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Abstract. We give a new and representation theoretic construction
of p-adic interpolation series for central values of self-dual Rankin-
Selberg L-functions for GL2 in dihedral towers of CM fields, using
expressions of these central values as automorphic periods. The main
novelty of this construction, apart from the level of generality in which
it works, is that it is completely local. We give the construction here
for a cuspidal automorphic representation of GL2 over a totally real
field corresponding to a p-ordinary Hilbert modular forms of parallel
weight two and trivial character, although a similar approach can be
taken in any setting where the underlying GL2-representation can be
chosen to take values in a discrete valuation ring. A certain choice of
vectors allows us to establish a precise interpolation formula thanks to
theorems of Martin-Whitehouse and File-Martin-Pitale. Such inter-
polation formulae had been conjectured by Bertolini-Darmon in an-
tecedent works. Our construction also gives a conceptual framework
for the nonvanishing theorems of Cornut-Vatsal in that it describes
the underlying theta elements. To highlight this latter point, we de-
scribe how the construction extends in the parallel weight two setting
to give a p-adic interpolation series for central derivative values when
the root number is generically equal to −1, in which case the formula
of Yuan-Zhang-Zhang can be used to give an interpolation formula in
terms of heights of CM points on quaternionic Shimura curves.
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1468 Jeanine Van Order

1. Introduction

Let F be a totally real number field, and let K be a totally imaginary quadratic
extension of F . We shall write AK and AF to denote the respective adele
rings of K and F , as well as η = ηK/F : A×

F /F
× −→ {±1} ⊂ C× to denote

the quadratic idele class character of F associated to K/F . Let π = ⊗vπv

be a cuspidal automorphic representation of GL2(AF ). We shall assume for
simplicity that π has trivial central character ω = ⊗vωv = 1, although one
could more generally allow ω = η. Fix a prime ideal p ⊂ OF with underlying
rational prime p. We shall also assume the following simplifying conditions
throughout:

Hypothesis 1.1. The cuspidal representation π = ⊗vπv is a holomorphic dis-
crete series of parallel weight 2 at each real place of F . The prime-to-p-part N′

of its conductor N = c(π) ⊂ OF is coprime to the relative discriminant of K
over F , whence N ⊂ OF admits a unique factorization in OF as N = pδN+N−,
where N+ denotes the product of primes v | N′ which split in K/F , and N−

the product of primes v | N′ which remain inert in K/F . Assume too that
δ ∈ {0, 1}, that N− is squarefree, that each prime of OF dividing N+ splits in
K, and also that p splits in K if δ = 1.

Let Ω : A×
K/K× −→ C× be an idele class character of K of finite order whose

restriction to A×
F is trivial (i.e. a ring class character), and let π(Ω) = ⊗vπ(Ω)v

denote the automorphic representation of GL2(AF ) it induces. The representa-
tion π⊗π(Ω) is then self-dual, and the corresponding GL2×GL2 Rankin-Selberg
L-function L(s, π × Ω) = L(s, π × π(Ω)) has real-valued coefficients and root
number. To be more precise, recall that this L-function is defined for a complex
variable s ∈ C with ℜ(s) > 1 by the absolutely convergent Euler product

L(s, π × Ω) =
∏

v∈VF

L(s, πv × π(Ω)v)(1)

taken over the set VF of all places of F . It has well-known analytic continuation
by the work of Jacquet [16] and Jacquet-Langlands [18], and in this setting
satisfies the symmetric functional equation

L(s, π × Ω) = ǫ(s, π × Ω)L(1− s, π × Ω).(2)

Additionally, the global root number

ǫ(1/2, π × Ω) =
∏

v∈VF

ǫ(1/2, πv × Ωv) ∈ S1(3)

appearing in the ǫ-factor ǫ(s, π × Ω) = (c(π × Ω))s−1/2ǫ(1/2, π × Ω) is real-
valued, hence contained in the set {±1} = R ∩ S1 of real numbers of complex
modulus 1.
This root number ǫ(1/2, π×Ω) has the following simple description. Given an
ideal c ⊂ OF , let Oc = OF + cOK to denote the OF -order of conductor c in

K, and Pic(Oc) = A×
K/K×Ô×

c K
×
∞ its class group. An idele class character of

K which factors through such a class group Pic(Oc) is said to be a ring class
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character of conductor c. In fact, we shall only consider ring class characters of
p-power conductor, and hence those which factor through the profinite group
X defined by

X = lim
←−
n

Xn = lim
←−
n

Pic(Opn).

The corresponding root numbers in this setting can be described in terms of the
decomposition of the conductorN = c(π) inK, and are generically independent
of the choice of Ω (see e.g. [5, Lemma 1.1]). More precisely, suppose that Ω is
a ring class character factoring through X of conductor c(Ω) = pn for some
integer n ≥ 0. If either (i) p does not divide N (so that δ = 0), (ii) p splits in
K, or else (iii) the exponent n is sufficiently large, then we have the formula

ǫ(1/2, π × Ω) = (−1)[F :Q] · ηK/F (N
′).(4)

Hence, this formula (4) holds for all ring class characters Ω of X if either (i),
(ii), or (iii) is true; otherwise, it holds for all but finitely many Ω factoring
through X . Thus, we can define k ∈ {0, 1} to be the integer determined by the
condition

ǫ(1/2, π × Ω) = (−1)k for all but finitely many Ω factoring through X.(5)

The aim of this article is to give a general and completely local construction of p-
adic L-functions in either case on k ∈ {0, 1} in this setup, i.e. a general and local
construction of a measure on X which interpolates suitably-normalized central
values L(1/2, π×Ω) if k = 0, or else central derivative values L′(1/2, π×Ω) if
k = 1.
Let us first consider the case of generic root number +1 corresponding to k = 0.
In this situation, we know that π has a Jacquet-Langlands transfer to the
totally definite quaternion algebra B over F whose ramification set Ram(B)
consists of prime the divisors of the inert level N− (the number of which is
≡ [F : Q] mod 2), together with the real places of F . Let us write π′ = ⊗vπ

′
v to

denote this transfer of π to an automorphic representation of B×(AF ), so that
the correspondence of Jacquet-Langands gives the relation π = JL(π′). Let Ω
be a ring class character factoring throughX . Let us also fix an embedding ofK
into B, as we can since each place of Ram(B) is inert in K. The central values
L(1/2, π×Ω) can be related to the functional PB

Ω ∈ HomA
×

K
(π′,Ω) defined by

the rule sending a vector ϕ ∈ π′ to the automorphic period

PB
Ω (ϕ) =

∫

A
×

K
/K×A

×

F

ϕ(t)Ω(t)dt.

Here, the measure dt is defined by putting on B×(AF ) the product of the local
Tamagawa measures times ζSF (2), where S is some fixed finite set of places of
F containing the real places and the places where π, Ω, and the fixed choice of
additive character of AF are unramified (see [7, §7]). Various results involving
calculations with the theta correspondence, starting with the landmark the-
orem of Waldspurger [33], relate these integrals PB

Ω (ϕ) to the central values
L(1/2, π×Ω). Namely, the existence of a vector ϕ ∈ π′ for which PB

Ω (ϕ) 6= 0 is
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shown by Waldspurger to be equivalent to the nonvanishing of the central value
L(1/2, π × Ω). A more precise relationship can be established in many cases
by making a careful choice of test vector ϕ ∈ π′, i.e. a choice of decomposable
vector ϕ = ⊗vϕv such that for each place v of F and nonzero local functional
lv ∈ HomK×

v
(π′

v,Ωv), the value lv(ϕv) does not vanish (cf. [10], [20], [7]). Using

such a choice of vector ϕ ∈ π′, along with the relative trace formula (cf. [17]),
the works of [20] and File-Martin-Pitale [7] establish the following relationship.
Let us again write VF to denote the set of all places of F . Let ∆F denote the
absolute discriminant of F , and ∆K that of K. Let c(Ω) denote the absolute
norm of the conductor of Ω (a power of p), and c(Ωv) the exponent of the con-
ductor of the local character Ωv for each v ∈ VF . Let Si denote the set of places
v ∈ VF which remain inert in K. Let S(π) denote the set of finite places v ∈ VF

which divide the level c(π) = N, and let S(Ω) = {p} the set of finite places
v ∈ VF where the ring class character Ω is ramified. Writing c(πv) to denote
the exponent of the conductor of the local representation πv of GL2(Fv), let
S1(π) denote the set of places v ∈ VF where c(πv) = 1, and S2(πv) the set of
places where c(πv) ≥ 2. Finally, let Cv(K,π,Ω) the local factor defined in [20,
§4].

Theorem 1.2 (File-Martin-Pitale, Martin-Whitehouse). Assume Hypothesis
1.1, and that ϕ = ⊗ϕv ∈ π′ is test vector defined in [7, §7.1] (described below).
Then,

|PB
Ω (ϕ)|2

(ϕ, ϕ)
=
1

2

(
∆F

c(Ω)∆K

) 1
2

LS(Ω)(1, η)LS(π)∪S(Ω)(1,1F )L
S(π)(2,1F )

×
∏

v∈S(π)∩S(Ω)c

e(Kv/Fv)×
∏

v|∞

Cv(K,π,Ω)×
LS2(π)(1/2, π × Ω)

LS2(π)(1, π, ad)
.

Here, e(Kv/Fv) denotes the usual ramification index of the local extension
Kv/Fv, and (·, ·) is the standard inner product on π′ with respect to the measure
on B×(AF ) given by the product of local Tamagawa measures.

Keeping with this k = 0 setup, let us now impose the following conditions at
our fixed prime ideal p ⊂ OF . Note that the quaternion algebra B over F is
split at p, whence we can and do fix an isomorphism Bp := B⊗F Fp ≈M2(Fp).
Note as well that there exists a nonzero decomposable vector ϕ ∈ π′ whose
component ϕp at p is fixed by the action of the unit group R×

p , where Rp is an

Eichler order of level pδ in Bp for δ ∈ {0, 1}. Fix an embedding Q→ Qp.

Hypothesis 1.3. The local representation π′
p is p-ordinary in the sense that

the image under our fixed embedding Q→ Qp of its eigenvalue ap = ap(π) for
the Hecke operator Tp defined below is a p-adic unit.

The first aim of this paper is to give a general construction of p-adic interpo-
lation series in this so-called ordinary setting for for the values appearing in
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Theorem 1.2,

L(1/2, π×Ω) :=
1

2

(
∆F

c(Ω)∆K

) 1
2

LS(Ω)(1, η)LS(π)∪S(Ω)(1,1F )L
S(π)(2,1F )

×
∏

v∈S(π)∩S(Ω)c

e(Kv/Fv)×
∏

v|∞

Cv(K,π,Ω)×
LS2(π)(1/2, π × Ω)

LS2(π)(1, π, ad)
.

Let us remark that many of the conditions imposed in Hypothesis 1.1 can be
lifted at the expense of clarity, and that Hypothesis 1.3 above is the main
requisite condition to impose for this construction so long as the decomposable
vector ϕ ∈ π′ can be chosen in such a way as to take values in a discrete
valuation ring O. Assuming as we do that π is a holomorphic discrete series
of parallel weight two, and hence that its Hecke eigenvalues define algebraic
numbers by a theorem of Shimura [25], we let O denote the ring of integers of a
fixed extension of Qp containing the Hecke field Q(π). Consider the O-Iwasawa
algebra of X ,

O[[X ]] = lim
←−
n

O[Xn].

The elements of this group algebra O[[X ]] can be identified with their corre-
sponding O-valued measures on X (see e.g. [21, §7]). We shall make such an
identification implicitly throughout the rest of this work.

Theorem 1.4 (Proposition 4.12, Corollary 4.14). Suppose that π satisfies Hy-
potheses 1.1 and 1.3, and that we are in the setting of k = 0 on the generic root
number described in (5). There exists a nontrivial element Lp(π

′,K) ∈ O[[X ]]
whose specialization Ω(Lp(π

′,K)) =
∫
Xn

Ω(σ)dLp(π
′,K)(σ) to Ω any character

of X of conductor pn with exponent n ≥ 1 satisfies the following interpolation
formula:

Ω(Lp(π
′,K)) = α

2(δ−1−n)
p ·

(
h(OF )

m(Opn)

)2

· L(1/2, π × Ω) ∈ Qp.

Here, writing qp to denote the cardinality of the residue field of p, αp = αp(π)
denotes the unit root of the Hecke polynomial t2−apt+qp if δ = 0 and otherwise
the eigenvalue of the Hecke operators T l

p and T u
p defined below if δ = 1. As

well, h(OF ) denotes the class number of F , and m(Opn) the volume of Ô×
pn in

K×\A×
K/A×

F with respect to our fixed choice of Haar measure.

This result extends those given by Bertolini-Darmon in [1] and [2] for the totally
real field F = Q, as well as previous work of the author for the general totally
real fields setting ([28], [29])2. Our construction differs from these antecedent
works though, and proceeds by choosing a sequence of local test vectors. This
allows us to give a more precise interpolation formula. The novelty of this

2The existence of such an interpolation series is by no means new however, and has been
given by completely different methods e.g. in Hida [13], [14] (cf. [22]) and Haran [12] (cf.
[19]).
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construction, apart from the scope in which it works (and the representation
theoretic setup), is that it is completely local to p. This allows us for instance
to use test vectors according to [20] and [7] to derive an even more precise
interpolation formula than what was conjectured (in a special, classical case)
by Bertolini-Darmon in [1].
The second aim of this work is to extend this construction of elements
Lp(π

′,K) ∈ O[[X ]] to the dichotomous setting of k = 1 on the generic root
number, i.e. so that ǫ(1/2, π × Ω) = −1 for all but finitely many ring class
characters Ω factoring through the profinite group X = lim

←−n
Xn. Since the

central values L(1/2, π × Ω) in this setting vanish as by the symmetric func-
tional equation (2), we propose to construct a p-adic interpolation series for the
central first derivative values L′(1/2, π×Ω), where the issue of defining suitable
periods is a subtler problem. Our construction here depends in a crucial way
on the those given implicitly in the work of Yuan-Zhang-Zhang [35]. To state
our main result for this second part, we shall first need to describe the central
derivative formula of [35, Theorem 1.2] (Theorem 2.3 below). Let us for now
give a preliminary sketch of their result, saving details for later.
Let A be a principally polarized abelian variety of GL2-type parametrized by
a quaternionic Shimura curve M = {MH}H defined over F . Thus, A is defined

over F , the endomorphism algebra End0(A) = End(A) ⊗Q defines a number
field L of degree equal to the dimension of A, and there exists a nonconstant
morphism MH −→ A for H some compact open subgroup of the unit group

defined by B̂
×. Here, B is the ambient quaternion algebra defined over F asso-

ciated to the Shimura curve M , which is ramified at each of the real places of
F except for one fixed place τ , as well as each of the places dividing the inert
level N−. Hence, we can and do fix an embedding of K into B. Writing JH to
denote the Jacobian of the curve MH , we consider the space defined by

πA = Hom0(J,A) = lim
−→
H

HomF (JH , A)⊗Z Q,

as constructed in [35, §3.2, Theorem 3.8] (cf. [35, §1.2.3]). To describe this

briefly, πA can be viewed as an automorphic representation of B̂×, (see [35,
§1.2.1]). This automorphic representation πA admits a natural decomposition
πA = ⊗vπA,v into irreducible admissible representations πA,v of the local unit
groups B

×
v over Fv. Moreover (as explained in [35]), this representation can

be viewed as a geometric realization of the nonarchimedean component of the
Jacquet-Langands transfer of π. The conditions of Hypothesis 1.1 then imply
that πA is self-dual, with trivial central character. The main theorem of Yuan-
Zhang-Zhang [35] relates the central derivative value L′(1/2, πA×Ω) to a certain
canonical generator α of the space P(πA,Ω)⊗P(πA,Ω

−1), where P(πA,Ω) :=
HomA

×

K
(πA ⊗ Ω, L). We refer to the discussion in [35, §1] for more details. In

brief, this generator α decomposes into a product ⊗vαv of local generators αv

in the analogously-defined local spaces P(πA,v,Ωv) ⊗ P(πA,v,Ω
−1
v ), and these
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local generators can be described more precisely as follows.3 Let us also for
simplicity write πv to denote the local representation πA,v of B×

v . Let us for
each place v of F fix a Haar measure dtv on K×

v /F×
v such that (i) the product

measure defined over all places v of F is the Tamagawa measure on A×
K/K×

and (ii) the maximal compact subgroup O×
Kp

/O×
Fp

is assigned as a volume some

rational number. Then, for given vectors ϕ1,v ∈ πv and ϕ2,v ∈ π∨
v , the local

component αv is defined formally by the ratio of values

α(ϕ1,v, ϕ2,v) :=
L(1, ηv)L(1, πv, ad)

ζFv
(2)L(1/2, πv × Ωv)

∫

K×

v /F×

v

(πv(t)ϕ1,v , ϕ2,v)vΩv(t)dt.

Fixing an embedding ι : L → C, this local integral can be seen to take values
in L independently of the choice of embedding ι, as explained in [35, §1.3].
The local invariant pairings (·, ·)v : πv × π∨

v −→ R also satisfy the compatibil-
ity relation (·, ·) = ⊗v(·, ·)v, where (·, ·) : πA × π∨

A −→ R denotes the perfect
B
×(AF )-invariant pairing introduced below. As explained in [35] (and sum-

marized below), there is for given a vector ϕ ∈ πA an analogous notion of an
associated automorphic period P B

Ω(ϕ) ∈ A(Kab)⊗R L, where Kab denotes the
maximal abelian extension of K. The following formula, which is the main re-
sult of the [35], relates this period and the generator α = ⊗αv to the central
derivative values L′(1/2, πA × Ω).

Theorem 1.5 (Yuan-Zhang-Zhang). Given decomposable vectors ϕ1 ∈ πA and
ϕ2 ∈ π∨

A in the setup described above, we have the following identity in OL⊗QC:

〈P B
Ω(ϕ1), P

B
Ω−1(ϕ2)〉L =

ζ(2)L′(1/2, πA × Ω)

4L(1, η)2L(1, πA, ad)
· α(ϕ1, ϕ2).

Proof. The result is a consequence of [35, Theorem 1.2], see Theorem 2.3 below.
�

Using this result, we construct the following measure. This construction re-
quires the choosing a certain class xn ∈ B

×
p /R

×
p for each integer n ≥ 1 to

obtain suitable distribution relations. We commit a minor abuse of notation in
also writing xn to denote the associated adele class in B̂

×/H , for H = HpR×
p

a suitably-defined compact open subgroup of B̂×. Let us also now write O to
denote the tensor product O = A(Kab)⊗Z Zp.

Theorem 1.6 (Proposition 4.17). Suppose that π satisfies Hypotheses 1.1 and
1.3, and that we are in the setting of k = 1 on the generic root number described
in (5). Suppose as well that A/F is the abelian variety of GL2-type for which
the corresponding representation πA is a Jacquet-Langlands transfer of the fi-
nite part π(∞) = ⊗v∤πv of π to the quaternion algebra B, i.e. JL(πA) = π(∞).

There exists a nontrivial element D
(δ)
p (ϕ,K) = (D

(δ)
p (ϕ,K)(xn))n≥1 in O[[X ]],

3Note that we have already used the symbol αp to denote the unit root of the Hecke
polynomial t2 − apt+ qp in the discussion above; we trust that the distinction between these

notations should be clear.
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depending on the choice of sequence of local classes (xn)n≥1, whose specializa-
tion after composition with the Néron-Tate height pairing 〈 , 〉L, i.e.

〈 , 〉L ◦ Ω(D
(δ)
p (ϕ,K)) = 〈 , 〉L ◦

∫

X

Ω(σ)dD
(δ)
p (ϕ,K)(σ),

to any ring class character Ω of X of conductor pn with n ≥ 1 satisfies the
following interpolation formula:

〈 , 〉L ◦ Ω(D
(δ)
p (ϕ,K))

= αp(πA)
−2(1−δ−n) ·

(
h(OF )

m(Opn)

)2

·
ζ(2)L′(1/2, πA × Ω)

4L(1, η)2L(1, πA, ad)
· α(xn · ϕ, xn · ϕ).

Here, αp(πA) denotes the unit root of the Hecke polynomial t2 − apt+ qp.

Outline of article. We first give some more details of the central value
formulae described above in §2, and then the distribution relations of Cornut-
Vatsal [5, §6] in §3, before giving the two main constructions of p-adic interpo-
lation series in §4.

1.1. Notations. Given a prime v of OF , we let Fv to denote the completion of
F at v, and OFv

the ring of integers of Fv if v is finite. If E is either a quadratic
extension of F or a quaternion algebra over F , then we write Ev = E⊗FFv. If R
is a module over the ring of integers OF of F , then we write Rv = R⊗OF

OFv
.

We write A to denote the ring of adeles of Q, with Af × R to denote the
decomposition into the finite adeles Af . We then write AF = A ⊗Q F and

AK = A ⊗Q K. We also use the standard hat notation, e.g. F̂ = Af ⊗Q F .

Thus, F̂ = ÔF ⊗Q, where ÔF = OF ⊗ Ẑ is the profinite completion of OF .

Given M a finitely generated Z-module, we also write M̂ = M ⊗ Ẑ to denote
the profinite completion of M . Notations for L-values are adopted from the
sources (namely [5], [20], [7], and [35]).

2. Central value formulae and algebraicity

We now include some details about the special value formulae mentioned above.

2.1. Central values for the case of k = 0. Suppose first that we are
in the setting of k = 0 described above. Hence, ǫ(1/2, π × Ω) = +1 for all
but finitely many ring class characters factoring through X , in which case the
corresponding values L(1/2, π × Ω) are not forced to vanish by the functional
equation. Recall that in this setting there exists a quaternion algebra B over
F such that (i) K embeds into B, (ii) π = ⊗vπv transfers to an automorphic
representation π′ = ⊗π′

v on B×(AF ), and (iii) HomA
×

K
(π′,Ω) is not identically

zero. In this setting, we use the formulae of [20] and [7] described in Theorem
1.2 to relate the values L(1/2, π × Ω) to the automorphic periods PB

Ω (ϕ). Let
us thus define the test vectors and local factors appearing in the formula of
Theorem 1.2 above to give a complete description, and then describe briefly
the algebraicity properties satisfied by these values.
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2.1.1. Choices of vectors. Given a prime v ∈ VF which is inert in K, and for
which c(πv), c(Ωv) > 0, let us assume that c(Ωv) ≥ c(πv). We shall later choose
a sequence of local vectors ϕp,n in π′

p for our construction. Since we wish to
use the result of Theorem 1.2 to derive a precise interpolation formula here,
we shall have to ensure that our local vectors are test vectors in the sense of
[7] (cf. [10]). According to [7, Theorem 1.7, §1.2.3], these test vectors can be
characterized as follows.

Theorem 2.1 (File-Martin-Pitale). Given a prime ideal v ⊂ OF , let Pv ⊂
OFv

be the maximal ideal, and fix a uniformizer ̟v. Let πv be an irreducible

admissible representation of GL2(Fv) of conductor P
c(πv)
v and trivial central

character. Let Ωv be a character of K×
v for which the restriction Ωv|F×

v
to F×

v

is trivial. Assume that c(Ωv) ≥ c(πv) > 0. Viewing K×
v as a torus of GL2(Fv)

via the embedding defined in [7, §2.3], we have that dimC(HomK×
v
(πv,Ωv)) = 1.

Moreover, writing

K1(P
n
v ) =

{(
a b
c d

)
∈ GL2(OFv

) : c ∈ Pn
v , d ∈ 1 +Pn

v

}
,

and

h =

(
̟

c(Ωv)−c(πv)
v 0

0 1

)(
0 1
−1 0

)
=

(
0 ̟

c(Ωv)−c(πv)
v

−1 0

)
,

the following is true: Given lv ∈ HomK×
v
(πv,Ωv) a nonzero functional, the

subgroup hK1(P
c(πv)
v )h−1 ⊂ GL2(OFv

) fixes a 1-dimensional subspace of πv

consisting of test vectors for lv.

Taken with the construction of Gross-Prasad [10] (for c(Ωv) ≥ c(πv) = 0), this
has the following interpretation (see [7, §1.2.3]). Let Rv be an order of M2(Fv).
Let d(Rv) be the exponent of its reduced discriminant. Let c(Rv) denote the
exponent of its conductor, i.e. the smallest integer c ≥ 0 for which OFv

+
̟c

vOKv
⊆ Rv. The local order Rv can fix a test vector only if c(Rv) ≥ c(Ωv).

Intuitively, it seems reasonable to expect that if such a local order Rv satisfies
the conditions c(Rv) = c(Ωv) and d(Rv) = c(πv), then it might select a local
test vector in πv, i.e. so that the subgroup R×

v of GL2(Fv) fixes a 1-dimensional
space of test vectors for any nonzero linear functional lv ∈ HomK×

v
(πv,Ωv). If

it is the case that either c(πv) or c(Ωv) equals 0, then it is shown in [10] that
such an order Rv exists, and that is unique up to conjugation by K×

v . Moreover,
this order is maximal if c(πv) = 0, and Eichler if c(πv) > 0. If it is the case that
c(Ωv) ≥ c(πv) > 0, then the invariants d(Rv) and c(Rv) no longer specify such
an order Rv uniquely. However, the result of Theorem 2.1 can be used to give
the following interpretation of the problem, as explained in File-Martin-Pitale
[7, §1.2.3]. Namely, in the setting where c(Ωv) ≥ c(πv) > 0, there exists an
Eichler order Rv of M2(Fv) with c(Rv) = c(Ωv) and d(Rv) = c(πv) for which
the subgroup R×

v of GL2(Fv) fixes a line or test vectors in πv. Moreover, this
order Rv can be expressed uniquely at the intersection or two maximal orders
R1,v and R2,v for which c(R1,v) = c(Ωv) and c(R2,v) = c(Ωv)− c(πv). We shall

Documenta Mathematica 22 (2017) 1467–1499



1476 Jeanine Van Order

use these results of [10] and [7] below, specifically in the setting where v = p,
n = c(Ωp) ≥ 0, and the exponent δ = c(πp) equals 0 or 1 respectively.

2.1.2. Algebraicity. We can deduce the following algebraicity result indepen-
dently of the theorem Shimura [25]. Let πσ denote the representation of
GL2(AF ) defined by the rule that sends the eigenvalues of π to their images
under σ ∈ Aut(C). Let Ωσ denote the character defined on nonzero ideals
a ⊂ OK by the rule a 7→ Ω(a)σ.

Corollary 2.2. Let L = Q(π,Ω) be the finite extension of Q obtained by
adjoining the eigenvalues of π and the values of Ω. If B is totally definite, then
the values

L(1/2, π × Ω) =
1

2

(
∆F

c(Ω)∆K

) 1
2

LS(Ω)(1, η)LS(π)∪S(Ω)(1,1F )L
S(π)(2,1F )

×
∏

v∈S(π)∩S(Ω)c

e(Kv/Fv)×
∏

v|∞

Cv(K,π,Ω)×
LS2(π)(1/2, π × Ω)

LS2(π)(1, π, ad)

are algebraic, and moreover lie in the number field L ⊂ Q. Moreover, there is a
natural action of σ ∈ Aut(C) on these values given by the rule L(1/2, π×Ω)σ =
L(1/2, πγ × Ωσ), where γ denotes the restriction of σ to the Hecke field Q(π)
of π.

Proof. By Theorem 1.2, we have that

L(1/2, π × Ω) = |PB
Ω (ϕ)|2/(ϕ, ϕ).(6)

Now, we can view ϕ as an automorphic function on the set C(B;H) =

B×\B̂×/H , for H some compact open subgroup of B̂×. This function is de-
termined uniquely up to multiplication by a nonzero complex scalar by the
Jacquet-Langlands correspondence. Moreover, since B is totally definite, the
space C(B;H) is finite. Using this fact, it is easy to see that we can fix a basis
for the space of automorphic forms on C(B;H) taking values in Z(π). The
result is then simple to deduce from (6), using the fact that PB

Ω (ϕ) is a finite
integral. �

2.2. Central derivative values for the case of k = 1. Let us now
suppose that k = 1. Hence, ǫ(1/2, π × Ω) = −1 for all but finitely many ring
class characters Ω factoring through X , and the corresponding central values
L(1/2, π × Ω) are forced to vanish by the functional equation. In this setting,
we have the following formula of Yuan-Zhang-Zhang [35] (generalizing Gross-
Zagier [9]) for the derivative values L′(1/2, π × Ω). We now describe this in
more detail, following [35, §1.2, 1.3, 3.2].
Fix a real place τ of F . Let B denote the quaternion algebra defined over F
which is split at τ , but ramified at each other real place, as well as the finite
places dividing the inert level N−. Again, we can and do fix an embedding of
K into B.
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2.2.1. Shimura curves. Let B̂× denote the finite adelic points of B×(AF ). Given

H ⊂ B̂
× any compact open subgroup, let MH denote the associated (compacti-

fied) Shimura curve over F , whose complex points determine a Riemann surface

MH,τ (C) = B
×\H± × B̂

×/H × {cusps}.

Note that the set of cusps {cusps} is nonempty only if F = Q.

Given compact open subgroups H1, H2 ⊂ B̂
× for which the inclusion H1 ⊂ H2

holds, there is a natural and surjective morphism

πH1,H2 : MH1 −→MH2 .

We shall write M = {MH}H to denote the associated projective system. Note
that each MH can be identified with the quotient of M by the action of H .

2.2.2. Hodge classes. A Hodge class on a Shimura curveMH is a line bundle LH

on Pic(MH)Q whose global sections are holomorphic forms for parallel weight
2. We refer to [35, §1.2] for a more explicit description of these classes. Given
a connected component β ∈ π0(MH,F ), we write LH,β = LH |MH,β

to denote
the restriction of LH to the connected component MH,β of MH corresponding
to β. We then view this LH,β as a divisor on MH via the pushforward under
MH,β −→MH .

Definition Given a Hodge class LH and a connected component β ∈
π0(MH,β), the normalized Hodge class on MH,β is the weighted class ξH,β =
LH,β/ deg(LH,β). The normalized Hodge class on MH is the sum ξH =

∑
β ξH,β .

2.2.3. Abelian varieties parametrized by Shimura curves. Let M = {MH}H
be a Shimura curve defined over F , as above. A simple abelian variety A
defined over F is said to be parametrized by M if for some compact open

subgroup H ⊂ B̂
×, there exists a non constant morphism MH −→ A defined

over F . It is known by Eichler-Shimura theory that if such an abelian variety A
parametrized byM is of strict GL2-type in the sense that (i) R = EndF (A)⊗ZQ

is a field and (ii) Lie(A) is a free module of rank 1 over R⊗Q F by the induced
action. Given such an abelian variety A, let us consider the space

πA = Hom0
ξ(M,A) = lim

−→
H

Hom0
ξU (MH , A).

Here, each Hom0
ξH (MH , A) denotes the morphisms in the space

Hom0(MH , A) = HomF (MHA)⊗Z Q

having basepoint equal to the Hodge class ξH . This πA has the natural structure

of a B̂
×-module. Moreover, as shown in [35, Theorem 3.8], this space πA in fact

determines an (A(F )Q = A(F ) ⊗Z Q-valued) automorphic representation of

B̂
× over Q. The description of [35, §3.2.2] also shows that there is a natural

identification R = EndB̂×(πA), as well as a decomposition πA = ⊗vπA,v into
absolutely irreducible representations πA,v of B

×
v over R. Finally, since any
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morphism MH −→ A factors through the Jacobian JH of MH , we can and do
redefine this automorphic representation in the simpler form

πA = Hom0(J,A) = lim−→
H

Hom0(JH , A).

Here, in the same style as above, we have put Hom0(JH , A) = HomF (JH , A)⊗Z

Q.

2.2.4. Dual abelian varieties. Let us write A∨ to denote the dual of an abelian
variety A. If A is parametrized by a Shimura curve M = {MU}U in the sense
defined above, then so too is A∨. Moreover, writing R∨ = EndF (A

∨) ⊗Z Q,
there is a canonical isomorphismR ≈ R∨ obtained by sending a homomorphism
r : A −→ A to its dual r∨ : A∨ −→ A∨.

2.2.5. Pairings. Let us first consider the perfect, B×(AF )-invariant pairing

(·, ·) : πA × πA∨ −→ R

defined on elements ϕ1,H ∈ Hom(JH , A) and ϕ2,H ∈ Hom(JH , A) by

(ϕ1, ϕ2) =
(
ϕ1,H ◦ ϕ

∨
2,H

)
/vol(MH).

Here, JH denotes the Jacobian of the Shimura curve MH , and ϕ∨
2,H : A −→ JH

the dual of ϕ2,H composed with the canonical isomorphism J∨
H ≈ JH . This

description implies that πA∨ is in fact the dual of πA as a representation of
B
×(AF ) over R.

Let us also consider the Néron-Tate height pairing (as defined e.g. in [35, §7]),
which recall is a Q-bilinear non-degenerate pairing

〈·, ·〉 : A(F )Q ×A∨(F )Q −→ R.

Here, we written A(F )Q = A(F )⊗Z Q and A∨(F )Q = A∨(F )⊗Z Q to denote
the tensor products appearing throughout [35]. Of course, the Néron-Tate pair-
ing is defined classically on the groups A(F ) and A∨(F ), and then extended in
a natural way to these tensor products. This extended Néron-Tate pairing in
fact descends to a Q-linear map

〈·, ·〉 : A(F )Q ⊗R A∨(F )Q −→ R.

Some more explanation of this fact is given in [35, §1.2.3] (cf. [35, Proposition
7.3]).
Now, given a ∈ R, x ∈ A(F )Q, and y ∈ A∨(F )Q, the rule a 7→ 〈ax, y〉 defines
an element of the space Hom(R,R). As explained in [35, §1.2.4], the trace map
can be used to construct an isomorphism Hom(R,R) ≈ R ⊗Q R, whence we
write 〈x, y〉R to denote the corresponding element of the space R ⊗Q R. This
gives us the construction of an R-bilinear pairing

〈·, ·〉R : A(F )Q ⊗R A∨(F )Q −→ R⊗Q R

for which

〈·, ·〉 = TrR⊗R/R 〈·, ·〉R.

We shall refer to this R-linear pairing as the R-linear Néron-Tate pairing.
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2.2.6. CM points. Recall that we fix an embedding K → B. The adele group
A×

K acts on {MH}H by right multiplication via the embeddingA×
K → B

×(AF ).

Let MK×

denote the subscheme of M fixed by K× under this action. By the

theory of complex multiplication, each point of MK×

(F ) is defined over the

maximal abelian extension Kab of K. Let us now fix a point Q ∈MK×

(Kab),

and hence a point QH ∈ MH(Kab) for each compact open subgroup H ⊂ B̂
×.

We shall normalize

MH,τ (C) = B
×\H± × B̂

×/H × {cusps}

in such a way that QH is represented by [z0, 1], where z0 ∈ H is the unique
fixed point of K× via the action induced by the embedding K → B. Note that
for any vector ϕ ∈ πA, we obtain a well-defined point ϕ(Q) ∈ A(Kab).

2.2.7. Automorphic periods. Fix a ring class character Ω : AK/K× −→ C×

taking values in some subfield L of Q containing the field R = EndF (A)⊗ZQ.
Recall that given a simple abelian variety A/F parametrized by a Shimura
curve M = {MH}H over F , we have some associated automorphic represen-

tation πA = ⊗vπA,v of B̂×. We shall assume (as throughout) that the central
character of πA is trivial. We then define for any choice of vector ϕ ∈ πA the
period integral

P B
Ω(ϕ) =

∫

A
×

K
/K×

ϕ(Qt)⊗R Ω(t)dt ∈ A(Kab)⊗R L.(7)

Here, dt is the Haar measure on A×
K/K× having total volume 1. An analogous

definition is of course be made for the dual representation πA∨ . It is also the
case that we have the inclusion

P B
Ω(ϕ) ∈ A(Ω) :=

(
A(Kab)⊗R LΩ

)Gab
K ,

where LΩ denotes the R-vector space L with action of Gab
K given by the char-

acter Ω, and that the correspondence ϕ 7→ P B
Ω(ϕ) defines an element of

HomA
×

K
(πA ⊗ Ω, L)⊗L A(Ω)

We refer again to the discussion in [35, §1.3] for more details.

2.2.8. Main formula. The theorem of Tunnel [26] and Saito [24] (cf. [35, The-
orem 1.3]) implies that the space HomA

×

K
(πA⊗Ω, L) is at most 1-dimensional,

with dimension 1 if and only if the set Ram(B) of places of F where B ramifies
is given by

Ram(B) = {v ∈ VF : ǫ(1/2, πA,v × Ωv) 6= Ωv(−1)ηv(−1)}.

Recall that the global root number ǫ(1/2, πA×Ω) in this setting must be equal
to −1, in which case the corresponding central value L(1/2, πA×Ω) must vanish.
Let us now commit an abuse of notation in writing π = ⊗vπv to denote the

automorphic representation πA = Hom0(J,A) of B̂
× introduced above. Let

us also assume that the space HomA
×

K
(πA ⊗ Ω, L) has dimension 1. The main
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result of [35] relates the value L′(1/2, π×Ω) to a certain generator of this space
HomA

×

K
(π ⊗ Ω, L). To be more precise, let

P(π,Ω) = HomA
×

K
(π ⊗ Ω, L).

Let

P(πv,Ωv) = HomK×
v
(πv ⊗ Ωv, L)

for each place v of F , whence there is a decompositions P(π,Ω) = ⊗vP(πv,Ωv),
as well as an analogous decomposition P(π∨,Ω−1) = ⊗vP(π

∨
v ,Ω

−1
v ) for the

associated contragredient representations. The main idea of [35] is to find an
explicit generator

α = ⊗vαv ∈ P(π,Ω)⊗ P(π
∨,Ω−1) = ⊗vP(πv,Ωv)⊗ P(π

∨
v ,Ω

−1
v ),

and then to use various calculations with the theta correspondence in the style
of Waldspurger [33] (with their geometric description of the Jacquet-Langlands
lift) to relate the this generator to the central derivative values L′(1/2, π×Ω).
The generator α = ⊗αv they obtain is defined formally as follows. For each
place v of F , fix a Haar measure dtv on K×

v /F×
v such that (i) the product mea-

sure over all places v gives the Tamagawa measure onA×
K/K× and (ii) the max-

imal compact subgroup O×
Kv

/O×
Fv

has a volume in Q for each nonarchimedean
place v. Then, for vectors ϕ1,v ∈ πv and ϕ2,v ∈ π∨

v , the local component αv is
defined formally by

α(ϕ1,v, ϕ2,v) :=
L(1, ηv)L(1, πv, ad)

ζFv
(2)L(1/2, πv × Ωv)

∫

K×
v /F×

v

(πv(t)ϕ1,v , ϕ2,v)vΩv(t)dt.

Fixing an embedding ι : L→ C, this local integral can be seen to take values in
L (independently of the choice of embedding ι), as explained in [35, §1.3]. The
local invariant pairings (·, ·)v : πv × π∨

v −→ R also satisfy the compatibility
relation (·, ·) = ⊗v(·, ·)v, where (·, ·) : πA × π∨

A −→ R denotes the perfect
B
×(AF )-invariant pairing introduced above. The following formula, which is

the main result of the [35], relates this element α = ⊗αv to the central derivative
values L′(1/2, πA × Ω).

Theorem 2.3. Given decomposable vectors ϕ1 ∈ πA and ϕ2 ∈ π∨
A in the setup

above, we have the following identity in L⊗Q C :

〈P B
Ω(ϕ1), P

B
Ω−1(ϕ2)〉L =

ζ(2)L′(1/2, πA × Ω)

4L(1, η)2L(1, πA, ad)
· α(ϕ1, ϕ2).(8)

Proof. See Yuan-Zhang-Zhang, [35, Theorem 1.2]. �

3. Distribution relations on quaternion algebras

We now recall some general distribution relations on split quaternion algebras,
following the appendix of [5]. We shall use these results in our constructions
below.
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3.1. Local quadratic orders. LetK/F be any quadratic extension of num-
ber fields. Writing OF and OK to denote the rings of integers of F and K re-
spectively, we consider the localizations OFp

and OKp
of these rings at a fixed

prime p of OF .

Lemma 3.1. Let Z be any OFp
-order in Kp. Then, there exists a unique integer

n = lp(Z) ≥ 0 for which Z = OFp
+ pnOKp

, whence we write Z = Zn.

Proof. The result is standard. See e.g. the proof given in [5, § 6.1]. �

3.2. Distribution relations on split quaternion algebras. Let us now
consider any quaternion algebra B defined over F which (i) contains the qua-
dratic extension K and (ii) splits at the fixed prime p. Let H be any compact

open subgroup of B̂× of the form H = HpR×
p , where Rp is an Eichler order of

the local quaternion algebra Bp of level pδ for some integer δ ≥ 0 . There is a
left action of K×

p on the quotient B×
p /R×

p given by the rule

γ ⋆ x = [γb], γ ∈ K×
p , x = [b] ∈ B×

p /R×
p .

Given a class x = [b] in B×
p /R×

p , the stabilizer of this action is given by Z(x)×,
where Z(x) is the OFp

-order of Kp determined by the intersection Z(x) =

Kp∩bRpb
−1. Using Lemma 3.1 above, we assign to this class x = [b] the uniquely

determined integer lp(x) = lp(Z(x)) ≥ 0, i.e., so that StabK×

p
(x) = Z×

lp(x)
. The

main results of [5, Appendix § 6] use [5, Lemma 6.1] to relate the trace operator

Tr(x) =
∑

γ∈Z×

lp(x)−1
/Z×

lp(x)

γ ⋆ x =
∑

γ∈Z×

lp(x)−1
/Z×

lp(x)

[γb]

to the (local) Hecke operator

Tp(x) = [R×
p ξpR

×
p ](x).

To describe these relevant results in more detail, we shall divide into cases on
the exponent δ ≥ 0 in the level of the local Eichler order Rp.

3.2.1. The case of δ = 0. Suppose that Rp has level pδ = 1, whence Rp is a
maximal order in Bp. Let V be a simple left Bp-module for which V ≈ F 2

p as
an Fp-vector space. The embedding Kp −→ Bp endows V with the structure of
a free rank one (left) Kp-module. Let L = L(V ) denote the set of OFp

-lattices
in V . Fix a base lattice L0 ∈ L such that {α ∈ Bp : αL0 ⊂ L0} = Rp. Thus we
may fix a bijection

B×
p /R×

p −→ L, b 7−→ bL0.(9)

The induced left action of K×
p on L is given by the rule

γ ⋆ L = γL, γ ∈ K×
p , L = bL0 ∈ L.

The induced function lp on L is given by the rule that sends a lattice L to the
unique integer lp(L) ≥ 0 for which {γ ∈ K×

p : γL ⊂ L} equals Zlp(L).

Documenta Mathematica 22 (2017) 1467–1499



1482 Jeanine Van Order

Lemma 3.2. The induced function lp on L defines a bijection

K×
p \B

×
p /R

×
p ≈ K×

p \L −→ Z≥0.

Proof. See [5, Lemma 6.2]. �

Let Z[L] denote the free abelian group generated by L.

Definition Let L ∈ L be a lattice.

(i) The lower neighbours of L are the sublattices L′ ⊂ L for which we have
L/L′ ≈ OFp

/pOFp
. The upper neighbours of L are the superlattices

L′ ⊃ L for which we have L′/L ≈ OFp
/pOFp

.

(ii) The lower Hecke operator T l
p on Z[L] is the operator that sends a lattice

L to the sum of its lower neighbours. The upper Hecke operator T u
p on

Z[L] is the operator that sends a lattice L to the sum of its upper
neighbours.

(iii) Given a lattice L ∈ L with lp(L) ≥ 1, the lower predecessor of L is
defined by the lattice prl(L) = pZlp(L)−1L; the upper predecessor of L
is defined by the lattice pru(L) = Zlp(L)−1L.

Remark As explained in [5, Remark 6.3], the lower Hecke operator T l
p corre-

sponds under the fixed bijection (9) to the double coset operator [R×
p αpR

×
p ],

where we write αp ∈ Rp ≈M2(OFp
) to denote some element of nrd(αp) = ̟p.

Similarly, the upper Hecke operator T u
p corresponds to the double coset oper-

ator [R×
p α

−1
p R×

p ]. Note also that [5, § 6] treats only the lower Hecke operators

T l
p for simplicity, the analogous discussion for the upper Hecke operators T u

p

being simple to deduce.

Let us for simplicity of notation define

ηp =





−1 if pOK = P is inert

0 if pOK = P2 is ramified

1 if pOK = PP∗ is split.

Lemma 3.3. Let L be a lattice in L.

(i) If lp(L) = 0, then there are precisely 1 + ηp lower neighbours L′ ⊂ L
for which lp(L

′) = 0. Explicitly, these lower neighbours are given by

L′ =





∅ if pOK = P is inert

PL if pOK = P2 is ramified

PL,P∗L if pOK = PP∗ is split.

(ii) If lp(L) > 0, then there exists a unique lower neighbour L′ ⊂ L for
which lp(L

′) ≤ lp(L). Explicitly, this lower neighbour L′ ⊂ L is given
by the lower predecessor L′ = prl(L) = pZlp(x)−1L, which satisfies
lp(L

′) = lp(L)− 1.
(iii) In either case, the remaining lower neighbours L′ ⊂ L satisfy the

property that lp(L
′) = lp(L) + 1 . These remaining lower neigh-

bours L′ are also permuted faithfully and transitively by the action of
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Z×
lp(L)/Z

×
lp(L)+1, and moreover have L as their common upper prede-

cessor.

Proof. See [5, Lemma 6.5], the result is deduced from [5, Lemma 6.1]. �

One can deduce from this the following result.

Corollary 3.4. Let x be a class in B×
p /R×

p with lp(x) ≥ 1. Then, we have

Tr(x) = T l
p(x

′)− x′′,

where x′ = pru(x), and

x′′ =





0 if lp(x) = 1 and pOK = P is inert

̟Px
′ if lp(x) = 1 and pOK = P2 is ramified

(̟P +̟P∗)x′ if lp(x) = 1 and pOK = PP∗ is split

prl(x
′) if lp(x) ≥ 2.

Here, for a prime P of OK , ̟P denotes a uniformizer of P (which corresponds
under the reciprocity map recK to the geometric Frobenius at P).

Remark The discussion and results above do not depend upon the choice of
base lattice L0 in L; see [5, § 6.2] for more explanation.

3.2.2. The case of δ = 1. Suppose now that Rp is Eichler of level pδ = p. Keep
V as defined above. Let L1 = L1(V ) denote the set 1-lattices of L, i.e. the set
of pairs of lattices L = (L(0), L(1)) with L(0), L(1) ∈ L such that L(1) ⊂ L(0)
is a sublattice for which L(0)/L(1) ≈ OFp

/pOFp
. The group B×

p ≈ GL(V )
acts transitively on L1, and so we can fix a 1-lattice L0 = (L0(0), L0(1)) whose
stabilizer under this action is given by R×

p . Fixing such a 1-lattice, we may also
fix a bijection

B×
p /R×

p −→ L1, b 7−→ bL0.(10)

We can associate to any L = (L(0)), L(1)) ∈ L1 a pair of integers lp,0 = lp(L(0))
and lp,1 = lp(L(1)), whence we define lp(L) to be the maximum,

lp(L) = max(lp,0(L), lp,1(L)) = max(lp(L(0)), lp(L(1))).

This definition leads to the following possible orientations for a given 1-lattice
L.

Definition Let L = (L(0), L(1)) be a 1-lattice in the set L1.

(i) We say that L is of type I if lp,0 < lp,1 (whence lp,1 = lp,0+1), in which
case the leading vertex of L is defined to be L(1). If lp(L) ≥ 2, then we
also define the predecessor of L to be the 1-lattice in L1 defined by

pr(L) = (L(0), prl(L(0))) = (L(0), pZlp(L)−2L(0)).
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(ii) We say that L is of type II if lp,0 > lp,1 (whence lp,0 = lp,1+1), in which
case the leading vertex of L is defined to be L(0). If lp(L) ≥ 2, then we
also define the predecessor of L to be the 1-lattice in L1 defined by

pr(L) = (pru(L(1)), L(1)) = (Zlp(L)−2L(1), L(1)).

(iii) We say that L is of type III if lp,0 = lp,1 (whence lp(L) = 0, ηp ∈ {0, 1},
and L(1) = PL(0) or L(1) = P∗L(0)). In this case, as a convention,
we define the leading vertex of L to be L(0).

Remark The type of a 1-lattice L = (L(0), L(1)) in L1 is invariant under the
action of γ ∈ K×

p . More precisely, L and γL = γ ⋆ L have the same type, and
moreover pr(γL) = γpr(L) = γ ⋆ pr(L) if lp(L) ≥ 2.

Let Z[L1] denote the free abelian group generated by L1.

Definition (i) The lower Hecke operator T l
p on Z[L1] is the rule that sends

a 1-lattice L = (L(0), L(1)) to the sum of all 1-lattices L′ = (L′(0), L′(1))
for which L′(0) = L(0) but L′(1) 6= L(1). (ii) The upper Hecke operator T u

p

on Z[L1] is the rule that sends a 1-lattice L = (L(0), L(1)) to the sum of all
1-lattices L′ = (L′(0), L′(1)) for which L′(1) = L(1) but L′(0) 6= L(0).

Remark These Hecke operators correspond to the following double coset op-
erators, as explained in [5, Remark 6.10]. Suppose that we write the Eichler
order Rp as the intersection Rp = R(0) ∩R(1), where for i ∈ {0, 1}, we define

R(i) = {b ∈ Bp : bL0(i) ⊂ L0(i)}.

Then, the lower Hecke operator T l
p corresponds to the double coset operator

[R×
p αR

×
p ] for any element α ∈ R(0)× − R(1)×, and the upper Hecke operator

T u
p corresponds to the double coset operator [R×

p βR
×
p ] for any element β ∈

R(1)×−R(0)×. Also, we have the decompositions R(0)× = R×
p

∐
R×

p βR
×
p and

R(1)× = R×
p

∐
R×

p αR
×
p

Definition The p-new quotient Z[L1]p−new of Z[L1] is the quotient of Z[L1]
by the Z-submodule spanned by elements of the form

∑

L′=(L′(0),L′(1))

L′(0)=M

L′,
∑

L′=(L′(0),L′(1))

L′(1)=M

L′,

where M is some lattice in L. Observe that by construction, we have the con-
gruences

T l
p ≡ T u

p ≡ −1 on Z[L1]
p−new.

One can again use Lemma 3.3 to relate the trace operator

Tr(L) =
∑

γ∈Z×

lp(L)−1
/Z×

lp(L)

γ ⋆ L =
∑

γ∈Z×

lp(L)−1
/Z×

lp(L)

[γb]L0

in Z[L1] to the operators T l
p(L) and T u

p (L) to obtain the following result. Here,

we extend the notion of types to classes of B×
p /R×

p in the natural way via (10).
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Lemma 3.5. Let x be a class in B×
p /R×

p with lp(x) ≥ 2. Then, we have

Tr(x) =

{
T l
p(pr(x)) if x is of type I

T u
p (pr(x)) if x is of type II.

Moreover, in the p-new quotient of Z[B×
p /R×

p ] corresponding to Z[L1]p−new,

Tr(x) = −pr(x).

Proof. See [5, Lemma 6.11]. �

Remark The constructions and results above do depend on the choice of base
1-lattice L0 = (L0(0), L0(1)). In particular, the definition of type depends upon
the orientation of the underlying Eichler order Rp = R(0) ∩R(1).

4. Construction of p-adic interpolation series

We now construct p-adic interpolation series on the profinite group X for the
values L(k)(1/2, π × Ω), i.e. where Ω is a character factoring through X . We
divide into cases k on the generic root number ǫ = ǫ(1/2, π×Ω) ∈ {±1}. Here,

we shall also write ⋆ to denote the natural action of K̂× by left multiplication

on the set K×\B̂×/R̂× induced by the choice of embedding K into B or B

(depending on whether k = 0 or k = 1 respectively).

Remark Our constructions below works more generally whenever the vector
in known ϕ ∈ π′ to take values in a discrete valuation ring and each prime
dividing the level structure is known to split in K.

4.1. The case of k = 0. Let π = ⊗vπv be a cuspidal automorphic repre-
sentation of GL2(AF ) having trivial central character. Fix a prime p of OF

with underlying rational prime p, and an embedding Q −→ Qp. We assume
Hypotheses 1.1 and 1.3.

Lemma 4.1. Let L be a finite extension of Qp containing the eigenvalues of π.
Let O = OL denote its ring of integers. If the quaternion algebra B is totally
definite, then we can and do choose ϕ ∈ π′ in such a way that ϕ takes values
in the ring O.

Proof. By Hypothesis 1.1, the eigenvalues of π = JL(π′) of GL2(AF ) are alge-
braic. Hence, Q(π) is a number field, and there exists a finite extension L of Qp

containing the eigenvalues of π. Any vector ϕ ∈ π′ has the same eigenvalues as
π by Jacquet-Langlands, and is determined uniquely up to multiplication by
nonzero complex scalar by this condition. Moreover, we can view any ϕ ∈ π′ as

an automorphic function on the finite set C(B;H) = B×\B̂×/H , for H ⊂ B̂×

some compact open subgroup (with Hp = R×
p ). Fixing a basis for the space of

functions C(B;H) −→ C, we then can choose ϕ ∈ π′ to take values in Q(π),
or even Z(π). �

We now give the main construction of p-adic L-functions for the k = 0 setting.
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4.1.1. The case of δ = 0. Let us first consider the case where Rp of Bp is Eichler
of level pδ = 1, i.e. that Rp is maximal. Recall that we let V be a simple left
Bp-module for which V ≈ F 2

p as an Fp-vector space. Recall as well that we
write L = L(V ) to denote the set of OFp

-lattices in V , and that we fix a lattice
L0 ∈ L in such a way that {α ∈ Bp : αL0 ⊂ L0} = Rp. Thus we may fix a
bijection

B×
p /R×

p −→ L, x 7−→ xL0.(11)

Using this bijection, we now fix the following sequence of local classes xn ∈
B×

p /R×
p .

Definition Fix a Kp-basis e of V . For each integer n ≥ 0, let Ln = Ln(e)
denote the lattice in L defined by Ln = Zne. We then define xn = xn(e) to be
the class in B×

p /R×
p corresponding to Ln under the fixed bijection (11).

Lemma 4.2. The sequence x = x(e) of classes (xn)n≥0 = (xn(e))n≥0 in B×
p /R×

p

of Definition 4.1.1 satisfies the following properties for each integer n ≥ 0.

(i) lp(xn) = n.
(ii) xn = pru(xn+1).

Proof. Property (i) is a direct consequence of the definition of lp(xn) = lp(Ln).
Property (ii) is then a direct consequence of the definition of upper predecessor
pru(xn), i.e. as pru(xn+1) = pru(Ln+1) = ZnLn+1 = ZnZn+1e = Zne =
Ln. �

Remark Given such a sequence of local classes (xn)n≥0 in B×
p /R×

p , we shall

also write each xn to denote its corresponding adele in B̂×/R̂×.

Let us now fix a sequence of classes (xn)n≥0 as in Definition 4.1.1 above. Ob-
serve that Corollary 3.4 above implies that for each integer n ≥ 0, we have the
relation

Tr(xn+1) = T l
p(xn)− x∗

n

in Z[B×
p /R×

p ], where for ̟P a fixed uniformizer at P,

x∗
n =





0 if n = 0 and pOK = P is inert

̟Pxn if n = 0 and pOK = P2 is ramified

(̟P +̟P∗)xn if n = 0 and pOK = PP∗ is split

prl(xn) if n ≥ 1.

Corollary 4.3. Assume that π = JL(π′) has trivial central character, and
let ϕ ∈ π′ be any decomposable vector whose component at p is fixed by R×

p .
Let (xn)n≥0 be the sequence of classes of Lemma 4.1.1. Then, for each integer
n ≥ 1,

Tr (ϕ(xn+1)) :=
∑

γ∈Z×
n /Z×

n+1

ϕ(γ ⋆ xn+1) = T l
pϕ(xn)− ϕ(xn−1).
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Proof. Extending by linearity, we obtain from Corollary 3.3 the relation

Tr (ϕ(xn+1)) :=
∑

γ∈Z×
n /Z×

n+1

ϕ(γ ⋆ xn+1) = T l
pϕ(xn)− ϕ(prl(xn))

for each integer n ≥ 1. Here, we have viewed each local class xn ∈ B×
p /R×

p

as its corresponding adele in B̂×/R̂×. We have also used the fact that the
operators Tr and T l

p affect only the component at p. Now, recall that we write
Ln = xnL0 to denote the lattice in L corresponding to xn, whence the lower
predecessor prl(xn) is by definition the class corresponding under (11) to the
lattice prl(Ln) = pZn−1Ln. Observe that prl(Ln) = ppru(Ln), whence we
argue that ϕ(prl(xn)) = ϕ(pru(xn)) as a consequence of the fact that ϕ has
trivial central character. The desired relation thens follow from the property
pru(xn) = xn−1. �

Definition Assume that π = JL(π′) is p-ordinary, with trivial central char-
acter. Let ϕ ∈ π′ be a decomposable vector whose local component at p is
fixed by R×

p , which we can and do normalize to take values in the ring O.
Writing ap = ap(π) to denote the T l

p-eigenvalue of π, and qp the cardinality of
the residue field at p, let αp = αp(π) denote the p-adic unit root of the Hecke
polynomial t2−apt+qp. We then define the system {ϑn}n≥1 = {ϑn(xn, ϕ)}n≥1

to be the sequence of mappings ϑn : Xn −→ O given by the rule

ϑn : Xn −→ O, A 7−→ α1−n
p · ϕ(A ⋆ xn)− α−n

p · ϕ(A ⋆ xn−1).

Before we continue, let us explain briefly that the points xn here are well-
defined. Recall that we fix a maximal orderR ⊂ B and a function ϕ on the finite

set C(R̂×) = B×\B̂×/R̂×. Recall as well that we fix an embedding K → B,
a priori without any special conditions. Observe that this choice of embedding

induces a natural map from the set Y (R̂×) = K×\B̂×/R̂× to C(R̂×), and

moreover that we may view ϕ as a function on Y (R̂×) after composition with

this natural map Y (R̂×)→ C(R̂×). This setup gives rise to a natural definition

of conductor of a class or “point” x = [b] in the set Y (R̂×). It is easy to see
that the points xn = [bn] of our chosen sequence in Definition 4.1.1 each have
conductor c(xn) equal to cpn, where c is determined uniquely by the prime-to-
p-part of the conductor of the order R ∩K of K. Hence, the values ϕ(A ⋆ xn)
and ϕ(A ⋆ xn−1) are only well-defined if A ∈ Pic(Ocpn). To proceed, we could
either keep track of the c explicitly throughout (at the expense of simplicity),
or else we choose a specific embedding K → B to ensure that c = 1. Let us for
simplicity choose the latter option for the rest of this work, which we record as
follows.

Corollary 4.4. Suppose (as we can) that we fix an embedding K → B for
which the order K∩B has p-power conductor, in fact that K∩B = OK . Then,
each point xn = [bn] has conductor c(xn) = pn.
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Proof. That such an embedding exists is known; the local criteria are described
in [27, Ch. II, §3]. In brief, such an embedding exists in our setting if each prime
dividing pδN+ is split in K, which is the case by Hypothesis 1.1. �

Proposition 4.5. The sequence of mappings ϑn : Xn −→ O of Definition 4.1.1
above forms a distribution on the profinite group X = lim

←−n
Xn, and hence an

O-valued measure on X.

Proof. It will suffice to show that for each sufficiently large integer n ≥ 1 and
each class A ∈ Xn, the distribution relation

ϑn(A) =
∑

B∈Xn+1
πn+1,n(B)=A

ϑn+1(B)

holds, where πn+1,n : Xn+1 −→ Xn denotes the natural surjective homomor-
phism. Equivalently, it will suffice under the same conditions to show the rela-
tion

ϑn(A) =
∑

C∈ker(πn+1,n)

ϑn+1(CA),

where A on the right hand side denotes any lift of A to Xn+1. Now, by defini-
tions,

ker(πn+1,n) = O
×
pn,p/O

×
pnO×

pn+1,p.

If n is sufficiently large, then O×
pn = O×

F is contained in the local unit group

O×
pn+1,p (cf. the discussion in the proof of of [5, Lemma 2.8]). We thus obtain

for n sufficiently large that ker(πn+1,n) = O
×
pn,p/O

×
pn+1,p = Z×

n /Z×
n+1, whence

it will suffice to show

ϑn(A) =
∑

γ∈Z×
n /Z×

n+1

ϑn+1(γA).(12)

To show this relation holds for n sufficiently large, we evaluate the right hand
side of (12). More precisely, for n sufficiently large, we have by definition of
ϑn+1 that

∑

γ∈Z×

n /Z×

n+1

ϑn+1(γA) =
∑

γ∈Z×

n /Z×

n+1

α−n
p ϕ(γA ⋆ xn+1)− α

−(n+1)
p ϕ(γA ⋆ xn)

= α−n
p

∑

γ∈Z×
n /Z×

n+1

ϕ(γA ⋆ xn+1)− qpα
−(n+1)
p ϕ(A ⋆ xn).

Extending by linearity, the result of Corollary 3.4 allows us to identify the right
hand side of the last expression with the sum

α−n
p

(
T l
pϕ(A ⋆ xn)− ϕ(A ⋆ xn−1)

)
− qpα

−(n+1)
p ϕ(A ⋆ xn).
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Here, we have used implicitly the easy-to-check fact that the map L 7→ pru(L)
commutes with the action of K×

p (cf. [5, Lemma 6.5]). Thus rearranging terms,
we have shown (for n ≥ 1) that

∑

γ∈Z×
n /Z×

n+1

ϑn+1(γA) = (α−n
p ap − qpα

−(n+1)
p )ϕ(A ⋆ xn)− α−n

p ϕ(A ⋆ xn−1).

Observe now that we have the elementary identity

(α−n
p ap − qpα

−(n+1)
p ) = α1−n

p ,

i.e. using the constraints imposed by the factorization

X2 − apX + qp = (X − αp)(X − βp).

Thus for n sufficiently large, we have shown the required relation
∑

γ∈Z×
n /Z×

n+1

ϕn+1(γA) = α1−n
p ϕ(A ⋆ xn)− α−nϕ(A ⋆ xn−1) = ϑn(A).

�

4.1.2. The case of δ = 1. Let us now suppose that the local order Rp of Bp is
Eichler of level pδ = p. Recall that we write L1 = L1(V ) to denote the set of 1-
lattices of L = L(V ). Let us fix a 1-lattice L0 = (L0(0), L0(1)) whose stabilizer
under the transitive action of B×

p is equal to R×
p . We then fix a bijection

B×
p /R×

p −→ L1, x 7−→ xL0.(13)

Using this bijection, we now fix a sequence of classes xn ∈ B×
p /R×

p as follows.

Definition Fix a Kp-basis e of V . For each integer n ≥ 0, let us write Ln =

Ln(e) to denote the lattice in L = L(V ) defined by Ln = p−⌊n
2 ⌋Zne, where

⌊x⌋ = max{m ∈ Z : m ≤ x}

is the standard floor function. For each n ≥ 1, let us write Mn = Mn(e) to
denote the 1-lattice in L1 = L1(V ) defined by

Mn =

{
(Ln−1, Ln) if n ≡ 1 mod 2

(Ln, Ln−1) if n ≡ 0 mod 2

Let xn = xn(e) be the class in B×
p /R×

p corresponding to Mn under (13).

Lemma 4.6. The sequence x = x(e) of classes (xn)n≥1 = (xn(e))n≥1 in B×
p /R×

p

of Definition 4.1.2 above satisfies the following properties for each integer n ≥ 1.

(i) lp(xn) = n.
(ii) pr(xn+1) = xn.

Proof. Property (i) is a direct consequence of the definition of lp(xn), i.e. as
we have lp(xn) = lp(Mn) = max(lp,0(Mn), lp,1(Mn)) = n. Property (ii) is then
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seen by a direct calculation. To be more precise, since Mn is of type I if n is
odd and of type II if n is even, we have by definition that

pr(xn+1) = pr(Mn+1) =

{
(Ln, prl(Ln)) = (Ln, pZn−1Ln) if n ≡ 0 mod 2

(pru(Ln), Ln) = (Zn−1Ln, Ln) if n ≡ 1 mod 2.

Suppose first that the index n is even. We then compute the lower predecessor

prl(Ln) = pZn−1Ln = p1−⌊n
2 ⌋Zn−1e = p−⌊n−1

2 ⌋Zn−1e = Ln−1 to verify the
relation pr(Mn+1) = Mn, as required. Suppose now that the index n is odd.
We then compute the lower predecessor pru(Ln) = Zn−1Ln = p−⌊n

2 ⌋Zn−1e =

p−⌊n−1
2 ⌋Zn−1e = Ln−1 to verify the relation pr(Mn+1) = Mn, as required. �

Fix a sequence of classes (xn)n≥1 as in Definition 4.1.2. We obtain from Lemma
3.5 above the following result.

Corollary 4.7. Let ϕ ∈ π′ be a decomposable vector whose local component
at p is fixed by R×

p , which we can and do normalize to take values in O. Then,
for each integer n ≥ 1,

Tr (ϕ(xn+1)) :=
∑

γ∈Z×
n /Z×

n+1

ϕ(γ ⋆ xn+1) =

{
T l
pϕ(xn) if n ≡ 0 mod 2

T u
p ϕ(xn) if n ≡ 1 mod 2.

Proof. Given the sequence of classes (xn)n≥1 of Definition 4.1.2, along with the
properties of Lemma 4.6, Lemma 3.5 implies that for each n ≥ 1, the relation

Tr(xn+1) =
∑

γ∈Z×
n /Z×

n+1

γ ⋆ xn+1 =

{
T l
p(xn) if n ≡ 0 mod 2

T u
p (xn) if n ≡ 1 mod 2

holds in Z[B×
p /R×

p ]. Viewing each class xn as its corresponding adele in B̂×/R̂×,
and extending by linearity, we obtain for each n ≥ 1 the relation

Tr (ϕ(xn+1)) =
∑

γ∈Z×
n /Z×

n+1

ϕ(γ ⋆ xn+1) =

{
T l
pϕ(xn) if n ≡ 0 mod 2

T u
p ϕ(xn) if n ≡ 1 mod 2.

Here, we have used the fact that each of the operators Tr, T l
p, and T u

p affects
only the components at p. The result follows. �

Definition Let ϕ ∈ π′ be a decomposable vector whose local component
at p is fixed by R×

p and which we normalize to take values in O. Assume

that ϕ is a p-ordinary eigenform for both T u
p and T l

p with common (unit)
eigenvalue αp. Fix a sequence of classes (xn)n≥1 as for Definition 4.1.1 above.
Let {ϑn}n≥1 = {ϑn(Φ, xn)}n≥1 be the sequence of mappings ϑn : Xn −→ O
defined by

ϑn : Xn −→ O, A 7−→ α−n
p · ϕ(A ⋆ xn).

Proposition 4.8. The sequence of mappings ϑn : Xn −→ O of Definition
4.1.2 defines a distribution on the profinite group X = lim←−n

Xn, and hence an

O-valued measure on X.
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Proof. As explained in the proof of Proposition 4.5 above, it will suffice to show
for each sufficiently large integer n that

ϑn(A) =
∑

γ∈Z×
n /Z×

n+1

ϑn+1(γA).

Thus, for the mappings {ϑn}n≥1 of Definition 4.1.2, it will suffice to show for
each sufficiently large integer n that

α−n
p · ϕ(A ⋆ xn) =

∑

γ∈Z×
n /Z×

n+1

α
−(n+1)
p · ϕ(γA ⋆ xn+1),

which after multiplying out by αn+1
p is the same as

αp · ϕ(A ⋆ xn) =
∑

γ∈Z×
n /Z×

n+1

ϕ(γA ⋆ xn+1).

Now, by our hypotheses on ϕ, we have that αp · ϕ(A ⋆ xn) = Tpϕ(A ⋆ xn) for
Tp denoting either operator T l

p or T u
p , and so the required relation is a direct

consequence of Corollary 4.7 above. �

4.1.3. Definitions of p-adic L-functions. Recall that in either case on the ex-
ponent δ ∈ {0, 1} in the level pδ of Rp ⊂ Bp, we construct a sequence

x(e) = (xn(e))n≥δ of classes xn ∈ B×
p /R×

p according to Definitions 4.1.1 and
4.1.2. These sequences depend on the choice of a fixed Kp-basis e of the Bp-
module V in the following way.

Lemma 4.9. Suppose in either subcase on δ ∈ {0, 1} that we choose a different
Kp-basis e′ of V . Then, for some element σ = (σn)n of X = lim

←−n
Xn, we have

dϑ(δ)(ϕ, x(e′)) = dϑ(δ)(ϕ, σ ⋆ x(e)) = (ϑ(δ)
n (ϕ, σn ⋆ xn(e)))n≥1,

equivalently

θ(δ)ϕ (x(e′)) = σθ(δ)ϕ (x(e)) = (θ(δ)ϕ (σn ⋆ xn(e))) in O[[X ]].

Proof. Observe that K×
p acts simply transitively on the set of Kp-bases of V . It

follows that there exists a γ ∈ K×
p for which e′ = γe = γ ⋆e. We claim that this

action commutes with each of the predecessor operations pr∗ defined above,
i.e. that pr∗(γ ⋆ x) = γ ⋆ pr∗(x) for each γ ∈ K×

p and x ∈ B×
p /R×

p , as a direct
consequence of the definitions. It is then easy to see that for each integer n ≥ 1,

there exists an element σn ∈ Xn for which ϑ
(δ)
n (ϕ, xn(e

′)) = ϑ
(δ)
n (ϕ, σn ⋆xn(e)).

To be more precise, we claim that this σn is determined by the image of γ in
Xn. Since the σn come from one element γ ∈ K×

p , it is clear that (σn)n defines
a compatible sequence, whence σ = (σn)n defines an element of the profinite
limit X = lim

←−n
Xn. �

Thus, our elements θ
(δ)
Φ (e) are only well-defined up to multiplication by σ ∈ X .

To correct this, we make the following modification. Let Λ = O[[X ]]. Given
λ ∈ Λ, let λ∗ denote the image of λ under the involution of Λ induced by
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the operation sending group elements σ ∈ X to their inverses σ−1 ∈ X . The

elements θ
(δ)
ϕ (e)θ

(δ)
ϕ (e)∗ ∈ Λ are then well-defined. This leads us to make the

following

Definition Let ϕ ∈ π′ be a decomposable, O-valued, p-ordinary eigenvector
as described above, i.e. so that the component of ϕ at p is fixed by R×

p , where

Rp ⊂ Bp is an Eichler order of level pδ with δ ∈ {0, 1}. Let e be any Kp-basis of
V , and x(e) = (xn(e))n≥δ the sequence of classes described either by Definition
4.1.1 if δ = 0 or else by Definition 4.1.2 if δ = 1. We then define the imprimitive
p-adic L-function associated to ϕ and the profinite group X to be the product

Lp(ϕ,K) = L
(δ)
p (ϕ,K) = θ(δ)ϕ (x(e))θ(δ)ϕ (x(e))∗ in Λ = O[[X ]].

4.1.4. Interpolation. We now derive the interpolation properties of the imprim-

itive p-adic L-functions Lp(ϕ,K) = L
(δ)
p (ϕ,K) ∈ Λ = O[[X ]]. This leads us

to choose a certain normalization, i.e. to define primitive p-adic L-functions

L
(δ)
p (π′,K) which do not depend on our choice of vector ϕ ∈ π′. Let Ω be a

character of X . We view such a character as a homomorphism Ω : X −→ Qp

via our fixed embedding Q → Qp, and moreover (enlarging O if necessary)
as a homomorphism Ω : X −→ O. We shall use the fact that any character
extends to an algebra homomorphism Ω : Λ −→ O via the specialization map
λ 7→ ρ(λ) =

∫
X Ω(σ)dλ(σ).

Lemma 4.10. We have that Ω(λ∗) = Ω−1(λ) for any element λ ∈ X.

Proof. Since Ω : X −→ O is a group homomorphism, Ω(σ−1) = Ω−1(σ). Hence,

Ω(λ∗) =

∫

X

Ω(σ)dλ∗(σ) =

∫

X

Ω(σ−1)dλ(σ) =

∫

X

Ω−1(σ)dλ(σ) = Ω−1(λ).

�

Lemma 4.11. In our constructions above of the measures dϑ
(δ)
ϕ (x) giving rise

to the elements θ
(δ)
ϕ (x) of O[[X ]], our choice of sequence (ϕn)n≥1 = (xn ·ϕ)n≥1

in either case on δ defines a sequence of test vectors in the sense of [7, § 1.2.3].

Proof. Fix n ≥ 1. It suffices to check invariance properties at p for each vector
ϕn = xn · ϕ ∈ π′ for each choice of δ ∈ {0, 1}.
Let us first assume that δ = 0. Recall that we fix a class xn ∈ B×

p /R×
p which

is invariant by the action of Z×
n , where Zn = OFp

+̟n
pOKp

. We deduce that

the local vector xn · ϕp ∈ πp is fixed by the action of R×
p,n, where Rp,n ⊂ Bp

is the unique (up to K×
p -conjugacy) order for which c(Rp,n) = c(Ωp) = n and

d(Rp,n) = c(πp) = δ = 0, whence the required local invariance follows from the
work of Gross-Prasad [10], cf. [7, §1.2.3] or the summary given above.
Let us assume now that δ = 1. Recall that we fix a class xn ∈ B×

p /R×
p which

corresponds under our fixed bijection (13) to a 1-lattice (L(0), L(1)) we have
by Lemma 4.6 (i) that lp(xn) = max(lp(L(0)), lp(L(1))) = n, equivalently that

L(0) say is fixed by Z×
n−1 and L(1) by Z×

n (as we can assume without loss of
generality). We then deduce that the local vector xn · ϕp ∈ πp is fixed by the
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action of R×
p,n, where Rp,n is the unique order of Bp up to K×

p -conjugacy which
can be expressed as the intersection of maximal order Rp,n = R1,p,n ∩ R2,p,n,
where c(R1,p,n) = c(Ωp) = n and c(R2,p,n) = c(Ωp) − δ = n− 1. The required
local invariance is then deduced from [7], again cf. [7, §1.2.3] or the summary
above. �

Equipped with this result, we now give the following main interpolation for-
mula. Recall that for a given an integer n ≥ 1, we write m(Opn) to denote the

volume of Ô×
pn in the space K×\A×

K/A×
F with respect to our fixed choice of

Haar measure (which assigns K×\A×
K/A×

F volume one). Recall as well that we

write the class number of F as h(OF ) = |Pic(OF )| = |F̂×/F×Ô×
F |.

Proposition 4.12. Let Ω be a primitive character of X of conductor pn with
n ≥ 1. Then, for each choice δ ∈ {0, 1}, we have the following interpolation

formula for the associated imprimitive p-adic L-function L
(δ)
p (ϕ,K),

Ω(L
(δ)
p (ϕ,K)) = α

2(δ−1−n)
p ·

(
h(OF )

m(Opn)

)2

· (ϕ, ϕ) · L(1/2, π × Ω).(14)

Here, L(1/2, π×Ω) denotes the algebraic L-value of Corollary 2.2 above, which
we view as an element of Qp via our fixed embedding Q −→ Qp.

Proof. Lemma 4.10 implies that for either choice of δ ∈ {0, 1}, we have

Ω(L
(δ)
p (ϕ,K)) = Ω(θ(δ)ϕ (x))Ω(θ(δ)ϕ (x)

∗
) = Ω(θ(δ)ϕ (x))Ω−1(θ(δ)ϕ (x)).

Let us first assume that δ = 1, whence we are reduced to evaluating the sums

Ω(θ(1)ϕ (x)) =

∫

X

Ω(σ)θ(1)ϕ (x)(σ) = α−n
p

∑

A∈Xn

Ω(A)ϕ(A ⋆ xn).

Here, the second equality follows by the definition of ϑn = ϑn(ϕ, xn) of dϑ(ϕ, x).
Since we know by Lemma 4.11 that the vectors defined by ϕn = xn ·ϕ are test
vectors in the sense of [7, §7.1], we argue (cf. [32, (5)]) that we have the relation

Ω(θ(1)ϕ (x)) =
h(OF )

m(Opn)
· PB

Ω (ϕ).

That is, we first argue that n that the natural map Pic(OF ) → Pic(Opn) is

injective. Since Ω factors through Pic(Opn)/Pic(OF ) ≈ K̂×/F̂×K×Ô×
pn by our

assumptions, and since it is invariant on Ô×
pn , we can express the period integral

PB
Ω (ϕ) as

PB
Ω (ϕ) :=

∫

A×

K
/A×

F
K×

ϕ(t)Ω(t)dt = m(Opn)
∑

t∈K̂×/F̂×Ô×

pn

ϕ(t)Ω(t).

On the other hand, we can decompose our finite sum over Xn = Pic(Opn) as
∑

A∈Xn

Ω(A)ϕ(A) =
∑

τ∈Pic(OF )

∑

t∈Pic(Opn)/Pic(OF )

Ω(t)ϕ(τt),
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using that Ω is trivial on Pic(OF ). Now, observe that the inner sum here equals
∑

τ−1t∈Pic(Opn )/Pic(OF )

Ω(τ−1t)ϕ(t) =
∑

t∈Pic(Opn)/Pic(OF )

Ω(t)ϕ(t),

and hence that

∑

A∈Xn

Ω(A)ϕ(A) = h(OF )
∑

t∈Pic(Opn)/Pic(OF )

Ω(t)ϕ(t) =
h(OF )

m(Opn)
· PB

Ω (ϕ).

The stated interpolation formula is then easy to deduce from Theorem 1.2.
Let us now assume that δ = 0, whence we are reduced to evaluating the sums

Ω(θ(0)ϕ (x)) = α1−n
p

∑

A∈Xn

Ω(A)ϕ(A ⋆ xn)− α−n
p

∑

A∈Xn

Ω(A)ϕ(A ⋆ xn−1).

Since the vectors ϕn = xn · ϕ are again test vectors in the sense of [7, §7.1] by
Lemma 4.11 above, we see that the second sum in this term must vanish, i.e.
since the conductor of the test vector ϕn−1 = xn−1 · ϕ appearing in this term
does not have the same conductor as the character Ω. Indeed, observe that given

any u ∈ A×
K , which we embed into the finite set B×\B̂×/R̂× via our choice of

(optimal) embedding K → D, we must have that PΩ(u · ϕ) = Ω−1(u)PΩ(ϕ),
whence

Ω(θ(0)ϕ (x)) = α1−n
p

∑

A∈Xn

Ω(A)ϕ(A ⋆ xn),

which reduces us to the same style of proof as given for the δ = 1 case above. �

Although it is clear, let us state for the record the following direct consequence.

Corollary 4.13. The specialization value Ω(L
(δ)
p (ϕ,K)) vanishes if and only

if the complex central value L(1/2, π×Ω) vanishes when the conductor of Ω is
nontrivial.

It is also clear that dividing out by (ϕ, ϕ) gives an interpolation formula which
does not depend on the scaling factor of ϕ ∈ π′. We record this as follows.

Definition Let us in either case on δ ∈ {0, 1} define the primitive p-adic L-

function Lp(π
′,K) = L

(δ)
p p(π′,K) associated to π′ and X to be the element of

Λ = O[[X ]] obtained by dividing out by the inner product (ϕ, ϕ), i.e.

Lδ
p(π

′,K) = L
(δ)
p (ϕ,K)/(ϕ, ϕ).(15)

The following result is then easy to see from the discussion above.

Corollary 4.14. The element Lδ
p(π

′,K) ∈ Λ = O[[X ]] does not depend on
the choice of scaling factor of ϕ ∈ π′, and satisfies the following interpolation
property: For each primitive character Ω of X of conductor pn with n ≥ 1, we

have that Ω(Lδ
p(π

′,K)) = α
2(δ−1−n)
p · (h(OF )/m(Opn))

2 · L(1/2, π × Ω) in Qp.
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4.2. The case of k = 1. We now extend the construction given above to give
a p-adic interpolation series for the setting of k = 1, i.e. where ǫ = ǫ(1/2, π×Ω)
is generically equal to −1.
Keep all of the setup leading to Theorem 2.3 above, so that B is the indefi-
nite quaternion algebra which is ramified at all real places of F except for one
fixed place τ , as well as the finite places corresponding to prime divisors of
the inert level N−. By Hypothesis 1.1, we know that B is split at p. Hence,
we can and do fix an isomorphism B

×
p ≈ GL2(Fp). Let M = {MU}U be the

Shimura curve over F associated B. Let A be an abelian variety defined over
F which is parametrized by M . Recall that according to [35, §3.2.2], we have
an an automorphic representation πA = Hom0(J,A) = lim

−→H
Hom0(JH , A) =

lim−→H
HomF (JH , A) ⊗Z Q of B×(AF ) defined over Q, and moreover that this

representation decomposes as a product πA = ⊗vπA,v of absolutely irreducible
representations πA,v of B×

v . Recall as well that for any choice of vector ϕ ∈ πA

and CM point Q ∈MK×

(Kab), we have that ϕ(Q) is a well-defined element of
the Mordell-Weil group A(Kab), whereKab denotes the maximal abelian exten-
sion ofK. Let us define O in this setting to be the tensor product A(Kab)⊗ZZp.
We shall assume from now on that πA has trivial central character, hence that
πA = π∨

A is self-dual. Thus A is principally polarized, and we can fix an iden-
tification A ≈ A∨. Granted Hypotheses 1.3 and 1.1 hold for π = πA, the
construction of the p-adic L-function Lp(π,K) given above for k = 0 extends
formally, as we now explain.

4.2.1. The case of δ = 0. Assume again that the local order Rp ⊂ Bp is Eichler
of level pδ = 1, i.e. that Rp is maximal. Recall again that we fix V a simple left
Bp-module for which V ≈ F 2

p as an Fp-vector space, that we let L(V ) denote
the set of OFp

-lattices in V , and that we have the bijection (9). The arguments
of Lemma 4.1.1, Corollary 4.3, and Proposition 4.5 above imply the following
result.

Corollary 4.15. Let ϕ ∈ πA be a nonzero p-ordinary decomposable vector
whose component at p is fixed by R×

p . Let (xn)n≥0 denote the sequence of classes

in B
×
p /R

×
p as defined above. Writing T l

p to denote the lattice Hecke operator

defined above, let ap = ap(πA) denote the eigenvalue of T l
p acting on ϕ, with

αp = αp(πA) the unit root of the Hecke polynomial t2 − apt + qp. Then, the
system of mappings {φn}n≥1 = {φn(xn, ϕ)}n≥1 defined by

φn : Xn −→ O, A 7−→ α1−n
p · ϕ(A ⋆ xn)− α−n

p · ϕ(A ⋆ xn−1)(16)

determines a distribution on the profinite group X = lim
←−

Xn.

4.2.2. The case of δ = 1. Let us now assume that the order Rp ⊂ Bp is Eichler
of level pδ = p. Recall that in this case, we write L1 = L1(V ) to denote the set
of 1-lattices of L = L(V ). We then fix a 1-lattice L0 = (L0(0), L0(1)) whose
stabilizer under the transitive action of B×

p is equal to R×
p , which allows us

to define the bijection (10). Again, we fix a Kp-basis e of V , and for each
integer n ≥ 1 write Ln = Ln(e) to denote the lattice in L = L(V ) defined by
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Ln = p−⌊n
2 ⌋/2Zne. For each n ≥ 1, let Jn = Jn(e) to denote the 1-lattice in

L1 = L1(V ) defined by

Jn =

{
(Ln−1, Ln) if n ≡ 0 mod 2

(Ln, Ln−1) if n ≡ 1 mod 2

Let xn = xn(e) ∈ B
×
p /R

×
p be the class corresponding to Jn under (10). The

arguments of Lemma 4.6, Corollary 4.7, and Proposition 4.8 imply the following
result.

Corollary 4.16. Let ϕ ∈ πA be a nonzero decomposable vector whose compo-
nent at p is fixed by R×

p . Let (xn)n≥0 denote the sequence of classes in B
×
p /R

×
p

defined by the 1-lattices Jn above. Suppose that ϕ is a p-ordinary eigenvector for
both of the operators T l

p and T u
p with common (unit) eigenvalue αp = αp(πA)

Then, the system {φn}n≥1 = {φn(xn, ϕ)}n≥1 of mappings

φn : Xn −→ O, A 7−→ α−n
p · ϕ(A ⋆ xn)n≥1(17)

defines a distribution on the profinite group X = lim
←−

Xn.

4.2.3. Definition of the interpolation series. We have now defined in either case
on the exponent δ ∈ {0, 1} an O-valued distribution

dφ(δ)(ϕ, x(e)) = {φ(δ)
n (ϕ, xn(e))}n≥1

on X whose corresponding element in O[[X ]] = lim
←−n

O[Xn] we denote by

Φ(δ)
ϕ = Φ(δ)

ϕ (x(e)) = (Φ(δ)
ϕ (xn(e))).

These elements depend on the choice of Kp-basis e of V in the same way as
described for Lemma 4.9. We again account for this ambiguity by considering
the elements

Φ(δ)
ϕ (x(e))Φ(δ)

ϕ (x(e))∗ in O[[X ]],

where Φδ
ϕ(x(e))

∗ denotes the image of Φδ
ϕ(x(e)) under the involution of O[[X ]]

induced by sending elements σ ∈ X to their inverses σ−1 ∈ X .

Definition Let ϕ ∈ πA be a nonzero decomposable vector satisfying Hypothe-
ses 1.1 and 1.3 above. Let e be any Kp-basis of V . Let x(e) = (xn(e))n≥δ be
either the sequence of classes defined above. Let us now define the well-defined
elements

D
(δ)
p (ϕ,K) = Φ(δ)

ϕ (x(e))Φ(δ)
ϕ (x(e))∗ ∈ O[[X ]].(18)

4.2.4. Interpolation. The elements defined in (18) satisfy the following inter-
polation property. Recall that we write 〈·, ·〉 to denote the L-linear Néron-Tate
pairing

〈·, ·〉L : A(F )Q ⊗R A(F )Q −→ L⊗Q C

defined in [35, §1]. Note that this construction extends in a natural way to
define an OL-linear Néron-Tate height pairing

〈·, ·〉OL
: A(F )Q ⊗R A(F )Q −→ OL ⊗Q C.
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We argue that these pairings also extend in a natural way by Zp-linearity to
define pairings on the elements in O we have considered above, and hence that
we can derive the following straightforward consequence from the discussion
above.

Proposition 4.17. Let Ω be a primitive ring class character of X of conductor
pn with n ≥ 1. Then, for each choice of exponent δ ∈ {0, 1}, we have the fol-

lowing interpolation formula for the elements D
(δ)
p (ϕ,K) defined in (18) above

composed with the OL-linear Néron-Tate height pairing 〈 , 〉L,

〈 , 〉L ◦ Ω(D
(δ)
p (ϕ,K))

= αp(πA)
−2(1−δ−n) ·

(
h(OF )

m(Opn)

)2

·
ζ(2)L′(1/2, πA × Ω)

4L(1, η)2L(1, πA, ad)
· α(xn · ϕ, xn · ϕ).

Proof. The proof is formally identical to that of Proposition 4.12 above, using
Theorem 2.3 in lieu of Theorem 1.2 for the interpolation values. �

Remark The recent work of Cai-Shu-Tian [3] should apply in this setting
(as well as in the indefinite setting) to supply even more precise interpolation
formulae for these constructions.
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et à un corps quadratique imaginaire, J. of the London Math. Soc. (2) 38
(1988), 1 - 32.

[23] R. Pollack and T. Weston, On anticyclotomic µ-invariants of modular
forms, Compos. Math. 147 (2011) no. 5, 1353-1381.

[24] H. Saito, On Tunnell’s formula for characters of GL(2), Compos. Math.
85 no. 1 (1993), 99-108.

[25] G. Shimura, The special values of zeta functions associated with Hilbert
modular forms, Duke Math. J. 45 (1978), 637-679.

[26] J. Tunnell, Local ǫ-factors and characters of GL(2), Amer. J. Math. 105
no. 6 (1983), 1277-1307.

[27] M.-F. Vigneras, Arithmétique des Algèbres des Quaternions, Springer-
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