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Why do Solutions of the
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Abstract. The Maxwell-Boltzmann functional equation has re-
cently attraction renewed interest since besides its importance in
Boltzmann’s kinetic theory of gases it also characterizes maximizers
of certain bilinear estimates for solutions of the free Schrödinger equa-
tion. In this note we give a short and simple proof that, under some
mild growth restrictions, any measurable complex-valued solution of
the Maxwell-Boltzmann equation is a Gaussian. This covers most, if
not all, of the applications.
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1 Introduction

The Maxwell-Boltzmann functional equation for a measurable function f :
Rd Ñ C states that

fpxqfpyq “ Hpx2 ` y2, x ` yq for almost all x, y P R
d (1)

for some measurable function H : R` ˆ Rd Ñ C. This equation has attracted
a lot of attention in kinetic theory, since it determines the collision invariant
of the Boltzmann equation. In this case, it is natural to also assume that f in
non-negative and integrable.
In recent years the Maxwell–Boltzmann equation has regained attention for
complex-valued functions f , since it determines in some cases the maximizers
of the Strichartz inequality in low dimensions d ď 2 [4, 5] and of the Ozawa
and Tsutsumi bilinear inequality [7] and other bilinear estimates [3, 8], which
are space–time inequalities for solutions of the free Schrödinger equation. In
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[2] a class of bilinear estimates was proved, which includes the ones of [3, 7, 8]
for solutions of the Schrödinger equation.
It was also noticed in [2] that any maximizer f of their bilinear inequality obeys

the Maxwell–Boltzmann equation and, furthermore, that f P L1pe´γx2

dxq for
some suitable γ ě 0. They conclude, with the help of known results [6, 9, 10]
on solutions of the Maxwell–Boltzmann equation, that any maximizer of their
bilinear inequality must be a Gaussian.
However, the known approaches to show that solutions f of the Maxwell-
Boltzmann equation are Gaussians need that f is non-negative and f ‰ 0.
This is the case in [10], where Villani uses an argument due to Desvillettes to
reduce the proof for f P L1 and f ě 0 to f P C2 and f ą 0. In [6] Lions uses
the estimates he established in his work to prove that any solution of Maxwell–
Boltzmann is smooth, this is elegant but technical and still needs that f ě 0.
In [9] the proof needs f ě 0 and f P L1

2pRdq, that is, x ÞÑ p1 ` |x|2qfpxq is in-
tegrable, and, upon closer inspection, it seems to us that it also needs that the
Fourier transform of f does not vanish. Using a completely different method,
another approach in [1] also shows that solutions f of the Maxwell–Boltzmann
functional equation are Gaussians if f ě 0 is measurable and finite and f ą 0
on a set of positive measure.
Our note is intended to give a short proof that complex valued-functions, which
obey the Maxwell-Boltzmann equation together with a mild growth condition,
are necessarily Gaussians with a rotationally symmetric covariance. More im-
portantly, we believe that the proof we give is very simple. It does not require
any technical tools besides some simple linear algebra and the chain rule. The
proof we give below is inspired by the proof in [5], where Gaussians were shown
to be the only maximizers in the sharp Stichartz inequality in low dimensions.

2 The Maxwell–Boltzmann equation and Gaussians

Theorem 1. Let f P L1pRd, e´γx2

dxq for some γ ě 0 obey the Maxwell–

Boltzmann equation

fpxqfpyq “ Hpx2 ` y2, x ` yq for almost all x, y P R
d (2)

for some measurable function H : R` ˆ Rd Ñ C. Then there exist a,A P C

with Repaq ă γ and b P Cd such that

fpxq “ Aeax
2`b¨x for almost every x P R

d. (3)

Proof. First, we assume in addition that f P L1pRdq. We will relax this in Step
4 below.

Step 1: Assume that f P C2pRdq X L1pRdq, i.e., it is integrable and twice
continuously differentiable. Assume, furthermore, that f never vanishes. Then
there exist a,A P C with Repaq ă 0 and b P Cd such that

fpxq “ Aeax
2`b¨x for x P R

d.
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To prove this, we will need suitable rotations in two-dimensional subspaces of
R2d. From our assumption fpxqfpyq “ Hpx2 ` y2, x ` yq one easily deduces
that the product fpxqfpyq is invariant under a large class of rotations of R2d,
namely the rotations of R2d which leave Rd ˆRd Q px, yq ÞÑ x` y invariant. To
exploit this, we will construct a convenient basis in R

2d, in which these rotation
have a simple expression.
Let ej, j “ 1 . . . , d be the standard basis for Rd, that is, ej has only zero
entries, except for the jth slot, in which it has a one, and define the vectors
αj , j “ 1, . . . , d by

αj :“
1?
2

ˆ
ej
ej

˙
.

so that αj are unit vectors. Then the equation x ` y “ c P Rd is equivalent to

the d equations cj “ xj ` yj “
?
2 xαj , zy

R2d , j “ 1, . . . , d with z “
ˆ
x

y

˙
and

x¨, ¨y
R2d the standard scalar product in R2d.

To construct suitable rotations in the orthogonal complement of
spantα1, . . . , αdu Ă R2d, one has to find a basis for this orthogonal com-
plement. This can be done either in a systematic manner or by simply
guessing that the vectors

βj :“
1?
2

ˆ
ej

´ej

˙

will do the job: It is easy to check that tα1, . . . , αd, β1, . . . , βdu form an or-
thonormal basis of R2d.
Fix j, k P t1, . . . , du with j ‰ k. We define the rotation by an angle ϕ in the
plane spanned by βj and βk by the matrix

Rj,kpϕq –

dÿ

l“1

αlα
t
l `

ÿ

m“1,...,d
mRtj,ku

βmβt
m

` cospϕqβjβ
t
j ´ sinpϕqβjβ

t
k ` sinpϕqβkβ

t
j ` cospϕqβkβ

t
k .

(4)

In the following, we will suppress in our notation that the matrix depends on j

and k. This rotation keeps all the directions αl, l “ 1, . . . , d and βm, m R tj, ku
invariant. Since the function

F pzq :“ fpxqfpyq “ Hpx2 ` y2, x ` yq, z “ px, yq P R
2d

is invariant under such a rotation, we have

F pRpϕqzq “ const

for all fixed z P R2d and all ϕ P R. Thus, since F is twice continuously
differentiable, by assumption,

0 “ d

dϕ
F pRpϕqzq

ˇ̌
ϕ“0

“
B
∇2dF pzq, d

dϕ
Rpϕq

ˇ̌
ϕ“0

z

F

R2d

. (5)
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Here ∇2d is the gradient in R2d. One easily calculates

d

dϕ
Rpϕq

ˇ̌
ϕ“0

“ ´βjβ
t
k ` βkβ

t
j .

In the splitting R2d “ Rd ˆ Rd, the matrix βjβ
t
k has a simple block structure,

βjβ
t
k “ 1

2

ˆ
ej

´ej

˙
petk ´ etkq “ 1

2

ˆ
eje

t
k ´eje

t
k

´eje
t
k eje

t
k

˙
.

So
d

dϕ
Rpϕq

ˇ̌
ϕ“0

“ 1

2

ˆ
´eje

t
k ` eke

t
j eje

t
k ´ eke

t
j

eje
t
k ´ eke

t
j ´eje

t
k ` eke

t
j

˙

and thus, since e t
k x “ xek, xyRd “ xk, one has

d

dϕ
Rpϕq

ˇ̌
ϕ“0

z “
ˆ

´pxk ´ ykqej ` pxj ´ yjqek
pxk ´ ykqej ´ pxj ´ yjqek

˙
for z “

ˆ
x

y

˙
.

Hence, writing

∇2dF pzq “ fpxqfpyq
ˆ
∇qpxq
∇qpyq

˙

with q “ ln f , which is well-defined, since, by assumption, f never vanishes, we
get from (5) the differential equation

0 “ ´
Bˆ

∇qpxq
∇qpyq

˙
,

ˆ
´pxk ´ ykqej ` pxj ´ yjqek
pxk ´ ykqej ´ pxj ´ yjqek

˙F

R2d

“ pxk ´ ykqBjqpxq ´ pxj ´ yjqBkqpxq ´ pxk ´ ykqBjqpyq ` pxj ´ yjqBkqpyq

for all j ‰ k and all x, y P Rd.
Differentiating this with respect to yj yields

0 “ Bkqpxq ´ pxk ´ ykqB2

j qpyq ´ Bkqpyq ` pxj ´ yjqBjBkqpyq (6)

and differentiating this again with respect to xj , we arrive at

BjBkqpxq ` BjBkqpyq “ 0

for all x, y P Rd, which setting x “ y shows

BjBkqpxq “ 0 for all j ‰ k, (7)

whereas differentiating (6) with respect to xk gives

B2

kqpxq “ B2

j qpyq for all j ‰ k (8)

and for all x, y. The two equations (7) and (8) show that there exists a constant
a P C such that

∇Bjqpxq “ 2aej
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for all j “ 1, . . . , d. Integrating this gives

Bjqpxq “ 2axj ` bj

for some constants bj P C, i.e.,

∇qpxq “ 2ax ` b

and integrating this yields lnpfpxqq “ qpxq “ ax2 ` b ¨ x ` c. That is,

fpxq “ Aeax
2`b¨x for x P R

d

for some constants a,A P C and b P Cd and in order that this is in L1pRdq, we
need to have Repaq ă 0.
For the second step let

gpxq –

1

πd{2
e´x2

a centered L1-normalized Gaussian and for ε ą 0

gεpxq – ε´dgpx{εq

its scaled version, which serves as an approximation of the delta-distributions
as ε Ñ 0.

Step 2: Assume that f P L1pRdq and the convolution gε ˚ f never vanishes for
all small enough ε ą 0. Then there exist a,A P C with Repaq ă 0 and b P Cd

such that
fpxq “ Aeax

2`b¨x.

Indeed, Gεpx, yq “ gεpxqgεpyq is a centered Gaussian in R2d, in particular,

invariant under all rotations of R2d. Let rHpx, yq “ Hpx2 ` y2, x ` yq and

set rHε “ Gε ˚ rH, the convolution now on R2d. From the Maxwell-Boltzmann
equation for f one gets

´
gε ˚ f

¯
pxq

´
gε ˚ f

¯
pyq “ pGε ˚ rHqpx, yq for all x, y P R

d

A simple calculation, using that Gε is invariant under all rotations of R
2d, shows

that rHε inherits all rational invariances of rH , that is, it is invariant under all
rotations of R2d which leave R2 ˆ R

d Q px, yq ÞÑ x ` y invariant. Clearly gε ˚ f

is infinitely often differentiable and, by assumption it does not vanish for all
small enough ε ą 0. So Step 1 applies to gε ˚ f and shows that there exist
aε, Aε P C with Repaεq ă 0 and bε P Cd such that

´
gε ˚ f

¯
pxq “ Aεe

aεx
2`bε¨x

for all x P R
d. Taking the limit ε Ñ 0 shows that f is the L1-limit of Gaussians,

hence it must be a Gaussian.
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To finish the proof for f P L1pRdq it is enough to show

Step 3: Let f P L1 obey the Maxwell–Boltzmann equation and f not be the
zero function. Then for any small enough ε ą 0 the convolution gε ˚ f never
vanishes.
Indeed, as above one sees

R
d ˆ R

d Q px, yq ÞÑ
´
gε ˚ f

¯
pxq

´
gε ˚ f

¯
pyq

is invariant under all rotations of R2d which leave Rd ˆ Rd Q px, yq ÞÑ x ` y

invariant. So taking the modulus and applying the same argument again, shows
that for any δ ą 0

R
d ˆ R

d Q px, yq ÞÑ
´
gδ ˚ |gε ˚ f |

¯
pxq

´
gδ ˚ |gε ˚ f |

¯
pyq

is also invariant under all rotations of R2d which leave Rd ˆRd Q px, yq ÞÑ x`y

invariant.
Since f is not identically zero and gε ˚f converges to f in L1, we see that gε ˚f
is not identically zero for all small enough ε ą 0. But in this case |gε ˚ f | is non
negative and positive on some set of positive measure, thus

´
gδ˚|gε˚f |

¯
pxq ą 0

for all δ ą 0 and all x P Rd, i.e., it is infinitely often differentiable and it never
vanishes. By Step 1, we see that |gε ˚ f | is a Gaussian and thus, if it vanishes
somewhere it must vanish everywhere. So if |gε ˚ f | vanishes somewhere for all
small ε, it is identically zero for all small ε, and taking the limit ε Ñ 0, we
see that f must be equal to zero almost everywhere, in contradiction to our
assumption. So |gε ˚ f | never vanishes for all small enough ε ą 0.
This finished the proof in case f P L1pRdq obeys the Maxwell–Boltzmann
equation. The last step is to relax the integrability assumption on f , which is
easy:

Step 4: If f P L1pRd, e´γx2

dxq obeys the Maxwell–Boltzmann equation, then
there exist a,A P C with Repaq ă γ and b P Cd such that

fpxq “ Aeax
2`b¨x

for almost all x P Rd.
Indeed, let fγpxq “ e´γx2

fpxq. Then fγ P L1pRdq and it also obeys the
Maxwell–Boltzmann equation. So by the above there exist a0, A P C with
Repa0q ă 0 and b P Cd such that

fγpxq “ Aea0x
2`b¨x for almost all x P R

d.

Then cleary

fpxq “ Aeax
2`b¨x

with a “ a0 ` γ and Repaq ă γ.
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