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Abstract. We introduce and begin a systematic study of sublinearly
contracting projections.

We give two characterizations of Morse quasi-geodesics in an arbitrary
geodesic metric space. One is that they are sublinearly contracting;
the other is that they have completely superlinear divergence.

We give a further characterization of sublinearly contracting projec-
tions in terms of projections of geodesic segments.
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1 Introduction

This paper initiates a systematic study of contracting projections. The aim is
to clarify and quantify ways in which a subspace of a geodesic metric space can
‘behave like’ a convex subspace of a hyperbolic space.
The definition of hyperbolicity captures the notion that a space is uniformly
negatively curved on all sufficiently large scales. Following Gromov’s seminal
paper [21], hyperbolic groups and spaces have been intensively studied and
many generalizations of this notion have been considered.
One particular collection of ideas focus on finding ‘hyperbolic directions’,
geodesics that have some of the features exhibited by geodesics in hyperbolic
spaces, for instance, those that satisfy the Morse lemma, have superlinear di-
vergence or satisfy some contraction hypothesis. These ideas find application
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to Mostow rigidity in rank 1 [29], the Rank Rigidity Conjecture for CAT(0)
spaces [4, 8, 11], and hyperbolicity of the curve complex of a hyperbolic surface
[24, 22]. Recently, the concept of strongly contracting projection has been a
topic of intense interest in relation to mapping class groups and outer auto-
morphisms of free groups [1, 7], acylindrically hyperbolic groups [16, 28], and
contracting/Morse boundaries [30, 31, 13, 14, 25].
We introduce a more general version of contracting projection than has been
previously studied. Our main result is that this new version of contraction
is equivalent to the Morse property and to a certain superlinear divergence
property. We give quantitative links between these various geometric properties.
We also generalize several fundamental theorems about stronger versions of
contraction to our new, more general, context.
In this paper we establish fundamental results in a very general setting, so
that they will be broadly applicable. Indeed, the novel version of contracting
projections we introduce here is essential in a subsequent paper [3], in which we
explore the geometry of finitely generated graphical small cancellation groups,
a class that includes the Gromov monster groups as notorious examples. In
that paper we engineer finitely generated groups with Cayley graphs that mimic
the surprising geometry of our examples from Section 3. In particular, the new
spectrum of contracting behaviors in geodesic metric spaces that we discover
here does appear in the setting of Cayley graphs of finitely generated groups.
We also, in [3], use the equivalence between sublinear contraction and the Morse
property established here in Theorem 1.4 to characterize Morse geodesics in
certain families of graphical small cancellation groups.
Since the preprint version of this article appeared there have already been other
applications of our results, including work of Cordes and Hume [15] and Cashen
and Mackay [12] on Morse boundaries of finitely generated groups and work
of Aougab, Durham, and Taylor [2] on cocompact subgroups of mapping class
groups and Out(Fn).

We give detailed introductions to the three main geometric properties in Sec-
tions 1.1, 1.2, and 1.3 and make precise statements of our results in Sections
1.4 and 1.5.
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1.1 Contracting projections

Let Y be a subspace of a geodesic metric space X , and let ǫ > 0. The ǫ–closest
point projection of X to Y is the map πǫ

Y : X → 2Y sending a point x ∈ X to
the set:

πǫ
Y (x) := {y ∈ Y | d(x, y) 6 d(x, Y ) + ǫ} ⊂ Y

We do not assume the sets πǫ
Y (x) have uniformly bounded diameter. Note that

given any x ∈ X , ∅ 6= Y ⊂ X , and ǫ > 0, the set πǫ
Y (x) is non-empty.

Definition 1.1. The ǫ–closest point projection πǫ
Y : X → 2Y is (ρ1, ρ2)–

contracting if the following conditions are satisfied.

• The empty set is not in the image of πǫ
Y .

• The functions1 ρ1 and ρ2 are non-decreasing and eventually non-negative.

• The function ρ1 is unbounded and ρ1(r) 6 r.

• For all x, x′ ∈ X , if d(x, x′) 6 ρ1(d(x, Y )) then:

diamπǫ
Y (x) ∪ πǫ

Y (x
′) 6 ρ2(d(x, Y ))

• limr→∞
ρ2(r)
ρ1(r)

= 0.

We say that Y is (ρ1, ρ2)–contracting if there exists ǫ > 0 such that πǫ
Y is

(ρ1, ρ2)–contracting, see Definition 6.4. We say a collection of subspaces {Yi}i∈I

is uniformly contracting if there exist ρ1 and ρ2 such that for all i ∈ I, the
subspace Yi is (ρ1, ρ2)–contracting.
The rough idea is that, asymptotically as x gets far from Y , if B is a ball
centered at x and disjoint from Y then the diameter of its projection is negligible
compared to the diameter of B. More accurately, this is true at a specific
scale — when the radius of B is ρ1(d(x, Y )). We claim no finer control of the
projection diameter when B has smaller radius.
For a simple, but conceptually useful, example, consider a circle X and an arc
Y ⊂ X . Take ρ1(r) := r, and let ρ2 be the constant function whose value is the
distance between the endpoints of Y . Then π0

Y is (ρ1, ρ2)–contracting. There is
a unique point x ∈ X farthest from Y . The ball B of radius ρ1(d(x, Y )) about
x is all of X r Y , and π0

Y (B) = π0
Y (x) has diameter ρ2(d(x, Y )).

The simplest example that is not (ρ1, ρ2)–contracting for any choice of ρ1 and
ρ2 is to take X to be the Euclidean plane and take Y to be a geodesic. Then
the diameter of π0

Y of any ball is equal to the diameter of the ball, so we cannot

satisfy limr→∞
ρ2(r)
ρ1(r)

= 0.

1The term ‘function’ always refers to a real valued function whose domain, unless otherwise
noted, is the non-negative real numbers.
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The simplest contracting example with Y unbounded is to take X to be a tree
and Y to be an unbounded convex subspace. Then diamπ0

Y (Bd(x,Y )(x)) = 0
for every x, so π0

Y is (r, 0)–contracting. In more general δ–hyperbolic spaces,
ǫ–closest point projection to a geodesic is (r,D)–contracting for some D de-
pending only on δ and ǫ. Such a case, when ρ1(r) := r and ρ2 is bounded, is
called strongly contracting.

Pseudo-Anosov axes in Teichmüller space are strongly contracting [24], as are
iwip axes in the Outer Space of the outer automorphism group of a free group
[1] and axes of rank 1 isometries of CAT(0) spaces [4, 8].

We say that πǫ
Y is semi-strongly contracting if it is (ρ1, ρ2)–contracting for

ρ1(r) := r/2 and ρ2 bounded. Related notions have been considered in the
context of the mapping class group of a hyperbolic surface [22, 5, 19].

We say that πǫ
Y is sublinearly contracting if it is (ρ1, ρ2)–contracting for

ρ1(r) := r. In this case the definition implies ρ2 is a sublinear function,
see Definition 2.1. Similarly, πǫ

Y is logarithmically contracting if it is (ρ1, ρ2)–
contracting for ρ1(r) := r and ρ2 logarithmic.

A schematic diagram of different contracting behaviors is given in Figure 1. A
wide range of examples are presented in Section 3.

Not contracting Sublinearly contracting Strongly contracting

Figure 1: Types of contraction

1.2 The Morse property

Definition 1.2. A subspace Y of a geodesic metric space X is µ–Morse for
a function µ : [1,∞) × [0,∞) → [0,∞) if for every L > 1 and A > 0, every
(L,A)–quasi-geodesic γ with endpoints on Y remains within distance µ(L,A)
of Y .
The subspace Y is called Morse, or is said to have the Morse property, if it
µ–Morse for some function µ. A collection of subspaces {Yi}i∈I is said to be
uniformly Morse if there exists a function µ such that for all i ∈ I the subspace
Yi is µ–Morse.

Morse quasi-geodesics have been intensively studied: they play a key role in
boundary theory for hyperbolic and relatively hyperbolic groups. Recently, the
Charney school [30, 31, 13, 14, 25] has been generalizing such boundary theories
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to arbitrary proper geodesic metric spaces using the so called ‘Morse boundary’
consisting of asymptotic equivalence classes of Morse rays.
Morse quasi-geodesics have been characterized2 in terms of cut-points in asymp-
totic cones [17]: a quasi-geodesic q in X is Morse if and only if every point x
in the limit q of q in any asymptotic cone C of X is a cut-point separating ends
of q; that is, C r {x} has at least two connected components containing points
of q. Cut-points in asymptotic cones are a key element of the proof of the
quasi-isometry invariance of relatively hyperbolic (asymptotically tree-graded)
spaces [18]. It remains a very important open question to determine whether
a space in which every asymptotic cone admits a cut-point necessarily admits
a Morse quasi-geodesic.
As a result, it is of great interest to find and classify Morse quasi-geodesics. If
a solvable group admits a Morse quasi-geodesic then it is virtually cyclic, and
the same holds for any other group satisfying a non-trivial law, for instance, a
torsion group with bounded exponent [18]. At the other extreme, every quasi-
geodesic in a hyperbolic space is Morse. There are non-trivial classifications of
Morse quasi-geodesics for relatively hyperbolic groups [27] and CAT(0) spaces
[4, 8, 31]. We use the tools of this paper to perform such a classification for
graphical small cancellation groups in [3].

1.3 Divergence

Closely related to the study of Morse quasi-geodesics is the notion of divergence.
The definition is technical, so we postpone it until Definition 5.1. The idea is
that the divergence of a quasi-geodesic γ in a space X is a function whose
value at r is the minimal length of a path in X circumventing a ball of radius
r centered on γ. In our version of divergence we allow the forbidden ball to be
centered at different points of γ for different values of r. Some authors require
the balls to have fixed center at γ(0).
Morse geodesics were used to produce cut points in asymptotic cones. Diver-
gence can be used to rule them out [17]: if G is a finitely generated group then
no asymptotic cone of G admits a cut point if and only if there exists a constant
K such that for any finite geodesic [a, b] with midpoint c, there is a path from
a to b avoiding the ball centered at c with radius d(a, b)/4−2 of length at most
Kd(a, b) +K. The interplay between divergence and Morse quasi-geodesics is
explored in [17] and [6].
Morally, for a quasi-geodesic γ the Morse property and linear divergence are op-
posites. The Morse property says good (quasi-geodesic) paths between points
of γ stay close to γ, and linear divergence says it is easy for a path between
points of γ to stray far from γ. However, there are some subtleties. There
are groups that admit quasi-geodesics with superlinear divergence, yet have an
asymptotic cone with no cut point, and therefore no Morse quasi-geodesics [26].
By construction, for each of these groups there is an unbounded sequence (rn)
such that the divergence is linear (it satisfies the above conditions for a fixed

2See also the related “middle recurrence” characterization of the Morse property in [17].
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K) whenever d(a, b) = rn for some n. We say a geodesic metric space has com-
pletely superlinear divergence if no such unbounded sequence exists. We show
in Theorem 1.5 that this is the precise divergence property that characterizes
Morse quasi-geodesics.

1.4 Main theorems

Restricted to quasi-geodesics, our main results say:

Theorem 1.3. Let X be a geodesic metric space. Let γ be a quasi-geodesic in
X. The following are equivalent:

1. γ is sublinearly contracting.

2. γ is Morse.

3. γ has completely superlinear divergence.

Special cases of this theorem have appeared before. If X is hyperbolic then
these conditions are well-known properties of arbitrary quasi-geodesics, and
conditions (1) and (3) can be strengthened to ‘strongly contracting’ and ‘at least
exponential divergence’, respectively. If X is CAT(0) and γ is a geodesic then
this is a recent theorem of Charney and Sultan [13]. In that case, conditions (1)
and (3) can be strengthened to ‘strongly contracting’ and ‘at least quadratic
divergence’, respectively. Our theorem establishes these equivalences in full
generality.
The Morse and contraction properties make sense for subspaces of X , not just
quasi-geodesics. Our main theorem is:

Theorem 1.4. Let Y be a subspace of a geodesic metric space X. Let ǫ > 0
be such that πǫ

Y does not contain the empty set in its image. The following are
equivalent:

1. There exists µ : [1,∞)× [0,∞) → [0,∞) such that Y is µ–Morse.

2. There exists µ′ : [1,∞) → [0,∞) such that every continuous (L, 0)–quasi-
geodesic with endpoints on Y remains in the µ′(L)-neighborhood of Y .

3. There exists ρ such that πǫ
Y is (r, ρ)–contracting.

4. There exist ρ1 and ρ2 such that πǫ
Y is (ρ1, ρ2)–contracting.

Moreover, in each implication we bound the parameters of the conclusion in
terms of the parameters of the hypothesis, independent of Y .

Divergence, on the other hand, is specialized to quasi-geodesics.

Theorem 1.5. Let γ be a quasi-geodesic in a geodesic metric space X. The
following are equivalent:

1. γ is Morse.
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2. γ has completely superlinear divergence.

Moreover, the Morse function can be bounded in terms of the divergence func-
tion, independent of γ.

We mention a further characterization of Morse quasi-geodesics: It can be
shown fairly easily that a quasi-geodesic γ : I → X is Morse if and only if the
collection of its subsegments {γJ | J is a subinterval of I} is uniformly Morse.
Moreover, the Morse functions for γ and for the subsegments can be bounded
in terms of one another and the quasi-geodesic constants of γ. The quantitative
nature of the equivalences in Theorem 1.4 then implies that γ is Morse if and
only if the collection of its subsegments is uniformly contracting.

1.5 Further applications

We consider several important theorems about strongly contracting projections
that have appeared in the literature, and generalize them by proving sublinear
analogues.
The first of these results is the ‘Bounded Geodesic Image Property’, cf [23, 8].
This says that if πǫ

Y is strongly contracting then there exist constants A and
B such that if γ is a geodesic segment with d(γ, Y ) > A, then diamπǫ

Y (γ) 6
B. In fact, this property is equivalent to strong contraction. We prove, in
Theorem 7.1, that πǫ

Y is (r, ρ)–contracting if and only if there exist a constant
A and a function ρ′ ≍ ρ such that if γ is a geodesic segment with d(γ, Y ) > A
then

diamπǫ
Y (γ) 6 ρ′(max{d(x, Y ), d(x′, Y )}),

where x and x′ are the endpoints of γ.
The second strong contraction result is one of the ‘Projection Axioms’ of Bestv-
ina, Bromberg, and Fujiwara [7]. It says that if πǫ

Y and πǫ′

Y ′ are both strongly
contracting, and if Y and Y ′ are sufficiently far apart, then diamπǫ

Y (Y
′)

and diamπǫ′

Y ′(Y ) are bounded in terms of the contraction constants. In
Proposition 8.2 we prove that if ‘strongly contracting’ is weakened to ‘(r, ρ)–
contracting’ then diamπǫ

Y (Y
′) and diamπǫ′

Y ′(Y ) are bounded by an affine func-
tion of ρ(d(Y, Y ′)). This is the best that can be expected, since even for a
single point x we can only conclude diamπǫ

Y (x) 6 ρ(d(x, Y )).
Finally, a theorem of Masur and Minsky [22] says, approximately and in our lan-
guage, that if for every pair of points in a geodesic metric space X there exists
a path between them such that these paths all admit semi-strongly contracting
projections, with contraction constants uniform over the family of paths, then
the space X is hyperbolic. Our Corollary 8.4 says the conclusion still holds if
‘semi-strongly contracting’ is weakened to ‘sublinearly contracting’.

1.6 Robustness

In Section 6 we investigate the following question: Let πǫ
Y be (ρ1, ρ2)–

contracting. What effect does changing ρ1, ǫ, or Y have on this property,
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in terms of ρ2?
We obtain optimal answers when ρ1(r) = r, see Lemma 6.2 and Lemma 6.3. It
would be interesting to have good quantitative results in more general cases.
The Morse property is invariant under quasi-isometry, so, by Theorem 1.5,
the property of being sublinearly contracting is also a quasi-isometry invari-
ant. Very little is known, however, about how the contraction parameters vary
under quasi-isometry. In a subsequent paper [3] we demonstrate that strong
contraction is not preserved by quasi-isometries.

2 Preliminaries

Let Nr(y) := {x ∈ X | d(x, y) < r} and N r(y) := {x ∈ X | d(x, y) 6 r}. If Y
is a subspace of X , let Nr(Y ) := ∪y∈Y Nr(y), and N r(Y ) := ∪y∈Y Nr(y).
Let diamY := sup{d(y, y′) | y, y′ ∈ Y }.
A geodesic is an isometric embedding of an interval. A metric space X is
geodesic if for every pair of points x, x′ ∈ X there exists a geodesic connecting
them.
The Hausdorff distance between non-empty subspaces Y and Z of X is the
infimal C such that Y ⊂ NC(Z) and Z ⊂ NC(Y ). Two subspaces are C–
Hausdorff equivalent if the Hausdorff distance between them is at most C.
Given L > 1 and A > 0, a map φ : X → Y between metric spaces is an (L,A)–
quasi-isometric embedding if 1

Ld(x, x
′)−A 6 d(φ(x), φ(x′)) 6 Ld(x, x′)+A for

every x, x′ ∈ X . It is an (L,A)–quasi-isometry if, in addition, Y = NA(φ(X)).
An (L,A)–quasi-geodesic is an (L,A)–quasi-isometric embedding of an interval.

Definition 2.1. A function f is sublinear if it is non-decreasing, eventually

non-negative, and limr→∞
f(r)
r = 0.

We write f � g if there exist constants C1 > 0, C2 > 0, C3 > 0, and C4 > 0
such that f(r) 6 C1g(C2r + C3) + C4 for all r. This partial order gives an
equivalence relation f ≍ g if f � g and f � g. If f ≍ g we say f and g are
asymptotic.

3 Examples of contraction

We begin with a classical example.

Example 3.1. Let X be the hyperbolic plane, with the upper half-space model,
and let Y be the geodesic that is the upper half of the unit circle, see Figure 2.
Pick any point x /∈ Y . Up to isometry, we may assume x sits on the y–
axis above Y . The ball of radius d(x, Y ) about x is contained in the horoball
H := {(a, b) ∈ R

2 | b > 1}. The closest point projection ofH to Y has diameter
ln(3 + 2

√
2). Thus, π0

Y is (r, ln(3 + 2
√
2))–contracting.

We now construct examples exhibiting a wider range of contracting behaviors
than have appeared previously in the literature.
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Y

H

Figure 2: Contraction in H
2.

Example 3.2. Let ρ = ρ1 : [0,∞) → [0,∞) be an unbounded function such
that ρ(r) 6 r, Id − ρ is unbounded, and there exists an A > 0 with ρ(A) > 0
such that 0 6 ρ(a+ b)−ρ(a) < b for all a > A and b > 0. We construct a space
X and Y ⊂ X such that π0

Y is (ρ, 2)–contracting but not strongly contracting.
The map φ : [A,∞) → [A−ρ(A),∞) : x 7→ x−ρ(x) is a bijection by assumption.
We set σ(0) := φ(A) and, for i ∈ N, recursively define3 σ(i + 1) := φ−1(σ(i)).
This is well-defined since [A,∞) ⊂ [A− ρ(A),∞). Rearranging this expression
yields ρ(σ(i + 1)) = σ(i + 1)− σ(i). Note that σ(i + 1)− σ(i) > ρ(A) > 0 for
every i ∈ N ∪ {0}, whence, in particular, σ(i) → ∞ as i → ∞.
Let Y := [0,∞) be a ray. For i ∈ N ∪ {0}, let Zi be a segment of length σ(i)
with endpoints labelled yi and zi. Identify yi with the point i in Y . Let Wi

be a segment of length σ(i+ 1)− σ(i) + 1 connecting zi to zi+1. Let X be the
resulting geodesic metric space. See Figure 3.

Y

Z0

Z1

Z2

Z3

W0

W1

W2

y0 z0

x0
z1

x1
z2

x2
z3

y3

Figure 3: (ρ1, 2)–contraction

Let xi be the point of Wi at distance 1/2 from zi+1. Clearly diamπ0
Y (xi) = 1.

It is easy to see that each complementary component of X r (Y ∪ {xi}i∈N∪{0})
projects to a single point of Y . Now consider the ball of radius ρ(d(x, Y )) about
some x. First assume x ∈ Wi for some i. Our assumptions on ρ yield:

Nρ(d(x,Y ))(x) ⊆ Wi ∪Nρ(σ(i))+1/2(zi) ∪Nρ(σ(i+1))+1/2(zi+1)

The latter may contain xi and xi+1 but no other xj . If, on the other hand, x is

3 An Abel function for f is a function α such that α(f(x)) = α(x) + 1. The function σ is
the inverse of an Abel function for φ−1.
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in some Zi, then Nρ(d(x,Y ))(x) is contained in Zi ∪ Nρ(d(zi,Y ))(zi). Therefore,

for any x ∈ X , we have that π0
Y (Nρ(d(x,Y ))(x)) has diameter at most 2.

Observe that Nd(zi,Y )(zi) contains {zj , zj+1, . . . zi} for 0 6 i− j 6 σ(j). Since
σ(i) → ∞ as i → ∞, this implies that Y is not strongly contracting.
Concrete examples include:

• ρ(r) := 2
√
r − 1 and A = 1 and σ(r) := r2.

• ρ(r) := r/2 and A = 2 and σ(r) := 2r. This is an example of semi-strong
contraction.

• ρ(r) := min{r, r − log2 r} and A = 2 and σ(r) := 2 ↑↑ r.

In Knuth’s ‘up-arrow notation’ 2 ↑↑ r denotes tetration, so that 2 ↑↑ r = 2·
··
2

︸︷︷︸

r times

when r ∈ N ∪ {0}.

The following proposition shows that it is sometimes possible to ‘trade’ between
the input and output contraction functions, so we can use Example 3.2 to
demonstrate further examples of (ρ1, ρ2)–contraction conditions.

Proposition 3.3. Suppose that πǫ
Y is (ρ1, B)–contracting, where B is a con-

stant and ρ = ρ1 is a non-decreasing, non-negative, unbounded function such
that Id − ρ is unbounded and such that there exists a constant A such that
ρ(A) > 0 and 0 6 ρ(a + b) − ρ(a) < b for all a > A and b > 0. Define
A′ := A − ρ(A). For x ∈ [A′,∞) define4 α(x) to be the minimal non-negative
integer such that (Id− ρ)α(x)(x) ∈ [A′, A). Then πǫ

Y is (r −A, ρ2)–contracting
for some ρ2 ≍ α.

Proof. Observe as in Example 3.2 that the map φ : x 7→ x − ρ(x) is a bijec-
tion [A,∞) → [A′,∞) and that, since φ is strictly increasing for x > A, the
collection {[φk(A′), φk−1(A′)) | k 6 0} is a partition of [A′,∞).
We show that ρ2(r) := Bα(r) will suffice. It follows from unboundedness of ρ
that ρ2 is sublinear: we have ρ2 ≍ α. The map α is a step function with steps
of height 1, so it is sufficient to show that the lengths of the steps go to infinity,
ie φ−n−1(A′) − φ−n(A′) → ∞ as n → ∞. As computed in Example 3.2, we
have ρ(φ−n−1(A′)) = φ−n−1(A′)− φ−n(A′). Since φ−n−1(A′) → ∞ as n → ∞
as argued in Example 3.2 and since ρ goes to infinity, sublinearity follows.
Let x and y be points of X such that d(x, y) 6 d(x, Y )−A. Define r0 := d(x, Y )
and while r0 − ri 6 d(x, y), define ri+1 := φ(ri). Note that this is well-defined,
ie ri > A, since r0 − ri 6 d(x, y) 6 r0 − A. Let k be the largest index such
that r0 − rk 6 d(x, y). Then the fact that φα(r0)(r0) < A and the observation
we just made shows k < α(r0).

4The function α : [A′,∞) → N∪{0} is an Abel function for (Id−ρ)−1. For instance, take
α to be the inverse of σ : N ∪ {0} → σ(N ∪ {0}) from Example 3.2 extended to all of [A′,∞)
by a rounding-off function.
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Fix a geodesic from x to y and for 0 6 i 6 k define xi to be the point at
distance r0 − ri from x along this geodesic. Define xk+1 := y. For 0 6 i 6 k
we have d(xi+1, xi) 6 ρ(d(xi, Y )) by construction, whence:

diamπǫ
Y (x) ∪ πǫ

Y (y) 6

k∑

i=0

diamπǫ
Y (xi) ∪ πǫ

Y (xi+1) 6 Bα(r0)

Thus, πǫ
Y is (r −A, ρ2)–contracting.

Applying Proposition 3.3 to the concrete examples in Example 3.2 we see:

• (2
√
r − 1, 2)–contracting implies (r − 1, ρ2)–contracting for ρ2 ≍ √·.

• (r/2, 2)–contracting implies (r − 2, ρ2)–contracting for ρ2 ≍ log2.

• Finally, (r− log2 r, 2)–contracting implies (r−2, ρ2)–contracting for ρ2 ≍
superlog2.

That the converse to Proposition 3.3 can fail follows from the next example.

Example 3.4. Let ρ2 be a sublinear function such that 0 < ρ2(r) < r. Let
Y be a line. Choose a collection of disjoint intervals {Ii}i∈N of Y such that
|Ii| = ρ2(i) and let yi be the center of Ii. Connect the endpoints of Ii by
attaching a segment Ji of length 4i, and let xi be the center of this segment.
Let X be the resulting geodesic space, see Figure 4. We claim π0

Y is (r, ρ2)–
contracting.

Y

x1

x2

x3

y1 y2 y3

Figure 4: (r, ρ2)–contracting

Suppose that x ∈ Ji ⊂ X and d(x, Y ) < i. Then d(x, xi) > d(x, Y ), and
diamπ0

Y (Nd(x,Y )(x)) = 0. For x ∈ Ji ⊂ X with d(x, Y ) > i we have d(x, xi) 6
d(x, Y ) and:

diamπ0
Y (Nd(x,Y )(x)) = diamπ0

Y (xi) = ρ2(i) 6 ρ2(d(x, Y ))

This proves the claim. Furthermore, ρ2 is optimal, in the following sense: Since
diamπ0

Y (xi) = ρ2(d(xi, Y )/2) = ρ2(i), if ρ
′
1 and ρ′2 are some other functions

such that π0
Y is (ρ′1, ρ

′
2)–contracting then ρ2(i) 6 ρ′2(2i) for i ∈ N.
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4 The Morse property

The following two propositions establish our main result, Theorem 1.4.

Proposition 4.1. Let Y be a subspace of a geodesic metric space X. Suppose
πǫ
Y is (ρ1, ρ2)–contracting. There exists a function µ, depending only on ǫ, ρ1,

and ρ2, such that Y is µ–Morse.

Proof. Given L′ and A′ there exist L, A, and C such that every (L′, A′)–quasi-
geodesic is C–Hausdorff equivalent to a continuous (L,A)–quasi-geodesic with
the same endpoints [10, Lemma III.H.1.11]. Thus, it suffices to show there
exists a bound B, depending only on ǫ, ρ1 and ρ2, such that every continuous
(L,A)–quasi-geodesic connecting points on Y is contained in NB(Y ). Then we
set µ(L′, A′) := B + C.

Let γ be a continuous (L,A)–quasi-geodesic with endpoints on Y . Take E to

be sufficiently large so that ρ1(E) > 3A and for all r > E we have ρ2(r)
ρ1(r)

< 1
3L2 .

Suppose γ 6⊆ NE(Y ), and let [a, b] be a maximal subinterval of the domain of
γ such that γ|[a,b] ⊂ X rNE(Y ). We show there exists a T independent of γ

and Y such that b− a 6 T . We conclude by setting B := E + L · T
2 +A.

Let t0 := a. Supposing we have defined t0, . . . , ti, if d(γ(ti), γ(b)) >
ρ1(d(γ(ti), Y )) define ti+1 to be the first time that d(γ(ti), γ(ti+1)) =
ρ1(d(γ(ti), Y )). Such a ti+1 exists because γ is continuous. Since d(γ, Y ) > E
we have d(γ(ti), γ(ti+1)) = ρ1(d(γ(ti), Y )) > ρ1(E) > 0, so after finitely many
steps we reach an index k such that d(γ(tk), γ(b)) 6 ρ1(d(γ(tk), Y )). Applying
the contraction condition to the points γ(ti), we see:

diamπǫ
Y (γ(a)) ∪ πǫ

Y (γ(b)) 6

k∑

i=0

ρ2(d(γ(ti), Y ))

This allows us to estimate:

d(γ(a), γ(b)) 6 d(γ(a), πǫ
Y (γ(a)))

+ diamπǫ
Y (γ(a)) ∪ πǫ

Y (γ(b)) + d(γ(b), πǫ
Y (γ(b)))

6 2(E + ǫ) +

k∑

i=0

ρ2(d(γ(ti), Y )) (1)
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On the other hand, since γ is a (L,A)–quasi-geodesic, we have:

Ld(γ(a), γ(b)) + LA > b− a = b− tk +
k−1∑

i=0

(ti+1 − ti)

>
1

L
(d(γ(b), γ(tk))−A) +

k−1∑

i=0

1

L
(d(γ(ti+1), γ(ti))−A)

=
1

L
(d(γ(b), γ(tk))− ρ1(d(γ(tk), Y )))

+

k∑

i=0

1

L
(ρ1(d(γ(ti), Y ))−A)

>
−d(γ(b), Y )

L
+

k∑

i=0

1

L
(ρ1(d(γ(ti), Y ))−A)

= −E

L
+

k∑

i=0

1

L
(ρ1(d(γ(ti), Y ))−A)

Combining this with the previous inequality and rearranging terms, we have:

k∑

i=0

(
ρ1(d(γ(ti), Y ))− L2ρ2(d(γ(ti), Y ))−A

)
6 E + L2A+ 2L2(E + ǫ)

Now, left hand side is at least L2
∑k

i=0 ρ2(d(γ(ti), Y )), by our choice of E;
combined with (1), this gives us:

d(γ(a), γ(b)) 6
E

L2
+A+ 4(E + ǫ)

This estimate and the fact that γ is a quasi-geodesic give us a bound for b −
a.

Proposition 4.2. Let Y be a subspace of a geodesic metric space X. Suppose
there is a non-decreasing function µ such that every continuous (L, 0)-quasi-
geodesic with endpoints on Y is contained in the closed µ(L)–neighborhood of
Y . Suppose the empty set is not in the image of πǫ

Y . Then there is a function
ρ′, depending only on µ and ǫ, such that πǫ

Y is (r, ρ′)–contracting.

We remark that since an (L, 0)–quasi-geodesic is also an (L′, 0)–quasi-geodesic
for any L′ > L, there is no loss in requiring the Morse function to be non-
decreasing.

Proof. Consider the optimal contraction function:

ρ(r) := sup
d(x,y)6d(x,Y )6r

diamπǫ
Y (x) ∪ πǫ

Y (y) 6 4r + 2ǫ
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Our goal is define a function ρ′ depending on µ and ǫ that is non-negative,
non-decreasing, and sublinear and such that ρ′ is an upper bound for ρ.
Define ρ′(r) := 0 if ǫ = 0 and µ ≡ 0. In this case ρ′ clearly has the first three
properties. Otherwise, we first replace µ by s 7→ inft>s µ(s). The new µ still
satisfies the hypotheses of the proposition and has that additional property
that it is right continuous: limt→s+ µ(t) = µ(s) for all s > 1. Define ρ′(0) := 2ǫ
and for r > 0 define:

ρ′(r) := sup

{

s 6 4r + 2ǫ | s 6 18µ

(
3(4r + 2ǫ)

s

)

+ 12ǫ

}

If µ ≡ 0 then ρ′ increases linearly from 2ǫ to 12ǫ and then remains constant,
so it is non-negative, non-decreasing, and sublinear.
If µ 6≡ 0 then ρ′(r) > 0 when r > 0, and the conditions on µ ensure ρ′ is actually
a maximum. The fact that it is non-decreasing then follows by observing that
ρ′(r) participates in the supremum defining ρ′(r′) when 0 6 r < r′. To see ρ′ is
sublinear, we suppose that lim supr→∞ ρ′(r)/r > 0 and derive a contradiction.
Suppose that there exists some δ > 0 and a sequence (ri) of positive numbers
increasing without bound such that ρ′(ri) > δri for all i. By definition of ρ′,
for each i there exists δri < si 6 4ri + 2ǫ such that:

si 6 18µ

(
3(4ri + 2ǫ)

si

)

+ 12ǫ 6 18µ

(
3(4ri + 2ǫ)

δri

)

+ 12ǫ

This is a contradiction, since the left-hand side grows without bound while the
right-hand side is bounded above by 18µ(12δ + 1) + 12ǫ once i is sufficiently
large.

Now we must show ρ(r) 6 ρ′(r). It suffices to check this for those r such that
ρ(r) > 0. The idea of the proof is to choose, for each such r, points x and y such
that d(x, y) 6 d(x, Y ) 6 r whose projection diameters nearly realize ρ(r). Take
a path γ that is a concatenation of geodesics from a projection point of x to x,

then from x to y, then from y to a projection point of y. For L := 3(4r+2ǫ)
ρ(r) > 3

we show that we can make γ into an (L, 0)–quasi-geodesic γ′ by introducing at
most two shortcuts in a particular way. The Morse hypothesis implies that γ′

is contained in the µ(L)–neighborhood of Y . We then argue that the condition
d(x, y) 6 d(x, Y ) implies:

ρ(r) < 18µ(L) + 12ǫ (2)

In the case that ǫ = 0 and µ ≡ 0, this gives a contradiction, which means that
there is no r for which ρ takes a positive value, and we have ρ(r) = ρ′(r) = 0
for all r. Otherwise, plugging the value of L into (2), we conclude that ρ(r)
participates in the supremum defining ρ′(r), whence ρ(r) 6 ρ′(r).

First we show how to produce quasi-geodesics. Consider points x, y, px ∈
πǫ
Y (x), and py ∈ πǫ

Y (y). Let γ := [px, x][x, y][y, py] be a concatenation of three
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geodesics. Let [p, q]γ denote the subsegment of γ from p to q, and let |[p, q]γ |
denote its length. For this part of the argument we may use any L >

|γ|
d(px,py)

>

1. Consider the continuous function D(p, q) := Ld(p, q) − |[p, q]γ | defined on
points (p, q) ∈ γ × γ such that p precedes q on γ. The restriction on L implies
that D(px, py) > 0. We conclude that if [p, q]γ is a subsegment of γ that is
maximal with respect inclusion among subsegments for which D takes non-
positive values on the endpoints, then Ld(p, q) = |[p, q]γ |. We consider several
cases. Each carries the additional assumption that we are not in one of the
previous cases.

Case 0: D is non-negative. Set γ′ := γ, which is an (L, 0)–quasi-geodesics by
definition of D.

Case 1: D takes a non-positive value on [px, x]γ × [y, py]γ . In this case there
exist points x′ ∈ [px, x] and y′ ∈ [py, y] such that the segment [x′, y′]γ is maxi-
mal with respect to inclusion among subsegments of γ with the property that
D takes non-positive values on endpoints. Define γ′ by replacing [x′, y′]γ by
some geodesic segment with the same endpoints; γ′ := [px, x

′]γ [x
′, y′][y′, py]γ .

We claim that γ′ is an (L, 0)–quasi-geodesic. Since γ′ is a concatenation of
geodesic segments, it suffices to check that points on distinct segments are suf-
ficiently far apart. We check distances between arbitrary points x′′ ∈ [px, x

′]γ′ ,
z ∈ [x′, y′]γ′ , and y′′ ∈ [y′, py]γ′ .

Suppose, for contradiction, that Ld(x′′, y′′) < |[x′′, y′′]γ′ |. Since [x′, y′]γ has
been replaced by a geodesic segment, Ld(x′′, y′′) < |[x′′, y′′]γ′ | 6 |[x′′, y′′]γ |, so
D(x′′, y′′) < 0. Since D(x′, y′) = 0 we have x′′ ∈ [px, x

′)γ or y′′ ∈ (y′, py]γ ,
but then [x′′, y′′]γ is a subsegment of γ strictly containing [x′, y′]γ such that
D takes a non-positive value on its endpoints. This contradicts maximality of

[x′, y′]γ among such subsegments, so d(x′′, y′′) ≥ |[x′′,y′′]γ′ |

L .

Suppose, for contradiction, that Ld(x′′, z) < |[x′′, z]γ′ |. This implies x′′ 6= x′,
because x′ and z lie on a geodesic subsegment of γ′. We estimate:

d(x′′, y′) 6 d(x′′, z) + d(z, y′)

<
|[x′′, z]γ′|

L
+ d(z, y′)

=
d(x′′, x′) + d(x′, z)

L
+ d(x′, y′)− d(x′, z)

=
|[x′′, x′]γ |

L
+

|[x′, y′]γ |
L

−
(
L− 1

L

)

d(x′, z)

6
|[x′′, y′]γ |

L

Since x′′ ∈ [px, x
′)γ , we have exhibited a subsegment [x′′, y′]γ strictly containing

[x′, y′]γ such that D takes a non-positive value on its endpoints. This contra-

dicts maximality of [x′, y′]γ among such subsegments, so d(x′′, z) >
|[x′′,z]γ′ |

L .
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A symmetric argument shows d(y′′, z) >
|[y′′,z]γ′ |

L , so γ′ is an (L, 0)–quasi-
geodesic.

Case 2: D takes a non-positive value on an element of [px, x]γ × (x, y]γ . Let
[x′, qx]γ be a subsegment of γ maximal with respect to inclusion among subseg-
ments for which D takes non-positive values on endpoints, with x′ ∈ [px, x]γ .
Since we are not in Case 1, qx ∈ (x, y)γ . Now consider whether or not [qx, py]γ
is an (L, 0)–quasi-geodesic. If so, define γ′ := [px, x

′]γ [x
′, qx][qx, py]γ . Other-

wise, D takes a negative value on an element of [qx, y)γ × (y, py]γ . Let [qy, y
′]γ

be a maximal subsegment of [qx, py]γ , with qy ∈ [qx, y)γ and y′ ∈ (y, py] on
which D takes non-positive values on endpoints. We claim that qy ∈ (qx, y)γ
and D(qy, y

′) = 0, because if D(qy, y) < 0 and qy 6= qx then we can enlarge
the subsegment, contradicting maximality, while if qy = qx then D(x′, y′) 6 0,
contradicting the assumption that we are not in Case 1.
In either of these cases, we claim γ′ is an (L, 0)–quasi-geodesic. This follows by
verifying that the distance between points in distinct geodesic components of
γ′ have distance at least equal to the length of the subsegment of γ′ they bound
divided by L. The strategy is to suppose D attains a strictly negative value
and then either derive a contradiction to maximality of [x′, qx]γ or [qy, y

′]γ or
to the assumption that we are not Case 1. The arguments are substantially
similar to the computations in Case 1 and are left to the reader.

Case 3: D takes a non-positive value on an element of [x, y)γ × [y, py]γ. The
argument here is symmetric to the subcase of Case 2 in which only a corner at
x is cut short.

We have shown how to produce an (L, 0)–quasi-geodesic γ′ from γ. We now
proceed to show ρ(r) 6 ρ′(r) for any r such that ρ(r) > 0. Since ρ(r) > 0 there
exist x and y such that d(x, y) 6 d(x, Y ) 6 r and diamπǫ

Y (x) ∪ πǫ
Y (y) >

2
3ρ(r).

Choose px ∈ πǫ
Y (x), py ∈ πǫ

Y (y) such that d(px, py) >
2
3ρ(r).

Let γ := [px, x][x, y][y, py]. Let L := 12r+6ǫ
ρ(r) > 2 |γ|

d(px,py)
, and let γ′ be the

(L, 0)–quasi-geodesic produced from γ as above. By the Morse hypothesis, γ′

is contained in the µ(L)–neighborhood of Y .

Case a: γ′ comes from Case 0 or Case 3. In this case x ∈ γ′, so d(x, Y ) 6 µ(L),
so ρ(r) < 3

2d(px, py) 6
3
2 (4µ(L) + 2ǫ).

Case b: γ′ comes from Case 1. In this case px ∈ πǫ
Y (x

′) and py ∈ πǫ
Y (y

′), so
d(x′, px) 6 µ(L) + ǫ and d(y′, py) 6 µ(L) + ǫ. Also, by definition of L we have:

d(x′, y′) =
|[x′, y′]γ |

L
6

|γ|
L

6
4r + 2ǫ
3(4r+2ǫ)

ρ(r)

=
ρ(r)

3

Since d(px, py) >
2
3ρ(r), we conclude d(x

′, px)+ d(y′, py) >
ρ(r)
3 , so that ρ(r) <

6µ(L) + 6ǫ.

Case c: γ′ comes from Case 2. In this case γ′ contains a geodesic segment from
a point x′ ∈ [px, x]γ to a point qx ∈ [x, y]γ . As in the previous case, d(x′, qx) =
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|[x′,qx]γ
L 6

|γ|
L 6

ρ(r)
3 . Consider a point w ∈ πǫ

Y (qx). Since d(x, y) 6 d(x, Y ),
we have d(qx, y) 6 d(qx, Y ) 6 µ(L), which implies d(w, py) 6 4µ(L) + 2ǫ.
Thus d(px, w) > 2

3ρ(r) − (4µ(L) + 2ǫ). We also have d(x′, Y ) 6 µ(L) and
d(qx, Y ) 6 µ(L), since both these points belong to γ′, so:

ρ(r)

3
> d(x′, qx) > d(px, w)− d(x′, px)− d(qx, w) >

2

3
ρ(r) − (6µ(L) + 4ǫ)

The resulting bound on ρ(r) is the largest of the three cases, and establishes
the bound of (2), completing the proof.

5 Divergence

In this section we relate divergence to contraction and the Morse property,
thereby proving Theorem 1.5.
There is a link between the Morse property and superlinear divergence via
asymptotic cones [17]. Although this principle is well-known, there are com-
peting definitions of ‘superlinear’ and ‘divergence’, so we give a detailed proof
of Theorem 1.5 in terms of our definitions. Our analysis actually yields more.
In the introduction we claimed that for a quasi-geodesic the Morse property,
hence, sublinear contraction, is morally the opposite of high divergence. We
prove a precise technical formulation of this claim in Proposition 5.5. Roughly
speaking, the result we obtain is that if divergence of a quasi-geodesic γ is
greater than a function f then almost closest point projection to γ is (r, f−1)–
contracting.

Definition 5.1. Let X be a geodesic metric space and let γ : R → X be an
(L,A)–quasi-geodesic. Let λ ∈ (0, 1], and let κ > L+A. Let Λγ(r, s;L,A, λ, κ)
be the infimal length of a path from γ(s− r) to γ(s+ r) that is disjoint from
the ball of radius λ(L−1r − A) − κ centered at γ(s), or ∞ if no such path
exists. The (L,A, λ, κ)–divergence of γ evaluated at r is ∆γ(r;L,A, λ, κ) :=
infs Λγ(r, s;L,A, λ, κ).

Notice that if γ is a geodesic, λ := 1/2, and κ := 2 we recover the definition of
divergence we gave in the introduction.
We make the convention that ∞ 6 ∞.
In light of the following lemma, γ has a well defined divergence, up to equiv-
alence of functions, and we use ∆γ(r) to denote the equivalence class of
∆γ(r;L,A, λ, κ).

Lemma 5.2. Let γ be an (L,A)–quasi-geodesic. Suppose γ is also an (L′, A′)–
quasi-geodesic. Let λ, λ′ ∈ (0, 1], κ > L + A, and κ′ > L′ + A′. Then
∆γ(r;L,A, λ, κ) ≍ ∆γ(r;L

′, A′, λ′, κ′).

Proof. Take 0 < M < 1 small enough that λ
L − λ′

L′M > 0. Then for any
sufficiently large C > 0 the affine function θ : r 7→ Mr − C satisfies:

λ′((L′)−1θ(r) −A′)− 2κ′
6 λ(L−1r −A)− κ
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Fix s ∈ R and let P be any path from γ(s− r) to γ(s+ r) that is disjoint from
the ball of radius λ(L−1r−A)−κ centered at γ(s). By the above inequality it
is also disjoint from the ball of radius λ′((L′)−1θ(r) −A′)− 2κ′ about γ(s).
Let {x0, x1, . . . , xl} be the set [s − r, s − θ(r)] ∩ (Z ∪ {s − r, s − θ(r)}) in de-
scending order and let P− be the path from γ(s − θ(r)) to γ(s − r) obtained
by concatenating geodesics [γ(xi), γ(xi+1)]. Define a path P+ from γ(s+ r) to
γ(s+θ(r)) similarly. Since κ′ > L′+A′, the paths P− and P+ are disjoint from
the ball of radius λ′((L′)−1θ(r) − A′)− κ′ centered at γ(s).
Define P ′ to be the path from γ(s− θ(r)) to γ(s+ θ(r)) obtained by concate-
nating P−, P , and P+.
Now, for each r choose s and P so that |P | 6 1 + ∆γ(r;L,A, λ, κ). Then
∆γ(θ(r);L

′, A′, λ′, κ′) 6 |P | + 2(L(r − θ(r)) + A). Since γ is quasi-geodesic,
r 6 L|P | + LA, so the right-hand side can be bounded by an affine function
of ∆γ(r;L,A, λ, κ). This proves one direction of the equivalence. The other
follows immediately by reversing the roles in the above argument.

We first give an example of the relationship between divergence and contraction.

Example 5.3. Let f(r) > r be an increasing, invertible function. Consider
the space X constructed in Example 3.4, but this time take |Ii| := 2i and
|Ji| := f(i) for i ∈ N. Let γ be a geodesic whose image is Y . Then
Λγ(i, γ

−1(yi); 1, 0, 1, 1) = f(i), and this is optimal for radius i, so ∆γ ≍ f .
On the other hand, the computation of Example 3.4 shows that diamπ0

Y (xi) =
2f−1(4r). Thus, π0

Y is sublinearly contracting if and only if f−1 is sublinear,
and, in this case, it is (r, ρ)–contracting for ρ ≍ f−1.

Our next proposition proves the implication (2) =⇒ (1) of Theorem 1.5. It
also gives a quantitave link between high divergence and contraction.

Definition 5.4. We say a function g is completely super–f if for every choice
of C1 > 0, C2 > 0, C3 > 0, and C4 > 0 the collection of r ∈ [0,∞) such that
g(r) 6 C1f(C2r + C3) + C4 is bounded.

Proposition 5.5. Let γ be a quasi-geodesic in a geodesic metric space X.
Suppose the empty set is not in the image of πǫ

γ . Let f(r) > r be an increasing,
invertible function. If γ has completely super–f divergence, then there exists a

function ρ such that πǫ
γ is (r, ρ)–contracting and limr→∞

ρ(r)
f−1(r) = 0.

In particular, if γ has completely superlinear divergence then there exists a
sublinear function ρ such that πǫ

γ is (r, ρ)–contracting.

Proof. Let γ be an (L,A)-quasi-geodesic. Define:

ρ(r) := sup
d(x,y)6d(x,γ)6r

diamπǫ
γ(x) ∪ πǫ

γ(y)

To see that πǫ
γ is (r, ρ)–contracting we must show that ρ is sublinear. Since

f(r) > r, it suffices to prove the second claim:

lim
r→∞

ρ(r)

f−1(r)
= 0
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Suppose for a contradiction that lim supr→∞
ρ(r)

f−1(r) > 0. Then there exist

c > 0; sequences (xn) and (yn) with xn, yn ∈ X , d(xn, γ) > n, and d(xn, yn) 6
d(xn, γ); and x′

n ∈ πǫ
γ(xn) and y′n ∈ πǫ

γ(yn) such that:

cf−1(d(xn, γ)) 6 d(x′
n, y

′
n) (3)

Let an and bn be such that γ(an−bn) = x′
n and γ(an+bn) = y′n. Define mn :=

γ(an) and Rn := bn
L −A. Since γ is an (L,A)–quasi-geodesic, d(mn, {x′

n, y
′
n}) >

Rn and bn >
d(x′

n,y
′
n)−A

2L . By (3) and the facts that f−1 is unbounded and
increasing, limn→∞ Rn = ∞.
Choose 0 < λ < 1

4 and κ := L+A.
If there is a geodesic from xn to yn containing a point z such that d(z,mn) 6
λRn, then:

Rn 6 d(y′n,mn)

6 d(y′n, yn) + d(yn, z) + d(z,mn)

6 d(yn, γ) + ǫ+ d(yn, z) + d(z,mn)

6 ǫ+ 2(d(yn, z) + d(z,mn))

6 ǫ+ 2λRn + 2d(yn, z)

= ǫ+ 2λRn + 2(d(xn, yn)− d(z, xn))

6 ǫ+ 2λRn + 2(d(xn, γ)− (d(xn, γ)− λRn))

= ǫ+ 4λRn

Thus, Rn 6 ǫ
1−4λ .

If there is a geodesic from xn to x′
n or from yn to y′n containing a point z such

that d(z,mn) 6 λRn, then a similar argument shows Rn 6
ǫ

1−2λ .
Since Rn → ∞, for all sufficiently large n and any choice of path pn that is
a concatenation of geodesics [x′

n, xn], [xn, yn], [yn, y
′
n], the path pn remains

outside the ball of radius λRn about mn. This gives us a path of length at
most 4d(xn, γ)+2ǫ from γ(an− bn) to γ(an+ bn) that remains outside the ball
of radius λ

(
bn
L −A

)
about γ(an).

On the other hand, (3) implies:

d(xn, γ) 6 f

(
1

c
d(x′

n, y
′
n)

)

6 f

(
2bnL+A

c

)

We conclude that for all sufficiently large n the (L,A, λ, κ)–divergence of γ
evaluated at bn is at most 2ǫ+ 4f

(
2bnL+A

c

)
, which contradicts the hypothesis

that the divergence is completely super–f .

The previous result can be strengthened to the statement:

Proposition 5.6. Let f be an increasing, invertible, completely superlinear
function satisfying the following additional condition:

For every C there exists some D such that for all r > 1 and k > D we
have f(kr) > Cf(Cr + C) + C.

(∗)
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If the divergence of γ is at least f then γ is (r, ρ)–contracting for some function
ρ � f−1.

Proof. For a contradiction we suppose that ρ 6� f−1 and replace (3) with
d(x′

n, y
′
n) > nf−1(d(xn, γ)). Using the same method as in the proof of

Proposition 5.5, we deduce that for all sufficiently large n the (L,A, λ, κ)–
divergence of γ evaluated at bn is at most 2ǫ + 4f

(
2bnL+A

n

)
. Thus, f(bn) 6

2ǫ + 4f
(
2bnL+A

n

)
. Let cn := bn/n and M := max{2ǫ, 4, 2L,A}. Then, since f

is increasing:
f(ncn) 6 Mf(Mcn +M) +M (4)

The left-hand side is unbounded as n grows, so we immediately obtain a con-
tradiction if the sequence (cn)n∈N is bounded. If the sequence is unbounded
then, by passing to a subsequence, we may assume cn > 1 for all n. In this
case the inequality (4) holds for all n, which contradicts condition (∗).

Suitable functions f for Proposition 5.6 include f(r) := rd, rd/ log(r), r log(r)

and dr for any d > 1. The function f(r) := 22
21+⌊log2 log2 r⌋

is completely

superlinear, but does not satisfy (∗), since f(n22
n−1

) = f(22
n−1

) for all n ∈ N.

Corollary 5.7. If a quasi-geodesic γ has divergence at least rk then γ is
(r, r1/k)–contracting. If it has exponential divergence, then γ is logarithmically
contracting. Finally, if it has infinite divergence, then it is strongly contracting.

Here infinite divergence means ∆γ(r) = ∞ for all r large enough. Example 5.3
shows these conclusions are optimal.

We now address the implication (1) =⇒ (2) of Theorem 1.5. In this direction
we can show that the Morse property implies completely superlinear divergence,
but we do not get explicit control of the divergence function in terms of the
Morse function, see Proposition 5.10.
There is one special case in which we can say more. Charney and Sultan [13]
recently gave a proof5 that if α is a Morse geodesic in a CAT(0) space then
α has at least quadratic divergence. Essentially the same argument gives a
general result:

Proposition 5.8. Let α be a geodesic in a geodesic metric space X. If α is
(ρ1, ρ2)–contracting with ρ2 bounded, then ∆α(r) � rρ1(r).

Lemma 5.9. Let X be a geodesic metric space. Let a, b, c, d ∈ X and r > 0
satisfy the following conditions:

1. d(a, d) > r

2. There exists a path γ from a to d passing through b and c such that the
length of γ is at most Cr and such that [a, b]γ, [b, c]γ, and [c, d]γ are
continuous (L, 0)–quasi-geodesics.

5The original proof of this fact is due to Behrstock and Druţu [6], by different methods.
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3. The path γ does not contain a point within distance λr of e, where e is
the midpoint of a geodesic from a to d.

For any L′ > max{L,C,C/λ} > 1 there exists a continuous (L′, 0)–quasi-
geodesic γ′ from a to d of length at most |γ| such that γ′ does not contain a
point within distance λr/2 of e.

Proof. The construction of γ′ is exactly as in Proposition 4.2 with L replaced
by L′. This involves finding points p and q on γ such that L′d(p, q) = |[p, q]γ |
and replacing [p, q]γ by a geodesic with the same endpoints. Now, d(p, q) 6

|γ|/L′ < λr, so for any point z on a newly introduced geodesic segment we
have d(z, e) > d(γ, e)− d(p, q)/2 > λr/2.

Proposition 5.10. Let γ be a Morse quasi-geodesic in a geodesic metric space
X. Then the divergence of γ is completely superlinear.

Proof. We prove the contrapositive. Let γ be an (L,A)–quasi-geodesic and
suppose its divergence is not completely superlinear. Then there exists C > 0
for which there exists an unbounded sequence of numbers rn > 1 and paths pn
such that:

1. There exists a sequence of real numbers sn such that the endpoints of pn
are xn = γ(sn − rn) and yn = γ(sn + rn).

2. |pn| 6 Crn.

3. pn does not intersect the ( rn2L −A)–neighborhood of γ(sn).

We may assume all rn > 4AL so point (3) can be replaced by:

3′. pn does not intersect the ( rn4L)–neighborhood of mn := γ(sn).

Our goal is to construct uniform quasi-geodesics γn from xn to yn that avoid
increasingly large balls around mn.
Set xn,0 := xn and define xn,1 to be the last point on pn for which we have
d(xn,0, xn,1) = rn/8L.
Similarly define xn,i to be yn if d(xn,i−1, yn) < rn/4L or to be the last point
on pn satisfying d(xn,i−1, xn,i) = rn/8L otherwise.
Note that yn = xn,kn

for some kn 6 8CL. By construction, if i 6= j then
d(xn,i, xn,j) > rn/8L.
Let γ1

n be a concatenation of geodesics [xn,0, xn,1] . . . [xn,kn−1, yn]. We have
that |γ1

n| 6 Crn and d(γ1
n,mn) > rn/8L.

Applying Lemma 5.9 for each 1 6 i 6 ⌊kn/3⌋ there are (L2, 0)–quasi-geodesics
(where L2 does not depend on n) from xn,3(i−1) to xn,3i such that the concate-
nation γ2

n of these with [xn,3⌊kn/3⌋, yn]γ1
n
satisfies d(γ2

n,mn) > rn/16L.
Repeating this procedure at most d = ⌈log3 8CL⌉ times we obtain an (Ld, 0)
quasi-geodesic γd

n from xn to yn satisfying d(γd
n,mn) > rn/(2

d+2L). Again, Ld

does not depend on n.
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If γ is µ–Morse, then the γd
n are µ′–Morse for some µ′ that does not depend

on n. Then d(γd
n,mn) 6 µ′(K,C), which is bounded, contradicting the lower

bound above.

A finitely generated group is called constricted if all of its asymptotic cones
have cut points [18].

Corollary 5.11. Suppose there exists a quasi-geodesic γ with completely
superlinear divergence in a geodesic metric space X. In every asymptotic cone
of X every point of the ultralimit of γ is a cut point.

In particular, a finitely generated group is constricted if one of its Cayley graphs
contains a quasi-geodesic with completely superlinear divergence.

Olshanskii, Osin, and Sapir [26, Corollary 6.4] build a group that has an asymp-
totic cone with no cut point such that the group has a Cayley graph with
geodesics of superlinear divergence. These geodesics are therefore not Morse.
They explicitly state that their construction yields geodesics that are not com-
pletely superlinear. Corollary 5.11 shows that this will be the case in any such
construction.

6 Robustness

Suppose that πǫ
Y is (ρ1, ρ2)–contracting. In this section we investigate the

extent to which ρ2 is affected by changes to ρ1, ǫ, or Y .

Clearly πǫ
Y is (ρ′1, ρ2)–contracting for ρ′1 6 ρ1. From Theorem 1.4 we know

that πǫ
Y is (r, ρ′2)–contracting for some ρ′2 depending on ρ1 and ρ2. For this ρ

′
2,

it follows that πǫ
Y is (ρ′1, ρ

′
2)–contracting for every ρ1 6 ρ′1 6 r.

In general ρ2 and ρ′2 are not asymptotic. For example, if πǫ
Y is (r/2, B1)–

contracting it is (r, ρ2)–contracting for ρ2 ≍ log2, as in Proposition 3.3, but not
necessarily (r, B2)–contracting for some constantB2, by Example 3.2. One well-
known special case is that (r/M,B1)–contracting for M > 1 and B1 bounded
implies (r/2, B2)–contracting for some bounded B2, see, eg, [30].

The output contraction functions are asymptotic when the input function is
changed by an additive constant:

Lemma 6.1. If πǫ
Y is (ρ1, ρ2)–contracting for ρ1(r) = ρ′1(r)−C, with ρ′1(r) 6 r

and C > 0, then πǫ
Y is (ρ′1, ρ

′
2)–contracting for some ρ′2 ≍ ρ2.

Proof. Let C′ := sup{r | ρ1(r) 6 C}. Suppose that x and y are points with
d(x, y) 6 ρ′1(d(x, Y )). If d(x, y) 6 ρ1(d(x, Y )) = ρ′1(d(x, Y ))− C then we have
diamπǫ

Y (x) ∪ πǫ
Y (y) 6 ρ2(d(x, Y )). Otherwise, let z be a point on a geodesic

from x to y such that d(x, z) = ρ1(d(x, Y )). This implies d(y, z) 6 C. Now:

diamπǫ
Y (x) ∪ πǫ

Y (y) 6 diamπǫ
Y (x) ∪ πǫ

Y (z) + diamπǫ
Y (z) ∪ πǫ

Y (y)

6 ρ2(d(x, Y )) + diamπǫ
Y (z) ∪ πǫ

Y (y)
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If d(z, y) > ρ1(d(z, Y )) then d(z, Y ) 6 C′, so diamπǫ
Y (z)∪πǫ

Y (y) 6 2(C+C′+ǫ).
If d(z, y) 6 ρ1(d(z, Y )) then diamπǫ

Y (z) ∪ πǫ
Y (y) 6 ρ2(d(z, Y )) 6 ρ2(2d(x, Y )).

Combining these cases, we see that d(x, y) 6 ρ1(d(x, Y )) implies:

diamπǫ
Y (x) ∪ πǫ

Y (y) 6 ρ2(d(x, Y )) + ρ2(2d(x, Y )) + 2(C + C′ + ǫ)

Thus, it suffices to take ρ′2(r) := 2ρ2(2r) + 2(C + C′ + ǫ).

Next, consider changes to the projection parameter.

Lemma 6.2. Suppose ǫ0 and ǫ1 are constants such that the empty set is nei-
ther in the image of πǫ0

Y : X → 2Y nor in the image of πǫ1
Y : X → 2Y . If

πǫ0
Y is (ρ1, ρ2)–contracting then there exist ρ′1 and ρ′2 such that πǫ1

Y is (ρ′1, ρ
′
2)–

contracting. If ǫ1 6 ǫ0 or if ρ1(r) := r then we can take ρ′1 = ρ1 and ρ′2 ≍ ρ2.

Proof. When ǫ1 6 ǫ0 we have πǫ1
Y (x) ⊂ πǫ0

Y (x), so the result is clear. In this
case ρ′1 = ρ1 and ρ′2 = ρ2 will suffice.
The fact that πǫ1

Y is sublinearly contracting follows from Theorem 1.4, since Y
is Morse. It remains only to prove the asymptotic statement in the case that
ρ1(r) := r, so suppose πǫ0

Y is (r, ρ2)–contracting.
For any x ∈ X r Y and each i ∈ {0, 1}, consider a point xi ∈ πǫi

Y (x) and a
point zi on a geodesic from x to xi with d(x, zi) = d(x, Y ). Then:

d(x0, x1) 6 d(x0, z0) + d(z0, π
ǫ0
Y (z0)) + diamπǫ0

Y (z0) ∪ πǫ0
Y (x)

+ diamπǫ0
Y (x) ∪ πǫ0

Y (z1) + d(πǫ0
Y (z1), z1) + d(z1, x1)

6 ǫ0 + 2ǫ0 + ρ2(d(x, Y )) + ρ2(d(x, Y )) + ǫ0 + ǫ1 + ǫ1

= 4ǫ0 + 2ǫ1 + 2ρ2(d(x, Y ))

If d(x, y) 6 d(x, Y ) then:

diamπǫ1
Y (x) ∪ πǫ1

Y (y) 6 diamπǫ1
Y (x) ∪ πǫ0

Y (x) + diamπǫ0
Y (x) ∪ πǫ0

Y (y)

+ diamπǫ0
Y (y) ∪ πǫ1

Y (y)

6 4ǫ0 + 2ǫ1 + 2ρ2(d(x, Y )) + ρ2(d(x, Y ))

+ 4ǫ0 + 2ǫ1 + 2ρ2(d(y, Y ))

Since d(y, Y ) 6 2d(x, Y ), this means that πǫ1
Y is (r, ρ′2)–contracting for:

ρ′2(r) := 8ǫ0 + 4ǫ1 + 3ρ2(r) + 2ρ2(2r) ≍ ρ2(r)

Finally, consider changes to the target of the projection map.

Lemma 6.3. Let Y and Y ′ be subspaces of a geodesic metric space X at bounded
Hausdorff distance from one another. Suppose that πǫ

Y is (ρ1, ρ2)–contracting.
Then πǫ

Y ′ is (r, ρ′2)–contracting for some ρ′2. If ρ1(r) = r then we can take
ρ′2 ≍ ρ2.

Documenta Mathematica 22 (2017) 1193–1224



1216 Arzhantseva, Cashen, Gruber, Hume

Proof. Let C be the Hausdorff distance between Y and Y ′.
For every x ∈ X we have πǫ

Y ′(x) ⊂ NC(π
ǫ+2C
Y (x)). The result now follows

easily from Lemma 6.2.

In light of Lemma 6.2, we can speak of the set Y being a contracting set if
some ǫ–closest point projection to Y is contracting.

Definition 6.4. We say Y is (ρ1, ρ2)–contracting if there exists an ǫ > 0 such
that the ǫ–closest point projection πǫ

Y : X → 2Y is (ρ1, ρ2)–contracting.
Equivalently, Y is (ρ1, ρ2)–contracting if for all sufficiently small ǫ > 0, if πǫ

Y

does not have the empty set in its image, then πǫ
Y is (ρ1, ρ2)–contracting.

7 Geodesic image theorem

In this section we give an additional characterization of sublinear contraction
in terms of projections of geodesic segments.

Theorem 7.1. Let Y be a subspace of a geodesic metric space X. Suppose the
empty set is not in the image of πǫ

Y . The following are equivalent:

1. There exist a sublinear function ρ and a constant C > 0 such that
for every geodesic segment γ ⊂ X, with endpoints denoted x and y, if
d(γ, Y ) > C then diamπǫ

Y (γ) 6 ρ(max{d(x, Y ), d(y, Y )}).

2. There exist a sublinear function ρ′ and a constant C′ > 0 such that
for every geodesic segment γ ⊂ X, if d(γ, Y ) > C′ then diamπǫ

Y (γ) 6

ρ′(maxz∈γ d(z, Y )).

3. There exists a sublinear function ρ′′ such that πǫ
Y is (r, ρ′′)–contracting.

Moreover, ρ ≍ ρ′ ≍ ρ′′.

See Figure 3, letting γ be a subsegment of ∪iWi.
The case that Y is strongly contracting, that is, ρ′′ is bounded, recovers the
well-known ‘Bounded Geodesic Image Property’, cf [23, 8].

Corollary 7.2. If Y is strongly contracting, R2 > 1 is a constant greater than
twice the bound on the contraction function for Y , and γ is a geodesic segment
that does not enter the R2–neighborhood of Y then diamπǫ

Y (γ) is bounded, with
bound depending only on ǫ and ρ′′.

Alternatively, one could read Theorem 7.1 as saying that if πǫ
Y is sublinearly

contracting and γ is a geodesic ray that is far from Y , but such that πǫ
Y (γ) is

large, then d(γ(t), Y ) grows superlinearly with respect to diamπǫ
Y (γ([0, t])).

Proof of Theorem 7.1.
(1) =⇒ (3): Define ρ1(r) := r − C and ρ2(r) = ρ(2r − C). By Lemma 6.1, it
suffices to show that πǫ

Y is (ρ1, ρ2)–contracting.
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Suppose x and y are points of X with d(x, y) 6 ρ1(d(x, Y )), and let γ be a
geodesic from x to y. Then γ remains outside the C–neighborhood of Y , by
the definition of ρ1, so:

diamπǫ
Y (x) ∪ πǫ

Y (y) 6 diamπǫ
Y (γ)

6 ρ(max{d(x, Y ), d(y, Y )})
6 ρ(2d(x, Y )− C) = ρ2(d(x, Y ))

This proves (1) =⇒ (3), and a similar argument proves (2) =⇒ (3).

Now assume (3). If d(x, y) 6 d(x, Y ) + d(y, Y ) then both (1) and (2) follow
easily, so assume not. Let z0 be the point of γ at distance d(x, Y ) from x. Our
assumption says d(z0, y) > d(y, Y ). Define points zi+1 inductively as follows:
if d(zi, y) > d(y, Y ) + d(zi, Y ) define zi+1 to be the point of γ between zi and
y at distance d(zi, Y ) from zi. Let k be the last index so defined. From these
choices we estimate:

diamπǫ
Y (γ) 6 diamπǫ

Y (Nd(x,Y )(x)) +

k∑

i=0

diamπǫ
Y (Nd(zi,Y )(zi))

+ diamπǫ
Y (Nd(y,Y )(y))

6 2

(

ρ′′(d(x, Y )) +

k∑

i=0

ρ′′(d(zi, Y )) + ρ′′(d(y, Y ))

)

(5)

Since γ is a geodesic:

d(x, y) = d(x, z0) +

k−1∑

i=0

d(zi, zi+1) + d(zk, y)

= d(x, Y ) +

k−1∑

i=0

d(zi, Y ) + d(zk, y) (6)

We can also bound d(x, y) in terms of the projections to Y :

d(x, y) 6 d(x, πǫ
Y (x)) + diamπǫ

Y (x) ∪ πǫ
Y (y) + d(πǫ

Y (y), y)

6 d(x, πǫ
Y (x)) + diamπǫ

Y (x) ∪ πǫ
Y (z0) +

k−1∑

i=0

diamπǫ
Y (zi) ∪ πǫ

Y (zi+1)

+ diamπǫ
Y (zk) ∪ πǫ

Y (y) + d(πǫ
Y (y), y)

6 d(x, Y ) + ǫ+ ρ′′(d(x, Y )) +

k−1∑

i=0

ρ′′(d(zi, Y )) (7)

+ ρ′′(d(zk, Y )) + ρ′′(d(y, Y )) + d(y, Y ) + ǫ
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Combining (6) and (7) gives us the estimate:

k−1∑

i=0

d(zi, Y )− ρ′′(d(zi, Y )) 6

2ǫ+ ρ′′(d(x, Y )) + ρ′′(d(zk, Y )) + ρ′′(d(y, Y )) + d(y, Y )− d(zk, y) (8)

Define Rn > 0 such that for all r > Rn we have 0 6 ρ′′(r) 6 r/n. Suppose
that d(γ, Y ) > R2 so that d(zi, Y )−ρ′′(d(zi, Y )) > ρ′′(d(zi, Y )) for all i. These
bounds, along with (8), (5), and E := d(zk, y)− d(y, Y ) give:

diamπǫ
Y (γ) 6 2

(
2
(
ǫ+ ρ′′(d(x, Y )) + ρ′′(d(zk, Y )) + ρ′′(d(y, Y ))

)
− E

)

By construction, E > 0, so to prove (2) it suffices to take C′ := R2 and
ρ(r) := 4ǫ+ 12ρ′′(r).

To prove (1) we suppose d(γ, Y ) > C := R4 > R2 and bound 2ρ′′(d(zk, Y ))−E
in terms of ρ′′(d(y, Y )). There are two cases to consider. If d(zk, Y ) 6 4d(y, Y )
then 2ρ′′(d(zk, Y ))−E 6 2ρ′′(4d(y, Y )). Otherwise, d(zk, Y ) > 4d(y, Y ) implies
E > d(zk, Y )/2, so:

2ρ′′(d(zk, Y ))− E < 2
d(zk, Y )

4
− d(zk, Y )

2
= 0

Thus, it suffices to take ρ′(r) := 4ǫ+ 12ρ′′(4r).

8 Further applications

First, we prove a general result.

Proposition 8.1. Let X be a geodesic metric space. Suppose subspaces Y and
Y ′ of X are µ–Morse. Let ǫ > 0 be a constant such that there exist points
p ∈ Y and p′ ∈ Y ′ such that d(p, p′) 6 d(Y, Y ′)+ ǫ. Then there exist a constant
B and a sublinear function ρ, each depending only on µ and ǫ, satisfying the
following conditions:

• If d(Y, Y ′) 6 2µ(4, 0) then Y ∪ Y ′ is B–quasi-convex.

• If d(Y, Y ′) > 2µ(4, 0) then for every geodesic α from Y to Y ′ with
|α| 6 d(Y, Y ′) + ǫ and every geodesic γ from Y to Y ′ we have d(α, γ) <
ρ(d(Y, Y ′)).

Proof. Take geodesics α and γ as hypothesized. Let β be a geodesic from
α to γ with |β| = d(α, γ). See Figure 5. Let δ := [p, x]αβ[y, q]γ and δ′ :=
[p′, x]αβ[y, q

′]γ . (Recall that [p, x]α denotes the subsegment of α from p to x.)
Suppose that δ fails to be a (k, 0)–quasi-geodesic for some k > 3. Both [p, x]αβ
and β[y, q]γ are (3, 0)–quasi-geodesics, by minimality of d(x, y), so there exist
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Y Y ′

α

γ

β

p

q q′

p′
u u′x

y

v v′

Figure 5: Setup for Proposition 8.1

points u ∈ [p, x]α and v ∈ [y, q]γ such that kd(u, v) < d(u, x) + d(x, y) + d(y, v).
Now, d(v, y) 6 d(v, u) + d(u, x) + d(x, y), so:

(k − 1)d(x, y) 6 (k − 1)d(u, v) < 2(d(u, x) + d(x, y))

Whence:

d(α, γ) = d(x, y) <
2d(u, x)

k − 3
6

2|α|
k − 3

6
2(d(Y, Y ′) + ǫ)

k − 3
(9)

If d(Y, Y ′) 6 2µ(4, 0) and δ is not a (4, 0)–quasi-geodesic then d(α, γ) <
4µ(4, 0) + 2ǫ, by (9). This means [y, q]γ is a geodesic with one endpoint on
Y and one within distance 6µ(4, 0) + 2ǫ of Y . Since Y is µ–Morse there is
a B0 depending on µ such that such a geodesic segment is contained in the
B0–neighborhood of Y .
If δ is a (4, 0)–quasi-geodesic it is contained in the µ(4, 0)–neighborhood of Y .
The same arguments apply for δ′, and γ ⊂ δ ∪ δ′, so if d(Y, Y ′) 6 2µ(4, 0) then
Y ∪ Y ′ is B–quasi-convex for B := max{B0, µ(4, 0)}.
Now suppose d(Y, Y ′) > 2µ(4, 0). Then δ and δ′ cannot both be (4, 0)–quasi-
geodesics. By (9):

d(α, γ) <
2(d(Y, Y ′) + ǫ)

sup{k ∈ R | δ or δ′ is not a (k, 0)–quasi-geodesic} − 3

6
2(d(Y, Y ′) + ǫ)

sup{k ∈ R | d(Y, Y ′) > 2µ(k, 0)} − 3

Define:

ρ(r) :=
2(r + ǫ)

sup{k ∈ R | r > 2µ(k, 0)} − 3

We interpret ρ(r) to be 0 if {2µ(k, 0)}k∈R is bounded above by r. For r > ǫ we
have:

ρ(r)

r
6

4

sup{k ∈ R | r > 2µ(k, 0)} − 3
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The denominator is unbounded and non-decreasing as a function of r, so we

have limr→∞
ρ(r)
r = 0.

We first give an application of the second part of Proposition 8.1.

Proposition 8.2. Let X be a geodesic metric space and let Y and Y ′ be µ–
Morse subspaces of X. Let ǫ > 0 be a constant such that the image of πǫ

Y does
not contain the empty set, and such that there exist points p ∈ Y and p′ ∈ Y ′

such that d(p, p′) 6 d(Y, Y ′) + ǫ.
Suppose d(Y, Y ′) > 2µ(6, 0). Then there is a sublinear function ρ depending
only on µ such that diamπǫ

Y (Y
′) 6 ρ(d(Y, Y ′)).

Proof. Since Y is µ–Morse, there is a sublinear function ρ′ depending only on
µ such that Y is (r, ρ′)–contracting, by Proposition 4.2.
Note that p ∈ πǫ

Y (p
′). Choose q′ ∈ Y ′ and q ∈ πǫ

Y (q
′). Let γ be a geodesic

from q to q′, let α be a geodesic from p to p′, and let x ∈ α and y ∈ γ be points
such that d(x, y) = d(α, γ). The setup is the same as in Proposition 8.1, and
we make the corresponding definitions of δ, δ′, etc.
Suppose δ′ is not a (5, 0)–quasi-geodesic. Define u′ and v′ as in Proposition 8.1,
so that d(u′, x) + d(x, y) + d(y, v′) > 5d(u′, v′). We have p ∈ πǫ

Y (u
′) and

q ∈ πǫ
Y (v

′). By definition of x and y, we know d(x, y) 6 d(u′, v′), so d(u′, x) +
d(y, v′) > 4d(u′, v′). In particular, we have 2d(u′, v′) < d(u′, x) or 2d(u′, v′) <
d(v′, y). We suppose the former, the other case being similar.
First, suppose that d(u′, Y ) < ǫ. Then:

d(p, q) 6 d(p, v′) + d(v′, q)

6 2d(p, v′) + ǫ

6 2(d(p, u′) + d(u′, v′)) + ǫ

6 2d(p, u′) + d(u′, x) + ǫ

6 3(d(u′, Y ) + ǫ) + ǫ < 7ǫ

Otherwise, if d(u′, Y ) > ǫ, then we have:

d(u′, v′) <
1

2
d(u′, x) 6

1

2
(d(u′, Y ) + ǫ) 6 d(u′, Y )

By the contraction property:

d(p, q) 6 diamπǫ
Y (u

′) ∪ πǫ
Y (v

′) 6 ρ′(d(u′, Y )) 6 ρ′(d(Y, Y ′) + ǫ)

Suppose instead that δ′ is a (5, 0)–quasi-geodesic. Then δ is not a (6, 0)–quasi-
geodesic, since d(Y, Y ′) > 2µ(6, 0). By (9) we have:

d(x, y) <
2

3
(d(x, u)) 6

2

3
(d(x, Y ) + ǫ)

If d(x, Y ) 6 2ǫ it follows that d(x, y) 6 2ǫ. Thus d(y, Y ) 6 d(y, x) + d(x, Y ) 6
4ǫ, and:

d(p, q) 6 d(q, y) + d(y, x) + d(x, p) 6 d(y, Y ) + ǫ+ 2ǫ+ d(x, Y ) + ǫ 6 10ǫ
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Otherwise d(x, Y ) > 2ǫ and it follows that d(x, y) 6 d(x, Y ). We then use the
contraction property to see:

d(p, q) 6 diamπǫ
Y (x) ∪ πǫ

Y (y) 6 ρ′(d(x, Y )) 6 ρ′(d(Y, Y ′) + ǫ)

Since q′ was an arbitrary point in Y ′ and q was an arbitrary point of πǫ
Y (q

′),
we conclude diamπǫ

Y (Y
′) 6 2(ρ′(d(Y, Y ′) + ǫ) + 10ǫ).

We also have the following applications of the first part of Proposition 8.1:

Corollary 8.3. A geodesic triangle in which two of the sides are µ–Morse is
δ–thin, with δ depending only on µ.

Corollary 8.4. Suppose X is a geodesic metric space and P is a collection of
(ρ1, ρ2)–contracting paths such that for every pair of points x, y ∈ X there exists
a γ ∈ P with endpoints x and y. Then X is δ–hyperbolic, with δ depending
only on ρ1 and ρ2.

Corollary 8.4 is an analogue of [22, Theorem 2.3], which is roughly the same
statement when the paths in P are all semi-strongly contracting with uniform
contraction parameters.

Corollary 8.5. Let G be a group generated by a finite set S. Suppose there
exist functions ρ1 and ρ2 and, for each g ∈ G, a path αg from 1 to g in
Cay(G,S) that is (ρ1, ρ2)–contracting. Then G is hyperbolic.

We must assume uniform contraction in Corollary 8.5, even for finitely pre-
sented groups. Druţu, Mozes, and Sapir [17] show that if H is a finitely gener-
ated subgroup of a finitely generated group G and h ∈ H is a Morse element
in G, that is, 〈h〉 is Morse in some, hence, every, Cayley graph of G, then h is
a Morse element in H . Thus, if H is a finitely generated subgroup of a torsion-
free hyperbolic group then every element of H is Morse. However, Brady [9]
constructed an example of a finitely presented subgroup H of a torsion-free
hyperbolic group G such that H is not hyperbolic.
Fink [20] claims that if all geodesics in a homogeneous proper geodesic metric
space are Morse, then the space is hyperbolic. First is an assertion, [20, Propo-
sition 3.2], that if every geodesic is Morse then the collection of geodesics is
uniformly Morse, ie, there exists a µ such that every geodesic is µ–Morse. Then
an asymptotic cone argument is used to conclude the space is hyperbolic. This
second step can now be accomplished via our Corollary 8.4 without resort to
the asymptotic cone machinery.
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