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Abstract. In a series of recent papers, Chiodo, Farkas and Ludwig
carry out a deep analysis of the singular locus of the moduli space
of stable (twisted) curves with an ℓ-torsion line bundle. They show
that for ℓ ≤ 6 and ℓ 6= 5 pluricanonical forms extend over any desin-
gularization. This opens the way to a computation of the Kodaira
dimension without desingularizing, as done by Farkas and Ludwig for
ℓ = 2, and by Chiodo, Eisenbud, Farkas and Schreyer for ℓ = 3. Here
we treat roots of line bundles on the universal curve systematically:
we consider the moduli space of curves C with a line bundle L such
that L⊗ℓ ∼= ω⊗k

C . New loci of canonical and non-canonical singulari-
ties appear for any k 6∈ ℓZ and ℓ > 2, we provide a set of combinatorial
tools allowing us to completely describe the singular locus in terms of
dual graphs. We characterize the locus of non-canonical singularities,
and for small values of ℓ we give an explicit description.

2010 Mathematics Subject Classification: 14H10; 14H60; 14H20.

The moduli space Mg of smooth curves of genus g, alongside with its compact-

ification Mg in the sense of Deligne-Mumford, is one of the most fascinating
and largely studied objects in algebraic geometry. It is also the subject of wide
open questions; the one that motivates our work here is inspired by Harris and
Mumford [12], they prove that for g > 23, Mg is of general type. The question
on how and precisely where the transition to general type varieties happens
remains open and highly intertwined with several other open questions in this
field. However, a new line of attack seems to stand out clearly. It appears that
the study of the finite covers of moduli of curves and roots of a universal bun-
dle is more manageable. A series of papers by Farkas and Farkas-Verra (see [9]
and [11]) provide a complete description for spin structures. Chiodo, Eisenbud,
Farkas and Schreyer show in [7] that for curves with a 3-torsion bundle, the
transition happens before g = 12. The previous results use a compactification
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of the moduli spaces via twisted curves following from [3, 1, 2, 6], and are based
on a preliminary analysis by Chiodo, Farkas and Ludwig of the singular locus
of the moduli space of curves carrying a torsion line bundle, or level curves: in
particular in [8] they characterize the singular locus and show that for ℓ-torsion
bundles with ℓ ≤ 6 and ℓ 6= 5, pluricanonical forms could be extended over any
desingularization using a method developed by Harris and Mumford.
The purpose of this paper is to identify and analyze the locus of singularities
for every line bundle on the universal curve. If Ug is the universal curve on Mg,
we can focus on roots of any order of the powers of the relative dualizing sheaf
ω = ωUg/Mg

. Indeed, these are all possible bundles on Ug, up to pullbacks
from the moduli space Mg, as discussed for example in [14, 4]. We consider
the moduli space Rk

g,ℓ parametrizing ℓth roots of ω⊗k, i.e. triples (C,L, φ)
where C is a smooth curve, L a line bundle over C and φ an isomorphism
L⊗ℓ → ω⊗k

C . In the case k = 0, our analysis matches with Chiodo and Farkas
work on level curves [8]. Furthermore, we give a more general description of
the singularities for all k, in particular on those cases where it is not possible
to extend everywhere the pluricanonical forms using the known techniques.
To compactify Rk

g,ℓ we use the theory of stack-theoretic stable curves: we

consider the moduli stack R
k

g,ℓ sending a scheme S to a triple (C → S, L, φ)
where C is a stack-theoretic curve with a stable curve C as coarse space and
possibly non-trivial stabilizers on its nodes, L is a line bundle over C and φ an
isomorphism L⊗ℓ → ω⊗k

C
. This moduli is represented by a Deligne-Mumford

stack. The open dense substack R
k
g,ℓ, which admits only smooth curves C, has

Rk
g,ℓ as coarse space. The stack structure extends the covering Rk

g,ℓ → Mg on

all Mg.

In this paper we focus on the singular locus of R
k

g,ℓ, called SingR
k

g,ℓ, and on the
locus of non-canonical singularities, also called non-canonical locus and noted

SingncR
k

g,ℓ. The singular locus of Mg is characterized in [12] by introducing

the concept of elliptic tail quasireflection (see Definition 2.11): [C] ∈ Mg is

in SingMg if and only if there exists α ∈ Aut(C) not generated by elliptic

tail quasireflections. This locus admits a natural lift to R
k

g,ℓ by introducing

the group Aut′(C) of automorphisms on C which preserve the root structure.
However, the stack structure of a curve comes equipped with new ghost au-
tomorphisms, i.e. automorphisms acting trivially on the coarse space of the
curve, but possibly non-trivially on the additional structure. Because of such
ghosts, there is a new locus of singularities which can be studied using new
tools in graph theory.

First, to each point [C, L, φ] ∈ R
k

g,ℓ we attach its dual graph Γ(C): its vertex set
is, as usual, the set of irreducible components of C, and its edge set is the set
of nodes of C. Moreover, we introduce a multiplicity index M (see Definition
3.1), which is a function on the edges of the dual graph and depends on the
line bundle L (it maps each node with a privileged branch to the character L|n).
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Finally, for any prime p in the factorization of ℓ, if ep is the p-adic valuation
power of ℓ, we note Γp(C) the graph obtained contracting those edges of the
dual graph where M is divisible by pep . A graph is tree-like if it has no circuits
except for loops. Generalizing previous results from [13] and [8], we prove the
following (see Theorem 4.6).

Theorem. For any g ≥ 4 and ℓ positive integer, the point [C, L, φ] ∈ R
k

g,ℓ is
smooth if and only if the two following conditions are satisfied:

i. the image Aut′(C) of the coarsening morphism Aut(C, L, φ) → Aut(C)
is generated by elliptic tail quasireflections;

ii. the dual graph contractions Γ(C) → Γp(C) yield a tree-like graph for all
prime numbers p dividing ℓ.

This is a generalization of Chiodo and Farkas [8, Theorem 2.28]. In the case
k = 0 treated by them, the dual graph contractions must be bouquet graphs,
i.e. graphs with only one vertex. We spell out this generalization on Remark
4.7.
The role of dual graph structure in characterizing the geometry of R

k

g,ℓ goes
even deeper. Consider the contraction Γ(C) → Γ0(C) of the edges where M
vanishes. The graph Γ0(C) and the multiplicity index M completely describe
the group of ghost automorphisms, and as a consequence they carry all the
information about the new singularities. We have that the non-canonical locus
is of the form

SingncR
k

g,ℓ = T k
g,ℓ ∪ Jk

g,ℓ,

where T k
g,ℓ ⊂ π−1 SingncMg is the analogue of old non-canonical singularities,

and Jk
g,ℓ is the new part of the non-canonical locus. For the T -locus the general-

ization of the technique developed in [12] allows the extension of pluricanonical
forms. Unfortunately, it is unknown if this extension is possible over the J-
locus. This is the main obstacle toward the analysis of birational geometry

R
k

g,ℓ. One of the aims of this paper is precisely to describe Jk
g,ℓ further. In

Section 4.1 we introduce a stratification of the boundary R
k

g,ℓ\R
k
g,ℓ labelled by

decorated graphs, i.e. pairs (Γ0(C),M): we will decompose the J-locus using
this stratification.
In the last section we work out the cases ℓ = 2, 3, 5 and 7. Using the age
criterion, we develop a machinery to study the ghosts group through graph
properties, we conclude in particular that in many cases the J-locus is the
union of strata labelled only by vine graphs, i.e. graphs with only two vertices.
The first exception comes out with ℓ = 7, when a 3-vertices graph stratum is
needed to complete the description.
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1. Preliminaries on curves and their dual graphs

In this paper ℓ is always a positive integer. Every curve is an algebraic curve
of genus g ≥ 0 over an algebraically closed field k whose characteristic is 0 or
prime to ℓ. By S-curve we mean a family of curves on a scheme S, i.e. a flat
morphisms C → S such that every geometric fibre is a curve of given genus.
Given a line bundle F on a curve C, an ℓth root of F on C is a pair (L;φ), where
L is a line bundle on C and φ is an isomorphism of line bundles L⊗ℓ → F is an
isomorphism. A morphism between two ℓth roots (L, φ), (L′, φ′), is a morphism
ρ : L → L′ of line bundles on C such that φ′ = φ ◦ ρ⊗ℓ.
If C is a smooth curve and F is a line bundle on C and ℓ divides degF , F has
at least one ℓth root, and in this case the number of ℓth roots is exactly ℓ2g.
This property fails for general singular curves. Replacing scheme theoretical
curves by twisted curves, that we define just below, we still get the “right”
number of ℓth roots.
In the last part of this section we will introduce some basic tools on graph
theory.

1.1. Twisted curves and ℓth roots. We recall the definition of twisted
curve.

Definition 1.1 (twisted curve). A twisted curve C is a Deligne-Mumford stack
whose coarse space is a curve with nodal singularities, such that its smooth
locus is represented by a scheme, and the local pictures of the singularities are
given by [{xy = 0}/µµµr], r positive integer, with any primitive rth root of unity
ζ acting as ζ · (x, y) = (ζx, ζ−1y). In this case we say that the node has a µµµr

stabilizer.

If n is a node of C with non-trivial stabilizer µµµr, the local picture of the curve
at n is xy = 0 with the action of µµµr described above. Given a line bundle
F → C at n, its local picture at the node is A1 × {xy = 0} → {xy = 0} with
any primitive root ζ ∈ µµµr acting as

(1) ζ · (t, x, y) = (ζmt, ζx, ζ−1y), with m ∈ Z/r,

on A1 × {xy = 0}. The index m ∈ Z/r, called local multiplicity, is uniquely
determined when we assign a privileged choice of a branch of n where ζ acts as
x 7→ ζx. If we switch the privileged branch, the local multiplicity changes to
its opposite −m.
A line bundle L on C is faithful if the associated morphism C → BGm is
representable. As pointed out in [8, Remark 1.4], a line bundle on a twisted
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curve is faithful if and only if the local multiplicity index m at every node n is
coprime with the order r of the local stabilizer.

Definition 1.2. An ℓth root of the line bundle F on the twisted curve C, is
a pair (L, φ), where L is a faithful line bundle on C and φ : L⊗ℓ → F is an
isomorphism between L⊗ℓ and F.

Fixing a primitive rth root of the unity ζ will not affect our results and will
permit us to identify (non-canonically) µµµr and Z/r. In what follows we chose
the primitive root ξr = exp(2iπ/r) for every node.

1.2. The dual graph. If a curve is not smooth, it may have several irreducible
components. The information about the relative crossing of this components
is encoded in the dual graph.

Definition 1.3 (dual graph). Given a curve C (scheme theoretic or twisted),
the dual graph Γ(C) has the set of irreducible components of C as vertex set,
and the set of nodes of C as edge set E. The edge associated to the node n

links the vertices associated to the components where the branches of n lie.

We introduce some graph theory which will be important to study the moduli
spaces of twisted curves equipped with a root.

1.2.1. Cochains over a graph. Consider a connected graph Γ with vertex set V
and edge set E, we call loop an edge that starts and ends on the same vertex,
we call separating an edge e such that the graph with vertex set V and edge
set E\{e} is disconnected. We note by Esep the set of separating edges. We
note by E the set of oriented edges: the elements of this set are edges in E
equipped with an orientation. In particular for every edge e ∈ E we note e+
the head vertex and e− the tail, and there is a 2-to-1 projection E → E. We
also introduce a conjugation in E, such that for each e ∈ E, the conjugated
edge ē is obtained by reversing the orientation, in particular (ē)+ = e−.

Remark 1.4. In the dual graph setting, where the vertices are the components
of a curve C and the edges are the nodes, the oriented edge set E could be seen
as the set of branches at the curve nodes. Indeed, every edge e, equipped with
an orientation, is bijectively associated to the branch it is pointing at.

Definition 1.5. The group of 0-cochains is the group of Z/ℓ-valued functions
on V

C0(Γ;Z/ℓ) := {a : V → Z} =
⊕

v∈V

Z/ℓ.

The group of 1-cochains is the group of antisymmetric functions on E

C1(Γ;Z/ℓ) := {b : E → Z/ℓ| b(ē) = −b(e)} .

After assigning an orientation to every edge e ∈ E, we may identify C1(Γ) =⊕
e∈E Z/ℓ, but we prefer working without any prescribed choice of orientation.
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These spaces are equipped with two non-degenerate bilinear Z/ℓ-valued forms

〈a1, a2〉 :=
∑

v∈V

a1(v)a2(v) 〈b1, b2〉 :=
1

2

∑

e∈E

b1(e)b2(e)

for all a1, a2 ∈ C0(Γ) and b1, b2 ∈ C1(Γ). Consider the operator ∂ : C1(Γ) →
C0(Γ) such that

∂b(v) :=
∑

e+=v

b(e), ∀b ∈ C1(Γ) ∀v ∈ V.

Definition 1.6. We introduce G(Γ;Z/ℓ) := (ker ∂)
⊥
, the orthogonal comple-

ment with respect to the form just introduced.

We also introduce the exterior differential δ : C0(Γ) → C1(Γ) such that

δa(e) := a(e+)− a(e−), ∀a ∈ C0(Γ) ∀e ∈ E.

Proposition 1.7 (see [8, p.9]). The adjoint of ∂ is δ, and G(Γ;Z/
ℓ) = Im δ. �

The exterior differential fits into an useful exact sequence.

0 → Z/ℓ
i
−→ C0(Γ;Z/ℓ)

δ
−→ C1(Γ;Z/ℓ).

Where the injection i sends m ∈ Z on the cochain constantly equal to m. This
sequence gives the dimension of Im δ.

(2) Im δ ∼= (Z/ℓ)#V−1.

1.2.2. Construction of a basis for C1(Γ).

Definition 1.8 (cuts, paths and circuits). A cut is a 1-cochain b : E → Z such
that there exists a non-empty subset W ⊂ V and the values of b are determined
in the following way: b(e) = 1 if the head of e is in W and the tail in V \W ,
b(e) = −1 if the head is in V \W and the tail in W , b(e) = 0 elsewhere. The
support of b in E is sometimes called cut-set of b.
A path in a graph Γ is a sequence e1, e2, . . . , ek of edges in E overlying k distinct
non-oriented edges in E, and such that the head of ei is the tail of ei+1 for all
i = 1, . . . , k.
A circuit is a closed path, i.e. a path e1, . . . , ek such that the head of ek is the
tail of e1. We often refer to a circuit by referring to its characteristic function,
i.e. the cochain b such that b(ei) = 1 for all i, b(ēi) = −1 and b(e) = 0 if e is
not on the circuit.

Remark 1.9. Any cut b is an element of Im δ. Indeed, b = δa if a is the
characteristic function of W .

Moreover, the group Im δ is sometimes called cuts space because it is generated
by cuts (see Proposition 1.14). We also have that Ker ∂ is generated by circuits
and this implies the following fact.
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Proposition 1.10. A 1-cochain b is in G(Γ;Z/ℓ) = Im δ if and only if, for
every circuit K = (e1, . . . , ek) in E, we have

b(K) =

k∑

i=1

b(ei) = 0.

Terminology (graphs tree-like and trees). A tree-like graph is a connected
graph whose only circuits are loops. A tree is a graph that does not contain
any circuit.

Remark 1.11. For every connected graph Γ, the first Betti number b1(Γ) =
#E − #V + 1 is the dimension rank of the homology group H1(Γ;Z). Note
that, b1 being positive,

#E ≥ #V − 1

with equality if and only if Γ is a tree.

For every connected graph Γ with vertex set V and edge set E, we can choose
a connected subgraph T with the same vertex set and edge set ET ⊂ E such
that T is a tree. The graph T is a spanning tree of Γ and has several interesting
properties. We call ET the set of oriented edges of the spanning tree T . Here
we notice that E contains a distinguished subset of edges Esep whose size is
smaller than V-1

Lemma 1.12. If Esep ⊂ E is the set of edges in Γ that are separating, then
#Esep ≤ #V − 1 with equality if and only if Γ is tree-like.

Proof. If T is a spanning tree for Γ and ET its edge set, then Esep ⊂ ET .
Indeed, an edge e ∈ Esep is the only path between its two extremities, therefore,
since T is connected, e must be in ET . Thus #Esep ≤ #ET = #V − 1, with
equality if and only if all the edges of Γ are loops or separating edges, i.e. if Γ
is a tree-like graph. �

Lemma 1.13 (see [5, Lemma 5.1]). If T is a spanning tree for Γ, for every
oriented edge e ∈ ET there is a unique cut b ∈ C1(Γ;Z/ℓ) such that b(e) = 1
and the elements of the support of b other than e and ē are all in E\ET . �

We call cutΓ(e;T ) the unique cut b resulting from the lemma for all e ∈ ET .

Proposition 1.14. If T is a spanning tree for Γ, then the elements cutΓ(e;T ),
with e varying on ET , form a basis of Im(δ).

For a proof of this and a deeper analysis of the image of δ, see [5, Chap.5].

1.2.3. Definition and basic properties of edge contraction. Another tool in
graph theory is edge contraction. If we have a graph Γ with vertex set V
and edge set E, we can choose a subset F ⊂ E. Contracting edges in F means
taking the graph Γ0 such that:
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(1) the edge set is E0 := E\F ;
(2) given the relation in V , v ∼ w if v and w are linked by an edge e ∈ F ,

the vertex set is V0 := V/ ∼.

The construction of Γ0 follows and we have a natural morphism Γ → Γ0 called
contraction of F . Edge contraction will be useful, in particular we will consider
the image of the exterior differential δ and its restriction over contraction of
a given graph. If Γ0 is a contraction of Γ, then E(Γ0) is canonically a subset
of E(Γ). As a consequence, cochains over Γ0 are cochains over Γ with the
additional condition that the values on E(Γ)\E(Γ0) are all 0. Then we have a
natural immersion

Ci(Γ0;Z/ℓ) →֒ Ci(Γ;Z/ℓ).

Consider the two operators

δ : C0(Γ;Z/ℓ) → C1(Γ;Z/ℓ) and δ0 : C
0(Γ0;Z/ℓ) → C1(Γ0;Z/ℓ).

Clearly δ0 is the restriction of δ on C0(Γ0;Z). ¿From this observation we have
the following.

Proposition 1.15.

Im δ0 = C1(Γ0;Z) ∩ Im δ.

Remark 1.16. We make an observation about separating edges of a graph after
contraction. Given a graph contraction Γ → Γ0, the separating edges who are
not contracted remain separating. Moreover, an edge that is not separating
cannot become separating.

2. The moduli space of ℓth roots of ω⊗k

We start by considering the moduli stack Mg. Its objects are flat morphisms
C → S such that every geometric fiber is a stable genus g curve, i.e. a curve with
at most nodal singularities and an ample canonical line bundle. The Mg coarse

space is the moduli space of stable curves Mg. Harris and Mumford proved in

[12] that Mg is of general type for g > 23, and classified its singularities. We
observe that the moduli stack Mg of smooth curves is an open dense substack

of Mg.
Despite the construction of the moduli space of ℓth roots over smooth curves
is quite natural, its extension over Mg requires some twisted curve machinery.

More precisely, we consider the stack R
k
g,ℓ whose objects are smooth curves C

with a line bundle L and an isomorphism L⊗ℓ ∼= ω⊗k
C . This stack comes with a

natural proper forgetful functor Rk
g,ℓ → Mg. To extend this forgetful morphism

over Mg, we will introduce ℓth roots for any stable curve.

Definition 2.1. Given a stable curve C of genus g and a line bundle F on
it, an ℓth root of F on C is a triple (C, L, φ) such that C is a twisted curve,
u : C → C its coarsening, L is a faithful line bundle on C and φ : L⊗ℓ → u∗F an
isomorphism.
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Remark 2.2. There exists such a root if and only if ℓ divides degF , and in
this case the number of ℓth roots is ℓ2g.

Definition 2.3. The stack R
k

g,ℓ has for objects the triples (C → S, L, φ) where
C → S is a twisted S-curve whose coarse space is a stable curve of genus g, L
is a faithful line bundle over C and

φ : L⊗ℓ → ω⊗k
C

is an isomorphism between L⊗ℓ and the kth power of the canonical bundle ωC.

Remark 2.4. The canonical bundle ωC is the pullback of ωC via the coarsening

morphism. In other words, the objects of R
k

g,ℓ are stable curves with an ℓth
root of their canonical bundle.

Remark 2.5. Because of Remark 2.2, we need that ℓ divides degω⊗k
C = k ·

(2g − 2) to make R
k
g,ℓ non-empty.

A triple (C, L, φ) as above will be improperly called a rooted curve when there is

no risk of confusion. The stack Rk
g,ℓ is an open dense substack of R

k

g,ℓ. Moreover,

we note π : R
k

g,ℓ → Mg the extended forgetful functor sending (C → S, L, φ) to
C → S where C is the coarse space of C. By Remark 2.2, every π fiber has the
same length ℓ2g.

2.1. Local structure of the roots moduli. We consider the stack R
k

g,ℓ,

with g ≥ 2 and 0 ≤ k < ℓ, of rooted curves of genus g. We denote by R
k

g,ℓ its
associated coarse space.
We are interested in the singularities of this moduli space, in particular we want

a characterization of the singular locus of R
k

g,ℓ. If we note M̃g the moduli stack

of twisted curves, the forgetful morphism R
k

g,ℓ → M̃g is étale, as showed in [6].

At the same time the composition morphism R
k

g,ℓ → M̃g → Mg is ramified, as

showed by Chiodo and Farkas in [8]. However, the local structure of R
k

g,ℓ is

very similar to the one of Mg, and we will follow the same approach developed
by Chiodo and Farkas for the case k = 0. We denote by [C, L, φ] the point of

R
k

g,ℓ associated to the rooted curve (C, L, φ), then the local picture of the stack

R
k

g,ℓ at [C, L, φ] is
[Def(C, L, φ)/Aut(C, L, φ)] ,

where the universal deformation Def(C, L, φ) is a smooth scheme of dimension
3g − 3, and

Aut(C, L, φ) =
{
(s, ρ)| s ∈ Aut(C) and ρ : s∗L

∼=
−→ L such that φ ◦ ρ⊗ℓ = s∗φ

}

is the automorphism group of (C, L, φ). This implies that the local picture of

the moduli space R
k

g,ℓ is the classical quotient Def(C, L, φ)/Aut(C, L, φ). The
deformation space Def(C, L, φ) is canonically isomorphic to Def(C) via the étale
forgetful functor (C, L, φ) 7→ C. Also we see that the action of Aut(C, L, φ) on
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Def(C) is not faithful. In particular the quasi-trivial automorphisms (idC, ζ)
with ζ ∈ µµµℓ, whose action scale the fibers, have trivial action. Thus it becomes
natural to consider the group

Aut(C, L, φ) := Aut(C, L, φ)/{(idC; ζ)| ζ ∈ µµµℓ} = {s ∈ Aut(C)| s∗L ∼= L} .

The local picture of R
k

g,ℓ at (C, L, φ) could be rewritten as

Def(C)/Aut(C, L, φ).

Definition 2.6. A quasireflection is an element q ∈ GL(Cm) such that its
fixed space is a hyperplane of Cm.

The smoothness of quotient singularities depends on the quotient group to be
generated by quasireflections (see [15]). The following fact will permit us to
classify moduli space singularities.

Fact 2.7. The scheme theoretic quotient Def(C)/Aut(C, L, φ) is smooth if and
only if Aut(C, L, φ) is spanned by elements acting as the identity or as quasire-
flectons.

Before studying the action of Aut(C, L, φ), we point out the structure of the
universal deformation Def(C, L, φ) = Def(C).

Remark 2.8. We will follow the usual construction developed in [12]. We
note C the coarse space of C and by N := {n1, . . . nk} the node set of C.
If {C1, . . . ,Cm} is the set of irreducible components of C, we denote by Ci

the normalizations of Ci, by gi the genus of Ci and by nor :
⊔m

i=1 Ci → C

the normalization morphism of C. We observe that the curves Ci are scheme
theoretic smooth curves. The divisor Di on Ci is the preimage of N by the
restriction of nor on this component. Following [8] we call Def(C, SingC) the
universal deformation of C alongside with its nodes. Then we have the canonical
splitting

Def(C, SingC) =

m⊕

i=1

H1(Ci, TCi
(−Di)),

where T
Ci

is the tangent bundle to Ci and H1(Ci, TCi
(−Di)) = Def(Ci, Di)

parametrizes deformations of curve Ci with a marking on the points of divisor
Di.
Once we mod out Def(C, SingC), we have another canonical splitting:

Def(C)/Def(C, SingC) =

k⊕

i=1

Ri,

where every Ri is unidimensional. The non-canonical choice of a coordinate ti
over Ri corresponds to fixing a smoothing of node ni.

Given the coarse space C of C, we consider its universal deformation Def(C)
and its universal deformation alongside with its nodes Def(C, SingC). We have
another canonical splitting Def(C)/Def(C, SingC) =

⊕
Ni, where the Ni are
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unidimensional and there are natural coverings Ri → Ni of order r(ni) ramified
at the origin, where r(ni) is the order of the stabilizer at ni.

Remark 2.9. We point out a classical formula relating the genus of C and the
genera of the curves Ci.

g(C) =
ν∑

i=1

gi + b1(Γ) =
ν∑

i=1

gi +#E(Γ)−#V (Γ) + 1,

where Γ = Γ(C) is the dual graph of C.

The coarsening C → C induces a group homomorphism

Aut(C, L, φ) → Aut(C).

We note the kernel and the image of this morphism by AutC(C, L, φ) and
Aut′(C) (see also [8, chap. 2]). They fit into the following short exact se-
quence,

(3) 1 → AutC(C, L, φ) → Aut(C, L, φ) → Aut′(C) → 1.

Definition 2.10. Within a stable curve C, an elliptic tail is an irreducible
component of geometric genus 1 that meets the rest of the curve in only one
point called an elliptic tail node. Equivalently, T is an elliptic tail if and only
if its algebraic genus is 1 and T ∩ C\T = {n}.

Definition 2.11. An element i ∈ Aut(C) is an elliptic tail automorphism if

there exists an elliptic tail T of C such that i fixes T and his restriction to C\T
is the identity. An elliptic tail automorphism of order 2 is called an elliptic
tail quasireflection (ETQR). In the literature ETQRs are called elliptic tail
involutions (or ETIs), we changed this convention in order to generalize the
notion.

Remark 2.12. Every curve of algebraic genus 1 with one marked point has
exactly one involution i. Then there is a unique ETQR associated to every
elliptic tail.
More precisely an elliptic tail E could be of two types. The first type is a smooth
curve of geometric genus 1 with one marked point, i.e. an elliptic curve: in
this case we have E = C/Λ, for Λ integral lattice of rank 2, the marked point
is the origin, and the only involution is the map induced by x 7→ −x on C. The
second type is the rational line with one marked point and an autointersection
point: in this case we can write E = P1/{1 ≡ −1}, the marked point is the
origin, and the only involution is the map induced by x 7→ −x on P1.

Theorem 2.13 (See [12, theorem 2]). Consider a stable curve C of genus g ≥ 4.
An element of Aut(C) acts as a quasireflection on Def(C) if and only if it is
an ETQR. In particular, if η ∈ Aut(C) is an ETQR acting non trivially on
the tail T with elliptic tail node n, then η acts on Def(C) as tn 7→ −tn on the
coordinate associated to n, and as t 7→ t on the remaining coordinates.
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Remark 2.14. Consider a (stack-theoretic) curve E of genus 1 with one marked
point. We call E its coarse space. In the case of an elliptic tail of a curve C,
the marked point is the point of intersection between E and C\E.
If E is an elliptic curve, then E = E and the curve has exactly one involution i0.
In case E is rational, its normalization is the stack E = [P1/µµµr], with µµµr acting

by multiplication, and E = E/{0 ≡ ∞}. There exists a canonical involution i0
in this case too: we consider the pushforward of the involution on P1 such that
z 7→ 1/z.
Given any twisted curve C with an elliptic tail E whose elliptic tail node is n,
we found a canonical involution i0 on E up to non-trivial action on n.

Definition 2.15. We generalize the notion of ETQR to rooted curves. An
element i ∈ Aut(C, L, φ) is an ETQR if there exists an elliptic tail E of C with
elliptic tail node n, such that the action of i on C\E is trivial, and the action
on E, up to non-trivial action on n, is the canonical involution i0.

3. The automorphisms of rooted curves

In this section we will characterize smooth and singular points of R
k

g,ℓ using the
dual graph of curves and their multiplicity indices. For simplicity, we will focus
on the case ℓ prime. See Remark 3.14 for a discussion on the generalization to
composite level ℓ.
Given a rooted curve (C, L, φ), we come back to the local multiplicity on a node
n whose local picture is [{xy = 0}/µµµr] with r positive integer. As in equation
(1), once we choose a privileged branch, the action on the bundle fiber near
the node is ξr(t, x, y) = (ξmr t, ξrx, ξ

−1
r y). We observe that the canonical line

bundle ωC is the pullback of the canonical line bundle over the coarse space C,

and this, with the isomorphism L⊗ℓ ∼= ωC, implies that (ξmr )
ℓ
= 1. So ℓm is a

multiple of r. As a consequence of the faithfulness of L, the order r equals 1 or
ℓ.

Definition 3.1. The multiplicity index of (C, L, φ) is the cochain M ∈
C1(Γ;Z/ℓ) such that, for all e ∈ E oriented edge of the dual graph Γ(C),
M(e) = m the local multiplicity with respect to the privileged branch associ-
ated to e (see Remark 1.4).

Remark 3.2. If the node has trivial stabilizer, i.e. r = 1, we pose M(e) := 0.

We show a restating of Remark 2.2.

Definition 3.3. Consider a curve C with dual graph Γ and line bundle F on
C. The multidegree cochains is the function deg(F,C) ∈ C0(Γ;Z/ℓ) such that

deg(F,C)(v) := degF |v mod ℓ ∀v ∈ V (Γ)

where by F |v we mean the restriction of F on the component associated to
vertex v.

Proposition 3.4. Consider a stable curve C with dual graph Γ and consider
a cochain M in C1(Γ;Z/ℓ). Also consider the differential ∂ : C1(Γ;Z/ℓ) →
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C0(Γ;Z/ℓ) (see Section 1.2.1). There exists an ℓth root of the line bundle F
on C with multiplicity index M , if and only if

∂M ≡ deg(F,C) mod ℓ.

Proof. If (C, L, φ) is any curve with an ℓth root of F , then we obtain the result
simply verifying a degree condition on every irreducible component of C. Con-
sider the setting introduced in Remark 2.8: we call vi the Γ vertex associated to
the irreducible components Ci and gi the genus of the normalization Ci. Then
we have

deg L|vi = ri +
∑

e+=vi

M(e)

ℓ
,

with ri an integer for all i. Knowing that (L|vi)
⊗ℓ ∼= F |vi and multiplying by ℓ

the previous equality, we obtain, as we wanted,

degF |vi ≡
∑

e+=vi

M(e) mod ℓ.

To prove the other implication we will show that the multidegree condition
implies degF ≡ 0 mod ℓ, and conclude by Remark 2.2. Indeed, degF =∑

vi∈V (Γ) degF |vi . Using the condition we obtain

degF ≡
∑

vi∈V (Γ)

∑

e+=vi

M(e) ≡
∑

e∈E(Γ)

M(e) ≡ 0 mod ℓ.

�

Consider a rooted curve (C, L, φ) such that the coarse space of C is C. Starting
from the dual graph Γ(C) and the multiplicity index M of (C, L, φ), consider
the new contracted graph Γ0(C) defined by

(1) the vertex set V0 = V (C)/ ∼, defined by modding out the relation

(e+ ∼ e− if M(e) ≡ 0);

(2) the edge set E0 = {e ∈ E(C)| M(e) 6≡ 0}.

Remark 3.5. The graph Γ0 is obtained by contracting the edges of Γ where
the function M vanishes.

Definition 3.6. The pair (Γ0(C),M), where M is the restriction of the multi-
plicity index on the contracted edge set, is called decorated graph of the curve
(C, L, φ). If the cochain M is clear from context, we will refer also to Γ0(C) or
Γ0 alone as the decorated graph.

To study AutC(C, L, φ) we start from a bigger group, the group AutC(C) con-
taining automorphisms of C fixing the coarse space C. Consider a node n of C
whose local picture is [{xy = 0}/µµµr]. Consider an automorphism η ∈ AutC(C).
The local action of η at n is (x, y) 7→ (ζx, y) = (x, ζy), with ζ ∈ µµµr. As a
consequence of the definition of AutC(C), the action of η outside the C nodes
is trivial. Then the whole group AutC(C) is generated by automorphisms of
the form (x, y) 7→ (ζx, y) on a node and trivial elsewhere.
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We are interested in representing AutC(C) as acting on the edges of the dual
graph, thus we introduce the group of functions E → Z/ℓ that are even with
respect to conjugation

S(Γ;Z/ℓ) := {b : E → Z/ℓ | b(ē) ≡ b(e)} .

We have a canonical identification sending the function b ∈ S(Γ0(C);Z/ℓ) to

the automorphism η with local action (x, y) 7→ (ξ
b(e)
ℓ x, y) on the node associ-

ated to the edge e if M(e) 6≡ 0. Therefore the decorated graph encodes the
automorphisms acting trivially on the coarse space. We can write

(4) AutC(C) ∼= S(Γ0(C);Z/ℓ) ∼= (Z/ℓ)E0(Γ).

We already saw that elements of C1(Γ;Z/ℓ) are odd functions from E to Z/ℓ.
Given g ∈ S(Γ;Z/ℓ) and N ∈ C1(Γ;Z/ℓ), their natural product gN is still an
odd function, thus an element of C1(Γ;Z/ℓ).
Given the normalization morphism nor : Cnor → C, consider the short exact
sequence of sheaves over C

1 → Z/ℓ → nor∗nor
∗Z/ℓ

t
−→ Z/ℓ|SingC → 1.

The sections of the central sheaf are Z/ℓ-valued functions over Cnor. Moreover,
the image of a section s by t is the function that assigns to each node the
difference between the two values of s on the preimages. The cohomology of
this sequence gives the following long exact sequence
(5)

1 → Z/ℓ → C0(Γ;Z/ℓ)
δ

−−→ C1(Γ;Z/ℓ)
τ

−−→ Pic(C)[ℓ]
nor

∗

−−→ Pic(Cnor)[ℓ] → 1.

Here, Pic(C)[ℓ] = H1(C,Z/ℓ) is the subgroup of Pic(C) of elements of order
dividing ℓ, i.e. of ℓth roots of the trivial bundle.
We know that

AutC(C, L, φ) = {[s, ρ] ∈ Aut(C, L, φ)| s ∈ AutC(C)} = {s ∈ AutC(C)| s
∗L ∼= L}.

As showed in [6], we have

a∗L = L⊗ τ (aM) .

This means that, if a is an automorphism in AutC(C), the pullback a∗L is
totally determined by the product aM ∈ C1(Γ0;Z/ℓ), where a is seen as an
element of S(Γ0;Z/ℓ), and M is the multiplicity index of (C, L, φ).
As a consequence we have the following theorem.

Theorem 3.7. An element a ∈ AutC(C), lifts to AutC(C, L, φ) if and only if

aM ∈ Ker(τ) = Im δ.

We recall the subcomplex Ci(Γ0(C);Z/ℓ) ⊂ Ci(Γ(C);Z/ℓ). Moreover, if δ0 is
the δ operator on Ci(Γ0), i.e. the restriction of the δ operator to this space,
from Proposition 1.15 we know that Im(δ0) = C1(Γ0) ∩ Im δ.
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Remark 3.8. As a consequence of Theorem 3.7, we get the canonical identifi-
cation

AutC(C, L, φ) = Im(δ0)

via the multiplication a 7→ aM . Because of Proposition 1.7 we also have
AutC(C, L, φ) = M ·G(Γ0;Z/ℓ).

Remark 3.9. In the first section we obtained a characterization of the cochains
in Im(δ) that we could restate in our new setting. Indeed, because of Propo-
sition 1.10, an automorphism a ∈ S(Γ0;Z/ℓ) is an element of AutC(C, L, φ) if

and only if for every circuit (e1, . . . , ek) in Γ0 we have
∑k

i=1 a(e) ≡ 0 mod ℓ.

We can characterize the automorphisms in AutC(C, L, φ) that are quasireflec-
tions. We will regard every automorphism a ∈ AutC(C, L, φ) as the correspond-
ing element in S(Γ0;Z/ℓ). This representation is good to investigate the action
of a on Def(C). The action of a is non-trivial only on those coordinates of
Def(C) associated to the nodes of C with non-trivial stabilizer. In particular,
if tn is the coordinate associated to the node n and e is the edge of Γ0(C)
associated to n, then

a : tn 7→ ξ
a(e)
ℓ · tn.

Proposition 3.10. An automorphism a ∈ AutC(C) is a quasireflection in
AutC(C, L, φ) if and only if a(e) ≡ 0 for all edges but one that is a separating
edge of Γ0(C).

Proof. If a is a quasireflection, the action on all but one of the coordinates must
be trivial. Therefore a(e) ≡ 0 on all the edges but one, say e1. If e1 is in any
circuit (e1, . . . , ek) of Γ0 with k ≥ 1, we have, by Remark 3.9, that

∑
a(ei) ≡ 0.

As a(e1) 6≡ 0, there exists i > 1 such that a(ei) 6≡ 0, contradiction. Thus e1 is
not in any circuit, then it is a separating edge.
Reciprocally, consider an automorphism a ∈ S(Γ0;Z/ℓ) such that there ex-
ists an oriented separating edge e1 with the property that a(e) ≡ 0 for all
e ∈ E\{e1, ē1} and a(e1) 6≡ 0. Then for every circuit (e′1, . . . , e

′
k) we have∑

a(e′i) ≡ 0 and so a is in AutC(C, L, φ). �

Definition 3.11. We call QR(Aut(C, L, φ)) or simply QR(C, L, φ) the group
generated by quasireflections automorphism of the curve (C, L, φ). We call
QR(AutC(C, L, φ)) or simply QRC(C, L, φ) the group generated by ghost
quasireflections.

Remark 3.12. If we note Esep ⊂ E0 the subset of separating edges of Γ0,
Proposition 3.10 gives a simple description of the group QRC(C, L, φ).

QRC(C, L, φ)
∼= (Z/ℓ)Esep ⊂ S(Γ0;Z/ℓ).

Theorem 3.13. The group AutC(C, L, φ) is generated by quasireflections if and
only if the graph Γ0 is tree-like.
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Proof. After the previous remark,

QRC(C, L, φ)
∼= (Z/ℓ)Esep ⊂ Im(δ0) ∼= AutC(C, L, φ).

We know that Im(δ0) ∼= Z/ℓ#V0−1 and thus the inclusion is an equality if and
only if #Esep = #V0 − 1. By Lemma 1.12 we conclude. �

Remark 3.14. We show a generalization of the previous result to every ℓ, and
to do this we update our tools following [8, §2.4]. First of all we generalize the
notion of multiplicity index: given the local multiplicity m ∈ Z/r at a certain
node n, we know that r dividesmℓ, we define M(e) := mℓ/r ∈ Z/ℓ, where e ∈ E

is an oriented edge. If ℓ is prime, M ∈ C1(Γ;Z/ℓ) coincide with the previous
definition. We also generalize contracted graphs. Consider the factorization of
ℓ in prime numbers, ℓ =

∏
pep , where ep = νp(ℓ) is the p-adic valuation of ℓ.

Given the dual graph Γ(C) = Γ, for every prime p we define Γ(νkp ) contracting

every edge e of Γ such that pk divides M(e). We will note Γp(C) := Γ(ν
ep
p ).

We have the chain of contraction already introduced in [8]:

Γ → Γp = Γ(νepp ) → Γ(νep−1
p ) → · · · → Γ(ν1p) → {·}.

Moreover, we introduce Sd(Γ;Z/ℓ) ⊂ S(Γ;Z/ℓ), the group of even functions
f : E → Z/ℓ such that f(e) = f(ē) ∈ Z/r(e), and C1

d(Γ;Z/ℓ) ⊂ C1(Γ;Z/ℓ), the
group of odd functions N : E → Z/ℓ such that N(e) = −N(ē) ∈ Z/r(e). We
point out that if r divides ℓ, we will look at Z/r as immersed in Z/ℓ, indeed
Z/r = (ℓ/r) · Z/r ⊂ Z/ℓ. In particular for every prime p, Z/p ⊂ Z/p2 ⊂ Z/
p3 ⊂ · · · .

Theorem 3.15. Consider a rooted curve (C, L, φ). The groups AutC(C, L, φ)
is generated by quasireflections if and only if the graphs Γp(C) are tree-like for
every prime p dividing ℓ.

Proof. As in the case with ℓ prime, Sd(Γ;Z/ℓ) is canonically identified with
AutC(C) =

⊕
e∈E Z/r(e). Given the multiplicity index M of (C, L, φ), as be-

fore we have that a lifts to AutC(C, L, φ) if and only if aM is in Im δ. Thus
AutC(C, L, φ) is canonically identified with C1

d(Γ;Z/ℓ) ∩ Im δ.
We introduce the p-adic valuation on edges as in [8, §2.4.2]: given e ∈ E,
νp(e) := valp(M(e) mod pep). We consider also the function ν̄p such that
ν̄p(e) := min(ep, νp(e)). We observe that, by definition M , for every oriented
edge e ∈ E(Γ) the local stabilizer order is

r(e) =
∏

p|ℓ

pep−ν̄p(e).

We define one last new object. We have a canonical immersion Ci(Γ(νkp );Z/

pep−k+1) →֒ Ci(Γ;Z/ℓ) for i = 0, 1. We define δkp as the restriction of the delta

operator on the group C0(Γ(νkp );Z/p
ep−k+1) for all p in the factorization of ℓ

and for all k between 1 and ep.
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As in Lemma 3.10, in the composite case a ∈ AutC(C) is a quasireflection in
AutC(C, L, φ) if and only if a(e) ≡ 0 for all edges but one that is a separating
edge. This allows the following decomposition

QRC(C, L, φ) =
⊕

e∈Esep(Γ)

Z/r(e) =
⊕

e∈Esep

⊕

p|ℓ

Z/pep−ν̄p(M(e)) =
⊕

p|ℓ

ep⊕

k=1

(Z/pk)β
k
p ,

where βk
p := #Esep

(
Γ(ν

ep−k+1
p )

)
− #Esep

(
Γ(ν

ep−k
p )

)
if k < ep and β

ep
p :=

#Esep

(
ν1p
)
. Following [8, Lemma 2.22], we have a similar decomposition for

AutC(C, L, φ):

AutC(C, L, φ) = C1
d(Γ;Z/ℓ) ∩ Im δ =

⊕

p|ℓ

ep∑

k=1

Im δkp =
⊕

p|ℓ

ep⊕

k=1

(Z/pk)α
k
p ,

where αk
p := #V

(
Γ(ν

ep−k+1
p )

)
− #V

(
Γ(ν

ep−k
p )

)
∀k ≥ 0. We observe that

αk
p ≥ βk

p for all p dividing ℓ and k ≥ 0. Moreover, AutC(C, L, φ) coincide with

QRC(C, L, φ) if and only if αk
p = βk

p for all p and k. Fixing p, this is equivalent

to impose
∑

k β
k
p =

∑
k α

k
p. In the previous expression the left hand side is

#Esep(Γp) and the right hand side is #V (Γp)− 1, we saw in Lemma 1.12 that
the equality is achieved if and only if Γp is tree-like. �

4. The singular locus of R
k

g,ℓ

After the analysis of quasireflections on AutC(C, L, φ), we complete the de-
scription of quasireflections on the whole automorphism groups. What follows
is true for every ℓ.

Lemma 4.1. Consider an element q of Aut(C, L, φ). It acts as a quasireflection
on Def(C) if and only if one of the following is true:

(1) the automorphism q is a ghost quasireflection, i.e. an element of
AutC(C, L, φ) which moreover operates as a quasireflection;

(2) the automorphism q is an ETQR, using the generalized Definition 2.15.

Proof. We first prove the “only if” part. Consider q ∈ Aut(C, L, φ), we call q
its coarsening. If q acts trivially on certain coordinates of Def(C), a fortiori
we have that q acts trivially on the corresponding coordinates of Def(C). So
q acts as the identity or as a quasireflection. In the first case, q is a ghost
automorphism and we are in case (1). If q acts as a quasireflection, then it is
a classical ETQR as we pointed out on Theorem 2.13, and it acts non-trivially
on the elliptic tail node n associated to an elliptic tail. It remains to know
the action of q on the nodes, other than n, with non-trivial stabilizer. The
action in these nodes must be trivial, because every non-trivial action induces
a non-trivial action also on the associated coordinate of the node. Therefore,
the q restriction to the elliptic tail has to be the canonical involution i0 (see
Remark 2.14). By Definition 2.15 this implies that q is an ETQR of (C, L, φ).
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For the “if” part, we observe that a ghost quasireflection is automatically a
quasireflection. It remains to prove the point (2). By definition of ETQR its
action can be non-trivial only on the separating node of the tail. The local
coarse picture of the node is {xy = 0}, where y = 0 is the branch lying on
the elliptic tail. Then the action of i on the coarse space is (x, y) 7→ (−x, y).
Therefore the action is a fortiori non trivial on the coordinate associated to
the stack node n. �

Lemma 4.2. If QR(Aut(C)) (also called QR(C)) is the group generated by
ETQRs inside Aut(C), then any element q ∈ QR(C) which could be lifted to
Aut(C, L, φ), has a lifting in QR(C, L, φ), too.

Proof. By definition, Aut(C, L, φ) is the set of automorphisms s ∈ Aut(C) such
that s∗L ∼= L. Consider q ∈ QR(C) such that its decomposition in quasireflec-
tions is q = i0i1 · · · im, and ik is an ETQR acting non-trivially on an elliptic tail
Ek. Any lifting of q is in the form q = i0i1 · · · im · a, where ik is a (generalized)
ETQR acting non-trivially on Ek, and a is a ghost acting non-trivially only
on nodes outside the tails Ek. We observe that every ik is a lifting in Aut(C)
of ik, we are going to prove that moreover ik ∈ Aut(C, L, φ). By construc-
tion, q∗L ∼= L if and only if i∗kL

∼= L for all k and a∗L ∼= L. This implies that
every ik lives in Aut(C, L, φ), then qa−1 is a lifting of q living in QR(C, L, φ). �

Remark 4.3. We recall the short exact sequence

1 → AutC(C, L, φ)
h

−−→ Aut(C, L, φ)
p

−−→ Aut′(C) → 1

and introduce the group QR′(C) ⊂ Aut′(C), generated by liftable quasire-
flections. Knowing that p(QR(C, L, φ)) ⊂ QR′(C) ⊂ Aut′(C) ∩ QR(C), the
previous lemma shows that QR′(C) = p(QR(C, L, φ)). Using also Lemma 4.1,
we obtain that the following is a short exact sequence

1 → QRC(C, L, φ) → QR(C, L, φ) → QR′(C) → 1.

Theorem 4.4. The group Aut(C, L, φ) is generated by quasireflections if and
only if both AutC(C, L, φ) and Aut′(C) are generated by quasireflections.

Proof. After the previous remark, the following is a short exact sequence

1 → AutC(C, L, φ)/QRC(C, L, φ) →

→ Aut(C, L, φ)/QR(C, L, φ) → Aut′(C)/QR′(C) → 1.

The theorem follows. �

After Theorem 4.4 and 3.13, we have the following characterization of the

singular locus inside R
k

g,ℓ.

Theorem 4.5. Let g ≥ 4 and ℓ a prime number. Given a rooted curve (C, L, φ),

with C coarse space of C, the point [C, L, φ] ∈ R
k

g,ℓ is smooth if and only if
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Aut′(C) is generated by ETQRs of C and the contracted graphs Γ0(C) is tree-
like.

After Remark 3.14, we can generalize the previous theorem to all ℓ. It suffices
to consider contracted graphs Γp(C) for every prime p dividing ℓ

Theorem 4.6. For any g ≥ 4 and ℓ positive integer. The point [C, L, φ] is
smooth if and only if Aut′(C) is generated by ETQRs of C and the Γp(C) are
tree-like.

Remark 4.7. The theorem above is a generalization of [8, Theorem 2.28]. In
particular Chiodo and Farkas proved that in the case k = 0, the moduli of
level curves, the contracted graphs Γp are bouquet if [C, L, φ] is smooth. A
bouquet is a graph with only one vertex, or equivalently a tree-like graph with
no non-loop edges. This happens because in the case k = 0, every separating
node must have trivial stabilizer, i.e. the M cochain must be 0 and therefore
they disappear after the contraction. In the general case, M could be non-zero
on separating edges too, and the theorem is still true using the more general
notion of tree-like graph.

4.1. The locus of singular points via a new stratification. As we
saw, the information about the automorphism group of a certain rooted curve
(C, L, φ) is coded by its dual decorated graph (Γ0(C),M). It is therefore quite

natural to introduce a stratification of R
k

g,ℓ using this notion. For this, we
extend the notion of graph contraction: if Γ′

0 → Γ′
1 is a usual graph contraction,

the ring C1(Γ′
1;Z/ℓ) is naturally immersed in C1(Γ′

0;Z/ℓ), then the contraction
of a pair (Γ′

0,M
′
0) is the pair (Γ′

1,M
′
1) where the cochain M ′

1 is the restriction
of M ′

0. If it is clear from the context, we could refer to the decorated graph
restriction simply with the graph contraction Γ′

0 → Γ′
1.

Definition 4.8. Given a decorated graph (Γ,M) with M ∈ C1(Γ;Z/ℓ), con-

sider this locus of R
k

g,ℓ:

S(Γ,M) :=
{
[C, L, φ] ∈ R

k

g,ℓ : Γ0(C) = Γ,

and M is the multiplicity index of (C, L, φ)} .

These loci are the strata of our stratification. We can find a first link between
the decorated graph and geometric properties of the stratum.

Proposition 4.9. If we consider the codimension of S(Γ,M) inside R
k

g,ℓ, we
have

CodimS(Γ,M) = #E(Γ).

Proof. We take a general point [C, L, φ] of stratum S(Γ,M), it has #V (Γ) irre-
ducible components C1, . . . ,C#V . We call gi the genus of Ci and ki the number
of nodes of C on this component. Then we have

∑
ki = 2#E(Γ). We obtain
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that the dimension of Def(C, L, φ) is

dimDef(C, L, φ) =

#V∑

i=1

(3gi − 3 + ki) = 3
∑

gi − 3#V + 2#E.

Thus, because of Remark 2.9, we have dimDef(C, L, φ) = 3g − 3−#E, where
g is the genus of C. The result on the codimension follows. �

Using contraction, we have this description of the closed strata.

S(Γ′

1,M
′

1)
=

{
[C, L, φ] ∈ R

k

g,ℓ :
if (Γ0,M) is the decorated graph of (C, L, φ),
there exists a contraction (Γ0,M) → (Γ′

1,M
′
1)

}
.

We introduce two closed loci of R
k

g,ℓ,

Nk
g,ℓ :=

{
[C, L, φ]| Aut′(C) is not generated by ETQRs

}
,

Hk
g,ℓ := {[C, L, φ]| AutC(C, L, φ) is not generated by quasireflections} .

Equivalently, [C, L, φ] ∈ Hk
g,ℓ if and only if Γ0(C) is not tree-like. We have by

Theorem 4.5 that the singular locus SingR
k

g,ℓ is their union

SingR
k

g,ℓ = Nk
g,ℓ ∪Hk

g,ℓ.

Remark 4.10. Consider the natural projection π : R
k

g,ℓ → Mg, we observe
that

Nk
g,ℓ ⊂ π−1 SingMg.

Indeed, after Remark 4.3, QR′(C) = Aut′(C)∩QR(C) and therefore Aut(C) =

QR(C) if and only if Aut′(C) = QR′(C). This implies that
(
π−1 SingMg

)c
⊂

(Nk
g,ℓ)

c, and taking the complementary we have the result.

The stratification introduced is particularly useful in describing the “new” locus
Hk

g,ℓ. We recall the definition of vine curves.

Definition 4.11. We note Γ(2,n) a graph with two vertices linked by n edges.
A curve C is an n-vine curve if Γ(C) contracts to Γ(2,n) for some n ≥ 2. Equiv-
alently an n-vine curve has coarse space C = C1 ∪C2 which is the union of two
curves intersecting each other n times.

The next step shows that every H-curve has a dual graph which contracts to
Γ(2,n).

Lemma 4.12. If [C, L, φ] ∈ SingR
k

g,ℓ is a point in Hk
g,ℓ whose decorated graph

is (Γ0,M), then there exists n ≥ 2 and a graph contraction Γ0 → Γ(2,n).
Equivalently C is an n-vine curve for some n ≥ 2.

Proof. If [C, L, φ] ∈ Hk
g,ℓ, by definition Γ0 contains a circuit that is not a loop.

We will show an edge contraction Γ0 → Γ(2,n) for some n ≥ 2.
Consider two different vertices v1 and v2 that are consecutive on a non-loop
circuit K ⊂ Γ0. Now consider a partition V = V1

⊔
V2 of the vertex set such
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that v1 ∈ V1 and v2 ∈ V2. This defines an edge contraction Γ0 → Γ(2,n) where
e ∈ E(Γ) is contracted if its two extremities lie in the same Vi. As K is a
circuit, necessarily n ≥ 2 and the theorem is proved. �

We conclude that Hk
g,ℓ is the union of the closed strata associated to vine

graphs.

Hk
g,ℓ =

⋃

n≥2
M∈C1(Γ(2,n);Z/ℓ)

S(Γ(2,n),M).

5. Non-canonical singularities of R
k

g,ℓ

After the description of the singular locus of R
k

g,ℓ, in this section we find the

locus of non-canonical singularities SingncR
k

g,ℓ. To do this we introduce the
age function and point out some basic facts about quotient singularities: the
characterization of the non-canonical locus will follow from the age criterion

5.3. Also, for some small values of ℓ, we will develop a description of SingncR
k

g,ℓ

in terms of the stratification introduced above.

5.1. The age criterion. If G is a finite group, the age is an additive positive
function from the representations ring of G to rational numbers,

age: Rep(G) → Q.

First consider the group Z/r for any r positive integer. Given the character kkk
such that 1 7→ k ∈ Z/r, we define age(kkk) = k/r. These characters are a basis
for Rep(Z/r), then we can extend age over all the representation ring.
Consider a G-representation ρ : G → GL(V ), the age function could be defined
on any injection i : Z/r →֒ G simply composing the injection with ρ.

ageV : i 7→ age(ρ ◦ i).

Age can finally be defined on the group G by

G
f

−−→
⊔

r≥1

{i| i : µµµr →֒ G}
ageV−−−→ Q,

where f is the set bijection sending g ∈ G, element of order r, to the injection
obtained by mapping 1 ∈ Z/r to g.

Definition 5.1 (junior and senior groups). A finite group G ⊂ GL(Cm) that
contains no quasireflections is called junior if the image of the age function
intersects the open interval ]0, 1[,

ageG∩ ]0, 1[ 6= ∅,

and senior otherwise.

Remark 5.2. All the functions we have introduced are canonically defined
except for the identification f , that depends on the choice of the primitive root
ξr = exp(2πi/r). Moreover, the image of age: G → Q does not depend on this
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choice, then our previous choice of a root system does not affect the study of
junior and senior groups and will continue unchanged.

Theorem 5.3 (age criterion, [16]). If G ⊂ GL(Cm) is a finite subgroup without
quasireflections, the singularity Cm/G is canonical if and only if G is a senior
group.

Remark 5.4. To see the age explicitly, for g ∈ G ⊂ GL(Cm) with G finite sub-
group and ord(g) = r, consider a basis of Cm such that g = Diag(ξa1

r , . . . , ξam
r ).

In this setting age(g) = 1
r

∑
ai.

5.2. The non-canonical locus. We know that any point [C, L, φ] ∈ R
k

g,ℓ has
a neighborhood isomorphic to the quotient Def(C)/Aut(C, L, φ), then after the
age criterion 5.3 we are searching for junior automorphism in Aut(C, L, φ). We
also need the denominator group to be quasireflections free to use the criterion,
so we will repeatedly use the following result.

Proposition 5.5 (see [15]). Consider the finite subgroup G ⊂ GL(Cm) and
the group QR(G) generated by G quasireflections. There exists an isomorphism
ϕ : Cm/QR(G) → Cm and a subgroup K ⊂ GL(Cm) isomorphic to G/QR(G)
such that the following diagram is commutative.

Cm −−−−→ Cm/QR(G)
ϕ

−−−−→ Cm

y
y

y

Cm/G
∼=

−−−−→ (Cm/QR(G))/(G/QR(G))
∼=

−−−−→ Cm/K

We introduce two closed loci which are central in our description.

Definition 5.6 (T -curves). A rooted curve (C, L, φ) is a T -curve if there exists
an automorphism a ∈ Aut(C, L, φ) such that its coarsening a is an elliptic tail

automorphism of order 6. The locus of T -curves in R
k

g,ℓ is noted T k
g,ℓ.

Definition 5.7 (J-curves). A rooted curve (C, L, φ) is a J-curve if the group

AutC(C, L, φ)/QRC(C, L, φ),

which is the group of ghosts quotiented by its subgroup of quasireflections, is

junior. The locus of J-curve in R
k

g,ℓ is noted Jk
g,ℓ.

Theorem 5.8. For g ≥ 4, the non-canonical locus of R
k

g,ℓ is formed by T -
curves and J-curves, i.e. it is the union

SingncR
k

g,ℓ = T k
g,ℓ ∪ Jk

g,ℓ.

Remark 5.9. We observe that Theorem 2.44 of Chiodo and Farkas [8], affirms
exactly that in the case k = 0, ℓ ≤ 6 and ℓ 6= 5, the J-locus J0

g,ℓ is empty for

every genus g, and therefore Singnc R
0

g,ℓ coincides with the T -locus for these
values of ℓ.
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To show Theorem 5.8 we will prove a stronger proposition.

Proposition 5.10. Given a rooted curve (C, L, φ) of genus g ≥ 4 which is not
a J-curve, if a ∈ Aut(C, L, φ)/QR(C, L, φ) is a junior automorphism, then its
coarsening a is an elliptic tail automorphism of order 3 or 6.

Proof. We introduce the notion of ⋆-smoothing, following [12] and [13].

Definition 5.11. Consider a rooted curve (C, L, φ), suppose a ∈ Aut(C, L, φ)
is an automorphisms such that there exists a cycle of m non-separating nodes
n0, . . . , nm−1, i.e. we have a(ni) = ni+1 for all i = 0, 1 . . . ,m−2 and a(nm−1) =
n0. The triple is ⋆-smoothable if and only if the action of am over the coordinate
associated to every node is trivial. This is equivalent to ask am(tni) = tni for
any i = 0, 1, . . . ,m− 2, where tni is the coordinate associated to node ni.

If (C, L, φ) is ⋆-smoothable, there exists a deformation of (C, L, φ) together with
an automorphism a and smoothing the m nodes of the cycle. Moreover, this
deformation preserves the age of the a-action on Def(C, L, φ)/QR. Indeed,
the eigenvalues of a are a discrete and locally constant set, thus constant by
deformation. As the T -locus and the J-locus are closed by ⋆-smoothing, we
can suppose, as an additional hypothesis of Theorem 5.8, that our curves are
⋆-rigid, i.e. non-⋆-smoothable. ¿From this point we suppose that (C, L, φ) is
⋆-rigid.
We will show in eight steps that if the group

Aut(C, L, φ)/QR(C, L, φ)

is junior, and (C, L, φ) is not a J-curve, then it is a T -curve. After the age
criterion 5.3 and Proposition 5.5, this will prove Theorem 5.8. ¿From now
on we work under the hypothesis that a ∈ AutC(C, L, φ)/QR is a non-trivial
automorphism aged less than 1, and (C, L, φ) is not a J-curve.

Step 1. Consider the decorated graph (Γ0,M) of (C, L, φ). As before, we call
Esep the set of separating edges of Γ0. Then, following Remark 2.8, we can
estimate the age by a splitting of the form

⊕

e∈Esep

Ate ⊕
⊕

e′∈E\Esep

Ate′ ⊕

m⊕

i=1

H1(Ci, TCi
(−Di)),

where te is a coordinate parametrizing the smoothing of the node associated to
edge e, and the curves Ci are the normalizations of the irreducible components
of C.
Every automorphism in Aut(C, L, φ) fixes the three summand in the sum above.
Moreover, every quasireflection acts only on the first summand, then, by Pro-
postion 5.5, the group Aut(C, L, φ)/QR acts on

(6)

(⊕
e∈Esep

Ate

QR(C, L, φ)

)
⊕

⊕

e′∈E\Esep

Ate′ ⊕

m⊕

i=1

H1(Ci, TCi
(−Di)).
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Every quasireflection acts on exactly one coordinate te with e ∈ Esep. We
rescale all the coordinates te by the action of QR(C, L, φ). We call t̃e, for
e ∈ E(Γ0), the new set of coordinates. Obviously t̃e′ = te′ if e

′ ∈ E(Γ0)\Esep.

Step 2. We show two lemmata about the age contribution of the a-action on
nodes, which we will call aging on nodes.

Definition 5.12 (coarsening order). If a ∈ Aut(C, L, φ) and a is its coarsening,
then we define

c-orda := orda.

The coarsening order is the least integer m for which am is a ghost automor-
phism.

Lemma 5.13. Suppose that Z ⊂ C is a subcurve of C such that a(Z) = Z

and n0, . . . nm−1 is a cycle, by a, of nodes in Z. Then we have the following
inequalities:

(1) age(a) ≥ m−1
2 ;

(2) if the nodes are non-separating, age(a) ≥ m
ord(a|Z)

+ m−1
2 ;

(3) if ac-ord a is a senior ghost, we have age(a) ≥ 1
c-ord(a) +

m−1
2 .

Proof. We call t̃0, t̃1, . . . , t̃m−1 the coordinates associated respectively to nodes
n0, . . . , nm−1. By hypothesis, a(t̃0) = c1 · t̃1 and ai(t̃0) = ci · t̃i for all i =
2, . . . ,m− 1, where ci are complex numbers. If n = ord(a|Z), we have a

m(t̃0) =
ξumn · t̃0 where ξn is the primitive nth root of unity and 0 ≤ u < n/m. We call u
exponent of the cycle. Observe that a(t̃i−1) = (ci/ci−1) · t̃i and am(t̃i) = ξumn · t̃i
for all i.
We can explicitly write the eigenvectors for the action of a on the coordinates
t̃0, . . . , t̃m−1. Set d := n/m and b := sd+ u with 0 ≤ s < m, and consider the
vector

vb := (t̃0 = 1, t̃1 = c1 · ξ
−b
n , . . . , t̃i = ci · ξ

−ib
n , . . . ).

Then a(vb) = ξbn · vb. The contribution to the age of the eigenvalue ξbn is b/n,
thus we have

age a =

m−1∑

s=0

sd+ u

n
=

mu

n
+

m− 1

2
,

proving point (1).
If the nodes are non-separating, as we are working on a ⋆-rigid curve, we have
u ≥ 1 and the point (2) is proved.
Suppose that the action of a on C has j nodes cycles of order m1,m2, . . . ,mj ,
of exponents respectively u1, . . . , uj . If k = c-ord a, ak fixes every node and
its age is (

∑
miuik)/n, which is greater or equal to 1 by hypothesis. By the

previous result, the age of a on the ith cycle is bounded by miui/n+(mi−1)/2.
As a consequence

age a =

j∑

i=1

(
miui

n
+

mi − 1

2

)
≥

1

k
+

m1 − 1

2
.
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�

Lemma 5.14. Suppose that (C, L, φ) is ⋆-rigid and consider a non-separating
node n. If the coarsening of a acts locally exchanging the branches of n, then
the a-action yields an aging of 1/2 on the nodes.

Proof. The automorphism a induces an obvious automorphism of the dec-
orated graph (Γ0,M). We will call this automorphism a too, with a little
abuse of notation. Thus we have a∗M = M . In particular, if en is an oriented
edge associated to n, then M(en) ≡ a∗M(en) ≡ M(en) ≡ −M(en). Therefore
M(en) ≡ ℓ/2. If ℓ is prime thus necessarily ℓ = 2. Anyway, also when ℓ is
composite, by the generalized definition of M (see Remark 3.14) we have that
the order of the local stabilizer is r = 2 and a(en) ∈ Z/2. As (C, L, φ) is ⋆-rigid,
a(en) 6≡ 0, therefore the aging is 1/2. �

Step 3. We observe that all the nodes of C are fixed except at most two of
them, who are exchanged. Moreover, if a pair of non-fixed nodes exists, they
contribute by at least 1/2. This fact is a straightforward consequence of the
first point in Lemma 5.13.

Step 4. Consider an irreducible component Z ⊂ C, then a(Z) = Z. To show
this, we suppose there exists a cycle of irreducible components C1, . . . ,Cm with
m ≥ 2 such that a(Ci) = Ci+1 for i = 1, . . . ,m − 1, and a(Cm) = C1. We call
Ci the normalizations of these components, and Di the preimages of C nodes
on Ci. We point out that this construction implies that (Ci, Di) ∼= (Cj , Dj) for
all i, j. Then, an argument of [12, p.34] shows that the action of a on

m⊕

i=1

H1(Ci, TCi
(−Di)) ⊂ Def(C)

gives a contribution of at least k · (m− 1)/2 to age a, where

k = dimH1(Ci, TCi
(−Di)) = 3gi − 3 + #Di.

This give us two cases for which m could be greater than 1 with still a junior
age: k = 1 and m = 2 or k = 0.
If k = 1 and m = 2, we have gi = 0 or 1 for i = 1, 2. Moreover, the aging of
at least 1/2 sums to another aging of 1/2 if there is a pair of non-fixed nodes.
As a is junior, we conclude that C = C1 ∪ a(C1) but this implies g(C) ≤ 3,
contradiction.
If k = 0, we have gi = 1 or gi = 0, the first is excluded because it implies
#Di = 0 but the component must intersect the curve somewhere. Thus, for
every component in the cycle, the normalization Ci is the projective line P1

with 3 marked points. We have two cases: the component Ci intersect C\Ci in
3 points or in 1 point, in the second case Ci has an autointersection node and
C = C1 ∪ a(C1), which is a contradiction because g(C) ≥ 4. It remains the case
in the image below.
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C1

s
s s

Figure 1. Case with C1
∼= P1 and 3 marked points

As C1,C2, . . . ,Cm are moved by a, every node on C1 is transposed with another
one or is fixed with its branches interchanged. In both cases the aging is 1/2,
after a straightforward analysis we obtain an age contribution bigger than 1
using Lemmata 5.13 and 5.14.

Step 5. We prove that every node is fixed by a. Consider the normalization
nor :

⊔
i Ci → C already introduced. If the age of a is lower than 1, a fortiori

we have age a|
Ci

< 1 for all i. In [12, p.28] there is a list of those smooth stable
curves for which there exists a non-trivial junior action.

i. The projective line P1 with a : z 7→ (−z) or (ξ4z);
ii. an elliptic curve with a of order 2, 3, 4 or 6;
iii. an hyperelliptic curve of genus 2 or 3 with a the hyperelliptic involution;
iv. a bielliptic curve of genus 2 with a the canonical involution.

We observe that the order of the a-action on these components is always 2, 3, 4
or 6. As a consequence, if a is junior, then n = c-ord a = 2, 3, 4, 6 or 12, as it is
the greatest common divisor between the c-ord

(
a|

Ci

)
.

First we suppose ord a > c-orda, thus ac-ord a is a ghost and it must be senior.
Indeed, if ac-ord a is aged less than 1, then (C, L, φ) admits junior ghosts, con-
tradicting our assumption. By point (3) of Lemma 5.13, if there exists a pair
of non-fixed nodes, we obtain an aging of 1/n + 1/2 on node coordinates. If
ord a = c-ord a the bound is even greater. As every component is fixed by a,
the two nodes are non-separating, and by point (2) of Lemma 5.13 we obtain
an aging of 2/n+ 1/2.
If Ci admits an automorphism of order 3, 4 or 6, by a previous analysis of
Harris and Mumford (see [12] again), this yields an aging of, respectively, 1/3,
1/2 and 1/3 on H1(Ci, TCi

(−Di)).
These results combined, show that a non-fixed pair of nodes gives an age
greater than 1. Thus, if a is junior, every node is fixed.

Step 6. We study the action of a separately on every irreducible component.
The a-action is non-trivial on at least one component Ci, and this component
must lie in the list above.
In case (i), Ci has at least 3 marked points because of the stability condition.
Actions of type x 7→ ζx have two fixed points on P1, thus at least one of the
marked points is non-fixed. A non-fixed preimage of a node has order 2, thus the
coarsening a of a is the involution z 7→ −z. Moreover, Ci is the autointersection
of the projective line and a exchanges the branches of the node. Because of
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Lemma 5.14, a acts non-trivially with order 2 on the node, and its action on
the associated coordinate gives an aging of 1/2.
The analysis for cases (iii) and (iv) is identical to that developed in [12]: the
only possibilities of a junior action is the case of an hyperelliptic curve E of
genus 2 intersecting C\E in exactly one point, whose hyperinvolution gives an

aging of 1/2 on H1(Ci, TCi
(−Di)).

Finally, in case (ii), we use again the analysis of [12]. The elliptic component

E has 1 or 2 point of intersection with C\E. If there is 1 point of intersection,
elliptic tail case, for a good choice of coordinates the coarsening a acts as
z 7→ ξnz, where n is 2, 3, 4 or 6. The aging is, respectively, 0, 1/3, 1/2, 1/3. If
there are 2 points of intersection, elliptic ladder case, the order of a on E must
be 2 or 4 and the aging respectively 1/2 or 3/4.

Step 7. Resuming what we saw until now, if a is a junior automorphism of
(C, L, φ), a its coarsening and C1 an irreducible component of C, then we have
one of the following:

A. component C1 is an hyperelliptic tail, crossing the curve in one
point, with a acting as the hyperelliptic involution and aging 1/2 on
H1(C1, TCi

(−D1));

B. component C1 is a projective line P1 autointersecting itself, crossing
the curve in one point, with a the involution which fixes the nodes,
and aging 1/2;

C. component C1 is an elliptic ladder, crossing the curve in two points,
with a of order 2 or 4 and aging respectively 1/2 or 3/4;

D. component C1 is an elliptic tail, crossing the curve in one point, with
a of order 2, 3, 4 or 6 and aging 0, 1/3, 1/2 or 1/3;

E. automorphism a acts trivially on C1 with no aging.

rg(C1)=2
n

r
n

r

C1 = P1

r
r
g(C1)=1

Figure 2. Components of type A, B and C.

We rule out cases (A), (B) and (C). At first we suppose there is a component
of type (A) or (B). For genus reasons, the component intersected in both cases
must be of type (E). We study the local action on the separating node n. The
local picture of n is [{xy = 0}/µµµr] where r is the order of the local stabilizer.
The smoothing of the node is given by the stack [{xy = tn}/µµµr]. We observe
that there exists a quasireflection of order r acting non-trivially on the node,
and it generates quasireflections acting on this node. Thus t̃n = tr

n
. For a good
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choice of coordinates we have that the local picture of the coarse space C at the
node is {x′y′ = 0}, with x′ = xr and y′ = yr. Therefore the local deformation
of the coarse space is given by {x′y′ = t̃n}. The local action of a on the coarse
space is x′ 7→ −x′ and y′ 7→ y′, thus the action of a lifts to t̃n 7→ −t̃n. The
additional age contribution is 1/2, ruling out this case.
In case there is a component of type (C), if its nodes are separating, then
one of them must intersect a component of type (E) and we use the previous
idea. In case nodes are non-separating, we use Lemma 5.13. If ord a > c-ord a,
then ac-ord a is a senior ghost because (C, L, φ) is not a J-curve, thus by point
(3) of the lemma there is an aging of 1/ c-orda on the node coordinates. If
ord a = c-orda, the bound is even greater, as by point (2) we have an aging of
2/ c-orda. We observe that c-ord a = 2, 4 or 6, and in case c-orda = 6 there
must be a component of type (E). Using additional contributions listed above
we rule out the case (C).

Step 8. We proved that C contains components of type (D) or (E), i.e. the
automorphism a acts non-trivially only on elliptic tails. If n is the elliptic
tail node, there are possibly two quasireflections acting on the coordinate tn: a
ghost automorphism associated to this node and the elliptic tail quasireflection.
If the order of the local stabilizer is r, then t̃n = t2r

n
.

If ord a = 2 we are in the ETQR case, this action is a quasireflection and it
contributes to rescaling the coordinate tn.
If ord a = 4, the action on the (coarse) elliptic tail is z 7→ ξ4z. The space

H1(Ci, TCi
(−Di)) is the space of 2-forms H0(Ci, 2Ki): this space is generated

by dz⊗2 and the action of a is dz⊗2 7→ ξ24dz
⊗2. Moreover, if the local picture

of the elliptic tail node is [{xy = 0}/µµµr], then a : (x, y) 7→ (ζx, ζ′y) such that
ζr = ξ4 and (ζ′)r = 1. As a consequence a : tn 7→ ζζ′tn and therefore t̃n 7→ ξ2 t̃n.
Then, age a = 1/2 + 1/2, proving the seniority of a.
If E admits an automorphism a of order 3 or 6, the action on the (coarse)
elliptic tail is a : z 7→ ξk6 z. Then dz⊗2 7→ ξk3dz

⊗2 and t̃n 7→ ξk3 t̃n. For k = 1, 4
we have age lower than 1.

If (C, L, φ) is not a J-curve, we have shown that the only case where
a ∈ Aut(C, L, φ)/QR is junior, is when its coarsening a is an elliptic tail
automorphism of order 3 or 6. �

The previous theorem reduces the analysis of SingncR
k

g,ℓ to two loci. The next
section will be devoted to the J-locus. About the T -locus we observe that it
is that part of the non-canonical locus “coming” from Mg. More formally,

if π : R
k

g,ℓ → Mg is the natural projection, we have T k
g,ℓ ⊂ π−1 SingncMg =

Tg,1,0. Harris and Mumford showed that multicanonical forms extend over the

T -locus on Mg. Their proof could be adapted for R
k

g,ℓ as shown precisely in
[13, Theorem 4.1] for the case ℓ = 2, k = 1.
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In the case of the J-locus it is unknown if the extension of the pluricanonical
forms is possible. Harris and Mumford’s techniques do not adapt and there is
at the moment no global approach to treat this case. In the next section we
will give a description of the J-locus based on the dual graph structure. In
particular we will show the cases with non-empty J-locus for small values of ℓ.

6. The J-locus

The J-locus is the “new” part of the non-canonical locus which appears passing

from Mg to one of its coverings R
k

g,ℓ. For some values of ℓ and k this locus
could be empty, however, a consequence of our analysis is that it is actually
not empty for any ℓ > 2 and k 6= 0.
We will exhibit an explicit decomposition of Jk

g,ℓ in terms of the strata S(Γ,M).
We point out a significant difference with respect to the description of the
singular locus: in the case of Hk

g,ℓ, that we obtained in Section 4.1, we showed a
decomposition in terms of loci whose generic point represents a two component
curve, i.e. a vine curve. For the J-locus we do not have such an elegant minimal
decomposition: for values of ℓ large enough, there exists strata representing
J-curves with an arbitrary high number of components, such that each one of
their smoothing is not a J-curve. Equivalently, there are decorated graphs with
an arbitrary high number of vertices and admitting junior automorphisms, but
such that each one of its contraction does not admit junior automorphisms.

Remark 6.1. We already observed that a ghost automorphism always acts triv-
ially on loop edges of decorated dual graphs, and that quasireflections only act
on separating edges. Thus we can ignore these edges in studying AutC(C, L, φ)/
QRC(C, L, φ). ¿From this point we will automatically contract loops and sep-
arating edges as they appear. This is not a big change in our setting, in fact
graphs without loops and separating edges are a subset of the graphs we con-
sidered until now. Reducing our analysis to this subset is done for the sole
purpose of simplifying the notation.

Age is not well-behaved with respect to graph contraction, but there is another
invariant which is better behaved: we will define a number associated to every
ghost, which respects a super-additive property in the case of strata intersection
(see Theorem 6.7). Here we only work under the condition that ℓ be a prime
number.
At first consider a decorated graph contraction

(Γ0,M) → (Γ1,M1).

¿From the definition of the stratification, we know that this implies

S(Γ1,M1) ⊂ S(Γ0,M).

We know that AutC(C, L, φ) is canonically isomorphic to the group G(Γ0;Z/
ℓ) ⊂ S(Γ0;Z/ℓ) for every rooted curve (C, L, φ) in S(Γ0,M), and moreover

S(Γ0;Z/ℓ) is canonically identified with C1(Γ0;Z/ℓ) via M multiplication. As
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there is no risk of confusion, from now on we will not repeat the notation of
Z/ℓ on the label of groups G, S and C1.
Because of contraction, the edge set E(Γ1) is a subset of E(Γ0), so that the
group S(Γ1) is naturally immersed in S(Γ0), and C1(Γ1) in C1(Γ0). These
immersions are compatible with multiplication by M , thus G(Γ1) = G(Γ0) ∩
S(Γ1) and we have a natural immersion of the G groups too.

Proposition 6.2. Given a contraction (Γ0,M) → (Γ1,M1), the elements of
G(Γ1) are those cochains of G(Γ0) whose support is contained in E(Γ1).

This gives an interesting correspondence between curve specialization, deco-
rated graph contraction, strata inclusion and canonical immersions between
the associated ghost automorphism groups.
¿From the definition of G(Γ0;Z/ℓ) and Proposition 1.14, we know that G(Γ0) ∼=
Z/ℓ#V (Γ0)−1, and we have an explicit basis for it. We consider a spanning tree
T for Γ0, we call e1, e2, . . . , ek the edges of T , each one with an orientation,
such that k = #V (Γ0) − 1. Then the cuts cutΓ0(ei;T ) form a basis of G(Γ0).
We can also write

G(Γ0) =

k⊕

i=1

(cutΓ0(ei;T ) · Z/ℓ) .

For an n-vine decorated graph (Γ(2,n),M), the G-group is cyclic.

Remark 6.3. An element a ∈ G(Γ0) could be seen as living on stratum S(Γ0,M).
We observe that if (Γ0,M) → (Γ1,M1) is a contraction, then a lies in G(Γ1)
by the natural injection. Thus every automorphism living on S(Γ0,M) lives on

all the closure S(Γ0,M).

If a ghost automorphism is junior, it carries a non-canonical singularity that
spreads all over the closure of the stratum where the automorphism lives. This
informal statement justifies the following definition.

Definition 6.4. The age of a stratum S(Γ0,M) is the minimum age of a ghost
automorphism a in G(Γ0). As in the case of group age, the age of an au-
tomorphism depends on the primitive root chosen, but the stratum age does
not.

With this new notation, the locus of non-canonical singularities could be writ-
ten as follows,

SingncR
k

g,ℓ =
⋃

ageS(Γ0,M)<1

S(Γ0,M).

Indeed, if [C, L, φ] ∈ R
k

g,ℓ has a junior ghosts group, then this point lies on the
closure of a junior stratum. Conversely, every point in the closure of a junior
stratum has a junior ghosts group.

Definition 6.5. We say that a set of contractions {(Γ0,M) → (Γi,Mi)}, for
i = 1, . . . , k, covers Γ0 if E(Γ0) =

⋃
iE(Γi). We observe that if this set is a
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covering, then G(Γi,Mi) ⊂ G(Γ0,M) for all i and

S(Γ0,M) ⊂

k⋂

i=1

S(Γi,Mi).

Definition 6.6. An automorphism a ∈ G(Γ0) is supported on stratum S(Γ0,M)

if its support is the whole E(Γ0) set. We observe that this property has an
immediate moduli interpretation: an automorphism supported on S(Γ0,M) ap-

pears in the ghost group of every curve in S(Γ0,M) but it does not appear in
any other stratum whose closure contains S(Γ0,M).

Unfortunately, the age of a strata intersection is not bounded by the sum of
the ages of strata intersecting. However, there exists another invariant which
has a superadditive property with respect to strata intersection. We will pay
attention to the new automorphisms that appear at the intersection, i.e. those
automorphisms supported on the intersection stratum, using the notion just
introduced.

Theorem 6.7. Consider a covering (Γ0,M) → (Γi,Mi), with i = 1, . . . ,m,
such that

G(Γ0) =

m∑

i=1

G(Γi).

Then for every a supported on S(Γ0,M) we have

age a−#E(Γ0) ≥
m∑

i=1

(
ageS(Γi,Mi) −#E(Γi)

)
.

To prove the theorem we need the following lemma

Lemma 6.8. If a is supported on S(Γ0,M), then

age a+ age a−1 = #E(Γ0).

Proof. Given an edge e ∈ E(Γ0), by definition, a−1(e), a(e) ∈ Z/ℓ. As a is
supported on S(Γ,M), a(e) 6≡ 0 for all e in E(Γ0), and then this component

brings to age a and age a−1 respectively a value of a(e)/ℓ and (1− a(e)/ℓ). As
a consequence we obtain age a+ age a−1 = #E(Γ) = CodimS(Γ0,M). �

As a direct consequence of the previous lemma, we have age a−1 = #E(Γ0)−
age a. By hypothesis we can write,

a−1 = a1 + a2 + · · ·+ am,

where ai ∈ G(Γi,Mi) for all i, and we call ci the cardinality of ai support. By
subadditivity of age, we have age a−1 ≤

∑
age ai, then using Lemma 6.8 we

obtain

a−#E ≥

m∑

i=1

(
age a−1

i − ci
)
.
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By the fact that ci ≤ #E(Γi) for all i, and by the definition of age for the
strata, the Theorem is proved. �

We observe that #E(Γi) = CodimS(Γi,Mi) by Proposition 4.9, thus we found
an inequality about age involving geometric data. There is another formulation
of the statement. We already observed that for every graph Γ, b1(Γ) = #E −
(#V − 1). If the sum in the hypothesis is a direct sum, the rank condition is
equivalent to #V (Γ0)− 1 =

∑
#V (Γi)− 1. Therefore we have the following.

Corollary 6.9. If the (Γi,Mi) cover (Γ0,M) and

G(Γ0) =

m⊕

i=1

G(Γi),

then for every automorphism a supported on G(Γ0) we have

age a− b1(Γ0) ≥

m∑

i=1

(
ageS(Γi,Mi) − b1(Γi)

)
.

In the case of two strata intersecting, a rank condition implies the splitting of
G(Γ0,M) in a direct sum.

Lemma 6.10. Consider the contractions of decorated graphs (Γ0,M) → (Γi,Mi)
for i = 1, 2. If Γ1 and Γ2 cover Γ0, and moreover

#V (Γ0)− 1 = (#V (Γ1)− 1) + (#V (Γ2)− 1),

then we have

G(Γ0) = G(Γ1)⊕G(Γ2).

Proof. Before proving it, we point out a useful fact: given any contraction
Γ0 → Γi, the natural injection G(Γi) →֒ G(Γ0) sends cuts on cuts. We suppose,
without loss of generalities, that #V (Γ1) ≤ #V (Γ2) and we prove the lemma
by induction on #V (Γ1).
The base case #V (Γ1) = 1 is empty, Γ0 = Γ2 and the thesis follows obviously.
Now suppose #V (Γ1) = q > 1, then #V (Γ2) < #V (Γ0) and so there exists
two vertices of Γ0 connected by edges who lies in E(Γ1) but not in E(Γ2). We
call e1 one of these edges in E(Γ1) and T1 a spanning tree of Γ1 containing
e1. If cutΓ1(e1;T1) is the corresponding cut, it is also an element of G(Γ0).
By rank conditions it suffices to prove that G(Γ0) = G(Γ1) +G(Γ2). Consider
a ∈ G(Γ0) which is not a sum of elements in G(Γ1) and G(Γ2). Now we define

a′ := a− k · cutΓ1(e1;T1),

where k is the necessary integer such that a′(e1) ≡ 0. Consider the graphs
(Γ′

0,M
′) and (Γ′

1,M
′
1) obtained contracting the edge e1 in Γ0 and Γ1 respec-

tively. By construction the contractions Γ′
0 → Γ′

1 and Γ′
0 → Γ2 still respect the

hypothesis, and #V (Γ′
1) = #V (Γ1)− 1. Therefore by induction the automor-

phism a′, which is an element of G(Γ′
0,M

′), is a sum

a′ = a′1 + a2,
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with a′1 ∈ G(Γ′
1) ⊂ G(Γ1) and a2 ∈ G(Γ2). Finally a = k ·cutΓ1(e;T1)+a′1+a2,

then it is in G(Γ1) + G(Γ2). This is a contradiction and so the lemma is
proved. �

In what follows we will find, for some small prime values of ℓ, a description of
Jk
g,ℓ by our stratification. Before starting we point out that our analysis will

focus in the cases J0
g,ℓ and J1

g,ℓ.

Proposition 6.11. If ℓ is prime, we have a natural stack isomorphism R
1
g,ℓ

∼=

R
k
g,ℓ for every k between 1 and ℓ− 1.

Proof. Consider a scheme S and a triple (C → S, L, φ) in R
1
g,ℓ(S). Consider the

map sending it to

(C → S, L⊗k, φ⊗k) ∈ R
k
g,ℓ(S).

As ℓ is prime and k 6≡ 0 mod ℓ, this morphism has a canonical inverse, so we
obtained an isomorphism of categories. �

6.1. The locus Jk
g,ℓ for ℓ = 2. In this case the J-locus is always empty.

Indeed, every automorphisms in AutC(C, L, φ)/QR must have a support of
cardinality at least 2, but for every edge in the support, a ghost a has a
contribution of 1/2 to its age. Hence there are no junior automorphisms in
AutC(C, L, φ)/QR. This result was already obtained by Farkas and Ludwig

for the Prym space R
0

g,2 in [10], and by Ludwig for R
1

g,2 in [13].

6.2. The locus Jk
g,ℓ for ℓ = 3. The process of finding the Jk

g,ℓ decomposition,
for specific values of ℓ and k, will always follows three steps.

Step 1. We identify at first the graphs which can support a junior automor-
phism in Aut(C, L, φ)/QR, i.e. those graphs with #E < ℓ and no separating
edges. If Γ is one of these graphs, we identify the Z/ℓ-valued automorphisms
supported on Γ, i.e. the elements of

⊕
e∈E(Γ) Z/ℓ which are non-trivial on every

edge and are junior. These automorphisms are the junior elements in AutC(C)
for an ℓ-twisted curve whose dual graph is Γ.
If ℓ = 3 there is only one junior automorphism which can be supported on
a Z/3-valued decorated graph, the one represented in the image below and
supported on Γ(2,2).

• •

1

1

Step 2. For each one of these junior automorphisms, we search for multiplicity
cochains that respect the lift condition of Theorem 3.7 on the automorphisms
above. In this case the only possibilities are the following cochains
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• ## ;;•

1

1

M1

• ## ;;•

2

2

M2

In fact, the two decorated graphs (Γ(2,2),M1) and (Γ(2,2),M2) are isomorphic
by the isomorphism inverting the two vertices. Thus for ℓ = 3, there is only
one class of decorated graphs admitting junior automorphisms.
Step 3. By Proposition 3.4, there is an additional condition that the decorated
graph must satisfy: the cochain ∂M1 have to be the multidegree cochain of
ω⊗k
C

. Equivalently

(7)
∑

e+=v

M1(e) ≡ deg ω|
⊗k
v ≡ k · (2gv − 2 +Nv) mod ℓ ∀v ∈ V (Γ),

where gv is the genus of the component correspondent to vertex v, and Nv is
the degree of this vertex, i.e. the number of edges touching it.
By Proposition 6.11 we can focus in cases k = 0 and 1. If k = 1 the condition
of (7) is empty, because 2 and 3 are coprime and there always exists a sequence
of gv satisfying the equality. Then we have

J1
g,3 = S(Γ(2,2),M1).

In case k = 0, by (7) we have
∑

e+=v M1(e) ≡ 0 mod 3 for both vertices, but

this condition is not satisfied by
(
Γ(2,2),M1

)
, then

J0
g,3 = ∅.

6.3. The locus Jk
g,ℓ for ℓ = 5. Step 1 and 2. For ℓ = 5, every graph (Γ,M)

such that there exists a junior automorphism a ∈ G(Γ,M), contracts on a vine
stratum. This is a consequence of the following lemma.

Lemma 6.12. If ℓ is a prime number, consider a decorated graph (Γ,M) such
that there exists a vertex v1 ∈ V (Γ) connected with exactly two vertices v2, v3
and such that between v1 and v2 there is only one edge called e

· · · •

• •v2 v1e

v3

If S(Γ,M) is a junior stratum, then there exists a non-trivial graph contraction
(Γ,M) → (Γ1,M1) such that S(Γ1,M1) is also junior.

Remark 6.13. This lemma permits one to simplify the analysis of junior strata.
Every stratum labeled with a graph containing the configuration above, can be
ignored in the analysis. Indeed, if S(Γ,M) is a subset of the J-locus, there exists a

decorated graph (Γ1,M1) with less vertices such that S(Γ,M) ⊂ S(Γ1,M1) ⊂ Jk
g,ℓ.
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Proof of the Lemma. Consider a ∈ G(Γ,M) such that age a < 1. If a is not
supported on S(Γ,M), we contract one edge where a acts trivially and the lemma
is proved. Thus we suppose a supported on S(Γ,M). We call e′ one of the edges
connecting v1 and v3. We consider a spanning tree T of Γ passing though e′

and not passing through e. Then we call Γ1 and Γ2 the two contractions of Γ
obtained contracting respectively e′ and ET \{e

′}. By Lemma 6.10, we have

G(Γ,M) = G(Γ1,M1)⊕G(Γ2,M2).

Therefore we use Theorem 6.7 to obtain

age a−#E(Γ) ≥
(
ageS(Γ1,M1) −#E(Γ1)

)
+
(
ageS(Γ2,M2) −#E(Γ2)

)
.

As #E(Γ) = #E(Γ1) + #E(Γ2)− 1 by construction, a junior implies S(Γ1,M1)

or S(Γ2,M2) to be junior. �

The configuration of Lemma 6.12 appears in every non-vine graph with less
than 5 edges. As a consequence the reduction to vine strata follows.
To summarize these vine strata we introduce a new notation. Consider a k-
vine graph, with vertices v1 and v2 and edges e1, . . . , ek all taken oriented from
v1 to v2. If the multiplicity index M on the graph take values M(ei) = mi,
mi ∈ Z/ℓ, we note this decorated graph (m1,m2, . . . ,mk). For example the
graphs appeared in the precedent paragraph are noted (1, 1) and (2, 2) (and are
isomorphic). We can now state the ten classes of vine graphs which support a
junior ghost for ℓ = 5,

(1, 1), (2, 2), (1, 2), (1, 3), (1, 1, 1), (2, 2, 2),

(1, 1, 3), (2, 2, 1), (1, 1, 1, 1), (2, 2, 2, 2).

Step 3. For k = 1, equation (7) is always respected for some genus labellings
of the graph. Therefore we have

J1
g,5 = S(1,1) ∪ S(2,2) ∪ S(1,2) ∪ S(1,3) ∪ S(1,1,1)∪

∪S(2,2,2) ∪ S(1,1,3) ∪ S(2,2,1) ∪ S(1,1,1,1) ∪ S(2,2,2,2).

If k = 0 the equation is satisfied by two vine graphs, and we obtain the following

J0
g,5 = S(1,1,3) ∪ S(2,2,1).

In particular, this result fills the hole in Chiodo and Farkas analysis in [8].

They proved that the J-locus in the space R
0

g,ℓ is empty for ℓ ≤ 6 and ℓ 6= 5.

6.4. The locus Jk
g,ℓ for ℓ = 7. Step 1 and 2. Using Lemma 6.12, we observe

that for ℓ = 7 there are two kinds of graphs admitting junior automorphisms.
The first kind is the usual vine graph, but we can also have a 3-cycle graph
such that every pair of vertices is connected by two edges. In this second case,
the only possible automorphism with age lower than 1 takes value 1 on every
edge. As a consequence the possible decorations are like in figure below.
We define two sets of decorated graphs

V7 := {vine decorated graphs admitting junior automorphism}/ ∼=
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•

����
•

@@ KK

•jjtt

A A B B

A+B

A+B

C7 := {graphs decorated as in the figure}/ ∼= .

Step 3. If k = 1, condition (7) is always verified by some genus labeling.
Therefore, we have

J1
g,7 =

⋃

(Γ,M)∈V7

S(Γ,M) ∪
⋃

(Γ,M)∈C7

S(Γ,M).

If k = 0, we call V ′
7 the subset of V7 of decorated graphs respecting equation

(7). Every graph in C7 does not respect the equation. Indeed, we must have
4A+ 2B ≡ 0 mod 7 and 2B − 2A ≡ 0 mod 7, therefore A ≡ B ≡ 0 which is
not allowed. Finally, we have

J0
g,7 =

⋃

(Γ,M)∈V ′

7

S(Γ,M).

In other words, the J-locus of R
0

g,7 is a union of vine strata.
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