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Abstract. The intrinsic volumes of Gaussian polytopes are con-
sidered. A lower variance bound for these quantities is proved, show-
ing that, under suitable normalization, the variances converge to
strictly positive limits. The implications of this missing piece of the
jigsaw in the theory of Gaussian polytopes are discussed.

2010 Mathematics Subject Classification: Primary 60D05; Secondary
52A22.
Keywords and Phrases: Gaussian polytopes, random polytopes,
stochastic geometry, variance lower bound.

1 Introduction and results

Fix a space dimension d ∈ N and denote by γd the standard Gaussian measure
on Rd with density ϕd equal to

ϕd(x) := (2π)−
d
2 exp

(
− ‖x‖2

2

)
, x ∈ R

d . (1)

Given n ≥ d + 1 let X1, . . . , Xn be independent random points that are dis-
tributed on Rd according to the probability measure γd. The random convex
hull

Kn := [X1, . . . , Xn]

of these points is a Gaussian polytope. These random polytopes are central
objects considered in stochastic geometry and are also of importance in convex
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geometric analysis or coding theory. For example, Gluskin [8] has used Gaus-
sian polytopes in his analysis of the diameter of the Minkowski compactum
and Gaussian polytopes also arise as lower-dimensional shadows of randomly
rotated high-dimensional regular simplices as shown by Baryshnikov and Vi-
tale [4]. We refer to the survey article of Reitzner [12] for further background
information and references.

We denote for ℓ ∈ {0, . . . , d} by Vℓ(Kn) the ℓth intrinsic volume of Kn, that is,

Vℓ(Kn) =

(
d

ℓ

)
κd

κℓκd−ℓ

∫

G(d,ℓ)

volℓ(Kn|L) νℓ(dL) .

Here, G(d, ℓ) is the Grassmannian of ℓ-dimensional linear subspaces of Rd sup-
plied with the unique Haar probability measure νℓ and volℓ(Kn|L) stands
for the ℓ-dimensional Lebesgue measure of the orthogonal projection Kn|L
of Kn onto L measured within the subspace L. Moreover, for j ∈ N,
κj := πj/2 Γ(1 + j

2 )
−1 denotes the volume of the j-dimensional unit ball. The

intrinsic volumes are of outstanding importance in convex geometry, since ac-
cording to a classical theorem of Hadwiger they form a basis of the vector space
of all continuous and rigid-motion invariant real-valued valuations on convex
sets, cf. [14]. For example, Vd(Kn) = vold(Kn) is the volume, 2Vd−1(Kn) co-

incides with the surface area and 2κd−1

dκd
V1(Kn) corresponds to the mean width

of Kn.

It is well known from the work of Affentranger [1] that the expectation
E[Vℓ(Kn)] of Vℓ(Kn) satisfies

lim
n→∞

(logn)−
ℓ
2 E[Vℓ(Kn)] =

(
d

ℓ

)
κd

κd−ℓ
.

More recently, the asymptotic behaviour of the varianceVar[Vℓ(Kn)] of Vℓ(Kn)
has moved into the focus of attention. Using the classical Efron-Stein jackknife
inequality Hug and Reitzner [10] have obtained a first upper bound of the form

Var[Vℓ(Kn)] ≤ cd(log n)
ℓ−3
2 with a constant cd ∈ (0,∞) only depending on

the space dimension d (but not on ℓ). In a remarkable paper of Calka and
Yukich [7] the precise variance asymptotic was derived, showing thereby that
the upper bound from [10] does not have the right order of magnitude. In fact,
[7, Theorem 1.5] says that

lim
n→∞

(logn)
d+3
2 −ℓ

Var[Vℓ(Kn)] = cd,ℓ , (2)

with constants cd,ℓ ∈ [0,∞) only depending on d and on ℓ. However, using
their methods the authors of [7] were not able to exclude the possibility that
cd,ℓ = 0. The aim of the present paper is to fill this gap and to show that, in
fact, cd,ℓ > 0. This answers a question raised at several places in the literature,
see [3, Section 14], the comment after [7, Theorem 1.5] or [9, Remark 3.6]. Our
result reads as follows:
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Theorem 1. Let ℓ ∈ {1, . . . , d} and let Kn be a Gaussian polytope. Then there

exists a constant vd,ℓ ∈ (0,∞) only depending on d and on ℓ such that

Var[Vℓ(Kn)] ≥ vd,ℓ (logn)
− d+3

2 +ℓ ,

whenever n is sufficiently large.

In particular, Theorem 1 in conjunction with (2) shows that the limit

lim
n→∞

(logn)
d+3
2 −ℓ

Var[Vℓ(Kn)] = cd,ℓ

exists and takes a strictly positive and finite value.

Remark 2. (i) Let us first comment on the boundary case ℓ = 0 in Theorem
1. Since V0(K) = 1{K 6=∅} for any convex set K ⊂ Rd, we have that
V0(Kn) = 1 with probability one and hence Var[V0(Kn)] = 0.

(ii) Since Vd(Kn) is the volume of the Gaussian polytope Kn, the case ℓ = d
is already covered by Theorem 6.1 in [3], which ensures that vd,d ∈ (0,∞).
Our proof comprises this situation as a special case.

A random polytope model closely related to Kn can be described as follows.
For each n ∈ N let ηn be a Poisson point process on Rd with intensity measure
nγd. The convex hull of the points of ηn will be denoted by Πn and is called the
Gaussian Poisson polytope. Following the coupling construction in the proof of
[3, Lemma 7.1] one easily sees that expectation and variance asymptotic for Πn

are literally the same as for Kn. Moreover, the strict positivity of the constants

vd,ℓ in Theorem 1 implies that (logn)
d+3
2 −ℓ

Var[Vℓ(Πn)] converges to a positive
and finite limit. We summarize the missing piece in the proof of this result in
the following corollary:

Corollary 3. Let ℓ ∈ {1, . . . , d} and let Πn be the Gaussian Poisson polytope.

Then there exists a constant vd,ℓ ∈ (0,∞) only depending on d and on ℓ such

that

Var[Vℓ(Πn)] ≥ vd,ℓ (log n)
ℓ−d+3

2 ,

whenever n is sufficiently large.

The result of Theorem 1 and Corollary 3 can be regarded as the missing piece
of the jigsaw in the theory of Gaussian polytopes. Let us mention some of the
implications that are now immediate:

- Central limit theorems. As explained in [3, 7], the positivity of the limiting
variance is the only missing piece in the proof of the central limit theorem
for the normalized intrinsic volumes of Πn. The result follows by the
methods developed in [3, 6, 7]. Moreover, a de-Poissonization argument
similar to that in [3] leads to the corresponding result for Kn; we omit
the details.
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- Concentration inequalities. As explained in the recent work [9], the posit-
ivity of the limiting variance is the only missing ingredient in the proof of a
concentration inequality for Vℓ(Πn). The precise form of such an inequal-
ity can now be determined from [9, Theorem 3.1]: For any ℓ ∈ {1, . . . , d}
one can find a constant c ∈ (0,∞) only depending on d and on ℓ such
that

P
(
|Vℓ(Πn)−E[Vℓ(Πn)]| ≥ y

√
Var[Vℓ(Πn)]

)

≤ 2 exp
(
− 1

4
min

{ y2

22d+ℓ+5
, c (logn)

d−1
4(2d+ℓ+5) y

1
2d+ℓ+5

})

for all y ≥ 0 and sufficiently large n.

- Marcinkiewicz-Zygmund-type strong laws of large numbers. The concen-
tration inequality for Vℓ(Πn) mentioned in the previous paragraph can
directly be used to derive Marcinkiewicz-Zygmund-type strong laws of
large numbers along the lines of the proof of [9, Theorem 1.3]: For any
ℓ ∈ {1, . . . , d} and p > 1− d+3

ℓ one has that

Vℓ(Πn)−E[Vℓ(Πn)]

(logn)p
ℓ
2

−→ 0

with probability one, as n → ∞. Using the monotonicity of intrinsic
volumes and a simple coupling argument, one easily verifies that the
same result also holds with Πn replaced by Kn. In that form, this refines
the ordinary strong law of large numbers from [10, Corollary 1.2], which
corresponds to the special case p = 1.

- Moderate deviations. Moderate deviations for the volume and the face
numbers of the Gaussian Poisson polytopes Πn have also been invest-
igated in [9]. Again, the only missing piece for the extension of these
results to the intrinsic volumes is the positivity of the limiting variances;
we omit the details.

Remark 4. Let λ > 0 be an arbitrary real number, let ηλ be a Poisson point
process on Rd with intensity measure λγd and denote by Πλ the random con-
vex hull induced by ηλ. Using the monotonicity of intrinsic volumes and a
simple coupling argument, one easily verifies that the result of Corollary 3 con-
tinues to hold with Πn and logn replaced by Πλ and logλ, respectively. The
same comment applies to the central limit theorem, the concentration inequal-
ities, the Marcinkiewicz-Zygmund-type strong laws of large numbers and to the
moderate deviations mentioned above.

The rest of this paper is structured as follows. In Section 2 we recall the
essential steps of a geometric construction from [3] and proof some auxiliary
results that are needed in the proof of Theorem 1. The latter is the content of
the final Section 3.
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2 Preparations

2.1 Notation

The symbols ‖ · ‖ and 〈 · , · 〉 are used for the Euclidean norm and scalar product
in Rd, respectively. Moreover, for a set B ⊂ Rd we write [B] for the convex
hull of B. We denote the d-dimensional unit ball by Bd := {x ∈ Rd : ‖x‖ ≤ 1}
and write Sd−1 := {x ∈ Rd : ‖x‖ = 1} for the corresponding unit sphere. The
normalized surface measure on Sd−1 is denoted by νSd−1 . Further, for a point
z ∈ Rd\{0} and α ∈ [0, π/2] we write C(z, α) for the closed circular cone whose
axis is the halfline {tz : t ≥ 0} and whose angle is α. More formally, if ∢(z, x)
stands for the ordinary angle between z and another point x ∈ R

d, C(z, α) is
given by C(z, α) := {x ∈ Rd : ∢(x, z) ≤ α}.
Our underlying probability space is (Ω,A,P) and we implicitly assume that it
is rich enough to carry all the random objects we consider in this paper. By
E[ · ] we denote expectation (integration) with respect to P and Var[ · ] stands
for the variance of the argument random variable. The indicator function of
an event A ∈ A is denoted by 1A.
For two sequences (an : n ∈ N) and (bn : n ∈ N) we write an ≪ bn (or an ≫ bn)
if we can find a constant c ∈ (0,∞) not depending on n and an index n0 ∈ N

such that an ≤ c bn (or an ≥ c bn) for all n ≥ n0. Finally, an ≈ bn means that
an ≪ bn ≪ an.
In this paper constants are denoted by c1, c2, . . . It is implicitly assumed that
these constants are finite and strictly positive, and only depend on the space
dimension d, unless otherwise stated.

2.2 A geometric construction

In this section we recall a geometric construction as well as some of the results
already obtained [3] that we use below. We define

r = r(n) :=
√
2 logn− log logn , n ∈ N ,

and denote by S(r) := {x ∈ Rd : ‖x‖ = r} the centred sphere of radius
r. By y1, . . . , ym ∈ S(r) we denote a maximal system of points such that
‖yi − yj‖ ≥ 2c1 for some sufficiently large c1. A simple volume comparison
argument provides an estimate for the size of such a set, see [3, Claim 5.1]:

Lemma 5. One has that m ≈ (logn)
d−1
2 .

For each i ∈ {1, . . . ,m} define y0i := (1+r−2)yi and notice that ‖yi−y0i ‖ = r−1.
Let further for i ∈ {1, . . . ,m}, Hi := {x ∈ Rd : 〈x, yi〉 = r} be the tangent
hyperplane of S(r) at yi and fix a regular simplex inHi whose vertices y

1
i , . . . , y

d
i

are chosen from the (d − 2)-dimensional sphere Sd−2(yi,
√
2) of radius

√
2 in

Hi centred at yi. (Thus S(r) = S(0, r) but we keep the simpler notation for
S(r).) The simplex ∆i := [y0i , y

1
i , . . . , y

d
i ] is the convex hull of y0i and the points

y1i , . . . , y
d
i ∈ Hi, see Figure 1. It is not difficult to estimate the volume Vd(∆i)

and the Gaussian measure γd(∆i) of these simplices, see [3, Claim 5.2]:
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S(r)

Hi

yi−1

yi

yi+1

y1
i y2

i

y0
i

∆i

Figure 1: Construction of the simplices ∆i.

Lemma 6. For each i ∈ {1, . . . ,m} one has that Vd(∆i) ≈ (logn)−
1
2 and

γd(∆i) ≈ n−1.

For each i ∈ {1, . . . ,m} and j ∈ {0, . . . , d} we let ∆j
i be a homothetic copy of

∆i with yji being the centre of the homothety and the factor being a sufficiently

small number c2, that is, ∆
j
i := yji + c2(∆i − yji ).

Let Di be the the cone Di := pos({yji − y0i : j ∈ {1, . . . , d}}), where we write
pos( · ) for the positive hull of the argument set. This is the internal cone at
vertex y0i of the simplex ∆i, which has a simple structure because its base is a
(d− 1)-dimensional regular simplex and the opposite vertex y0i is at height r−1

over this base exactly above its centre. In particular, one can check easily that

C
(
yi − y0i , arctan

√
2 r

d− 1

)
⊂ Di ⊂ C

(
yi − y0i , arctan

√
2 r

)
. (3)

Since each ∆j
i is only a homothetic copy of ∆i with a scaling factor not de-

pending on n, the following holds by construction:

Lemma 7. For each i ∈ {1, . . . ,m} and j ∈ {0, . . . , d} one has that Vd(∆
j
i ) ≈

(log n)−
1
2 and γd(∆

j
i ) ≈ n−1.

For each i ∈ {1, . . . ,m} and j ∈ {0, . . . , d} let zji be an arbitrary point in

∆j
i and define the cone Ci := pos({zji − z0i : j ∈ {1, . . . , d}}). We recall the

following fact about these cones from [3, Lemma 5.4], which ensures a certain
independence property used below:

Lemma 8. One can choose the constant c1 in the above construction sufficiently

large and c2 sufficiently small such that for each i ∈ {1, . . . ,m} the translated

cone z0i + Ci contains all simplices ∆k with k ∈ {1, . . . ,m} \ {i}.

Observe further that the simplices [z0i , . . . , z
d
i ] and ∆i are very close to each

other if the factor of homothety c2 is small enough. So relations (3) imply that

C1
i := C

(
yi − z0i , arctan

r

d− 1

)
⊂ Ci ⊂ C(yi − z0i , arctan2r) =: C2

i . (4)
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∆i

∆0
i

∆1
i ∆2

i

z0
i

z1
i z2

i

H1
iH2

i

z0
i

z1
i z2

i

∆i

No points

here

No points

here

Figure 2: The simplices ∆j
i , the points zji and the half-spaces Hj

i (left). Illus-
tration of the events Ai (right).

Next, for i ∈ {1, . . . ,m} and j ∈ {1, . . . , d} we denote by Hj
i the half-space

containing ∆k
i for all k ∈ {0, . . . , d} \ {0, j}, not containing ∆0

i and ∆j
i , and

such that the hyperplane bounding Hj
i touches all the simplices ∆0

i , . . . ,∆
d
i

except for ∆j
i , see Figure 2 (left). We are now in the position to define for

each i ∈ {1, . . . ,m} the event Ai ∈ A that precisely one point from the random
sample X1, . . . , Xn is contained in each simplex of the form ∆j

i and no further
point from X1, . . . , Xn is contained in H+

i ∪H1
i ∪ . . .∪Hd

i , see Figure 2 (right).
Here, H+

i is the half-space bounded by Hi not containing the origin. The
following probability estimate is taken from [3, Lemma 6.2]:

Lemma 9. There exists a constant c3 ∈ (0, 1) such that P(Ai) ≥ c3 for all

i ∈ {1, . . . ,m}.

The facts summarized so far have been used in [3] to prove a lower variance
bound for the volume Vd(Kn) of Kn. Since we are interested in all intrinsic
volumes V1(Kn), . . . , Vd(Kn), a refinement is necessary to obtain such bounds.
In fact, we now follow and adapt the method already applied in [2, 5, 11] to
handle the more general situation.

2.3 The effect of local perturbations

Let z ∈ Sd−1 and G be a measurable subset of G(d, ℓ) for some ℓ ∈ {0, . . . , d}.
The angle ∢(z,G) between z and G is defined as min{∢(z, x) : x ∈ L,L ∈ G},
where ∢(z, x) = arccos 〈x,z〉

‖x‖ is the ordinary angle between z and x. We observe

the following geometric fact, see also [2, Lemma 1]:

Lemma 10. Let z ∈ Sd−1 and ℓ ∈ {1, . . . , d}. One can find a constant c4 ∈
(0,∞) only depending on d and on ℓ such that

νℓ({L ∈ G(d, ℓ) : ∢(z, L) ≤ a}) ≫ ad−ℓ

for all 0 < a < c4.
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Proof. For M ∈ G(d, ℓ − 1) we denote by G(M, ℓ) the relative Grassmannian
of ℓ-dimensional linear subspaces of Rd containing M . This space is supplied
with a unique Haar probability measure νMℓ , see Chapter 7.1 in [13]. Simil-
arly, we let G(z⊥, ℓ − 1) be the relative Grassmannian of (ℓ − 1)-dimensional
linear subspaces of R

d that are contained in the hyperplane z⊥ orthogonal
to 1-dimensional linear subspace spanned by z. The unique Haar probabil-

ity measure on G(z⊥, ℓ − 1) is denoted by νz
⊥

ℓ−1. For M ∈ G(z⊥, ℓ − 1) let

u ∈ Sd−1 ∩ M⊥ be such that ∢(z, u) ≤ a. It is clear that the ℓ-dimensional
linear subspace span(M,u) spanned by M and u is contained in the set
{L ∈ G(d, ℓ) : ∢(z, L) ≤ a} we are interested in. Formally, using Fubini’s
theorem for flag spaces (see [13, Theorem 7.1.1]) in the second step we write

νℓ({L ∈ G(d, ℓ) : ∢(z, L) ≤ a})

=

∫

G(d,ℓ)

1{∢(z,L)≤a} νℓ(dL)

=

∫

G(d,ℓ−1)

∫

G(M,ℓ)

1{∢(z,L)≤a} ν
M
ℓ (dL)νℓ−1(dM)

≥
∫

G(z⊥,ℓ−1)

∫

G(M,ℓ)

1{∢(z,L)≤a} ν
M
ℓ (dL)νz

⊥

ℓ−1(dM)

≥
∫

G(z⊥,ℓ−1)

∫

Sd−1∩M⊥

1{∢(z,u)≤a} νSd−1∩M⊥(du)νz
⊥

ℓ−1(dM)

=

∫

G(z⊥,ℓ−1)

νSd−1∩M⊥({u ∈ S
d−1 ∩M⊥ : ∢(z, u) ≤ a}) νz⊥

ℓ−1(dM) .

Since M⊥ has dimension d − ℓ + 1, the set of points u ∈ Sd−1 ∩ M⊥ with
∢(z, u) ≤ a forms a spherical cap in the (d−ℓ)-dimensional subsphere Sd−1∩M⊥

of Sd−1. It has radius of order a and volume of order ad−ℓ, where by volume
we mean here the normalized (d− ℓ)-dimensional Hausdorff measure νSd−1∩M⊥

on Sd−1 ∩M⊥. Hence, for sufficiently small a, we have

νSd−1∩M⊥({u ∈ S
d−1 ∩M⊥ : ∢(z, u) ≤ a}) ≫ ad−ℓ

and, since νz
⊥

ℓ−1 is a probability measure, also

νℓ({L ∈ G(d, ℓ) : ∢(z, L) ≤ a}) ≫ ad−ℓ .

The proof is complete.

For i ∈ {1, . . . ,m} put Fi := [z1i , . . . , z
d
i ] and define

Ṽℓ(z;Fi) :=

(
d

ℓ

)
κd

κℓκd−ℓ

∫

G(d,ℓ)

1{L∩C2
i
6=∅} volℓ([z, Fi]|L) νℓ(dL) , z ∈ ∆0

i .

The next lemma provides a lower bound for the variance of these local func-
tionals.
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Lemma 11. Fix ℓ ∈ {1, . . . , d}, let i ∈ {1, . . . ,m} and let Zi be a point chosen

with respect to the normalized Gaussian measure restricted to ∆0
i . Then

Vari[Ṽℓ(Zi;Fi)] ≫ (log n)−(d−ℓ+1) ,

where the notation Vari[ · ] refers to the variance that is taken with respect to

Zi ∈ ∆0
i .

Proof. Denote by wi the centre of the facet of ∆0
i opposite to the vertex y0i ,

and define the points w1
i := 2

3y
0
i + 1

3wi and w2
i := 1

3y
0
i + 2

3wi. Furthermore,
the regions R1

i , R
2
i ⊂ ∆0

i are given by R1
i := (w1

i − C2
i ) ∩ ∆0

i and R2
i :=

(w2
i + C2

i ) ∩∆0
i . It is crucial to observe that one can find a constant c7 only

depending on d such that Vd(R
k
i ) ≥ c7Vd(∆

0
i ) for k = 1 and k = 2. This

follows from (4). Together with the first part of Lemma 7 and the fact that
the Gaussian density (1) satisfies

ϕd(x) ≈
√
logn

n
for all x ∈ R

d with r ≤ ‖x‖ ≤ r +
1

r
,

we see that the Gaussian measure of Rk
i is

γd(R
k
i ) ≈ n−1 , k ∈ {1, 2} . (5)

Next, fix some L ∈ G(d, ℓ) that intersects the interior of the polar of the cone
C2

i . This condition means that L has an orthonormal basis e1, . . . , eℓ such that
the hyperplaneHi,0 := {x ∈ Rd : 〈x, e1〉 = 〈w2

i , e1〉} has only one point (namely
the origin) in common with C2

i . Let H
+
i,0 be the half-space bounded by Hi,0 not

containing the origin. Finally, let us define the set Gi := H+
i,0∩(w1

i +C2
i ) ⊂ ∆0

i .

We choose points Z1
i ∈ R1

i and Z2
i ∈ R2

i . The whole construction is illustrated
in Figure 3 where L appears translated by w2

i (not affecting the volℓ(Gi|L)).
Observe now that R1

i and R2
i are separated by the hyperplane Hi,0. Con-

sequently, we have that Z2
i ∈ [Z1

i , Fi], which implies the inclusion [Z2
i , Fi] ⊂

[Z1
i , Fi]. In addition, Gi ⊂ H+

i,0 and R2
i ∩ H+

i,0 = {w2
i }, which yields

Gi ∩ [Z2
i , Fi] = {w2

i }. Finally, we observe that the hyperplane parallel to
Hi,0 separates R1

i and Gi, whence Gi ⊆ [Z1
i , Fi]. The construction also shows

Vd(Gi) ≈ r−1 = (logn)−
1
2 and implies that

volℓ(Gi|L) ≫ (log n)−
1
2 . (6)

As result, we arrive at the estimate

volℓ([Z
1
i , Fi]|L)− volℓ([Z

2
i , Fi]|L) ≥ volℓ(Gi|L) .
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z1
i z2

iFi = [z1
i , z

2
i ]

L+ w2
i

wi

w2
i

w1
i

y0
i

Z1
i

Z2
i

R2
i

R1
i

Gi

Hi,0

∆0
i

Figure 3: Construction in the proof of Lemma 11.

Hence,

Ṽℓ(Z
1
i ;Fi)− Ṽℓ(Z

2
i ;Fi)

=

(
d

ℓ

)
κd

κℓκd−ℓ

∫

G(d,ℓ)

1{L∩C2
i
6=∅}

(
volℓ([Z

1
i , Fi]|L)− volℓ([Z

2
i , Fi]|L)

)
νℓ(dL)

≥
(
d

ℓ

)
κd

κℓκd−ℓ

∫

G(d,ℓ)

1{L∩C2
i
6=∅} volℓ(Gi|L) νℓ(dL)

≫ (logn)−
1
2 νℓ({L ∈ G(d, ℓ) : L ∩ C2

i 6= ∅})
≫ (logn)−

1
2 (log n)−

d−ℓ
2

= (log n)−
d−ℓ+1

2 ,

where we used (6), the definition of C2
i , and Lemma 10. Note that the latter

can indeed be applied with a = 1/ logn, since 1/ logn < c4 for sufficiently
large n. Selecting now Zk

i , k ∈ {1, 2}, independently at random according
to the normalized Gaussian measure restricted to ∆0

i (i.e., Z1
i and Z2

i are
independent copies of Zi), we conclude that

Var[Ṽℓ(Zi;Fi)] =
1

2
E
[(
Ṽℓ(Z

1
i ;Fi)− Ṽℓ(Z

2
i ;Fi)

)2]

≥ 1

2
E
[(
Ṽℓ(Z

1
i ;Fi)− Ṽℓ(Z

2
i ;Fi)

)2
1R1

i
(Z1

i )1R2
i
(Z2

i )
]

≫ (log n)−(d−ℓ+1)
P(Z1

i ∈ R1
i , Z

2
i ∈ R2

i ) .
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To obtain a lower bound for P(Z1
i ∈ R1

i , Z
2
i ∈ R2

i ) we recall (5) and combine
this with the second assertion of Lemma 7 as well as with the independence of
the random points Z1

i and Z2
i . This implies that

P(Z1
i ∈ R1

i , Z
2
i ∈ R2

i ) =
2∏

k=1

P(Zk
i ∈ R1

i ) =
2∏

k=1

γd(R
k
i )

γd(∆0
i )

≥ c28

with a constant c8 ∈ (0,∞) only depending on d. Hence,

Var[Ṽℓ(Z;Fi)] ≫ (logn)−(d−ℓ+1) ,

completing thereby the proof of the lemma.

3 Proof of Theorem 1

Recall the geometric construction and its properties from the previous section
and denote by F ⊂ A the σ-field generated by the random points X1, . . . , Xn,
except those in the simplices ∆0

i for which 1Ai
= 1, i ∈ {1, . . . ,m}. The

conditional variance formula implies that

Var[Vℓ(Kn)] = E
[
Var[Vℓ(Kn)|F ]

]
+Var

[
E[Vℓ(Kn)|F ]

]

≥ E
[
Var[Vℓ(Kn)|F ]

]
.

Now, conditioned on F , suppose that 1Ai
= 1, write Zi for the (unique) random

point in ∆0
i and denote by Fi the convex hull of the random points in ∆j

i with
j ∈ {1, . . . , d}. We notice that if 1Ai

= 1 for each i ∈ I in a subset I ⊂
{1, . . . ,m}, then (Ṽℓ(Zi;Fi) : i ∈ I) is a family of independent random variables
as a consequence of the result of Lemma 8. This independence property implies
that

Var[Vℓ(Kn)|F ] =

m∑

i=1
1Ai

=1

Vari[Vℓ(Kn)] =

m∑

i=1
1Ai

=1

Vari[Ṽℓ(Zi;Fi)] ,

where, as in the previous section, the notation Vari[ · ] refers to the variance
that is taken only with respect to the point Zi ∈ ∆0

i and we only sum over
those i ∈ {1, . . . ,m} with the property that 1Ai

= 1. These variances can be
controlled by means of Lemma 11, which implies that

Var[Vℓ(Kn)|F ] ≫ (logn)−(d−ℓ+1)
m∑

i=1

1Ai
.
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Taking expectations and finally applying Lemma 9 as well as Lemma 5, we
arrive at

Var[Vℓ(Kn)] ≫ (logn)−(d−ℓ+1)
m∑

i=1

P(Ai)

≫ (logn)−(d−ℓ+1) × (log n)
d−1
2

= (logn)ℓ−
d+3
2 .

This completes the argument and the proof of Theorem 1. �
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