1, . . . , xn−1.
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Definition 2.2. Let f , p ∈ R[Λ] and let ldegn(f) ≥ d for some d ∈ Z. We
say that it is possible to perform a divison of f by p bounded by d if there exist
monomials q, r ∈ R[Λ] such that

1. f = pq + r.

2. Either r = 0 or (ldegn(r) ≥ d and hdegn(r) < d+wdegn(p)).

In this case q is called the quotient, and r is called the remainder.

Definition 2.3. We call p ∈ R[Λ] a divisor with respect to xn if it satisfies
the following condition:
In the presentation of Definition 2.1

p = pkx
k
n + . . .+ pmx

m
n , pi ∈ R[Λn−1], k,m ∈ Z, k ≥ m,

the leading coefficient pk is a monic monomial in x1, . . . , xn−1.

Lemma 2.4. Let f , p ∈ R[Λ] and let ldegn(f) ≥ d for some d ∈ Z.
If p is a divisor with respect to xn, then it is possible to perform a division of
f by p bounded by d.

Proof. We proceed by induction on hdegn(f). If hdegn(f) < d + wdegn(p),
then we set q = 0 and r = f .
Suppose that hdegn(f) ≥ d+wdegn(p). Since p is a divisor, we can write it as

p = Y xkn + p′, where Y ∈ R[Λn−1] is a monic monomial and

p′ is either 0 or a polynomial with hdegn(p
′) < hdegn(p) = k and ldegn(p

′) =
ldegn(p). Observe that Y is invertible in R[Λn−1].
We write f as f = gxmn + f ′, where m = hdegn(f), g ∈ R[Λn−1], and f ′ is
either 0, or a polynomial with hdegn(f

′) < m and ldegn(f
′) = ldegn(f).

Set q0 = gY −1xm−k
n . Then Y xknq0 = gxmn . If both f ′ and p′ are 0, then

Y xkn = p and gxmn = f , so pq0 = f , and we are done.
Consider the polynomial f ′′ = f ′ − q0p

′. We have hdegn(q0) = ldegn(q0) =
m− k. Recall that either p′ = 0 or (hdegn(p

′) < k and ldegn(p
′) = ldegn(p)).

So, either q0p
′ = 0, or (hdegn(q0p

′) < m and ldegn(q0p
′) = m− k+ ldegn(p) =

m− wdegn(p)).
Recall also that either f ′ = 0, or (hdegn(f

′) < m and ldegn(f
′) = ldegn(f)).

So, if p′ and f ′ are not both 0, then hdegn(f
′′) < m.

Also, if p′ and f ′ are not both 0, then ldegn(f
′′) ≥ min(m−wdegn(p), ldegn(f)).

We know that m = hdegn(f) ≥ d + wdegn(p), so m − wdegn(p) ≥ d. Also,
ldegn(f) ≥ d. So, ldegn(f

′′) ≥ d, and we can apply the induction hypothesis.
By induction, there exist polynomials q1 and r such that f ′′ = pq1 + r, and
(either r = 0 or (ldegn(r) ≥ d and hdegn(r) < d+wdegn(p))).
Set q = q0 + q1. Then

pq + r = pq0 + pq1 + r = (Y xkn + p′)q0 + f ′′

= Y xknq0 + p′q0 + f ′ − q0p
′ = gxmn + f ′ = f.
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Definition 2.5. (cf. [3, §15.5]) Given a n-tuple of polynomials ~q =

(q1, . . . , qn), a n-tuple of polynomials ~f = (f1, . . . , fn) is called a syzygy of
~q if

∑
i fiqi = 0.

Observe that syzygies form a submodule of a free module of rank n over R[Λ].
An element of a submodule generated by

Sij = (0, . . . , qj , . . . ,−qi, . . . , 0),

where qj is at the position i and −qi is at the position j, i, j = 1, . . . , n and
i 6= j, is called a trivial syzygy of ~q.

Lemma 2.6. Let ~q = (qi), qi ∈ Z[Λ] and let q̄ = (q̄i), where q̄i ∈ Z/dZ[Λ] is the
reduction modulo d, d ≥ 2.
If ~f ′ = (f ′

i) is a trivial syzygy of q̄, then there exists a trivial syzygy ~f = (fi) of

~q such that its reduction modulo d coincides with ~f ′, i.e., a trivial syzygy can
be always lifted to Z.

Proof. Let S̄ij be the reduction modulo d of Sij . We have ~f ′ =
∑
i,j g

′
ijS̄ij for

some g′ij ∈ Z/dZ[Λ]. Let gij be liftings of g′ij to Z[Λ]. Set ~f =
∑

i,j gijSij .

Definition 2.7. We say that a n-tuple of polynomials (q1, . . . , qn) satisfies the
flatness condition if qi ∈ R[Λi] for each i = 1, . . . , n, and qi is a divisor with
respect to xi.

Lemma 2.8. If an n-tuple of polynomials ~r satisfies the flatness condition, then
all syzygies of ~r are trivial.

Proof. First, consider the case where R is a domain (i.e., R = Z or Z/pZ with
p prime). We use induction on n. If n = 1, then the trivial syzygy 0 is the

only syzygy. Let ~f = (f1, . . . , fn) be a syzygy of ~r = (r1, . . . , rn) with n ≥ 2.
By Lemma 2.4, we can divide fi = rngi + hi with bound d = min{ldegn(fi)},
where ldegn(hi) ≥ d and hdegn(hi) < d+wdegn(rn) for 1 ≤ i ≤ n.

Since (g1r1, . . . , gn−1rn−1,−
∑n−1
i=1 giri) is a trivial syzygy of ~r, it suffices to

show that (h1, . . . , hn−1, fn+
∑n−1
i=1 giri) is a trivial syzygy of ~r. If

∑n−1
i=1 hiri =

(fn +
∑n−1
i=1 giri)rn is nonzero, then by taking wdegn of both sides, we obtain

wdegn(rn) > wdegn(
∑n−1

i=1 hiri) = wdeg((fn +
∑n−1

i=1 giri)rn) ≥ wdeg(rn),

a contradiction. Thus, we have fn+
∑n−1
i=1 giri = 0 and it remains to show that

~h = (h1, . . . , hn−1, 0) is a trivial syzygy of ~r. Let e = d+wdegn(rn)− 1. Write

hi = hidx
d
n + · · ·+ hiex

e
n for all 1 ≤ i ≤ n− 1 and ~hj = (h1j , . . . , h(n−1)j, 0) for

all d ≤ j ≤ e. Then, we have ~h = ~hdx
d
n+ · · ·+~hexen. By induction, all syzygies

~hj are trivial, so is ~h.
Now we consider the case R = Z/mZ. We proceed by induction on the number
of prime factors in m. If m is a prime, it follows from the previous case.
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Write m = pl, l > 1, where p is a prime. Let ~f = (fi) be a syzygy of ~r = (ri)
and let f̄ = (f̄i) be the corresponding syzygy of r̄ = (r̄i) over R̄ = Z/lZ for
1 ≤ i ≤ n. By induction, we have

f̄ =
∑

i,j

ḡijS̄ij for some ḡij ∈ R̄[Λ]. (*)

Set
~f ′ = ~f −

∑

i,j

gijSij , where gij is a preimage of ḡij in R[Λ].

By (*) we have f ′
i = lf ′′

i for some f ′′
i ∈ R[Λ]. Since ~f ′ is a syzygy of ~r,

we have 0 =
∑
i f

′
iri = l(

∑
i f

′′
i ri) in R[Λ]. Thus, ~f ′′ = (f ′′

i ) is a syzygy

of ~r modulo p. By the previous case, ~f ′′ is a trivial syzygy modulo p. So
~f ′′ =

∑
i,j g

′
ijSij + p~h for some n-tuple of polynomials ~h and preimages g′ij .

Then ~f ′ = l ~f ′′ =
∑
ij lg

′
ijSij is a trivial syzygy of ~r.

Definition 2.9. We say that a n-tuple of polynomials (q1, . . . , qn) satisfies a
generalized flatness condition if there exists a matrix A ∈ GLn(R[Λ]) such that
the n-tuple (r1, . . . , rn) = (q1, . . . , qn)A satisfies the flatness condition.

Lemma 2.10. Assume that a n-tuple of polynomials ~q = (q1, . . . , qn) satisfies
the generalized flatness condition. Then all syzygies of ~q are trivial.

Proof. Let A be a matrix such that ~r = ~qA satisfies the flatness condition. Let
~f = (f1, . . . , fn) be a syzygy of ~q. Then (as a product of matrices)

0 = ~q · ~f t = ~qA ·A−1 ~f t = ~r · ~g, where ~g = A−1 ~f t.

Hence, ~g is a syzygy of ~r and ~f = A~g. By Lemma 2.8 it suffices to prove that
if ~g = Sij is a trivial syzygy of ~r, then A~g is a trivial syzygy of ~q.
Let Mij , i 6= j denote a matrix where all entries are zeros except 1 at the
position (i, j) and −1 at the position (j, i). The matrixMij is skew-symmetric.
By definition, we have Sij = Mij(~r)

t. So all trivial syzygies of ~r are linear
combinations with coefficients in R[Λ] of Mij~r

t. Similarly, all trivial syzygies
of ~q are linear combinations of Mij~q

t.
Then we obtain A~g = AMij~r

t = AMijA
t~qt. Finally, since the matrixAMijA

t is
skew-symmetric, it is a linear combination with coefficients in R[Λ] of matrices
Mi′j′ for various i

′, j′.

3 The generators

Consider the weight lattice Λ of a semisimple root system corresponding to a
group G. Let T ∗ be a group of characters of a split maximal torus T of G. We
assume that T ∗ is of index 2 in Λ, i.e., Λ/T ∗ = Z/2Z.
Consider the Z/2Z-grading on Λ given by: a weight λ ∈ Λ has degree |λ| which
is its class in the quotient Λ/T ∗. We denote by Λ(0) = T ∗ the subgroup of Λ
of degree 0 and by Λ(1) = Λ \ T ∗ the subset of degree 1.
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There is an induced grading on the group ring R[Λ] so that R[Λ] = R[Λ(0)]⊕
R[Λ(1)]. Hence, we can uniquely express any f ∈ R[Λ] as a sum of its homoge-
neous components, i.e., f = f (0) + f (1). We say that f ∈ R[Λ] is homogeneous
of degree 0 or, equivalently, deg(f) = 0 (resp. f is of degree 1 or deg(f) = 1)
if f ∈ R[Λ(0)] (resp. f ∈ R[Λ(1)]).
Let {ω1, . . . , ωn} denote the set of fundamental weights (a Z-basis of Λ). Con-
sider the orbit W (ωi) of the fundamental weight ωi by means of the Weyl
group W . We denote by |i| the degree of ωi with respect to the grading and
by |W (ωi)| the number of elements in the orbit. Let

d = gcd
ωi∈Λ(1)

(|W (ωi)|) = gcd
|i|=1

(|W (ωi)|).

We set R = Z and we denote by bar the reduction modulo d, i.e., R̄ = Z/dZ.
We define

ρ(ωi) =
∑

λ∈W (ωi)

eλ and ρi = ρ(ωi)− |W (ωi)| ∈ R[Λ].

Since the Weyl group acts trivially on Λ/T ∗, we have deg(ρ(ωi)) = |i|. Reducing
modulo d we obtain deg(ρ̄i) = deg(ρ(ωi)) = |i|.
We will need the following

Lemma 3.1. Assume that (ρ̄1, . . . , ρ̄n) satisfies the generalized flatness condi-
tion with respect to some basis {xi} of Λ. Assume that fi ∈ R[Λ], i = 1, . . . , n
are such that deg(

∑
i fiρi) = 0.

Then there exist polynomials g1, . . . , gn ∈ R[Λ] such that
∑
i fiρi =

∑
i giρi and

ḡ
(1−|i|)
i = 0 for each i.

Proof. Since deg(
∑
i fiρi) = 0, we have

∑
i f̄

(1−|i|)
i ρ̄i = 0. Hence, by

Lemma 2.10 the n-tuple (f̄
(1−|i|)
i ) is a trivial syzygy of (ρ̄i). By Lemma 2.6

there exists a trivial syzygy (hi), hi ∈ R[Λ], of (ρi) such that h̄i = f̄
(1−|i|)
i . Set

gi = fi − hi.

After a possible reindexing, we may assume that the first n′ fundamental
weights {ω1, . . . , ωn′} have degree 1 and the remaining fundamental weights
have degree 0. For 1 ≤ i ≤ n′ we set

di = gcd
i≤j≤n′

(sj), where sj = |W (ωj)|.

So we have d = d1 | d2 | . . . | dn′ = sn′ . By a presentation of the gcd, there
exist integers (denoted ai,j , 1 ≤ i ≤ j ≤ n′) such that

di = ai,isi + ai,i+1si+1 + . . .+ ai,jsj + . . .+ ai,n′sn′ .

For 1 ≤ i < n′ we set

ρ̃i = ai,iρi + ai,i+1ρi+1 + . . .+ ai,n′ρn′ .
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By definition, the coefficient of ρ̃i at 1 = e0 is

−ai,isi − ai,i+1si+1 − . . .− ai,n′sn′ = −di.

Set ρ̃(ωi) = ρ̃i + di ∈ R[Λ(1)].

Definition 3.2. Fix λ0 ∈ Λ(1) and consider the following subsets of elements
in R[T ∗]:

(1) {h1,i = eλ0( risi ρ(ωi)−
ri
di+1

ρ̃(ωi+1)) | 1 ≤ i < n′, ri = lcm(si, di+1)}.

(2) {h2,i = ρ(ωi)ρ̃(ω1)− dsi | 1 ≤ i ≤ n′},

(3) {h3,i = ρi | n
′ < i ≤ n}.

Remark 3.3. The elements h1,i will be extensively used (see (11) and (13)) in
the computations of the group of semi-decomposable invariants.

Let I be the augmentation ideal of R[Λ], that is I is the kernel of the map
R[Λ] → R given by eλ 7→ λ. Let IWsc denote the ideal in R[Λ] generated by
elements from R[Λ]W ∩ I. By the Chevalley theorem IWsc is generated by the
elements ρi, 1 ≤ i ≤ n, i.e., any f ∈ IWsc can be written as f = f1ρ1+ . . .+fnρn
for some fi ∈ R[Λ].
Our main result is the following

Theorem 3.4. Assume that the n-tuple (ρ1, . . . , ρn) satisfies the generalized
flatness condition with respect to some basis {xi} of the weight lattice Λ.
Then the elements hk,i of Definition 3.2 generate the ideal IWsc ∩R[T

∗] in R[T ∗].

Proof. Suppose that f1ρ1 + . . .+ fnρn ∈ R[T ∗] for some fi ∈ R[Λ]. By Lemma

3.1 we may assume that d | f
(1−|i|)
i for each i.

To prove the theorem we modify (f1, . . . , fn) in several steps. At each step, we
subtract a linear combination of the elements hi,j (with coefficients in R[T ∗])
from f1ρ1 + . . .+ fnρn so that the new polynomials f ′

1, . . . , f
′
n have fewer non-

zero monomials. In the end they will all become 0, so that the original f1ρ1 +
. . .+ fnρn will be replaced by a linear combination of hi,j .
Step 1. By definition we have for 1 ≤ i ≤ n′

h2,i = ρ(ωi)ρ̃(ω1)− dsi = ρ(ωi)(ρ̃1 + d1)− dsi

= ρ(ωi)(a1,1ρ1 + a1,2ρ2 + . . .+ a1,n′ρn′ + d)− dsi

= a1,1ρ(ωi)ρ1 + . . .+ (a1,iρ(ωi) + d)ρi + . . .+ a1,n′ρ(ωi)ρn′ .

Since |i| = 1, d | f
(0)
i . Consider the difference

f ′
1ρ1 + . . .+ f ′

nρn = f1ρ1 + . . .+ fnρn − 1
df

(0)
i h2,i. (*)

Collecting the coefficients we obtain

Documenta Mathematica 22 (2017) 1117–1148



The K-Theory and Cohomological Invariants 1125

• f ′
j = fj for all j > n′,

• f
′(0)
j = f

(0)
j for all j ≤ n′ and j 6= i,

• f
′(0)
i = 0.

Hence, applying (*) for each i, 1 ≤ i ≤ n′ we obtain new coefficients (f ′
1, . . . , f

′
n)

such that f
′(0)
j = 0 for all j ≤ n′ and f ′

j = fj for all j > n′. (Observe that f
′(1)
j

for j ≤ n′ does not necessarily coincides with f
(1)
j .)

Step 2. We have for n′ < i ≤ n

ρ̃(ω1)h3,i = ρ̃(ω1)ρi = (a1,1ρ1 + a1,2ρ2 + . . .+ a1,n′ρn′ + d)ρi

= (a1,1ρi)ρ1 + . . .+ (a1,n′ρi)ρn′ + dρi.

Since |i| = 0, d | f
(1)
i . Consider the difference

f ′
1ρ1 + . . .+ f ′

nρn = f1ρ1 + . . .+ fnρn − 1
df

(1)
i ρ̃(ω1)h3,i. (**)

Collecting the coefficients we obtain

• f ′
j = fj for all j > n′ and j 6= i,

• f
′(0)
j = f

(0)
j for all j ≤ n′.

• f
′(1)
i = 0.

Hence, applying (**) for each i, n′ < i ≤ n we obtain new coefficients

(f ′
1, . . . , f

′
n) such that f

′(1)
j = 0 for all j > n′ and f

′(0)
j = 0 for all j ≤ n′.

Step 3. As a result of step 2, we have fi ∈ R[T ∗] for all i > n′. Subtracting

f1ρ1 + . . .+ fnρn −
∑

i>n′

fih3,i

we may assume that fi = 0 for all i > n′.
Step 4. Fix i, 1 ≤ i ≤ n′. If i > 1 we assume in addition that f1 = . . . = fi−1 =

0. So, we have fiρi + . . .+ fn′ρn′ ∈ R[T ∗], where f
(0)
j = 0 for all i ≤ j ≤ n′ by

previous steps. Hence, we can express it as

fiρi+. . .+fn′ρn′ = f
(1)
i ρ(ωi)+. . .+f

(1)
n′ ρ(ωn′)−(sif

(1)
i +. . .+sn′f

(1)
n′ ) ∈ R[T ∗].

Since deg(ρ(ωj)) = 1 for i ≤ j ≤ n′, we obtain

sif
(1)
i = −si+1f

(1)
i+1 − . . .− sn′f

(1)
n′ .

The right hand side of this equation is divisible by ri, hence,
ri
si

| f
(1)
i .
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By definition, we have

h1,i = eλ0( risi ρ(ωi)−
ri
di+1

ρ̃(ωi+1)) = eλ0( risi ρi −
ri
di+1

ρ̃i+1)

= eλ0( risi ρi −
ri
di+1

(ai+1,i+1ρi+1 + ai+1,i+2ρi+2 + . . .+ ai+1,n′ρn′))

Consider the difference

f ′
iρi + . . .+ f ′

n′ρn′ = fiρi + . . .+ fn′ρn′ − si
ri
f
(1)
i e−λ0h1,i. (***)

Collecting the coefficients we obtain f ′
i = 0 while keeping f

′(0)
j = f

(0)
j = 0 for

all i < j ≤ n′. Hence, applying (***) inductively starting with i = 1, we obtain
that fi = 0 for all 1 ≤ i ≤ n′.

4 The generalized flatness condition

In the present section we prove that the n-tuple of W -orbits (ρ1, . . . , ρn) in
R[Λ] satisfies the generalized flatness condition when Λ is a weight lattice for
a semi-simple root system of type A and C. Observe that it is enough to prove
the generalized flatness condition for each simple component.

4.1 Type A

Let Λ̃ = Zn+1 with a standard basis e1, . . . , en+1. The weight lattice of type

A is then given by Λ = Λ̃/(e1 + . . . + en+1). We denote the class of ei in Λ
by ēi. The basis of Λ is given by the fundamental weights ωi = ē1 + . . . + ēi,
i = 1, . . . , n. The Weyl group (the symmetric group Sn+1) acts by permutations
of {e1, . . . , en+1}. Let xi = eωi in Z[Λ] and let yi = eei in Z[Λ̃].
Consider the induced map φ : Z[Λ̃] → Z[Λ] given by φ(y1) = x1, φ(yi) = eēi =
xix

−1
i−1, 1 < i ≤ n and φ(yn+1) = x−1

n . The image of the elementary symmetric
function σi = σi(y1, . . . , yn+1) gives the W -orbit ρ(ωi).
Let gi be (the complete sum symmetric function) the sum of all monomials of
total degree i in variables y1, . . . , yn+2−i. We have the following analogue of
the Newton relation (see [16, Relation (2)]) for i > 0

i∑

j=0

(−1)jgj(y1, . . . , yn+2−j)σi−j(y1, . . . , yn+1−j) = 0 (here g0 = σ0 = 1) (1)

which implies that the ideal Iσ = (σ1, . . . , σn+1) in Z[y1, . . . , yn+1] coincides
with the ideal Ig = (g1, . . . , gn+1). Consider the involution τ of Z[y1, . . . , yn+1]
given by yi 7→ 1− yi. We get

(σ1 − s1, . . . , σn+1 − sn+1) = τ(Iσ) = τ(Ig) = (g̃1, . . . , g̃n+1),

where si = σi(1, . . . , 1) = |W (ωi)| and g̃i is the (non-homogeneous) polynomial
in variables y1, . . . , yn+2−i of degree i such that its coefficient at yin+2−i is ±1.
Taking its images in Z[Λ] we obtain

(ρ1, . . . , ρn) = φ(τ(Iσ)) = φ(τ(Ig)) = (r1, . . . , rn+1),
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where ρi = ρ(ωi)− si and ri = φ(g̃n+2−i). We claim that rn+1 can be written
as a linear combination of r1, . . . , rn. Indeed, taking the sum of relations (1)
for all i we obtain

1 =

n+1∑

i=0

(gi

n+1−i∏

j=1

(1− yj)).

After applying τ we obtain 1 =
∑n+1
i=0 g̃iy1 . . . yn+1−i. Since y1 . . . yn+1 = 1,

after taking its image in Z[Λ] we obtain the desired linear combination.

4.2 Type C

Consider the weight lattice Λ of type C. It is generated by the standard vectors
{e1, . . . , en} with fundamental weights ωi = e1 + . . .+ ei. The Weyl group W
acts on the standard vectors by permutations and changing signs. Consider the
embedding φ : Z[y1, . . . , yn] →֒ Z[Λ] given by φ(yi) = eei + e−ei . The image of
the elementary symmetric function σi = σi(y1, . . . , yn) gives theW -orbit ρ(ωi).
As in type A let gi be the sum of all monomials of total degree i in vari-
ables y1, . . . , yn+1−i. Then (σ1, . . . , σn) = (g1, . . . , gn) as ideals in Z[y1, . . . , yn].
Applying the involution τ we obtain (ρ1, . . . , ρn) = (r1, . . . , rn), where ρi =
ρ(ωi) − si, ri = φ(τ(gn+1−i) and si = |W (ωi)|. The n-tuple (r1, . . . , rn) sat-
isfies the flatness condition and there is an invertible transformation matrix
between ρi and ri.

5 Characters and invariants

In the present section we introduce some notation and recall basic definitions
for the group of characters, characteristic classes and invariants which will be
used in the subsequent sections. We follow [14], [15] and [1].

5.1 Characters.

Let H and H ′ be simply connected simple split groups of the same Dynkin
type D over a field F . Assume that there is a central diagonal subgroup µk in
H ×H ′. The quotient G = (H × H ′)/µk will be called a group of index k of
type D.
We denote by Tsc the split maximal torus of H ×H ′, by T the split maximal
torus of G and by Tad the split maximal torus of the product of the adjoint
forms Had×H ′

ad. Then there is an exact sequence for the groups of characters

0 → T ∗/T ∗
ad → T ∗

sc/T
∗
ad → Z/kZ → 0

which can be used to describe T ∗. Indeed, the quotient T ∗
sc/T

∗
ad is the group of

characters of the center Z(G) and the map T ∗
sc/T

∗
ad → Z/kZ is induced by the

diagonal embedding µk → Z(G). Moreover, T ∗
sc/T

∗
ad is the product of groups

of characters of the centers of H and H ′, hence,

T ∗
sc/T

∗
ad = Λw/Λr ⊕ Λ′

w/Λ
′
r → Z/kZ,
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is given by taking the sum, where Λw (resp. Λ′
w) is the weight lattice and Λr

(resp. Λ′
r) is the root lattice of H (resp. of H ′).

5.2 Invariant forms.

Let W = WH × WH′ be the Weyl group of H × H ′. It naturally acts on
T ∗
sc = Λw ⊕ Λ′

w. Consider the group of W -invariant quadratic forms. It is a
direct sum of cyclic groups

S2(T ∗
sc)

W = S2(Λw)
WH ⊕ S2(Λ′

w)
WH′ = Zq ⊕ Zq′,

where q and q′ are generators given by normalized Killing forms. So any form
φ ∈ S2(T ∗

sc)
W can be written uniquely as φ = dq + d′q′, d, d′ ∈ Z. The list of

Killing forms for all types can be found in [14, §4].
Let {ωi} and {ω′

i} denote the fundamental weights of H and H ′, i.e., the Z-
bases of Λw and Λ′

w. Choose a Z-basis {xi} of T ∗. Expressing each ωi and
ω′
i in terms of xj ’s and substituting into φ allows us to explicitly describe the

subgroup
Q(G) = S2(T ∗)W = S2(T ∗) ∩ S2(T ∗

sc)
W .

5.3 Characteristic map

Consider the group ring Z[T ∗
sc] that is the representation ring R(Tsc) of Tsc.

Each element of Z[T ∗
sc] can be written as a finite linear combination

∑
i aie

λi ,
ai ∈ Z, λi ∈ T ∗

sc. Fix a basis of T ∗
sc consisting of fundamental weights {ωi} and

{ω′
j}. Following [14, §3c] and [5] we define a Z[W ]-module homomorphism

c2 : Z[T
∗
sc] → S≤2(T ∗

sc) → S2(T ∗
sc)

by sending 1 7→ 1, e−ωi 7→ 1−ωi and eωi 7→ 1+ωi+ω
2
i (resp. for ω′

j) and then
taking the degree 2 homogeneous component.
Let Isc denote the augmentation ideal in Z[T ∗

sc], i.e., the kernel of the trace
map Z[T ∗

sc] → Z, eλ 7→ 1. Then the image c2(I
3
sc) = 0, so c2 can be restricted

to I2sc[5].
Observe that the filtration by powers of the ideal Isc can be viewed as a
γ-filtration on K0(BT ); its image in K0(G/B) via the characteristic map
c : Z[T ∗

sc] → K0(G/B) gives the Grothendieck γ-filtration on K0(G/B) (e.g.,
see [19]).

5.4 Invariants

Given λ ∈ T ∗ denote by ρ(λ) =
∑

χ∈W (λ) e
χ, where W (λ) is the W -orbit of λ.

If restricted to invariants, the map c2 defines a group homomorphism

c2 : Z[T
∗]W → S2(T ∗)W

with image generated by forms c2(ρ(λ)) = − 1
2

∑
χ∈W (λ) χ

2 for all λ ∈ T ∗

[14, §3c]. It was shown in [14] that the image c2(Z[T
∗]W ) can be identified
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with the group of degree 3 decomposable invariants Dec(G) and the quo-
tient Q(G)/Dec(G) with the group of indecomposable invariants denoted by
Inv3ind(G). By definition for any two semisimple groups G1, G2 we have

Q(G1 ×G2) = Q(G1)×Q(G2) and Dec(G1 ×G2) = Dec(G1)×Dec(G2). (2)

Let IWsc denote an ideal in Z[T ∗
sc] generated by W -invariants from the aug-

mentation ideal Isc, namely, IWsc = (Isc ∩ Z[T ∗
sc]

W ). The main result of [15]
says that the image c2(Z[T

∗] ∩ IWsc ) in S2(T ∗)W coincides with the subgroup
of semi-decomposable invariants Sdec(G) and that Dec(H) = Sdec(H) if H is
a simple group. Observe that we have

Dec(G) ⊆ Sdec(G) ⊆ Q(G). (3)

We denote by Inv3sd(G) the quotient Sdec(G)/Dec(G).

6 Type A

In the present section we consider semisimple groups of type A. The following
lemma gives a simple geometric proof for the coincidence between the normal-
ized invariants and semi-decomposable invariants (c.f. [1]):

Lemma 6.1. Let G = (
∏m
i=1 SLni

)/µk, m,ni, k ≥ 2, where µ ≃ µk is a
diagonal (central) subgroup. Then, Q(G) = Sdec(G), i.e., each degree 3 inde-
composable invariant of G is semi-decomposable.

Proof. We follow arguments used in [1, §5]. Assume

µ = {(λ1, . . . , λm) ∈ µn1
× · · · × µnm

| λk1 = · · · = λkm = 1, λ1 = · · · = λm}

is the diagonal subgroup. The corresponding versal flag variety X over the
function field F ′ of the classifying space of G can be replaced by the product of
Severi-Brauer varieties SB(A1)×· · ·×SB(Am), where Ai are central simple F ′-
algebras of degree ni for 1 ≤ i ≤ m such that k[Ai] = 0 and [A1] = · · · = [Am]
in the Brauer group Br(F ′). Let B be the common underlying division algebra
of A1, . . . , Am such that the index and the exponent of B are all equal to
k. Then, we obtain CH2(X)tors = CH2(SB(B))tors. By [10, Cor.4] we have
CH2(SB(B))tors = 0, thus by the main theorem of [15] Q(G) coincides with
Sdec(G).

Remark 6.2. Using arguments in [1] one can compute the quotient

Inv3ind(G) = Q(G)/ Sdec(G) = CH2(X)tors

for an arbitrary semisimple group G of type A. For instance, when m = 2, the
same arguments in the proof work if we replace the diagonal subgroup µ ≃ µ2

by a central subgroup µ2 × 1 ⊆ µn1
× µn2

or 1× µ2 ⊆ µn1
× µn2

.
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The following proposition deals with groups of p-primary index for any prime p,
which in turn computes the p-primary component of Inv3ind((SLm×SLn)/µk)
for any diagonal (central) subgroup µk.

Proposition 6.3. Let G = (SLm×SLn)/µ, m,n ≥ 2, where µ ≃ µk is a
p-primary diagonal (central) subgroup. Then,

Q(G) = {dq + d′q′ | ( k−1
k

)(md+ nd′) ≡ 0 mod 2k}

and

Dec(G) ≃











kZq ⊕ kZq′ if p 6= 2 or p = 2,min{v2(m), v2(n)} > v2(k),

kZ(q − q′)⊕ kZ(q + q′) if p = 2, v2(m) = v2(n) = v2(k),

kZq ⊕ 2kZq′ if p = 2, v2(m) > v2(k) = v2(n),

where q (resp. q′) is the normalized Killing form of SLm (resp. SLn).

Proof. Let G = (SLm×SLn)/µk, m,n, k ≥ 2, k | gcd(m,n), where µk is a
diagonal subgroup. Then, by 5.1 the character group of the split maximal
torus T of G is given by

T ∗ = {
m−1
∑

i=1

aiωi +
n−1
∑

j=1

a′

jω
′

j |

m−k

k
∑

r=0

k−1
∑

i=1

iai+rk +

n−k

k
∑

s=0

k−1
∑

i=1

ia′

i+sk ≡ 0 mod k}. (4)

Following 5.2 the group of W -invariant quadratic forms S2(T ∗
sc)

W is generated
by the normalized Killing forms

q =

m−1
∑

i=1

ω2
i −

m−2
∑

i=1

ωiωi+1 and q′ =

n−1
∑

j=1

ω′2
j −

n−2
∑

j=1

ω′

jω
′

j+1.

Consider the Z-basis {x1, . . . , xm−1, x
′
1, . . . , x

′
n−1} of the character group T ∗

given by

xi+rk = ωi+rk + iω′

n−1, xk+rk = ωk+rk and x′

i+sk = ω′

i+sk + iω′

n−1, x
′

k+sk = ω′

k+sk,

where 1 ≤ i ≤ k − 1, 0 ≤ r ≤ m−k
k , 0 ≤ s ≤ n−k

k (for convenience, we set
xj = x′j = 0 for any j > n−1 or j > m−1). In this basis a form φ ∈ S2(T ∗

sc)
W

can be written as

φ = (md(k−1)+nd′(k−1)
2k2 )x′2n−1 + ψ, d, d′ ∈ Z

where ψ is a quadratic form with integer coefficients. Hence, we obtain

Q(G) = {dq + d′q′ | (k−1
k )(md+ nd′) ≡ 0 mod 2k}. (5)

From now on we assume that k is p-primary. We claim that Dec(G) ⊆ kZq ⊕
kZq′. To show this we extend the arguments in [4, p.136]. We use the standard
presentation of the root system of type A, namely, that Λw (resp. Λ′

w) consists
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of vectors in the standard basis {e1, .., em} (resp. {e′1, .., e
′
n}) whose sum of

coordinates is zero.
Choose a character χ ∈ T ∗. Assume χ has l (resp. l′) distinct coordinates in
some order b1 > · · · > bl (resp. b′1 > . . . > b′l′) which repeat r1, .., rl (resp.
s1, .., sl′) times with respect to the basis {ei} (resp. {e′j}). Then, for the orbit
ρ(χ) of χ under the action of W we obtain

c2(ρ(χ)) =
n!

s1!···sl′ !
· [r, b] · q + m!

r1!···rl!
· [s, b′] · q′, where (6)

[r, b] = (m−2)!
r1!···rl!

(

m(
l
∑

i=1

rib
2
i )− (

l
∑

i=1

ribi)
2), [s, b′] = (n−2)!

s1!···sl!

(

n(
l′
∑

j=1

sjb
′2
j )− (

l′
∑

j=1

sjb
′

j)
2).

Observe that by (4) we have
∑
ribi+

∑
sjb

′
j ≡ 0 mod k. Let c = min{vp(ri)}

and d = min{vp(sj)}. If vp(k) ≤ d, then vp(k) ≤ vp(
∑
ribi). So we obtain

vp(k) ≤ vp(gcd(m,
∑
ribi)). Hence, by [4, p.137, Lemma 11.4] the coefficient

[r, b] is divisible by k. Similarly, if v2(k) ≤ c, then [s, b′] is divisible by k. Hence,
we may assume that c, d ≤ vp(k). By [4, p.137, Lemma 11.3], we have

vp
(

n!
s1!···sl′ !

)
≥ vp(k)− d ≥ 0 and vp

(
m!

r1!···rl!

)
≥ vp(k)− c ≥ 0,

which implies that

vp(gcd(m,
∑

ribi)) ≥ d and vp(gcd(n,
∑

sjb
′
j)) ≥ c.

Therefore, again by [4, p.137, Lemma 11.4] we see that each coefficient of q and
q′ in (6) is divisible by k, which proves the claim.
Finally, we compute the group Dec(G) case by case. As

c2(ρ(kω1)) = −k2q, c2(ρ(2ω1 − ω2)) = −2mq (7)

and similarly, c2(ρ(kω
′
1)) = −k2q′, c2(ρ(2ω′

1 − ω′
2)) = −2mq′, we have

gcd(2, p)kq ∈ Dec(G) if vp(m) = vp(k) (8)

and similarly, gcd(2, p)kq′ ∈ Dec(G) if vp(n) = vp(k). Moreover, we get

c2(ρ(ωk)) = (kk′)q with gcd(k′, p) = 1 if vp(m) > vp(k) (9)

and similarly, c2(ρ(ωk)) = (kk′′)q with gcd(k′′, p) = 1 if vp(n) > vp(k) (see also
[2, Thm.4.1]). Thus if p 6= 2, then by (7) and (9) we obtain

gcd(k2, kk′)q = kq ∈ Dec(G), gcd(k2, kk′′)q = kq′ ∈ Dec(G).

Therefore, by (8) and the claim above, Dec(G) = kZq ⊕ kZq′ if p 6= 2.
Now assume that p = 2. If v2(m) > v2(k) and v2(n) > v2(k), then by (7), (9)
and the claim above, we have Dec(G) = kZq ⊕ kZq′.
If v2(m) = v2(n) = v2(k), then c2(ρ(ωk/2+ω

′
k/2)) ≡ −kq−kq′ mod 2k. Hence,

by (8), k(q − q′), k(q + q′) ∈ Dec(G). Since Dec(SLm /µk) = 2kq if v2(m) =
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v2(k), and Dec(SLn /µk) = 2kq′ if v2(n) = v2(k) ([2, Thm.4.1]), it follows from
the claim above that Dec(G) = kZ(q − q′)⊕ kZ(q + q′).
Similarly, if v2(m) > v2(k) = v2(n), then by (7) and (9) we have kq ∈ Dec(G).
Since Dec(SLn /µk) = 2kq′, we get kq′, k(q ± q′) 6∈ Dec(G). Therefore, by the
claim we obtain Dec(G) = kZq ⊕ 2kZq′.

Remark 6.4. This proposition and its proof generalize [14, Theorem 4.4] and
[2, Theorem 4.1] for split simple groups G′ = SLm /µk of type A.
Indeed, following the proof of Proposition 6.3 one can easily check that Q(G′) =
Q(G)|d′=0. For instance, in order to obtain Q(PGLm) we simply set d′ = 0
and k = m in (5), then we get Q(PGLm) = 2 gcd(2,m)Zq [14, Theorem 4.4].
Similarly, we can obtain Dec(PGLm) in the same way.
To compute the indecomposable groups for G′ = SL2m /µ2, we set d′ = 0,
k = 2. Then it follows by Proposition 6.3 that Q(G′) = {dq |md ≡ 0 mod 4}
and

Dec(G′) =

{

2Zq if v2(m) > 0,

4Zq if v2(m) = 0.

Hence, we obtain [2, Theorem 4.1], that is

Inv3ind(G
′) ≃

{

(Z/2Z)q if v2(m) ≥ 2,

0 otherwise.

Finally observe that together with Lemma 6.1, properties (2) and (3) it com-
putes the group Inv3sd(G

′′), where G′′ = (SL2m /µ2)× SL2n, n,m ≥ 1.

The following corollary generalizes [15, Example 3.1] to groups of type A (see
also [1]). Similarly, by using Lemma 6.1 and Proposition 6.3, one can compute
both groups Inv3ind(G) and Inv3sd(G) for any p-primary diagonal subgroup µk.

Corollary 6.5. Let G = (
∏m
i=1 SL2ni

)/µ2, ni ≥ 1, where µ2 is the diagonal
subgroup. Then

Inv3sd(G) = Inv3
ind(G) =

{

(Z/2Z)⊕m if ni ≡ 0 mod 4 ∀i,

(Z/2Z)⊕m−1 otherwise.

Proof. Let G = (SL2m×SL2n)/µ2. Then, it follows from Proposition 6.3 that

Inv3
ind(G) ≃



















(Z/2Z)q ⊕ (Z/2Z)q′ m ≡ n ≡ 0 mod 4,

(Z/2Z)q m ≡ 0, n ≡ 2 mod 4 or m ≡ 0 mod 4, n is odd,

(Z/2Z)(q − q′) m ≡ n ≡ 2 mod 4 or both m,n are odd,

(Z/2Z)(q − 2q′) m ≡ 2 mod 4, n is odd.

Hence, the result follows by Lemma 6.1. Applying the same arguments for
three and more groups completes the proof.

In the following we show that the both indecomposable group Inv3ind(G) and
the semi-decomposable group Inv3sd(G) can have an arbitrary order (c.f. [1]).
In particular, the order can be arbitrarily large.
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Corollary 6.6. For an arbitrary integer k ≥ 2 there exists a semisimple group
G of type A such that

| Inv3
ind(G)| = | Inv3sd(G)| = k.

Moreover, for any homocyclic p-group C there exists a semisimple group H of
type A such that Inv3ind(H) = Inv3sd(H) = C.

Proof. Let pr (r ≥ 1) be a prime factor of k and let n = gcd(2, p)pr. We
denote G[pr] = (SLn×SLn)/µpr , where µpr is the diagonal subgroup. By
Proposition 6.3 we have

Inv3ind(G[p
r]) = Inv3sd(G[p

r]) = Z/prZ.

Set G = (SLgcd(2,k)k ×SLgcd(2,k)k)/µk. Then, the same argument as in [15,

§3b] shows that Inv3ind(G[p
r]) is a p-primary component of Inv3ind(G) and the

first statement follows from Lemma 6.1.
Let C = (Z/prZ)⊕m be a homocyclic p-group of rank m for some prime p.
It suffices to consider the case m ≥ 2. Let H = (SLn)

m/µpr , where n =

gcd(2, p)p2r and µpr is the diagonal subgroup. Then, the arguments used in
the proof of Proposition 6.3 yield

Q(G) = {

m
∑

i=1

diqi | (n/p
r)

m
∑

i=1

di ≡ 0 mod gcd(2, p)pr},

where qi is the corresponding normalized Killing form of SLn. Similarly, we
have Dec(G) =

⊕m
i=1 p

rZqi. Then the second statement follows by Remark 6.2.

7 Type B

In the present section we show that any semi-decomposable invariant of
semisimple groups of type B is decomposable, except in the case of a prod-
uct of groups of type B2 = C2 modulo the diagonal subgroup µ2. We first
consider the index 2 case.

Proposition 7.1. Let G = (Spin2m+1 ×Spin2n+1)/µ2, m,n ≥ 2, where µ2

is the diagonal subgroup. Then, we have Inv3ind(G) = Z/2Z and

Inv3
sd(G) =

{

Z/2Z if m = n = 2,

0 otherwise,

i.e., each semi-decomposable invariant is decomposable unless m = n = 2.

Proof. Following 5.1 the character group of the split maximal torus T of G is
given by

T ∗ = {

m
∑

i=1

aiωi +

n
∑

i=1

a′

iω
′

i | am ≡ a′

n mod 2}.
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Following 5.2 the group S2(T ∗
sc)

W is generated by the normalized Killing forms

q =
m−1
∑

i=1

(ω2
i − ωiωi+1) + 2ω2

m − ωm−1ωm, q′ =
n−1
∑

i=1

(ω′2
i − ω′

iω
′

i+1) + 2ω′2
m − ω′

m−1ω
′

m.

Choose a Z-basis {ω1, . . . , ωm−1, ω
′
1, . . . , ωm−1, v1, v

′
1} of T

∗ where v1 = ωm+ω′
n

and v′1 = ωm − ω′
n. For any φ ∈ S2(T ∗)W there exist d, d′ ∈ Z such that

φ = dq + d′q′, thus in this basis we have

φ = 1
2 (d+ d′)(v21 + v′21 ) + ψ

for some quadratic form ψ with integer coefficients. Hence, we obtain

Q(G) = {dq + d′q′ | d+ d′ ≡ 0 mod 2} = Z(q − q′)⊕ Z(q + q′). (10)

We claim that Dec(G) = 2Zq⊕2Zq′. The result for the group of indecomposable
invariants then follows immediately. To prove the claim, since q = 1

2 (
∑m

i=1 e
2
i )

and q′ = 1
2 (
∑n

j=1 e
′2
j ) in terms of the standard basis of T ∗

sc = Zm ⊕ Zn, we
conclude that c2(ρ(ω1)) = 2q and c2(ρ(ω

′
1)) = 2q′ are contained in Dec(G).

On the other hand, as Dec(G) is generated by c2(ρ(λ)) for all λ ∈ T ∗ and the
Weyl group of G contains normal subgroups (Z/2Z)m and (Z/2Z)n generated
by sign switching, we see that the coefficient at each ei in the expansion of
c2(ρ(λ)) is divisible by 2 (c.f. [4, Lemma 14.2]).
We now compute the group Sdec(G). Assume that m = n = 2. Consider the
element

y = eω2z ∈ Z[T ∗] ∩ IWsc with z = ρ̄(ω2)− ρ̄(ω′
2), (11)

where ρ̄(ωi) denotes the augmented orbit ρ(ωi)− |W (ωi)|. As (eω2 − 1)z ∈ I3sc,
we see that c2(y) = c2(z). Since c2(ρ̄(ω2)) = q and c2(ρ̄(ω

′
2)) = q′, we conclude

that q − q′ ∈ Sdec(G). Therefore, Inv3sd(G) = Z/2Z.
Assume that m,n ≥ 3. We will show that q − q′ which is a generator of
Inv3ind(G) does not belong to Sdec(G). Let x ∈ Z[T ∗]∩IWsc . Similar to [15, §3c]
write

x =
m
∑

i=1

(di + δi)ρ̄(ωi) +
n
∑

j=1

(d′j + δ′j)ρ̄(ω
′

j)

for some di, d
′
j ∈ Z and δi, δ

′
j ∈ Isc. As c2(I

3
sc) = 0, we have

c2(x) =

m
∑

i=1

dic2(ρ̄(ωi)) +

n
∑

j=1

d′jc2(ρ̄(ω
′

j)).

On the other hand, we have

c2(ρ̄(ωi)) = 2miq and c2(ρ̄(ω
′
j)) = 2m′

jq
′

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n and for some mi,m
′
j ∈ Z. Hence, c2(x) ≡

0 mod 2, thus q − q′ 6∈ Sdec(G). Similarly, if m = 2 and n ≥ 3, then c2(x) ≡
(d1 + d2)q mod 2, thus q − q′ 6∈ Sdec(G), which completes the proof.
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The previous proposition yields the following. Combining these results we
obtain both indecomposable and semi-decomposable subgroups for an arbitrary
split semisimple group of type B modulo central subgroups µ2.

Corollary 7.2. (1) Let G =
∏m
i=1 SO2ni+1, ni ≥ 2. Then,

Inv3ind(G) = Inv3
sd(G) = 0.

(2) Let G = (
∏m
i=1 Spin2ni+1)/µ2, ni ≥ 2, m ≥ 2, where µ2 is the diagonal

subgroup. Then,

Inv3
ind(G) = (Z/2Z)⊕m−1

and Inv3
sd(G) = (Z/2Z)⊕k−1,

where k is the number of ni’s such that ni = 2.

(3) Let G = (
∏m
i=1 Spin2ni+1)× (

∏m′

i=1 SO2n′

i
+1), ni, n

′
i ≥ 2. Then,

Inv3
ind(G) = (Z/2Z)⊕k

and Inv3
sd(G) = 0,

where k is the number of ni’s such that ni ≥ 3.

Proof. (1) We set d′ = 0 in (10). Then, we obtain Q(SO2m+1) = 2Zq ([14,
§4b]). It immediately follows from the proof of Proposition 7.1 that we also
have Dec(SO2m+1) = 2Zq.
(2) This follows by the same argument as in Proposition 7.1.
(3) As Dec(Spin2n+1) = Sdec(Spin2n+1) for any n ≥ 2, the same argument as
in (1) shows that Sdec(G) = Dec(G). By [4, Theorem 13.4], Q(Spin2n+1) =

2Dec(Spin2n+1) for any n ≥ 3 and Inv3ind(Spin5) = 0, thus the same argument
as in (1) proves the result for the indecomposable group.

8 Type C

In the present section we compute the groups of indecomposable and semi-
decomposable invariants for semisimple groups of type C. In particular, we
show that for groups G = (

∏m
i=1 SP2ni

)/µ2, where m ≥ 2, ni 6≡ 0 mod 4 for all
i = 1, . . . ,m, and µ2 is the diagonal subgroup, any indecomposable invariant
is semi-decomposable.
We consider the index 2 case, which generalizes the example [15, Example 3.1]
(the case n = m = 1) to groups of type C.

Proposition 8.1. Let G = (SP2m×SP2n)/µ2, m,n ≥ 1 where µ2 is the
diagonal subgroup. Then, we have

Inv3
ind(G) =

{

Z/2Z⊕ Z/2Z if m ≡ n ≡ 0 mod 4,

Z/2Z otherwise,

and

Inv3
sd(G) =

{

Z/2Z if m ≡ n ≡ 0 or m 6≡ 0 6≡ n mod 4,

0 otherwise.

In particular, if both n and m are not divisible by 4, then each indecomposable
invariant is semi-decomposable.
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Proof. Let {e1, · · · , em, e′1, · · · , e
′
n} be a standard basis of T ∗

sc = Zm⊕Zn. Then
T ∗ consists of all linear combinations of standard basis elements with even sums
of coefficients. Consider the Z-basis {x1, . . . , xm, x′1, . . . , x

′
n} of T ∗ given by

x1 = e1 + e′1, x
′
1 = e1 − e′1, xi = e1 − ei, x

′
j = e′1 − e′j, i, j, > 1,

The standard basis can be expressed in terms of this basis over Q as

ei = e1 − xi, e
′
j = e′1 − x′j , where e1 = 1

2 (x1 + x′1) and e
′
1 = 1

2 (x1 − x′1).

The group S2(T ∗
sc)

W is generated by q =
∑m

i=1 e
2
i and q

′ =
∑n

j=1 e
′2
j . Therefore,

for any φ ∈ S2(T ∗
sc)

W there exist d, d′ ∈ Z such that φ = dq + d′q′ =

d
(

1
4
(x1 + x′

1)
2 +

∑

i>1

( 1
2
(x1 + x′

1)− xi)
2
)

+ d′
(

1
4
(x1 − x′

1)
2 +

∑

j>1

( 1
2
(x1 − x′

1)− x′

j)
2
)

.

The form φ has integer coefficients at x1x
′
1, xix

′
j , x

2
i , x

′2
j , i, j > 1 and it has

coefficient 1
4 (dm+ d′n) at x21 and at x′21 . Hence,

Q(G) = {dq + d′q′ | dm+ d′n ≡ 0 mod 4}. (12)

Consider the subgroup Dec(G) of decomposable invariants of G. As in the
proof of [4, Lemma 14.2], since the Weyl group of G contains normal sub-
groups (Z/2Z)m and (Z/2Z)n generated by sign switching, we conclude that
the coefficient at each ei in the expansion of qχ is divisible by 2, hence,
Dec(G) ⊆ 2Zq ⊕ 2Zq′. Since c2(ρ̄(2e1)) = 4q and c2(ρ̄(2e

′
1)) = 4q′, we have

4Zq ⊕ 4Zq′ ⊆ Dec(G).
Assume n ≡ m ≡ 0 mod 2. Since c2(ρ̄(x2)) = 2(m − 1)q and c2(ρ̄(x

′
2)) =

2(n−1)q′, we obtain Dec(G) = 2Zq⊕2Zq′ and Q(G) = {dq+d′q′ | dm2 +d′ n2 ≡
0 mod 2}. Hence,

Inv3
ind(G) ≃



















(Z/2Z)q ⊕ (Z/2Z)q′ if n ≡ m ≡ 0 mod 4,

(Z/2Z)q if m ≡ 0 6≡ n mod 4,

(Z/2Z)q′ if m 6≡ 0 ≡ n mod 4,

(Z/2Z)(q + q′) if m 6≡ 0 6≡ n mod 4.

Assume both n and m are odd. If n ≡ −m mod 4, then Q(G) = {dq + d′q′ |
d ≡ d′ mod 4} ≃ Z/4Z(q + q′). Since c2(ρ̄(x1)) = 2nq + 2mq′, Dec(G) =
2Z(q + q′) ⊕ 2Z(q − q′) and, therefore, Inv3ind(G) ≃ (Z/2Z)(q + q′). Similarly,
if n ≡ m mod 4, then Inv3ind(G) ≃ (Z/2Z)(q − q′).
Finally, assume n is odd andm is even. Ifm ≡ 0 mod 4, then Q(G) = Zq⊕4Zq′.
Since c2(ρ̄(x2)) = 2(m−1)q, Dec(G) = 2Zq⊕4Zq′, hence, Inv3ind(G) ≃ (Z/2Z)q.
If m 6≡ 0 mod 4, then d′ is even and

Q(G) = {dq + d′q′ | d+ d′

2 ≡ 0 mod 2} = {(0̄, 0̄), (2̄, 0̄), (1̄, 2̄), (−1̄, 2̄)},

where (d̄, d̄′) denotes dq + d′q′ modulo 4. Since Dec(G) = 2Zq + 4Zq′, we have
Inv3ind(G) ≃ (Z/2Z)(q + 2q′).
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As for semi-decomposable invariants, consider the element (cf. with h1,i of
Definition 3.2)

z = n
gcd(m,n) ρ̄(ω1)−

m
gcd(m,n) ρ̄(ω

′
1). (13)

By definition, we have y = ee1z ∈ Z[T ∗] ∩ IWsc and we obtain

c2(y) = c2((1 + (ee1 − 1))z) = c2(z) =
n

gcd(m,n)q −
m

gcd(m,n)q
′

where the second equality holds since (ee1 − 1)z ∈ I3sc. The element c2(y) ∈
Sdec(G) coincides with the generator of Inv3ind(G) = Z/2Z except if n ≡ m ≡
0 mod 4. So Inv3sd(G) = Inv3ind(G) = Z/2Z except if n ≡ m ≡ 0 mod 4.
Assume that m ≡ n ≡ 0 mod 4. Then {q, q′} are generators of the group of
indecomposable invariants. Consider an arbitrary element x ∈ Z[T ∗]∩ IWsc and
the ring homomorphism

φ : Z[T ∗
sc] → Z[T ∗

sc/T
∗] = Z[t]/(t2 − 2t)

given by φ(1−e−wodd) = φ(1−e−w
′

odd) = t and φ(1−e−weven) = φ(1−e−w
′

even) =
0. Write

x =
m
∑

i=1

(di + δi)ρ̄(ωi) +
n
∑

j=1

(d′i + δ′i)ρ̄(ω
′

i), di, d
′

j ∈ Z, δi, δ
′

j ∈ Isc.

Since kerφ ⊃ Z[T ∗] ∩ IWsc , we obtain

0 = φ(x) =
∑

odd i

2i
(

m

i

)

(di + 2si)t+
∑

odd j

2j
(

n

j

)

(d′j + 2s′j)t.

Observe that if 2r | m and i is odd, then 2r |
(
m
i

)
. Dividing by the 2-primary

part 2r of the greatest common divisor of all the coefficients we obtain

(m/2r−1)d1 + (n/2r−1)d′1 ≡ 0 mod 2,

where 2r−1 = g.c.d.(v2(n), v2(m)) is the g.c.d. of the 2-primary parts. There-
fore,

{

d1 + d′1 ≡ 0 mod 2 if v2(m) = v2(n)

d1 ≡ 0 mod 2 if v2(m) < v2(n).
(14)

We then have

c2(x) = (

m
∑

i=1

2i−1

(

m− 1

i− 1

)

di)q + (

n
∑

j=1

2j−1

(

n− 1

j − 1

)

d′j)q
′.

So c2(x) ≡ d1q + d′1q
′ mod Dec(G), where d1 and d′1 satisfy (14).

Since

c2(y) =

{

q + q′ mod Dec(G) if v2(n) = v2(m)

q′ mod Dec(G) if v2(m) < v2(n)

we conclude that c2(y) is also a generator of Inv3sd(G) ≃ Z/2Z.
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We now present a generalization of the previous proposition, which in turn
determine both indecomposable and semi-decomposable subgroups for an ar-
bitrary split semisimple group of type C modulo central subgroups µ2.

Corollary 8.2. (1) Let G =
∏m
i=1 PGSp2ni

, m,ni ≥ 1. Then,

Inv3
ind(G) ≃ (Z/2Z)⊕k,

where k is the number of ni’s which are divisible by 4, and Sdec(G) = Dec(G),
i.e., each semi-decomposable invariant is decomposable.
(2) Let G = (

∏m
i=1 SP2ni

)/µ2, m,ni ≥ 1, where µ2 is the diagonal subgroup.
Then,

Inv3ind(G) =

{

(Z/2Z)⊕m if ∀ni ≡ 0 mod 4,

(Z/2Z)⊕m−1 otherwise,

and

Inv3
sd(G) =

{

(Z/2Z)⊕m−1 if ∀ni ≡ 0 or ∀ni 6≡ 0 mod 4,

(Z/2Z)⊕m−2 otherwise.

(3) Let G = (
∏m
i=1 PGSp2ni

)× (
∏m′

i=1 SP2n′

i
), ni, n

′
i ≥ 1. Then,

Inv3
ind(G) = (Z/2Z)⊕k

and Sdec(G) = Dec(G),

where k is the number of ni’s which are divisible by 4.

Proof. (1) Let G1 = PGSp2m and G2 = PGSp2n, m,n ≥ 1. It suffices to
consider the case G = G1×G2 since the same arguments can be easily adapted
to prove the case of three and more groups. We simply set d′ = 0 (resp. d = 0)
in 12. Then, we have Q(G1) = 4/ gcd(4,m)Zq (resp. Q(G2) = 4/ gcd(4, n)Zq′).
Similarly, by the proof of Proposition 8.1 we get Dec(G1) = 4/ gcd(2,m)Zq
(resp. Dec(G2) = 4/ gcd(2, n)Zq′) ([14, §4b]). By (2) the answer for Inv3ind(G)
then follows.
As for semi-decomposable invariants, by (3) and Dec(G) = Q(G) for n 6≡
0 mod 4, it suffices to consider the case n ≡ m ≡ 0 mod 4. We follow arguments
used in [15, §3c].
Let x ∈ Z[T ∗] ∩ IWsc be an arbitrary element. Write

x =

m∑

i=1

(di + δi)ρ̄(ωi) +

n∑

j=1

(d′j + δ′j)ρ̄(ω
′
j)

for some di, d
′
j ∈ Z and δi, δ

′
j ∈ Isc. Consider the ring homomorphism induced

by the quotient map T ∗
sc → T ∗

sc/T
∗

φ : Z[T ∗
sc] −→ Z[T ∗

sc/T
∗] = Z[Λw/Λr]⊗ Z[Λ′

w/Λ
′
r] = Z[t, t′]/(t2 − 2t, t′2 − 2t′).

It is given by

φ(1− e−ωodd) = t, φ(1− e−ω
′

odd) = t′ and φ(1− e−ωeven) = φ(1− e−ω
′

even) = 0.
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Since x ∈ Z[T ∗], φ(x) = 0. Moreover, we have φ(Isc) = (t, t′) and φ(ρ̄(ωi)) =
|W (ωi)| · t, φ(ρ̄(ω′

i)) = |W (ω′
i)| · t

′. Combining these facts we obtain

0 =
m∑

i=1

(di + φ(δi))φ(ρ̄(ωi)) +
n∑

j=1

(d′j + φ(δ′j))φ(ρ̄(ω
′
j))

=
∑

odd i

|W (ωi)| · (di + sit+ s′it
′)t+

∑

odd j

|W (ω′
j)| · (d

′
j + rjt+ r′jt

′)t′,

for some si, s
′
i, rj , r

′
j ∈ Z. Since |W (ωi)| = 2i

(
m
i

)
, collecting the coefficients at

t and t′, we get
d1 + 2s1 ≡ d′1 + 2r′1 ≡ 0 mod 2.

Hence, both d1 and d′1 are even.
We now compute c2(x). Since c2(I

3
sc) = 0 and c2(ρ̄(ωi)) = 2i−1

(
m−1
i−1

)
q, we

obtain

c2(x) =

m∑

i=1

dic2(ρ̄(ωi)) +

n∑

j=1

d′jc2(ρ̄(ω
′
j)) = 2sq + 2rq′, for some r, s ∈ Z.

Therefore, Sdec(G1) ⊆ 2Zq = Dec(G1) and Sdec(G2) ⊆ 2Zq′ = Dec(G2).
(2) This immediately follows from the same argument as in Proposition 8.1.
(3) As Dec(SP2n) = Sdec(SP2n) = Q(SP2n) for any n ≥ 1 ([4, Theorem
14.3]), the same argument as in (1) shows that Sdec(G) = Dec(G) and the
result for the indecomposable subgroup.

9 Type D

In this section we calculate the groups of indecomposable and semi-
decomposable invariants for an arbitrary product of simply-connected simple
groups of type D modulo the (diagonal) central subgroups. We first consider
the groups of index 2 and 4.

Proposition 9.1. Let G = (Spin2m×Spin2n)/µ, where m,n ≥ 4 and m+ n
is even, and µ is a diagonal subgroup of G. Then

Inv3
ind(G) =

{

Z/4Z if µ ≃ µ4,

Z/2Z if µ ≃ µ2,
and Inv3sd(G) =

{

Z/2Z if µ ≃ µ4,

0 if µ ≃ µ2.

Proof. Observe that there is a unique diagonal subgroup µ ≃ µ4 in the case
where m and n are odd and there are two different diagonal subgroups µ ≃ µ2
: µ ⊆ µ

2
4 if both m and n are odd and µ ⊆ µ

4
2 otherwise. First, assume that

µ ≃ µ4. Then, by 5.1 the character group of the split maximal torus T of G is
given by

{

m
∑

i=1

aiωi +
n
∑

j=1

a′

iω
′

i

∣

∣ am−1 +3am +2

m−1
2
∑

i=1

a2i−1 ≡ 3a′

n−1 + a′

n +2

n−1
2
∑

j=1

a′

2j−1 mod 4
}

.

(15)
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Write
∑m

i=1 aiωi+
∑n

j=1 a
′
iω

′
i =

∑m
i=1 biei+

∑n
j=1 b

′
ie

′
i in terms of the standard

basis vectors {e1, · · · , em, e′1, · · · , e
′
n} of T ∗

sc = Zm ⊕ Zn. Then, the relation in
(15) is equivalent to

2(bm−2+bm−1+bm+

m−3
2
∑

i=1

b2i−1−b2i) ≡ 2(b′n−2+b′n−1−b′n+

n−3
2
∑

j=1

b2j−1−b2j) mod 4.

(16)
Using (15) we choose the following basis {x1, . . . , xm, x′1, . . . , x

′
n} of T ∗:

x2i−1 = ω2i−1 + 2ω′

n, x2k = ω2k, xm−1 = ωm−1 + ω′

n, xm = ωm + 3ω′

n,

x′

2j−1 = ω′

2j−1 + 2ω′

n, x′

2l = ω′

2l, x′

n−1 = ω′

n−1 + ω′

n, x′

n = 4ω′

n

(17)

for 1 ≤ i ≤ (m − 1)/2, 1 ≤ k ≤ (m − 3)/2, 1 ≤ j ≤ (n − 1)/2, and 1 ≤ l ≤
(n− 3)/2.
Let ψ be a quadratic form on (17) with integer coefficients. As the group
S2(T ∗

sc)
W is generated by the normalized Killing forms

q :=

m
∑

i=1

ω2
i − 2

m−2
∑

i=1

ωiωi+1 − 2ωm−2ωm = (

m
∑

i=1

e2i )/2,

q′ :=

n
∑

j=1

ω′2
j − 2

n−2
∑

j=1

ω′

jω
′

j+1 − 2ω′

n−2ω
′

n = (

n
∑

j=1

e′2j )/2,

from the equation φ = dq + d′q′ we get

φ = (md+nd
′

8 )x′2n + ψ,

where ψ is a quadratic form on (17) with integer coefficients. Therefore,

Q(G) = {dq + d′q′ |md+ nd′ ≡ 0 mod 8}. (18)

We show that Dec(G) = 4Z(q − q′) + 4Z(q + q′). First, by (15) we see that all
elements c2(ρ(2ω1)) = −8q, c2(ρ(2ω

′
1)) = −8q′, c2(ρ(ω1 + ω′

1)) = −4nq− 4mq′

are contained in Dec(G), thus 4(q−q′), 4(q+q′) ∈ Dec(G). On the other hand,
since Dec(G) is generated by c2(ρ(λ)) for all λ ∈ T ∗ and W contains normal
subgroups (Z/2Z)m−1 and (Z/2Z)n−1, we see that the coefficient at each ei in
the expansion of c2(ρ(λ)) is divisible by 2, thus, Dec(G) ⊆ 4Zq ⊕ 4Zq′ (note
that by (18) 4q, 4q′ 6∈ Dec(G)). Hence,

Inv3
ind(G) = Z/4Z( n

gcd(m,n)
q − m

gcd(m,n)
q′).

Now we show that Sdec(G) = 2Z( n
gcd(m,n)q −

m
gcd(m,n)q

′). First of all, as

c2(ρ̄(ωi)) = 2miq and c2(ρ̄(ω
′
j)) = 2m′

jq
′ (19)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n and for somemi,m
′
j ∈ Z, by the same argument

as in the proof of Proposition 7.1 we obtain n
gcd(m,n)q −

m
gcd(m,n)q

′ 6∈ Sdec(G).

On the other hand, consider an element

z = n
gcd(m,n) ρ̄(ω1)−

m
gcd(m,n) ρ̄(ω

′
1).

Documenta Mathematica 22 (2017) 1117–1148



The K-Theory and Cohomological Invariants 1141

Then, by (16) we obtain y := ee1z ∈ Z[T ∗] ∩ IWsc . Therefore, as in the proof of
Proposition 8.1, we have c2(y) = 2( n

gcd(m,n)q −
m

gcd(m,n)q
′) ∈ Sdec(G). Hence,

the result for Inv3sd(G) follows.
Now we assume that µ ≃ µ2, so that µ ⊆ µ

2
4 if m and n are odd and µ ⊆ µ

4
2

otherwise. In both cases, the corresponding character group of T is given by

T ∗ =
{

m
∑

i=1

aiωi +
n
∑

j=1

a′

iω
′

i

∣

∣ am−1 + am ≡ a′

n−1 + a′

n mod 2
}

.

By applying the same argument in the above µ ≃ µ4 case, we obtain

Q(G) = {dq + d′q′ | d+ d′ ≡ 0 mod 2}.

Since c2(ρ(ω1)) = −2q and c2(ρ(ω
′
1)) = −2q′, we have 2q, 2q′ ∈ Dec(G). More-

over, by (19), we get q − q′ 6∈ Sdec(G), thus Sdec(G) = Dec(G) = 2Zq ⊕ 2Zq′

and Inv3ind(G) = Z/2Z(q − q′).

We obtain the following generalization of the previous proposition. Together
with Remark 9.3, they determine the groups of indecomposable and semi-
decomposable invariants for an arbitrary product of simply-connected simple
groups of type D modulo the central subgroups µ2.

Corollary 9.2. Let G = (
∏m
i=1 Spin2ni

)/µ, ni ≥ 4, m ≥ 1, where either all
ni are even or odd, and µ is a diagonal subgroup. Then,

Inv3
ind(G) =

{

(Z/4Z)m−1 if µ ≃ µ4,

(Z/2Z)m−1 if µ ≃ µ2,
and Inv3sd(G) =

{

(Z/2Z)m−1 if µ ≃ µ4,

0 if µ ≃ µ2.

Proof. By the same argument as in Proposition 9.1, we obtain

Q(G) =

{
{
∑m
i=1 diqi |

∑
nidi ≡ 0 mod 8} if µ ≃ µ4,

{
∑m
i=1 diqi |

∑
di ≡ 0 mod 2} if µ ≃ µ2,

where q1, . . . , qm are the corresponding normalized Killing forms of Spin2ni
.

Similarly,

Dec(G) =

{⊕m
i=2 4Z(q1 − qi)⊕ 4Z(q1 + q2) if µ ≃ µ4,⊕m
i=1 2Zqi if µ ≃ µ2,

thus, the factor groups follow. Following Proposition 9.1, we see that

Sdec(G)/Dec(G) =
m⊕

i=2

Z/2Z( ni

gcd(n1,ni)
q1 −

n1

gcd(n1,ni)
qi)

if µ ≃ µ4 and q1 − qi 6∈ Sdec(G) for all 2 ≤ i ≤ m if µ ≃ µ2, which completes
the proof.
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Remark 9.3. (1) Let G′ = G × (
∏m′

i=1 Spin2n′

i
), where G is the group from

Corollary 9.2. Then, similar to the proof of Proposition 9.1 one can show
that Inv3sd(G

′) = Inv3sd(G). Moreover, by [4, Theorem 15.4] Inv3ind(G
′) =

Inv3ind(G)⊕ (Z/2Z)⊕m
′

.

(2) Let G′ = G × (
∏m′

i=1 Spin2n′

i
), where G is either SO2m or HSpin2m. If

G = SO2m, then by [4, §15] Dec(G) = Dec(Spin2m), thus Dec(G′) = Sdec(G′).
Similarly, if G = HSpin2m, then it follows from [2, §5] and [15, §3d] that
Dec(G′) = Sdec(G′). One can also easily compute the indecomposable groups.

10 The PGO8-case

In the present section we use the techniques developed in section 3 to give a
direct proof of the main result of [15, Appendix].
In this section, G = PGO8 that is an adjoint group of Dynkin type D4. The
weight lattice of type D4 can be constructed as follows. We first take a Q-
vector space with basis e1, . . . , e4. Then Λ has the following Z-basis consisting
of fundamental weights:

ω1 = e1, ω2 = e1 + e2, ω3 = (e1 + e2 + e3 − e4)/2, ω4 = (e1 + e2 + e3 + e4)/2.

So the coordinates of elements of Λ are either all integers or half-integers.

The group T ∗ consists of all points such that all coordinates are integers, and
the sum of coordinates is divisible by 2. We have Λ/T ∗ = Z/2Z ⊕ Z/2Z
with elements 0̄ = (0, 0), ω̄1 = (0, 1), ω̄3 = (1, 0), ω̄4 = (1, 1). The quotient
map Λ → Λ/T ∗ induces a grading on Λ and, hence, on Z[Λ]. We denote
by Λ(0,0),Λ(0,1),Λ(1,0),Λ(1,1) the respective homogeneous components. Each
polynomial f ∈ Z[Λ] can be split into a sum of its homogeneous components,
which we will denote by f (i,j). Denote the orbits in Z[Λ] by ρ(ω1), . . . , ρ(ω4)
and the augmented orbits by ρ1, . . . , ρ4 as in section 3.

Lemma 10.1. Let f1, . . . , f4 ∈ Z[Λ] be such that f1ρ1 + . . . + f4ρ4 ∈ Z[T ∗].
Then, for each element i ∈ Λ/T ∗ except for i = (0, 1) the sum of coefficients of

f
(i)
1 is even.

Proof. Consider a subgroup

Λ′ = {x1e1 + x2e2 + x3e3 + x4e4 ∈ T ∗ | x2 + x3 + x4 and x1 is even}.

We have Λ/Λ′ = Z/2Z⊕ Z/4Z with a generator ω̄1 of order 2 and ω̄4 of order
4.

Set R = Z/4Z. Consider a natural map Z[Λ] → R[Λ/Λ′] given by f 7→ f̄ .
Since Λ′ ⊂ T ∗, R[Λ/Λ′] is also a Λ/T ∗-graded algebra, and this map preserves
the grading. By definition, the sum of coefficients of f modulo 4 is the sum of
coefficients of f̄ . So, it is sufficient to prove that for each element i ∈ Λ/T ∗

except for i = (0, 1), the sum of coefficients of f̄
(i)
1 = f̄

(i)
1 is even.
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Since ρ̄1 = 2ee1 + 2ee2 , ρ̄2 = ρ̄3 = ρ̄4 = 0 in R[Λ/Λ′] and f̄1ρ̄1 + . . . + f̄4ρ̄4 ∈
R[T ∗/Λ′], we obtain that f̄1ρ̄1 ∈ R[T ∗/Λ′]. Since ρ̄1 ∈ Z[Λ(0,1)], for each
i ∈ Λ/T ∗, i 6= 0, we have

0 = (f̄1ρ̄1)
(i) = f̄

(i−(0,1))
1 ρ̄1 = 2ee1(1 + ee1+e2)f̄

(i−(0,1))
1 .

Therefore, for each j ∈ Λ/T ∗, j 6= (0, 1), all coefficients of (1 + ee1+e2)f̄
(j)
1 are

divisible by 2.

Observe that the classes of 0 and of ω2 in Λ/Λ′ are all elements of Λ/Λ′ that
belong to T ∗/Λ′. So, if λ ∈ Λ/Λ′, and f ∈ R[Λ/Λ′], then the coefficient of
(1+ee1+e2)f at eλ is the sum of coefficients of f in front of eλ

′

for all λ′ ∈ Λ/Λ′

such that λ = λ′ mod T ∗ (there are exactly two such λ′, one of them is λ, the
other is λ + e1 + e2). If f is a homogeneous polynomial of degree j ∈ Λ/T ∗,
and λ ∈ Λ/Λ′ is mapped to j by the natural projection Λ/Λ′ → Λ/T ∗, then
the coefficient of (1 + ee1+e2)f in front of eλ is the sum of all coefficients of f .

Therefore, the sum of all coefficients of f̄
(j)
1 is divisible by 2 for each j ∈ Λ/T ∗,

j 6= (0, 1).

Lemma 10.2. Let f1, . . . , f4 ∈ Z[Λ] be such that f1ρ1 + . . . + f4ρ4 ∈ Z[T ∗].
Then,

(1) for each element i ∈ Λ/T ∗ except for i = (1, 0) the sum of coefficients of

f
(i)
3 is even;

(2) for each element i ∈ Λ/T ∗ except for i = (1, 1) the sum of coefficients of

f
(i)
4 is even.

Proof. (1) Consider an automorphism ψ of Λ (induced by an outer automor-
phism of PGO8) that interchanges ω1 and ω3 and keeps ω2 and ω4 invariant.
It preserves T ∗. So, it also acts on Λ/T ∗ = Z/2 ⊕ Z/2 by interchanging (0, 1)
and (1, 0) (and keeping (0, 0) and (1, 1)).

By definition ψ maps the graded components of a polynomial f ∈ Z[T ∗] to
graded components of ψ(f), more precisely, ψ(f (i)) = ψ(f)ψ(i). In particular,
ψ(f)(0,1) = ψ(f (1,0)).

Since ψ interchanges ρ1 and ρ3, and keeps ρ2 and ρ4 unchanged,

ψ(f1ρ1 + . . .+ f4ρ4) = ψ(f1)ρ3 + ψ(f2)ρ2 + ψ(f3)ρ1 + ψ(f4)ρ4.

Finally, observe that the sum of coefficients of ψ(f) is the same as the sum of
coefficients of f . We then apply Lemma 10.1.

(2) The proof is completely similar to the proof of the previous case, the only
difference is that now ψ should interchange ω1 and ω4 and keep ω2 and ω3

unchanged.

Proposition 10.3. Let f1, . . . , f4 ∈ Z[Λ] be such that f1ρ1+. . .+f4ρ4 ∈ Z[T ∗].
Then the sum of all coefficients of fi is even for i = 1, 3, 4.
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Proof. Set ω(0,1) = ω1, ω(1,0) = ω3, ω(1,1) = ω4, and ω(0,0) = ω2. Then the
class of ω(i,j) in Λ/T ∗ is precisely (i, j).
Set R = Z/16Z and consider the natural map Z[Λ] → R[Λ/T ∗] given by f 7→ f̄ .
Since f1ρ1+. . .+f4ρ4 ∈ Z[T ∗], ρ̄i = 8eωi−8, i = 1, 3, 4 and ρ̄2 = 24eω2−24 = 0,

f̄1ρ̄1 + f̄3ρ̄3 + f̄4ρ̄4 is a constant in R[Λ/T ∗].

For i = 1, 3, 4 and (j, k) ∈ Λ/T ∗, denote by c
(j,k)
i the sum of coefficients of

f
(j,k)
i modulo 16. Then f̄

(j,k)
i = c

(j,k)
i eω(j,k) . By Lemma 10.1 and 10.2, all

numbers c
(j,k)
i are even, except for, possibly, c

(0,1)
1 , c

(1,0)
3 , and c

(1,1)
4 . Observe

that if c
(j,k)
i is even, then c

(j,k)
i eω(j,k) ρ̄i = 0 in R[Λ/T ∗] since ρ̄i is divisible by

8. Therefore, both expressions

c
(0,1)
1 eω1 ρ̄1 + c

(1,0)
3 eω3 ρ̄3 + c

(1,1)
4 eω4 ρ̄4 and

8c
(0,1)
1 eω1 + 8c

(1,0)
3 eω3 + 8c

(1,1)
4 eω4 + 8(c

(0,1)
1 + c

(1,0)
3 + c

(1,1)
4 )

are constants in R[Λ/T ∗].

So, the coefficients c
(0,1)
1 , c

(1,0)
3 , and c

(1,1)
4 are even which means that for all

i = 1, 3, 4 and (j, k) ∈ Λ/T ∗, c
(j,k)
i is even. But then the sum of all coefficients

of fi is even for i = 1, 3, 4.

We now give a direct proof of the result obtained in [15, Appendix] using a
computer algorithm

Corollary 10.4. If G = PGO8, then any semi-decomposable invariant of G
is decomposable.

Proof. Let x ∈ Z[T ∗] ∩ IWsc . Similar to [15, §3c] we write

x =

4∑

i=1

(di + δi)ρ̄(ωi) for some di ∈ Z, δi ∈ Isc.

Then c2(x) =
∑4

i=1 dic2(ρ̄i). By Proposition 10.3 we have d1 ≡ d3 ≡ d4 ≡
0 mod 2. Since c2(ρ̄i) = 2q for i = 1, 3, 4 and c2(ρ̄2) = 12q by [15, §3d], we
obtain that c2(x) ∈ 4Zq = Dec(G).

11 Type E

We now treat the exceptional cases. In the following we show that any semi-
decomposable invariant is decomposable for semisimple groups of type E6 and
E7.

Lemma 11.1. Let G be a split semisimple group of type E6 or E7. Then,
Sdec(G) = Dec(G), i.e., each semi-decomposable invariant is decomposable.
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Proof. We denote by Ead6 (resp. Ead7 ) a split simple adjoint group of type E6

(resp. E7) and by Esc6 (resp. Esc7 ) a split simple simply connected group of
type E6 (resp. E7). We first consider the case where G is a semisimple group
of type E6, i.e., G = (Esc6 × · · · × Esc6 )/µ (n copies of Esc6 ) for some central
subgroup µ. Let q1, · · · , qn be the corresponding normalized Killing forms for
each copy of Esc6 in G. Since Dec(Esc6 ) = Dec(Ead6 ) = 6qi by [14, §4b], we
have Dec(Esc6 × · · · × Esc6 ) = Dec(Ead6 × · · · × Ead6 ) = 6Zq1 ⊕ · · · ⊕ 6Zqn. As
Dec(Ead6 × Ead6 ) ⊆ Dec(G) ⊆ Dec(Esc6 × Esc6 ), we conclude that Dec(G) =
6Zq1 ⊕ · · · ⊕ 6Zqn.
Now we show Sdec(G) ⊆ Dec(G). Similar to the proof of Proposition 7.1, we
consider an arbitrary element x ∈ IWsc :

x =
n∑

j=1

6∑

i=1

(dij + δij)ρ̄(ωij)

for some dij ∈ Z and δij ∈ Isc, where {ω1j, . . . , ω6j} is the fundamental weights
of each copy of Esc6 . Since c2(I

3
sc) = 0, we obtain

c2(x) =

n∑

j=1

6∑

i=1

dijc2(ρ̄(ωij)). (20)

By [11, §2], each element c2(ρ̄(ωij)) in (20) iz contained in 6Zqj . Hence,
Sdec(G) ⊆ Dec(G), so the equality holds.
Let G = (Esc7 × · · · × Esc7 )/µ (n copies of Esc7 ) for some central subgroup µ.
Then, the same argument together with Dec(Esc6 ) = Dec(Ead6 ) = 12qi ([14,
§4b]) shows that Dec(G) = Sdec(G) = 12Zq1 ⊕ · · · ⊕ 12Zqn.

We determine the indecomposable groups for an arbitrary product of split
simply-connected simple groups of type E6 (resp. E7) modulo the diagonal
subgroups µ3 (resp. µ2).

Proposition 11.2. (1) Let G = (Esc6 × · · · ×Esc6 )/µ3 with n (≥ 2) copies of a
split simple simply connected group Esc6 of type E6 and the diagonal subgroup
µ3. Then

Inv3ind(G) = Z/2Z⊕ (Z/6Z)⊕n−1 and Sdec(G) = Dec(G).

(2) Let G = (Esc7 × · · · × Esc7 )/µ2 with n (≥ 2) copies of a split simple simply
connected group Esc7 of type E7 and the diagonal subgroup µ2. Then

Inv3ind(G) = Z/3Z⊕ (Z/12Z)⊕n−1 and Sdec(G) = Dec(G).

Proof. By Lemma 11.1, it suffices to compute the indecomposable groups.
(1) Assume that n = 2. Then, by 5.1 the character group of the split maximal
torus T of G is given by

T ∗ = {

6
∑

i=1

aiωi +

6
∑

i=1

a′

iω
′

i | a1 + a′

1 + a5 + a′

5 ≡ a3 + a′

3 + a6 + a′

6 mod 3}. (21)
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Choose a basis {x1, . . . x6, x′1, . . . , x
′
6} of (21) as follows

x1 = ω1 + ω′

6, x2 = ω2, x3 = ω3 + 2ω′

6, x4 = ω4, x5 = ω5 + ω′

6, x6 = ω6 + 2ω′

6,

x′

1 = ω′

1 + ω′

6, x
′

2 = ω′

2, x
′

3 = ω′

3 + 2ω′

6, x
′

4 = ω′

4, x
′

5 = ω′

5 + ω′

6, x
′

6 = 3ω′

6.

Let φ be a quadratic form on xi, x
′
i over Z. Since the group S2(T ∗

sc)
W is

generated by the normalized Killing forms

q := ω2
1 − ω1ω3 + ω2

2 − ω2ω4 + ω2
3 − ω3ω4 + ω2

4 − ω4ω5 + ω2
5 − ω5ω6 + ω2

6 and

q′ := ω′2
1 − ω′

1ω
′

3 + ω′2
2 − ω′

2ω
′

4 + ω′2
3 − ω′

3ω
′

4 + ω′2
4 − ω′

4ω
′

5 + ω′2
5 − ω′

5ω
′

6 + ω′2
6 ,

(22)

from the equation φ = dq + d′q′, we obtain

φ = (2d+2d′

3 )x′26 + ψ,

where ψ is a quadratic form with integer coefficients. Therefore,

Q(G) = {dq + d′q′ | d+ d′ ≡ 0 mod 3}. (23)

Therefore, by (23) and the proof of the previous lemma, we obtain

Inv3ind(G) = Z/2Z(3q + 3q′)⊕ Z/6Z(q + 2q′).

For n ≥ 3, the same argument shows that

Q(G) = {d1q + · · · dnqn |
n∑

i=1

di ≡ 0 mod 3},

where q1, . . . , qn are the corresponding normalized Killing forms. Hence, the
result for the indecomposable group follows from Lemma 11.1.
(2) Assume that n = 2. Then, by 5.1 the character group of the split maximal
torus T of G is given by

T ∗ = {

7
∑

i=1

aiωi +

7
∑

i=1

a′

iω
′

i | a2 + a5 + a7 ≡ a′

2 + a′

5 + a′

7 mod 2}.

Since the group S2(T ∗
sc)

W is generated by the normalized Killing forms

q := q6 − ω6ω7 + ω2
7 and q′ := q′6 − ω′

6ω
′

7 + ω′2
7 ,

where q6 and q′6 are the normalized Killing forms of E6 in (22), the same
argument as in (1) shows

Q(G) = {dq + d′q′ | d+ d′ ≡ 0 mod 4}.

Hence, by Lemma 11.1 Inv3ind(G) = Z/3Z(4q′)⊕Z/12Z(q− q′). For n ≥ 3, the
same argument shows that Q(G) = {d1q+· · · dnqn |

∑n
i=1 di ≡ 0 mod 4}, where

q1, . . . , qn are the corresponding normalized Killing forms, which comptues the
indecomposable group together with Lemma 11.1.
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Remark 11.3. (1) Let G = (Ead6 ×· · ·×Ead6 )×(Esc6 ×· · ·×Esc6 ), n(≥ 0) copies of
Ead6 and m(≥ 0) copies of Esc6 . It follows by (2), (23) and the proof of Lemma
11.1 that Inv3ind(G) = (Z/2Z)⊕n⊕ (Z/6Z)⊕m. Similarly, for the same group G
replacing E6 by E7, we have Inv3ind(G) = (Z/3Z)⊕n ⊕ (Z/12Z)⊕m.
(2) Note that the center µ3×µ3 of Esc6 ×Esc6 contains two nontrivial ( 6= µ3×1,
1× µ3) central subgroups which is isomorphic to µ3: a diagonal subgroup and
a non-diagonal subgroup. Assume that µ is non-diagonal. Then, the character
group of T becomes

T ∗ = {
6∑

i=1

aiωi +
6∑

i=1

a′iω
′
i | a1 + a′3 + a5 + a′6 ≡ a′1 + a3 + a′5 + a6 mod 3}.

In this case, we have the same Q(G) as in (23), thus have the same indecom-
posable group.
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