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INTRODUCTION

The aim of this work is to characterize positivity (both local and global) of line bun-
dles on complex projective varieties in terms of convex geometry via the theory of
Newton–Okounkov bodies. We will provide descriptions of ample and nef divisors,
and discuss the relationship between Newton–Okounkov bodies and Nakayama’s σ -
decomposition.
Based on earlier ideas of Khovanskii’s Moscow school and motivated by the work of
Okounkov [O], Kaveh–Khovanskii [KKh] and Lazarsfeld–Mustaţă [LM] introduced
Newton–Okounkov bodies to projective geometry, where they have been an object of
interest ever since. Essentially, a refined book-keeping device encoding the orders of
vanishing along subvarieties of the ambient space X , they provide a general framework
for the study of the asymptotic behaviour of line bundles on projective varieties.
The construction that leads to Newton–Okounkov bodies associates to a line bundle
(or more generally, an R-Cartier divisor) on an n-dimensional variety a collection of
compact convex bodies ∆Y•(D)⊆Rn parametrized by certain complete flags Y• of sub-
varieties. Basic properties of these have been determined [AKL, B1, LM], and their
behaviour on surfaces [KLM, LM, LSS] and toric varieties [LM, PSU] has been dis-
cussed at length. We refer the reader to the above-mentioned sources for background
information.
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A distinguishing property of the notion is that it provides a set of ’universal numerical
invariants’, since a result of Jow [J] shows that for Cartier divisors D and D′, D is
numerically equivalent to D′ precisely if the associated functions

Admissible flags Y• in X
∆Y•(D)
−→ Convex bodies in Rn

agree.
Turning this principle into practice, one can expect to be able to read off all sorts of
numerical invariants of Cartier divisors — among them asymptotic invariants like the
volume or Seshadri constants — from the set of Newton–Okounkov bodies of D. On
the other hand, questions about global properties of the divisor might arise; whether
one can determine ampleness or nefness of a given divisor in terms of its Newton–
Okounkov bodies. As we will see, the answer is affirmative.
Localizing this train of thought, local positivity of a divisor D at a point x ∈ X will be
determined by the function

Admissible flags centered at x
∆Y•(D)
−→ Convex bodies in Rn .

In particular, one can aim at deciding containment of x in various asymptotic base loci,
or compute measures of local positivity in terms of these convex sets.
In fact the authors have carried out the suggested analysis in the case of smooth sur-
faces [KL], where the answer turned out to be surprisingly complete. The current
article can be rightly considered as a higher-dimensional generalization of [KL].
In search for a possible connection between Newton–Okounkov bodies and positivity,
let us start with the toy example of projective curves. For an R-Cartier divisor D on a
smooth projective curve C, one has

D nef ⇔ degC D > 0 ⇔ 0 ∈ ∆P(D) for some/any point P ∈C ,

D ample ⇔ degC D > 0 ⇔ ∆λ ⊆ ∆P(D) for some/any point P ∈C,

where ∆λ := [0,λ ] for some real number λ > 0.
Interestingly enough, the observation just made generalizes in its entirety for smooth
projective surfaces. Namely, one has the following [KL, Theorem A]: for a big R-
divisor D on a smooth projective surface X

D is nef ⇔ for all x ∈ X there exists a flag (C,x) such that (0,0) ∈ ∆(C,x)(D) ,

D is ample ⇔ for all x ∈ X there exists a flag (C,x) and λ > 0

such that ∆λ ⊆ ∆(C,x)(D)

where ∆λ denotes the standard full-dimensional simplex of size λ in R2. In higher
dimensions we will also denote by ∆λ ⊆ Rn the standard simplex of length λ .
Our first results are local versions of the analogous statements in higher dimensions.

THEOREM A. Let D be a big R-divisor on a smooth projective variety X of dimension
n, let x ∈ X . Then the following are equivalent.

(1) x 6∈ B−(D).
(2) There exists an admissible flag Y• on X centered at x such that the origin 0 ∈

∆Y•(D)⊆ Rn.
(3) The origin 0 ∈ ∆Y•(D) for every admissible flag Y• on X centered at x ∈ X .
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THEOREM B. With notation as above, the following are equivalent.

(1) x 6∈ B+(D).
(2) There exists an admissible flag Y• on X centered at x with Y1 ample such that

∆λ ⊆ ∆Y•(D) for some positive real number λ .
(3) For every admissible flag Y• on X there exists a real number λ > 0 for which

∆λ ⊆ ∆Y•(D).

These results will be proven below as Theorem 2.1, and Theorem 3.1, respectively.
Making use of the connections between augmented/restricted base loci, we obtain
the expected characterizations of nef/ample divisors as in Corollary 2.2 and 3.2. An
interesting recent study of local positivity on surfaces was undertaken by Roé [R],
where the author introduces the concept of local numerical equivalence, based on the
ideas developed in [KL].
Zariski decomposition is a basic tool in the theory of linear series on surfaces, which
is largely responsible for the fact that Newton–Okounkov bodies are reasonably well
understood in dimension two; the polygonality of ∆Y•(D) in case of a smooth surface
is a consequence of variation of Zariski decomposition [BKS] for instance (see [KLM,
Section 2] for a discussion).
Not surprisingly, the existence and uniqueness of Zariski decompositions is one of the
main tools used in [KL]. Its relationship to Newton–Okounkov polygons on surfaces
is particularly simple: if D is a big R-divisor with the property that the point Y2 in the
flag Y• is not contained in the support of the negative part of D, then ∆Y•(D) = ∆Y•(PD),
where PD stands for the positive part of D.
In dimensions three and above, the appropriate birational version of Zariski decom-
position — the so-called CKM decomposition — only exists under fairly restrictive
hypotheses, hence one needs substitutes whose existence is guaranteed while they still
retain some of the favourable properties of the original notion.
A widely accepted concept along these lines is Nakayama’s divisorial Zariski decom-
position or σ -decomposition, which exists for an arbitrary big R-divisor, but where
the ’positive part’ is only guaranteed to be movable (see [N, Chapter 3] or [B2]). Ex-
tending the observation coming from dimension two, we obtain the following.

THEOREM C. Let X be a smooth projective variety, D a big R-divisor, Γ a prime
divisor, Y• : Y0 = X ⊇ Y1 = Γ ⊇ . . .⊇ Yn = {x} and admissible flag on X . Then

(1) ∆Y•(D) ⊆ (σΓ(D),0 . . . ,0)+Rn
+,

(2) (σΓ(D),0 . . . ,0) ∈ ∆Y•(D), whenever x ∈ Γ is a very general point.
(3) ∆Y•(D) = νY•(Nσ (D))+∆Y•(Pσ (D)). Morever, ∆Y•(D) = ∆Y•(Pσ (D)), when x /∈

Supp(Nσ (D)).

The organization of the paper goes as follows: Section 1 fixes notation, and collects
some preliminary information about asymptotic base loci and Newton–Okounkov bod-
ies. Sections 2 and 3 are devoted to the respective proofs of Theorems A and B,
while Section 4 describes the relationship between Newton–Okounkov bodies and
Nakayama’s σ -decomposition.
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1. NOTATION AND PRELIMINARIES

1.1. NOTATION. For the duration of this work let X be a smooth complex projective
variety of dimension n and D be a Cartier divisor on X . An admissible flag of subvari-
eties

Y• : X = Y0 ⊇ Y1 ⊇ . . .⊇ Yn−1 ⊇ Yn = {pt.},

is a complete flag with the property that each Yi is an irreducible subvariety of codi-
mension i and smooth at the point Yn. For an arbitrary point x ∈ X , we say that Y•
is centered at x whenever Yn = x. The associated Newton–Okounkov body will be
denoted by ∆Y•(D)⊆ Rn

+ (for the actual construction and its basic properties we refer
the reader to [KKh, LM]).

REMARK 1.1. Not all of our results require X to be smooth, at points it would suffice
to require X to be merely a projective variety. As a rule though, we will not keep track
of minimal hypotheses.

1.2. ASYMPTOTIC BASE LOCI. Stable base loci are fundamental invariants of linear
series, however, as their behaviour is somewhat erratic (they do not respect numerical
equivalence of divisors for instance), other alternatives were in demand. To remedy
the situation, Nakamaye came up with the idea of studying stable base loci of small
perturbations. Based on this, the influential paper [ELMNP1] introduced new asymp-
totic notions, the restricted and augmented base loci of a big divisor D.
The restricted base locus of a big R-divisor D is defined as

B−(D)
def
=

⋃

A

B(D+A) ,

where the union is over all ample Q-divisors A on X . This locus turns out to be
a countable union of subvarieties of X (and one really needs a countable union on
occasion, see [L]), and, via [ELMNP1, Proposition 1.19]

B−(D) =
⋃

m∈N

B(D+αm) ,

where αm ց 0 is any sequence of ample R-divisor classes such that D+αm is a Q-
divisor class for all m ∈ N.
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The augmented base locus of an R-divisor D is defined to be

B+(D)
def
=

⋂

A

B(D−A),

where the intersection is taken over all ample Q-divisors A on X . It follows quickly
from [ELMNP1, Proposition 1.5] that B+(D) = B(D−α) for any sufficiently small
R-divisor class α .
Augmented and restricted base loci satisfy various favorable properties; for instance
both B+(D) and B−(D) depend only on the numerical class of D, hence are much
easier to study (see [ELMNP1, Corollary 2.10] and [PAG2, Example 11.3.12]).
Below we make a useful remark regarding augmented/restricted base loci. The state-
ment must be well-known to experts, as usual, we include it with proof for the lack of
a suitable reference.

PROPOSITION 1.2. Let X be a projective variety, x ∈ X an arbitrary point. Then

(1) B+(x)
def
=

{

α ∈ N1(X)R | x ∈ B+(α)
}

⊆ N1(X)R is closed,

(2) B−(x)
def
=

{

α ∈ N1(X)R | x ∈ B−(α)
}

⊆ N1(X)R is open,

both with respect to the metric topology of N1(X)R.

REMARK 1.3. We point out that unlike required in [ELMNP1], one does not need the
normality assumption on X for [ELMNP1, Corollary 1.6] to hold.

Proof. (i) First we deal with the case of augmented base loci. Observe that it suffices
to prove that

B+(x)∩Big(X)⊆ Big(X) is closed,

since the big cone is open in the Néron–Severi space.
We will show that whenever (αn)n∈N is a sequence of big R-divisor classes in B(x)
converging to α ∈ Big(X), then α ∈ B+(x) as well.
By [ELMNP1, Corollary 1.6], the class α has a small open neighbourhood U in the
big cone for which

β ∈ U =⇒ B+(β )⊆ B+(α) .

If x ∈ B+(αn) for infinitely many n ∈ N, then since αn ∈ U for n large, we also have
x ∈ B+(α).
(ii) Let α ∈ N1(X)R be arbitrary, and fix an R-basis A1, . . . ,Aρ of N1(X)R consisting
of ample divisor classes. Observe that x ∈ B−(α) implies that x ∈ B−(α + t0 ∑

ρ
i=1 Ai)

for some t0 > 0 thanks to the definition of the restricted base locus.
Since subtracting ample classes cannot decrease B−, it follows that x ∈ B−(α) yields
x ∈ B−(γ) for all classes of the form α + t0 ∑

ρ
i=1 Ai −∑

ρ
i=1R>0Ai, which certainly

contains an open neighbourhood of α ∈ N1(X)R. �

1.3. NEWTON–OKOUNKOV BODIES. We start with a sligthly different definition
of Newton–Okounkov bodies; it has already appeared in print in [KLM], and al-
though it is an immediate consequence of [LM], a complete proof was first given
in [B1]Proposition 4.1.
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PROPOSITION 1.4 (Equivalent definition of Newton-Okounkov bodies). Let ξ ∈
N1(X)R be a big R-class and Y• be an admissible flag on X. Then

∆Y•(ξ ) = closed convex hull of {νY•(D) | D ∈ Div>0(X)R,D ≡ ξ},

where the valuation νY•(D), for an effective R-divisor D, is constructed inductively as

in the case of integral divisors.

REMARK 1.5. Just as in the case of the original definition of Newton–Okounkov
bodies, it becomes a posteriori clear that valuation vectors νY•(D) form a dense subset
of

closed convex hull of {νY•(D) | D ∈ Div>0(X)R,D ≡ ξ} ,

hence it would suffice to take closure in Proposition 1.4.

The description of Newton–Okounkov bodies above is often more suitable to use than
the original one. For example, the following statement follows immediately from it.

PROPOSITION 1.6. Suppose ξ is a big R-class and Y• is an admissible flag on X.

Then for any t ∈ [0,µ(ξ ,Y1)), we have

∆Y•(ξ )ν1>t = ∆Y•(ξ − tY1) + tE1,

where µ(ξ ,Y1) = sup{µ > 0|ξ − µY1 is big} and E1 = (1,0, . . . ,0) ∈ Rn.

This statement first appeared in [LM, Theorem 4.24] with the additional condition that
Y1 * B+(ξ ).
We will need a version of [AKL, Lemma 8] for real divisors.

LEMMA 1.7. Let D be a big R-divisor, Y• an admissible flag on X. Then the following

hold.

(1) For any real number ε > 0 and any ample R-divisor A on X, we have ∆Y•(D) ⊆
∆Y•(D+ εA).

(2) If α is an arbitrary nef R-divisor class, then ∆Y•(D)⊆ ∆Y•(D+α).
(3) If αm is any sequence of nef R-divisor classes with the property that αm −αm+1 is

nef and ‖αm‖→ 0 as m → ∞ with respect to some norm on N1(X)R, then

∆Y•(D) =
⋂

m

∆Y•(D+αm) .

Proof. For the first claim, since A is an ample R-divisor, one can find an effective R-
divisor M ∼R A with Yn /∈ Supp(M). Then for any arbitrary effective divisor F ∼R D

one has F + εM ≡R D+ εA and νY•(F +M) = νY•(F). Therefore

{νY•(ξ ) | ξ ∈ Div>0(X)R,D ≡ ξ} ⊆ {νY•(ξ ) | ξ ∈ Div>0(X)R,D+ εA ≡ ξ}

and we are done by Proposition 1.4.
For (ii), note first that whenever α is ample, we can write α = ∑r

i=1 εiAi for suitable
real numbers εi > 0 and ample integral classes Ai, therefore an interated application of
(i) gives the claim. The general case then follows by continuity and and approximating
a nef R-divisor class by a sequence of ample ones.
The equality in (iii) is a consequence of (ii) and the continuity of Newton–Okounkov
bodies. �
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2. RESTRICTED BASE LOCI

Our main goal here is to give a characterization of restricted base loci in the language
of Newton–Okounkov bodies.

THEOREM 2.1. Let D be a big R-divisor on a smooth projective variety X of dimen-

sion n, let x ∈ X. Then the following are equivalent.

(1) x 6∈ B−(D).
(2) There exists an admissible flag Y• on X centered at x such that 0 ∈ ∆Y•(D)⊆ Rn.

(3) The origin 0 ∈ ∆Y•(D) for every admissible flag Y• on X centered at x ∈ X.

Coupled with simple properties of restricted base loci we arrive at a precise description
of big and nef divisors in terms of convex geometry.

COROLLARY 2.2. With notation as above the following are equivalent for a big R-

divisor D.

(1) D is nef.

(2) For every point x ∈ X there exists an admissible flag Y• on X centered at x such

that 0 ∈ ∆Y•(D)⊆ Rn.

(3) For every admissible flag Y•, one has 0 ∈ ∆Y•(D).

Proof. Immediate from Theorem 2.1 and [ELMNP1, Example 1.18]. �

The essence of the proof of Theorem 2.1 is to connect the asymptotic multiplicity of D

at x to a certain function defined on the Newton-Okounkov body of D. Before turning
to the actual proof, we will quickly recall the notion of the asymptotic multiplicity or
the asymptotic order of vanishing of a Q-divisor F at a point x ∈ X .
Let F be an effective Cartier divisor on X , defined locally by the equation f ∈ OX ,x.
Then multiplicity of F at x is defined to be multx(F) = max{n ∈ N| f ∈m

n
X ,x}, where

mX ,x denotes the maximal ideal of the local ring OX ,x. If |V | is a linear series, then the
multiplicity of |V | is defined to be

multx(|V |)
def
= min

F∈|V |
{multx(F)} .

By semicontinuity the above expression equals the multiplicity of a general element
in |V | at x. The asymptotic multiplicity of a Q-divisor D at x is then defined to be

multx(||D||)
def
= lim

p→∞

multx(|pD|)

p
.

The multiplicity at x coincides with the order of vanishing at x, given in Definition 2.9
from [ELMNP1]. In what follows we will talk about the multiplicity of a divisor, but
the order of vanishing of a section of a line bundle.
An important technical ingredient of the proof of Theorem 2.1 is a result of
[ELMNP1], which we now recall.

PROPOSITION 2.3. ([ELMNP1, Proposition 2.8]) Let D be a big Q-divisor on a

smooth projective variety X, x ∈ X an arbitrary (closed) point. Then the following

are equivalent.
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(1) There exists C > 0 having the following property: if |pD| 6= /0 for some positive

integer p, then multx(|pD|)<C.

(2) multx(‖D‖) = 0.

(3) x /∈ B−(D).

The connection between asymptotic multiplicity and Newton–Okounkov bodies
comes from the claim below.

LEMMA 2.4. Let M be an integral Cartier divisor on a projective variety X (not

necessarily smooth), s ∈ H0(X ,OX(M)) a non-zero global section. Then

(2.4.1) ordx(s) 6

i=n

∑
i=1

νi(s),

for any admissible flag Y• centered x, where νY• = (ν1, . . . ,νn) is the valuation map

arising from Y•.

Proof. Since Y• is an admissible flag and the question is local, we can assume without
loss of generality that each element in the flag is smooth, thus Yi ⊆ Yi−1 is Cartier for
each 1 6 i 6 n.
As the local ring OX ,x is regular, order of vanishing is multiplicative. Therefore

ordx(s) = ν1(s)+ ordx(s−ν1(s)Y1) 6 ν1(s)+ ordx((s−ν1(s)Y1)|Y1)

by the very definition of νY•(s), and the rest follows by induction. �

REMARK 2.5. Note that the inequality in (2.4.1) is not in general an equality for the
reason that the zero locus of s might not intersect an element of the flag transversally.
For the simplest example of this phenomenon set X = P2, and take s = xz − y2 ∈
H0(P2,OP2(2)), Y1 = {x = 0} and Y2 = [0 : 0 : 1]. Then clearly ν1(s) = 0, and ν2(s) =
ordY2(−y2) = 2, but since Y2 is a smooth point of (s)0 = {xz− y2 = 0}, ordY2(s) = 1
and hence ordY1(s)< ν1(s)+ν2(s).

For a compact convex body ∆ ⊆ Rn, we define the sum function σ : ∆ → R+ by
σ(x1, . . . ,xn) = x1 + . . .+ xn. Being continuous on a compact topological space, it
takes on its extremal values. If ∆Y•(D) ⊆ Rn is a Newton–Okounkov body, then we
write σD for the sum function on ∆Y•(D) (suppressing the fact that it depends on the
choice of the flag Y•).

PROPOSITION 2.6. Let D be a big Q-divisor on a projective variety X (not necessarily

smooth) and let x ∈ X a point. Then

(2.6.2) multx(||D||) 6 minσD.

for any admissible flag Y• centered at x.

Proof. Since both sides of (2.6.2) are homogeneous of degree one in D, we can assume
without loss of generality that D is integral. Fix a natural number p > 1 such that
|pD| 6=∅, and let s ∈ H0(X ,OX (pD)) be a non-zero global section. Then

1
p

multx(|pD|) 6
1
p

ordx(s) 6
1
p

(

i=n

∑
i=1

νi(s)
)

Documenta Mathematica 22 (2017) 1285–1302



POSITIVITY AND NEWTON–OKOUNKOV BODIES 1293

by Lemma 2.4.
Multiplication of sections and the definition of the multiplicity of a linear series then
yields multx(|qpD|)6 qmultx(|pD|) for any q > 1, which, after taking limits leads to

multx(||D||) 6
1
p

multx(|pD|) 6
1
p

(

i=n

∑
i=1

νi(s)
)

.

Varying the section s and taking into account that ∆Y•(D) is the closure of the set of
normalized valuation vectors of sections, we deduce the required statement. �

EXAMPLE 2.7. The inequality in (2.6.2) is usually strict. For a concrete example take
X = BlP(P2), D = π∗(H)+E and the flag Y• = (C,x), where C ∈ |3π∗(H)− 2E| is
the proper transform of a rational curve with a single cusp at P, and {x} =C∩E , i.e.
the point where E and C are tangent to each other. Then

multx(||D||) = lim
p→∞

(multx(|pD|)

p

)

= lim
p→∞

(multx(|pE|)

p

)

= 1 .

On the other hand, a direct computation using [LM, Theorem 6.4] shows that

∆Y•(D) = {(t,y) ∈ R2 | 0 6 t 6
1
3
, and 2+ 4t 6 y 6 5− 5t} .

As a result, minσD = 2 > 1.
For more on this phenomenon, see Proposition 2.10 below.

REMARK 2.8. We note here a connection with functions on Okounkov bodies com-
ing from divisorial valuations. With the notation of [BKMS], our Lemma 2.4 says
that φordx 6 σD, and a quick computation shows that we obtain equality in the case
of projective spaces, hyperplane bundles, and linear flags. Meanwhile, Example 2.7
illustrates that minφordx 6= multx ‖D‖ in general.

Proof of Theorem 2.1. (1)⇒ (3) We are assuming x /∈ B−(D); let us fix a sequence of
ample R-divisor classes αm with the properties that αm −αm+1 is ample for all m > 1,
‖αm‖ → 0 as m → ∞, and such that D+αm is a Q-divisor. Let Y• be an arbitrary
admissible flag centered at x.
Then x /∈ B(D+αm) for every m > 1, furthermore, Lemma 1.7 yields

(2.8.3) ∆Y•(D) =
∞
⋂

m=1

∆Y•(D+αm) .

Because x /∈ B(D+αm) holds for any m > 1, there must exist a sequence of natural
numbers nm > 1 and a sequence of global sections sm ∈ H0(X ,OX (nm(D+αm))) such
that sm(x) 6= 0. This implies that νY•(sm) = 0 for each m > 1. In particular, 0 ∈
∆Y•(D+αm) for each m > 1. By (2.8.3) we deduce that ∆Y•(D) contains the origin as
well.
The implication (3) ⇒ (2) being trivial, we will now take care of (2) ⇒ (1). To
this end assume that Y• is an admissible flag centered at x having the property that
0 ∈ ∆Y•(D), αm a sequence of ample R-divisor classes such that αm −αm+1 is nef,
‖αm‖→ 0 as m → ∞, and D+αm is a Q-divisor for all m > 1.
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By Lemma 1.7,
0 ∈ ∆Y•(D) ⊆ ∆Y•(D+αm)

for all m > 0, whence minσD+αm = 0 for all sum functions σD+αm : ∆Y•(D+αm) →
R+. By Proposition 2.6 this forces multx(||D + αm||) = 0 for all m > 1, hence
[ELMNP1, Proposition 2.8] leads to x /∈ B−(D+αm) for all m > 1.
As

B−(D) =
⋃

m

B−(D+αm) =
⋃

m

B(D+αm)

according to [ELMNP1, Proposition 1.19], we are done. �

REMARK 2.9. A closer inspection of the above proof reveals that the implication
(1) ⇒ (3) holds on an arbitrary projective variety both in Theorem 2.1 and Corol-
lary 2.2.

We finish with a precise version of Proposition 2.6 in the surface case, which also
provides a complete answer to the question of where the Newton-Okounkov body
starts in the plane. Note that unlike Theorem 4.2, it gives a full description for an
arbitrary flag.

PROPOSITION 2.10. Let X be a smooth projective surface, (C,x) an admissible flag,

D a big Q-divisor on X with Zariski decomposition D = P(D)+N(D). Then

(1) minσD = a+ b, where a = multC(N(D)) and b = multx(N(D− aC)|C),
(2) multx(||D||) = a+ b′, where b′ = multx(N(D− aC)).

Moreover, (a,b) ∈ ∆(C,x)(D) and ∆(C,x)(D)⊆ (a,b)+R2
+.

Proof. (1) This is an immediate consequence of [LM, Theorem 6.4] in the light of the
fact that α is an increasing function, hence minσD is taken up at the point (a,α(a)).
(2) Since x is a smooth point, it will suffice to check that multx(||D||) = multx(N(D)).
As asymptotic multiplicity is homogeneity of degree one (see [ELMNP1, Remark
2.3]), we can safely assume that D,P(D) and N(D) are all integral.
As one has isomorphisms H0(X ,OX(mP(D))) → H0(X ,OX (mD)) for all m > 1 by
[PAG1, Proposition 2.3.21], the definition of asymptotic multiplicity yields

multx(||D||) = multx(||P(D)||) + multx(N(D)) .

Observe that P(D) is big and nef therefore [PAG1, Proposition 2.3.12] implies
multx(||P(D)||) = 0. This completes the proof. �

3. AUGMENTED BASE LOCI

As explained in [ELMNP1, Example 1.16], one has inclusions B−(D) ⊆ B(D) ⊆
B+(D), consequently, we expect that whenever x /∈ B+(D), Newton–Okounkov bod-
ies attached to D should contain more than just the origin. As we shall see below, it
will turn out that under the condition above they in fact contain small simplices.
We will write

∆ε
def
= {(x1, . . . ,xn) ∈ Rn

+ | x1 + . . .+ xn 6 ε}

for the standard ε-simplex.
Our main statement is the following.
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THEOREM 3.1. Let D be a big R-divisor on a smooth projective variety X, x ∈ X be

an arbitrary (closed) point. Then the following are equivalent.

(1) x /∈ B+(D).
(2) There exists an admissible flag Y• centered at x with Y1 ample such that ∆ε0 ⊆

∆Y•(D) for some ε0 > 0.

(3) For every admissible flag Y• centered at x there exists ε > 0 (possibly depending

on Y•) such that ∆ε ⊆ ∆Y•(D).

COROLLARY 3.2. Let X be a smooth projective variety, D a big R-divisor on X. Then

the following are equivalent.

(1) D is ample.

(2) For every point x∈ X there exists an admissible flag Y• centered at x with Y1 ample

such that ∆ε0 ⊆ ∆Y•(D) for some ε0 > 0.

(3) For every admissible flag Y• there exists ε > 0 (possibly depending on Y•) such

that ∆ε ⊆ ∆Y•(D).

Proof of Corollary 3.2. Follows immediately from Theorem 3.1 and [ELMNP1, Ex-
ample 1.7]. �

One can see Corollary 3.2 as a variant of Seshadri’s criterion for ampleness in the
language of convex geometry.

REMARK 3.3. It is shown in [KL, Theorem 2.4] and [KL, Theorem A] that in dimen-
sion two one can in fact discard the condition above that Y1 should be ample. Note
that the proofs of the cited results rely heavily on surface-specific tools and in general
follow a line of thought different from the present one.

We first prove a helpful lemma.

LEMMA 3.4. Let X be a projective variety (not necessarily smooth), A an ample

Cartier divisor, Y• an admissible flag on X. Then for all m >> 0 there exist global

sections s0, . . . ,sn ∈ H0(X ,OX(mA)) for which

νY•(s0) = 0 and νY•(si) = Ei, for each i = 1, . . . ,n,

where {E1, . . . ,En} ⊆ Rn denotes the standard basis.

Proof. First, we point out that by the admissibility of the flag Y•, we know that there
is an open neighbourhood U of x such that Yi|U is smooth for all 0 6 i 6 n.
Since A is ample, OX(mA) becomes globally generated for m >> 0. For all such
m there exists a non-zero section s0 ∈ H0(X ,OX (mA)) with s0(Yn) 6= 0, in particular,
νY•(s0) = 0, as required.
It remains to show that for all m >> 0 and i = 1 6 i 6 n we can find non-zero sections
si ∈ H0(X ,OX (mA)) with νY•(si) = Ei. To this end, fix i and let y ∈ Yi \Yi+1 be a
smooth point. Having chosen m large enough, Serre vanishing yields H1(X ,IYi |X ⊗

Documenta Mathematica 22 (2017) 1285–1302



1296 A. KÜRONYA, V. LOZOVANU

OX (mA)) = 0, hence the map φm in the diagram

H0(X ,OX (mA))

φm

��

0 // H0(Yi,OYi
(m(A|Yi

)−Yi+1))
ψm

// H0(Yi,OYi
(mA))

is surjective.
Again, by making m high enough, we can assume |m(A|Yi

)−Yi+1| to be very ample on
Yi, thus, there will exist 0 6= s̃i ∈ H0(Yi,OYi

(mA)⊗OYi
(−Yi+1)) not vanishing at x or

y. Since s̃i(x) 6= 0, the section s̃i does not vanish along Yj for all j = i+1, . . . ,n. Also,
the image ψm(s̃i) ∈ H0(Yi,OYi

(mA)) of s̃i vanishes at x, but not at the point y.
By the surjectivity of the map φm there exists a section si ∈ H0(X ,OX (mA)) such that
s|Yi

= ψm(s̃i) and s(y) 6= 0. In particular, si does not vanish along any of the Yj’s for
1 6 i 6 j, therefore νY•(s) = Ei, as promised. �

Proof of Theorem 3.1. (1)⇒ (3). First we treat the case when D is Q-Cartier. Assume
that x /∈B+(D), which implies by definition that x /∈B(D−A) for some small ampleQ-
Cartier divisor A. Choose a positive integer m large and divisible enough such that mA

becomes integral, and satisfies the conclusions of Lemma 3.4. Assume furthermore
that B(D−A) = Bs(m(D−A)) set-theoretically.
Since x /∈Bs(m(D−A)), there exists a section s∈H0(X ,OX (mD−mA)) not vanishing
at x, and in particular νY•(s) = 0. At the same time, Lemma 3.4 provides the existence
of global sections s0, . . . ,sn ∈ H0(X ,OX (mA)) with the property that νY•(s0) = 0 and
νY•(si) = Ei for all 1 6 i 6 n.
But then the multiplicativity of the valuation map νY• gives

νY•(s⊗ s0) = 0, and νY•(s⊗ si) = Ei for all 1 6 i 6 n.

By the construction of Newton–Okounkov bodies, then ∆ 1
m
⊆ ∆Y•(D).

Next, let D be a big R-divisor for which x /∈ B+(D), and let A be an ample R-divisor
with the property that D−A is a Q-divisor and B+(D) = B+(D−A). Then we have
x /∈ B+(D−A), therefore

∆ε ⊆ ∆Y•(D−A) ⊆ ∆Y•(D)

according to the Q-Cartier case and Lemma 1.7.
Again, the implication (3)⇒ (2) is trivial, hence we only need to take care of (2)⇒
(1). As Y1 is ample, [ELMNP1, Proposition 1.21] gives the equality B−(D− εY1) =
B+(D). for all 0 < ε << 1. Fix an ε as above, subject to the additional condition that
D− εY1 is a big R-divisor. Then, according to Proposition 1.6, we have

∆Y•(D)ν1>ε = ∆Y•(D− εY1) + εE1 ,

which yields 0 ∈ ∆Y•(D− εY1). By Theorem 2.1, this means that x /∈ B−(D− εY1) =
B+(D), which completes the proof. �

REMARK 3.5. The condition that X be smooth can again be dropped for the implica-
tion (1)⇒ (3) both in Theorem 3.1 and Corollary 3.2 (cf. Remark 2.9). This way, one
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obtains the statement that whenever A is an ample R-Cartier divisor on a projective
variety X , then every Newton–Okounkov body of A contains a small simplex.

As a consequence, we can extend [KL, Definition 4.5] to all dimensions.

DEFINITION 3.6 (Largest simplex constant). Let X be an arbitrary projective variety,
x ∈ X a smooth point, A an ample R-divisor on X . For an admissible flag Y• on X

centered at x, we set

λY•(A;x)
def
= sup{λ > 0 | ∆λ ⊆ ∆Y•(A)} .

Then the largest simplex constant λ (A;x) is defined as

λ (A;x)
def
= sup{λY•(A;x) | Y• is an admissible flag centered at x} .

REMARK 3.7. It follows from Remark 3.5 that λ (A;x) > 0. The largest simplex
constant is a measure of local positivity, and it is known in dimension two that
λ (A;x) 6 ε(A;x) (where the right-hand side denotes the appropriate Seshadri con-
stant) with strict inequality in general (cf. [KL, Proposition 4.7] and [KL, Remark
4.9]).

We end this section with a different characterization of B+(D) which puts no restric-
tion on the flags. In what follows X is again assumed to be smooth.

LEMMA 3.8. Let D be a big Q-divisor on X. For a point x ∈ X, the condition x /∈
B+(D) holds if and only if

(3.8.4) lim
p→∞

multx(||pD−A||) = 0

for some ample divisor A.

Proof. Assuming (3.8.4), x /∈ B+(D) follows from [ELMNP2, Lemma 5.2]. For the
converse implication, consider the equalities

B+(D) = B−(D−
1
p

A) = B(pD−A)

which hold for integers p≫ 0. Hence, if x /∈ B+(D), then x /∈ B(pD−A) for all p≫ 0.
But this latter condition implies multx(||pD−A||) = 0 for all p ≫ 0. �

PROPOSITION 3.9. A point x /∈ B+(D) if and only if there exists an admissible flag

Y• based at x satisfying the property that for any ε > 0 there exists a natural number

pε > 0 such that

∆ε

⋂

∆Y•(pD−A) 6= ∅

for any p > pε .

Proof. Assume first that x /∈ B+(D). Again, by [ELMNP1, Proposition 1.21], we
have B+(D) = B−(D − 1

p
A) = B−(pD− A) for all p ≫ 0. Then x /∈ B−(pD− A)

for all p ≫ 0, hence 0 ∈ ∆Y•(pD−A) for all p ≫ 0 by Theorem 2.1, which implies
∆ε ∩∆Y•(pD−A) 6=∅ for all p ≫ 0.
As far as the converse implication goes, Proposition 2.6 shows that

multx(||pD−A||) 6 minσpD−A. ,
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hence the condition in the statement implies limp→∞ multx(||pD−A||) = 0. But then
we are done by Lemma 3.8. �

4. NAKAYAMA’S DIVISORIAL ZARISKI DECOMPOSITION AND

NEWTON–OKOUNKOV BODIES

In the previous sections we saw the basic connections between Newton–Okounkov
bodies associated to a big line bundle D and the asymptotic base loci B+(D) and
B−(D). In [N], Nakayama performes a deep study of these loci, he shows for instance
that B−(D) can only have finitely many divisororial components. Along the way he
introduces his σ -invariant, which measures the asymptotic multiplicity of divisorial
components of B−(D).
The goal of this section is to study the connection between divisorial Zariski decom-
positions and Newton–Okounkov bodies. First, we briefly recall the divisorial Zariski
decomposition or σ -decomposition introduced by Nakayama [N] and Boucksom [B2].
Let X be a smooth projective variety, D a pseudo-effective R-divisor on X . Although
B−(D) is a countable union of closed subvarieties, [N, Theorem 3.1] shows that it only
has finitely many divisorial components.
Let A be an ample divisor. Following Nakayama, for each prime divisor Γ on X we
set

σΓ
def
= lim

ε→0+
inf{multΓ(D

′) | D′ ∼R D+ εA and D′
> 0} .

In [N, Theorem III.1.5], Nakayama shows that these numbers do not depend on the
choice of A and that there are only finitely many prime divisors Γ with σΓ(D) > 0.
Write

Nσ (Γ)
def
= ∑

Γ

σΓ(D)Γ and Pσ (D) = D−Nσ (D) ,

and we call D = Pσ (D) + Nσ (D) the divisorial Zariski decomposition or σ -

decomposition of D. In dimension two the divisorial Zariski decomposition coincides
with the usual Fujita–Zariski decomposition for pseudo-effective divisors.
The main properties are captured in the following statement.

THEOREM 4.1. [N, III.1.4, III.1.9, V.1.3] Let D be a pseduo-effective R-disivor. Then

(1) Nσ (D) is effective and Supp(Nσ (D)) coincides with the divisorial part of B−(D).
(2) For all m > 0, H0(X ,OX(⌊mPσ (D)⌋)) ≃ H0(X ,OX (⌊mD⌋)).

As Theorem 2.1 describes how to determine B−(D) from the Newton–Okounkov bod-
ies associated to D, it is natural to wonder how we can compute the numbers σΓ(D)
and Nσ (D) in terms of convex geometry. Relying on Theorem 2.1 and Nakayama’s
work, we are able to come up with a reasonable answer.

THEOREM 4.2. Let D be a big R-divisor, Γ a prime divisor on X, Y• : Y0 = X ⊇ Y1 =
Γ ⊇ . . .⊇Yn = {x} an admissible flag on X. Then

(1) ∆Y•(D) ⊆ (σΓ(D),0 . . . ,0)+Rn
+,

(2) (σΓ(D),0 . . . ,0) ∈ ∆Y•(D), whenever x ∈ Γ is a very general point.

(3) ∆Y•(D) = νY•(Nσ (D))+∆Y•(Pσ (D)). Morever, ∆Y•(D) = ∆Y•(Pσ (D)), when x /∈
Supp(Nσ (D)).
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Proof of Theorem 4.2. For the duration of this proof we fix an ample divisor A.
(1) This is equivalent to σΓ(D) 6 ν1(D

′) for every effective R-divisor D′ ≡ D. Fix a
real number ε > 0, let D′′ ∼R D+ εA is an effective R-divisor. Then

inf{multΓ(D
′)|D′ ∼R D+ εA} 6 multΓ(D

′′) = ν1(D
′′) .

By Proposition 1.4, this implies the inclusion

∆Y•(D+ εA)⊆ (σ ′(D+ εA),0, . . .0)+Rn
+ .

Then Lemma 1.7 and the definition of σΓ(D) imply the claim.
(2) By [N, Lemma 2.1.5] we have σΓ(D−σΓ(D)Γ) = 0. Consequently, we obtain
Γ * B−(D−σ(D)Γ). Because B−(D−σ(D)Γ) is a countable union of subvarieties
of X , a very general point x ∈ Γ lies outside B−(D−σΓ(D)Γ). Theorem 2.1 yields
0 ∈ ∆Y•(D−σΓ(D)Γ), therefore the point (σΓ(D),0 . . . ,0) is contained in ∆Y•(D).
(3) Let Dσ ∼R Pσ (D) be an effective R-divisor, then Dσ +Nσ (D) ∼R D is also an
effective divisor for which

νY•(Dσ +Nσ (D)) = νY•(Dσ )+νY•(Nσ (D)) .

This implies the inclusion νY•(Nσ (D))+∆Y•(Pσ (D))⊆ ∆Y•(D) via Proposition 1.4.
For an effective R-divisor D′ ∼R D, [N, III.1.14] gives that the divisor Dσ = D′ −
Nσ (D) ∼R Pσ (D) is effective. Thus νY•(D

′) = νY•(Dσ )+ νY•(Nσ (D)), which com-
pletes the proof. �

Next, we study the variation of Zariski decomposition after Nakayama when varying
the divisors inside the pseudo-effective cone. We start with the following lemma. Al-
though it follows from [N, III.1.9], we present a proof to illustrate the use of Newton–
Okounkov bodies techniques.

LEMMA 4.3. Suppose D is a big R-divisor on X and E-prime effective divisor. If

σE(D) = 0, then σE(D− tE) = 0 for all t > 0.

Proof. The condition σE(D) = 0 implies E * B−(D), thus, by Theorem 2.1, for a flag
Y• : X ⊇ E ⊇ . . .⊇ {x}, with x ∈ E very general point, we have that 0 ∈ ∆Y•(D).
Again, by the very general choice of x ∈ E , Theorem 4.2 says that σE(D− tE) · E1 ∈
∆Y•(D − tE). On the other hand, by Proposition 1.6 we know that ∆Y•(D)ν1>t =
∆Y•(D− tE)+ tE1, therefore (σE(D− tE)+ t)E1 ∈ ∆Y•(D).
By convexity, this implies t · E1 ∈ ∆Y•(D), again by Proposition 1.6 we have 0 ∈
∆Y•(D− tE), hence σE(D− tE) = 0 by the choice of x ∈ E and Theorem 4.2. �

The next proposition shows how the negative part of the Zariski decomposition varies
inside the big cone.

PROPOSITION 4.4. Suppose D is a big R-divisor on X and E a prime effective divisor.

Then

(1) If σE(D)> 0, then Nσ (D− tE) = Nσ (D)− tE, for any t ∈ [0,σE(D)].
(2) If σE(D) = 0, then the function t → Nσ (D− tE) is an increasing function, i.e. for

any t1 > t2 the divisor Nσ (D− t1)−Nσ (D− t2E) is effective.
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Proof. (1) This statement is proved in Lemma 1.8 from [N].
(2) Since σE(D) = 0, then Lemma 4.3 implies that σE(D− tE) = 0 for any t > 0 and
in particular E * Supp(Nσ (D− tE)) for any t > 0. So, take Γ ⊆ Supp(Nσ (D− t2E))
a prime divisor. The goal is to prove that σΓ(D− t1E)> σΓ(D− t2E). Without loss of
generality, we assume that t2 = 0 and t1 = t > 0 and we need to show that σΓ(D−tE)>
σΓ(D). Now take a flag Y• : X ⊇ Γ ⊇ . . . ⊇ {x}, where x ∈ Γ is a very general point
and x /∈ E . Then by Theorem 4.2 we have

σΓ(D) · E1 ∈ ∆Y•(D)⊆ σΓ(D) · E1 +Rn
+

and
σΓ(D− tE) · E1 ∈ ∆Y•(D− tE)⊆ σΓ(D− tE) · E1 +Rn

+.

On the other hand, it is not hard to see that ∆Y•(D− tE) ⊆ ∆Y•(D). For any D′ ∼R

D− tE effective R-divisor, the R-divisor D′+ tE ∼R D is also effective. Since x /∈ E ,
then νY•(D

′) = νY•(D
′+ tE) and the inclusion follows naturally. Combining this and

the above information we obtain that σΓ(D− tE) ·E1 ∈ ∆Y•(D) and thus σΓ(D− tE)>
σΓ(D). �
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