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tions on Hilbert spaces. The induction theorem constructs a C∗-hull
for a certain class of integrable representations of a graded ∗-algebra,
given a C∗-hull for its unit fibre.

2010 Mathematics Subject Classification: Primary 47L60; Secondary
46L55
Keywords and Phrases: unbounded operator; regular Hilbert mod-
ule operator; integrable representation; induction of representations;
graded ∗-algebra; Fell bundle; C∗-algebra generated by unbounded op-
erators; C∗-envelope; C∗-hull; host algebra; Weyl algebra; canonical
commutation relations; Local–Global Principle; Rieffel deformation

1 Introduction

Savchuk and Schmüdgen [27] have introduced a method to define and classify
the integrable representations of certain ∗-algebras by an inductive construction.
The original goal of this article was to clarify this method and thus make it
apply to more situations. This has led me to reconsider some foundational
aspects of the theory of representations of ∗-algebras by unbounded operators.
This is best explained by formulating an induction theorem that is inspired
by [27].

Documenta Mathematica 22 (2017) 1375–1466



1376 Ralf Meyer

Let G be a discrete group with unit element e ∈ G. Let A =
⊕

g∈GAg be a
G-graded unital ∗-algebra. That is, Ag ·Ah ⊆ Agh, A∗

g = Ag−1 , and 1 ∈ Ae. In
particular, the unit fibre Ae is a unital ∗-algebra. Many interesting examples
of this situation are studied in [7, 27]. A Fell bundle over G is a family of
subspaces (Bg)g∈G of a C∗-algebra B (which is not part of the data) such that
Bg · Bh ⊆ Bgh and B∗

g = Bg−1 . The universal choice for B is the section

C∗-algebra of the Fell bundle.
Briefly, our main result says the following. Let Be be a C∗-algebra such that
“integrable” “representations” of Ae are “equivalent” to “representations” of Be.
Under some technical conditions, we construct a Fell bundle (B+

g )g∈G over G
such that “integrable” “representations” of A are “equivalent” to “representa-
tions” of its section C∗-algebra. Here the words in quotation marks must be
interpreted carefully to make this true.
A representation of a ∗-algebra A on a Hilbert D-module E is an algebra ho-
momorphism π from A to the algebra of D-module endomorphisms of a dense
D-submodule E ⊆ E with 〈ξ, π(a)η〉 = 〈π(a∗)ξ, η〉 for all ξ, η ∈ E, a ∈ A. The
representation induces a graph topology on E. We restrict to closed repre-
sentations most of the time, that is, we require E to be complete in the graph
topology. The difference from usual practice is that we consider representations
on Hilbert modules over C∗-algebras. A representation of a C∗-algebra B on a
Hilbert module E is a nondegenerate ∗-homomorphism B → B(E), where B(E)
denotes the C∗-algebra of adjointable operators on E .
The notion of “integrability” for representations is a choice. The class of all
Hilbert space representations of a ∗-algebra may be quite wild. Hence it is
customary to limit the study to some class of “nice” or “integrable” represen-
tations. For instance, for the universal enveloping algebra of the Lie algebra of
a Lie group G, we may call those representations “integrable” that come from
a unitary representation of G. This example suggests the name “integrable”
representations.

We fix a notion of integrability for representations of Ae ⊆ A on all Hilbert
modules over all C∗-algebras. A representation of A is called integrable if its
restriction to Ae is integrable. The induction theorem describes the integrable
representations of A in terms of integrable representations of Ae. For instance,
if Ae is finitely generated and commutative, then we may call a representation π
on a Hilbert module integrable if the closure π(a) is a regular, self-adjoint
operator for each a ∈ Ae with a = a∗. All examples in [7, 27] are of this type.

An “equivalence” between the integrable representations of a unital ∗-algebra A
and the representations of a C∗-algebra B is a family of bijections – one for
each Hilbert module E over each C∗-algebra D – between the sets of integrable
representations of A and of representations of B on E ; these bijections must
be compatible with isometric intertwiners and interior tensor products. These
properties require some more definitions.
First, an isometric intertwiner between two representations is a Hilbert mod-
ule isometry – not necessarily adjointable – between the underlying Hilbert
modules that restricts to a left module map between the domains of the rep-
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resentations. For an equivalence between integrable representations of A and
representations of B we require an isometry to intertwine two representations
of B if and only if it intertwines the corresponding integrable representations
of A.
Secondly, a C∗-correspondence from D1 to D2 is a Hilbert D2-module F with a
representation of D1. Given such a correspondence and a Hilbert D1-module E ,
the interior tensor product E ⊗D1

F is a Hilbert D2-module. A representation
of A or B on E induces a representation on E ⊗D1

F . We require our bijec-
tions between integrable representations of A and representations of B to be
compatible with this interior tensor product construction on representations.

We call B a C∗-hull for the integrable representations of A if the integrable rep-
resentations of A are equivalent to the representations of B as explained above,
that is, through a family of bijections compatible with isometric intertwiners
and interior tensor products. The Induction Theorem builds a C∗-hull for the
integrable representations of A using a C∗-hull for the integrable representa-
tions of Ae and assuming a further mild technical condition, which we explain
below.

Many results of the general theory remain true if we only require the equiv-
alence of representations to be compatible with interior tensor products and
unitary ∗-intertwiners, that is, isomorphisms of representations; we speak of
a weak C∗-hull in this case. The Induction Theorem, however, fails for weak
C∗-hulls. We show this by a counterexample. Some results only need the class
of integrable representations to have some properties that are clearly neces-
sary for the existence of a C∗-hull or weak C∗-hull, but they do not need the
(weak) C∗-hull itself. This is formalised in our notions of admissible and weakly

admissible classes of representations.
For example, let A be commutative. Let Â be the space of characters of A
with the topology of pointwise convergence. If Â is locally compact and A is
countably generated, then C0(Â) is a C∗-hull for the integrable representations
of A as defined above, that is, those representations where each π(a) for a ∈
A with a = a∗ is regular and self-adjoint. If, say, A = C[x] with x = x∗,
then the C∗-hull is C0(R). Here the equivalence of representations maps an
integrable representation π of C[x] to the functional calculus homomorphism
for the regular, self-adjoint operator π(x).
If Â is not locally compact, then the integrable representations of A defined
above still form an admissible class, but they have no C∗-hull. If, say, A is the
algebra of polynomials in countably many variables, then Â = R∞, which is
not locally compact. The problem of associating C∗-algebras to this ∗-algebra
has recently been studied by Grundling and Neeb [12]. From our point of view,
this amounts to choosing a smaller class of “integrable” representations that
does admit a C∗-hull.
We have now explained the terms in quotation marks in our Induction Theorem
and how we approach the representation theory of ∗-algebras. Most previous
work focused either on representations on Hilbert spaces or on single unbounded
operators on Hilbert modules. Hilbert module representations occur both in
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the assumptions and in the conclusions of the Induction Theorem, and hence
we cannot prove it without them. In addition, taking into account Hilbert
module representations makes our C∗-hulls unique.
Besides the Induction Theorem, the other main strand of this article are Local–
Global Principles, which aim at reducing the study of integrability for repre-
sentations on general Hilbert modules to representations on Hilbert space. We
may use a state ω on the coefficient C∗-algebra D of a Hilbert module E to
complete E to a Hilbert space. Thus a representation of A on E induces Hilbert
space representations for all states on D. The Local–Global Principle says that
a representation ofA on E is integrable if and only if these induced Hilbert space
representations are integrable for all states; the Strong Local–Global Principle
says the same with all states replaced by all pure states. We took these names
from [15]. Earlier results of Pierrot [21] show that the Strong Local–Global
Principle holds for any class of integrable representations that is defined by
certain types of conditions, such as the regularity and self-adjointness of π(a)
for certain a ∈ A with a = a∗. For instance, this covers the integrable repre-
sentations of commutative ∗-algebras and universal enveloping algebras.
In all examples that we treat, the regularity of π(a) for certain a ∈ A is part
of the definition of an integrable representation. Other elements of A may,
however, act by irregular operators in some integrable representations. Thus
affiliation and regularity are important to study the integrable representations
in concrete examples, but cannot play a foundational role for the general rep-
resentation theory of ∗-algebras.
If B is generated in the sense of Woronowicz [32] by some self-adjoint, affiliated
multipliers that belong to A, then it is a C∗-hull and the Strong Local–Global
Principle holds (see Theorem 5.19). A counterexample shows that this theorem
breaks down if the generating affiliated multipliers are not self-adjoint: both
the Local–Global Principle and compatibility with isometric intertwiners fail
in the counterexample. So regularity without self-adjointness seems to be too
weak for many purposes. The combination of regularity and self-adjointness
is an easier notion than regularity alone. A closed operator T is regular and
self-adjoint if and only if T − λ is surjective for all λ ∈ C \ R, if and only if
the Cayley transform of T is unitary, if and only if T has a functional calculus
homomorphism on C0(R).

Now we describe the Fell bundle in the Induction Theorem and, along the way,
the further condition besides compatibility with isometric intertwiners that it
needs. Our input data is a graded ∗-algebra A =

⊕
g∈GAg and a C∗-hull Be

for Ae. A representation of A is integrable if its restriction to Ae is integrable.
We seek a C∗-hull for the integrable representations of A.
As in [27], we induce representations from Ae to A, and this requires a positivity
condition. We call representations of Ae that may be induced to A inducible.
We describe a quotient C∗-algebra B+

e of Be that is a C∗-hull for the inducible,
integrable representations of A. It is the unit fibre of our Fell bundle.
If a representation π of A is integrable, then its restriction to Ae is integrable
and inducible. Thus it corresponds to a representation π̄+

e of B+
e . The identity
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correspondence on B+
e corresponds to a particular (“universal”) inducible, inte-

grable representation of Ae on B
+
e . Its domain is a dense right ideal B+

e ⊆ B+
e .

The operators π(a)π̄+
e (b) on E for a ∈ Ag, b ∈ B+

e are adjointable. Their closed
linear span is the fibre B+

g of our Fell bundle at g provided π+
e is faithful. The

most difficult point is to prove B+
e ·B+

g = B+
g for all g ∈ G. This easily implies

B+
g · B+

h ⊆ B+
gh and (B+

g )
∗ = B+

g−1 , so that the subspaces B+
g ⊆ B(E) form a

Fell bundle.

To prove B+
e ·B+

g = B+
g , we need compatibility with isometric intertwiners and

that induction maps inducible, integrable representations of Ae to integrable

representations of A. Two counterexamples show that both assumptions are
necessary for the Induction Theorem.

Fell bundles are noncommutative partial dynamical systems. More precisely, a
Fell bundle (B+

g )g∈G over G is equivalent to an action of G on B+
e by partial

Morita–Rieffel equivalences; this is made precise in [4]. In the examples in
[7, 27], the group G is almost always Z; the C∗-algebras Be and hence B+

e are
commutative; and the resulting Fell bundle comes from a partial action of G
on the spectrum of B+

e . In these examples, the section C∗-algebra is a partial
crossed product. This may also be viewed as the groupoid C∗-algebra of the
transformation groupoid for the partial action of G on the spectrum of B+

e .
We show that the C∗-hull B for the integrable representations of A is a twisted

groupoid C∗-algebra of this transformation groupoid whenever Be is commuta-
tive. We give some criteria when the twist is absent, and examples where the
twist occurs. One way to insert such twists is by Rieffel deformation, using a
2-cocycle on the group G. We show that Rieffel deformation is compatible with
the construction of C∗-hulls.

We describe commutative and noncommutative C∗-hulls for the polynomial al-
gebra C[x] in §4 and §6; the noncommutative C∗-hulls for C[x] make very good
counterexamples. We classify and study commutative C∗-hulls in §8. Many re-
sults about them generalise easily to locally bounded representations. Roughly
speaking, these are representations where the vectors on which the representa-
tion acts by bounded operators form a core. The only ∗-algebras for which we
treat locally bounded representations in some detail are the commutative ones.

Through the Induction Theorem, the representation theory of commutative
∗-algebras is important even for noncommutative algebras because they may
admit a grading by some group with commutative unit fibre. Many examples
of this are treated in detail in [7, 27]. We discuss untwisted and twisted Weyl
algebras in finitely and infinitely many generators in §13. The twists involved
are Rieffel deformations. Since these examples have commutative unit fibres,
the resulting C∗-hulls are twisted groupoid C∗-algebras. As it turns out, all
twists of the relevant groupoids are trivial, so that the twists do not change
the representation theory of the Weyl algebras up to equivalence.

I am grateful to Yuriy Savchuk for several discussions, which led me to pursue
this project and eliminated mistakes from early versions of this article. And I
am grateful to the referee as well for several useful suggestions.

Documenta Mathematica 22 (2017) 1375–1466



1380 Ralf Meyer

2 Representations by unbounded operators on Hilbert modules

Let A be a unital ∗-algebra, D a C∗-algebra, and E a Hilbert D-module. Our
convention is that inner products on Hilbert spaces and Hilbert modules are
linear in the second and conjugate-linear in the first variable.

Definition 2.1. A representation of A on E is a pair (E, π), where E ⊆ E is a
dense D-submodule and π : A → EndD(E) is a unital algebra homomorphism
to the algebra of D-module endomorphisms of E, such that

〈π(a)ξ, η〉D = 〈ξ, π(a∗)η〉D for all a ∈ A, ξ, η ∈ E.

We call E the domain of the representation. We may drop π from our notation
by saying that E is an A,D-bimodule with the right module structure inherited
from E , or we may drop E because it is the common domain of the partial linear
maps π(a) on E for all a ∈ A.
We equip E with the graph topology, which is generated by the graph norms

‖ξ‖a := ‖(ξ, π(a)ξ)‖ := ‖〈ξ, ξ〉 + 〈π(a)ξ, π(a)ξ〉‖1/2
= ‖〈ξ, π(1 + a∗a)ξ〉‖1/2

for a ∈ A. The representation is closed if E is complete in this topology. A core

for (E, π) is an A,D-subbimodule of E that is dense in E in the graph topology.

Definition 2.1 forD = C is the usual definition of a representation of a ∗-algebra
on a Hilbert space by unbounded operators. This situation has been studied
extensively (see, for instance, [28]). For E = D with the canonical Hilbert
D-module structure, we get representations of A by densely defined unbounded

multipliers. The domain of such a representation is a dense right ideal D ⊆ D.
This situation is a special case of the “compatible pairs” defined by Schmüd-
gen [29].
Given two norms p, q, we write p � q if there is a scalar c > 0 with p ≤ cq.
Lemma 2.2. The set of graph norms partially ordered by � is directed: for

all a1, . . . , an ∈ A there are b ∈ A and c ∈ R>0 so that ‖ξ‖ai
≤ c‖ξ‖b for any

representation (E, π), any ξ ∈ E, and i = 1, . . . , n.

Proof. Let b =
∑n

j=1 a
∗
jaj . The following computation implies ‖ξ‖ai

≤ 5/4‖ξ‖b:

0 ≤ 〈ξ, π(1 + a∗
i ai)ξ〉

≤ 〈ξ, π(1 + a∗
i ai)ξ〉+

∑

i6=j

〈π(aj)ξ, π(aj)ξ〉+ 〈π(b − 1/2)ξ, π(b − 1/2)ξ〉

= 〈ξ, π(1 + b+ (b− 1/2)2)ξ〉 = 〈ξ, π(5/4 + b2)ξ〉 ≤ 5/4〈ξ, π(1 + b∗b)ξ〉.

Definition 2.3 ([20], [17, Chapter 9]). A densely defined operator t on a
Hilbert module E is semiregular if its adjoint is also densely defined. It is
regular if it is closed, semiregular and 1 + t∗t has dense range. An affiliated

multiplier of a C∗-algebra D is a regular operator on D viewed as a Hilbert
D-module.
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The closability assumption in [20, Definition 2.1.(ii)] is redundant by
[15, Lemma 2.1]. Regularity was introduced by Baaj and Julg [1], affiliation by
Woronowicz [31].

Remark 2.4. Let (E, π) be a representation of A on E and let a ∈ A. The
operator π(a) is automatically semiregular because π(a)∗ is defined on E. The
closure π(a) of π(a) need not be regular. The regularity of π(a) for some

a ∈ A is often assumed in the definition of integrable representations. For non-
commutative A, we should expect that π(a) is irregular for some a ∈ A even if π
is integrable. For instance, a remark after Corollaire 1.27 in [21] says that this
happens for certain symmetric elements in the universal enveloping algebraU(g)
for a simply connected Lie group G: they act by irregular operators in certain
representations that integrate to unitary representations of G.

The usual norm on E is the graph norm for 0 ∈ A. Hence the inclusion map
E →֒ E is continuous for the graph topology on E and extends continuously to
the completion E of E in the graph topology.

Proposition 2.5. The canonical map E→ E is injective, and its image is

E =
⋂

a∈A

domπ(a). (2.6)

Thus (E, π) is closed if and only if E =
⋂
a∈A domπ(a). Each π(a) extends

uniquely to a continuous operator π(a) on E. This defines a closed representa-

tion (E, π) of A, called the closure of (E, π).

Proof. The operator π(a) for a ∈ A is semiregular and hence closable by [15,
Lemma 2.1]. Equivalently, the canonical map from the completion of E in the
graph norm for a to E is injective. Its image is domπ(a), the domain of the
closure of π(a). The graph norms for a ∈ A form a directed set that defines
the graph topology on E. So the completion of E in the graph topology is the
projective limit of the graph norm completions for a ∈ A. Since each of these
graph norm completions embeds into E , the projective limit in question is just
an intersection in E , giving (2.6). For Hilbert space representations, this is
[28, Proposition 2.2.12].
The operators π(a) ∈ EndD(E) for a ∈ A are continuous in the graph topology.
Thus they extend uniquely to continuous linear operators π(a) ∈ EndD(E).
These are again D-linear and the map π is linear and multiplicative because
extending operators to a completion is additive and functorial. The set of
(ξ, η) ∈ E× E with 〈ξ, π(a)η〉 = 〈π(a∗)ξ, η〉 for all a ∈ A is closed in the graph
topology and contains E×E, which is dense in E×E. Hence this equation holds
for all ξ, η ∈ E. So (E, π) is a representation of A on E . The graph topology
on E for π extends the graph topology on E for π and hence is complete. So
(E, π) is a closed representation.

We shall need a generalisation of (2.6) that replaces A by a sufficiently large
subset.
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Definition 2.7. A subset S ⊆ A is called a strong generating set if it gen-
erates A as an algebra and the graph norms for a ∈ S generate the graph
topology in any representation. That is, for any representation on a Hilbert
module, any vector ξ in its domain and any a ∈ A, there are c ≥ 1 in R and
b1, . . . , bn ∈ S with ‖ξ‖a ≤ c

∑n
i=1‖ξ‖bi

.

An estimate ‖ξ‖a ≤ c
∑n
i=1‖ξ‖bi

is usually shown by finding d1, . . . , dm ∈ A

with a∗a+
∑m
j=1 d

∗
jdj = c ·∑n

i=1 b
∗
i bi, compare the proof of Lemma 2.2.

Example 2.8. Let Ah := {a ∈ A | a = a∗} be the set of symmetric elements.
Call an element of A positive if it is a sum of elements of the form a∗a. The pos-
itive elements and, a fortiori, the symmetric elements form strong generating
sets for A. Any element is of the form a1 + ia2 with a1, a2 ∈ Ah, and

a =

(
a+ 1

2

)2

−
(
a− 1

2

)2

for a ∈ Ah. Thus the positive elements generate A as an algebra. The
graph norms for positive elements generate the graph topology by the proof of
Lemma 2.2.

Proposition 2.9. Let S ⊆ A be a strong generating set. Two closed represen-

tations (E1, π1) and (E2, π2) of A on the same Hilbert module E are equal if

and only if π1(a) = π2(a) for all a ∈ S.

Proof. One direction is trivial. To prove the non-trivial direction, assume
π1(a) = π2(a) for all a ∈ S. Let (E, π) = (Ei, πi) for i = 1, 2. The com-
pletion of E for the graph norm of a is domπ(a), compare the proof of Proposi-
tion 2.5. Hence the completion of E in the sum of graph norms

∑n
k=1‖ξ‖bk

for

b1, . . . , bn ∈ S is
⋂n
k=1 domπ(bk). These sums of graph norms for b1, . . . , bn ∈ S

form a directed set that generates the graph topology on E. Hence

E =
⋂

a∈S

domπ(a), (2.10)

compare the proof of (2.6). So E1 = E2. Moreover, π1(a) = π1(a)|E1
=

π2(a)|E2
= π2(a) for all a ∈ S. Since S generatesA as an algebra and πi(A)Ei ⊆

Ei, this implies π1 = π2.

Proposition 2.9 may fail for generating sets that are not strong, see Example 4.2.

Corollary 2.11. Let S be a strong generating set of A and let (E, π) be a

closed representation of A with domπ(a) = E for each a ∈ S. Then E = E
and π is a ∗-homomorphism to the C∗-algebra B(E) of adjointable operators

on E.

Proof. Equation (2.10) gives E = E . Since π(a∗) ⊆ π(a)∗ and π(a∗) is defined
everywhere, it is adjoint to π(a). So π(a) ∈ B(E) and π is a ∗-homomorphism
to B(E).
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Lemma 2.12. Let A be a unital C∗-algebra. Any closed representation of A
on E has domain E = E and is a unital ∗-homomorphism to B(E).

Proof. Let a ∈ A. There are a positive scalar C > 0 and b ∈ A with a∗a+b∗b =
C; say, take C = ‖a‖2

and b =
√
C − a∗a. Then

〈π(a)ξ, π(a)ξ〉 ≤ 〈π(a)ξ, π(a)ξ〉 + 〈π(b)ξ, π(b)ξ〉 = 〈ξ, π(a∗a+ b∗b)ξ〉 = C〈ξ, ξ〉

for all ξ ∈ E. Thus the graph topology on E is equivalent to the norm topology
on E . Hence E = E for any closed representation.

An isometry I : E1 →֒ E2 between two Hilbert D-modules E1 and E2 is a right
D-module map with 〈Iξ1, Iξ2〉 = 〈ξ1, ξ2〉 for all ξ1, ξ2 ∈ E1.

Definition 2.13. Let (E1, π1) and (E2, π2) be representations on Hilbert
D-modules E1 and E2, respectively. An isometric intertwiner between them
is an isometry I : E1 →֒ E2 with I(E1) ⊆ E2 and I ◦ π1(a)(ξ) = π2(a) ◦ I(ξ)
for all a ∈ A, ξ ∈ E1. Equivalently, I ◦ π1(a) ⊆ π2(a) ◦ I for all a ∈ A, that
is, the graph of π2(a) ◦ I contains the graph of I ◦ π1(a). We neither ask I
to be adjointable nor I(E1) = E2. Let Rep(A,D) be the category with closed
representations of A on Hilbert D-modules as objects, isometric intertwiners
as arrows, and the usual composition. The unit arrow on (E, π) is the identity
operator on E .

Lemma 2.14. Let (E1, π1) and (E2, π2) be representations on Hilbert

D-modules E1 and E2, respectively, and let I : E1 →֒ E2 be an isometric

intertwiner. Then I is also an intertwiner between the closures of (E1, π1)
and (E2, π2).

Proof. Since I intertwines the representations, it is continuous for the graph
topologies on E1 and E2. Hence I maps the domain of the closure π1 into the
domain of π2. This extension is still an intertwiner because it is an intertwiner
on a dense subspace.

Proposition 2.15. Let (E1, π1) and (E2, π2) be closed representations of A on

Hilbert D-modules E1 and E2, respectively. Let S ⊆ A be a strong generating

set. An isometry I : E1 →֒ E2 is an intertwiner from (E1, π1) to (E2, π2) if and

only if I ◦ π1(a) ⊆ π2(a) ◦ I for all a ∈ S.

Proof. First let I satisfy I ◦ π1(a) ⊆ π2(a) ◦ I for all a ∈ S. Then I maps the
domain of π1(a) into the domain of π2(a) for each a ∈ S. Now (2.10) implies
I(E1) ⊆ E2. Since πi(a) = πi(a)|Ei

, we get I(π1(a)(ξ)) = π2(a)(I(ξ)) for all
a ∈ S, ξ ∈ E1. Since S generates A as an algebra and πi(A)Ei ⊆ Ei, this
implies I ◦ π1(a) = π2(a) ◦ I for all a ∈ A, that is, I is an intertwiner.
Conversely, assume that I is an intertwiner from (E1, π1) to (E2, π2). Equiv-
alently, I ◦ π1(a) ⊆ π2(a) ◦ I for all a ∈ A. We have I ◦ π1(a) = I ◦ π1(a)
because I is an isometry, and π2(a) ◦ I ⊆ π2(a) ◦ I. Thus I ◦ π1(a) ⊆ π2(a) ◦ I
for all a ∈ A.
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Now we relate the categories Rep(A,D) for different C∗-algebras D.

Definition 2.16. Let D1 and D2 be two C∗-algebras. A C∗-correspondence

from D1 to D2 is a Hilbert D2-module with a representation of D1 by ad-
jointable operators (representations of C∗-algebras are tacitly assumed nonde-
generate). An isometric intertwiner between two correspondences from D1

to D2 is an isometric map on the underlying Hilbert D2-modules that inter-
twines the left D1-actions. Let Rep(D1, D2) denote the category of correspon-
dences from D1 to D2 with isometric intertwiners as arrows and the usual
composition.

By Lemma 2.12, our two definitions of Rep(A,D) for unital ∗-algebras and
C∗-algebras coincide if A is a unital C∗-algebra. So our notation is not am-
biguous. There is no need to define representations of a non-unital ∗-algebra A
because we may adjoin a unit formally. A representation of A extends uniquely
to a representation of the unitisation Ã. Thus the nondegenerate representa-
tions of A are contained in Rep(Ã). To get rid of degenerate representations, we
may require nondegeneracy on A when defining the integrable representations
of Ã, compare Example 5.13.
Let E be a Hilbert D1-module and F a correspondence from D1 to D2. The
interior tensor product E ⊗D1

F is the (Hausdorff) completion of the algebraic
tensor product E ⊙ F to a Hilbert D2-module, using the inner product

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, 〈ξ1, ξ2〉D1
· η2〉D2

, (2.17)

see the discussion around [17, Proposition 4.5] for more details. We may use
the balanced tensor product E ⊙D1

F instead of E ⊙F because the inner prod-
uct (2.17) descends to this quotient. If we want to emphasise the left action
ϕ : D1 → B(F) in the C∗-correspondence F , we write E ⊗ϕ F for E ⊗D1

F .
In addition, let (E, π) be a closed representation of A on E . We are going to
build a closed representation (E ⊗D1

F , π ⊗D1
1) of A on E ⊗D1

F . First let
X ⊆ E ⊗D1

F be the image of E ⊙F or E⊙D1
F under the canonical map to

E ⊗D1
F .

Lemma 2.18. For a ∈ A, there is a unique linear operator π(a) ⊗ 1: X → X
with (π(a)⊗1)(ξ⊗η) = π(a)(ξ)⊗η for all ξ ∈ E, η ∈ F . The map a 7→ π(a)⊗1
is a representation of A with domain X.

Proof. Write ω, ζ ∈ X as images of elements of E⊙F :

ω =
n∑

i=1

ξi ⊗ ηi, ζ =
m∑

j=1

αj ⊗ βj

with ξi, αj ∈ E, ηi, βj ∈ F for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

〈
ζ,

n∑

i=1

π(a)ξi ⊗ ηi
〉

=

〈
m∑

j=1

π(a∗)αj ⊗ βj , ω
〉
. (2.19)
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An element ω′ ∈ E⊗D1
F is determined uniquely by its inner products 〈ζ, ω′〉 =

0 for all ζ ∈ X becauseX is dense in E⊗D1
F . The right hand side in (2.19) does

not depend on how we decomposed ω. Hence (π(a) ⊗ 1)ω :=
∑n

i=1 π(a)ξi ⊗ ηi
well-defines an operator π(a) ⊗ 1: X → X . This is a right D2-module map,
and a 7→ π(a) ⊗ 1 is linear and multiplicative because π is. Equation (2.19)
says that 〈ζ, (π(a) ⊗ 1)ω〉 = 〈(π(a∗)⊗ 1)ζ, ω〉 for all ω, ζ ∈ X . Thus π ⊗ 1 is a
representation.

Definition 2.20. Let (E⊗D1
F , π ⊗D1

1) be the closure of the representation
on E ⊗D1

F defined in Lemma 2.18.

Lemma 2.21. Let I : E1 →֒ E2 be an isometric intertwiner between two represen-

tations (E1, π1) and (E2, π2), and let J : F1 →֒ F2 be an isometric intertwiner

of C∗-correspondences. Then I ⊗D1
J : E1⊗D1

F1 →֒ E2⊗D1
F2 is an isometric

intertwiner between (E1 ⊗D1
F1, π1 ⊗ 1) and (E2 ⊗D1

F2, π2 ⊗ 1).

Proof. The isometry I ⊗D1
J maps the image X1 of E1 ⊙F1 to the image X2

of E2 ⊙F2 and intertwines the operators π1(a)⊗ 1 on X1 and π2(a)⊗ 1 on X2

for all a ∈ A. That is, it intertwines the representations defined in Lemma 2.18.
It also intertwines their closures by Lemma 2.14.

The lemma gives a bifunctor

⊗D1
: Rep(A,D1)× Rep(D1, D2)→ Rep(A,D2). (2.22)

The corresponding bifunctor

⊗D1
: Rep(B,D1)× Rep(D1, D2)→ Rep(B,D2)

for a C∗-algebra B is the usual composition of C∗-correspondences. This com-
position is associative up to canonical unitaries

E ⊗D1
(F ⊗D2

G) ∼−→ (E ⊗D1
F)⊗D2

G, ξ ⊗ (η ⊗ ζ) 7→ (ξ ⊗ η)⊗ ζ, (2.23)

for all triples of composable C∗-correspondences.

Lemma 2.24. If E carries a representation (E, π) of a ∗-algebra A, then the

unitary in (2.23) is an intertwiner (E, π)⊗D1
(F⊗D2

G) ∼−→
(
(E, π)⊗D1

F
)
⊗D2
G.

Proof. The bilinear map from E×F to E⊗D1
F is separately continuous with

respect to the graph topologies on E and E ⊗D1
F and the norm topology

on F . Since the image of F ⊙G in the Hilbert module F ⊗D2
G is dense in the

norm topology, the image of E ⊙ F ⊙ G in E ⊗D1
(F ⊗D2

G) is a core for the
representation (E, π) ⊗D1

(F ⊗D2
G). Since the image of E⊙ F in E⊗D1

F is
dense in the graph topology, the image of E⊙F⊙G in (E⊗D1

F)⊗D2
G is a core

for the representation
(
(E, π)⊗D1

F
)
⊗D2

G. The unitary in (2.23) intertwines
between these cores. Hence it also intertwines between the resulting closed
representations by Lemma 2.14.
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Definition 2.25. Let (E1, π1) and (E2, π2) be two representations of A on
Hilbert D-modules E1 and E2. An adjointable operator x : E1 → E2 is an
intertwiner if x(E1) ⊆ E2 and xπ1(a)ξ = π2(a)xξ for all a ∈ A, ξ ∈ E1. It is a
∗-intertwiner if both x and x∗ are intertwiners.

Any adjointable intertwiner between two representations of a C∗-algebra B is a
∗-intertwiner. In contrast, for a general ∗-algebra, even the adjoint of a unitary
intertwiner u fails to be an intertwiner if u(E1) ( E2.

Example 2.26. Let t be a positive symmetric operator on a Hilbert space H.
Assume that

⋂
n∈N

dom tn is dense in H, so that t generates a representation π
of the polynomial algebra C[x] on H. The Friedrichs extension of t is a positive
self-adjoint operator t′ on H. It generates another representation π′ of C[x]
on H. The identity map on H is a unitary intertwiner π →֒ π′. It is not a
∗-intertwiner unless t = t′.

The following proposition characterises when an adjointable isometry I : E1 →֒
E between two representations on Hilbert D-modules is a ∗-intertwiner. Since
E ∼= E1 ⊕ E⊥

1 if I is adjointable, we may as well assume that I is the inclusion
of a direct summand.

Proposition 2.27. Let E1 and E2 be Hilbert modules over a C∗-algebra D and

let (E1, π1) and (E, π) be representations of A on E1 and E1 ⊕ E2, respectively.

The following are equivalent:

(1) the canonical inclusion I : E1 →֒ E1 ⊕ E2 is a ∗-intertwiner from π1 to π;

(2) the canonical inclusion I : E1 →֒ E1 ⊕ E2 is an intertwiner from π1 to π
and E = E1 + (E ∩ E2);

(3) there is a representation (E2, π2) on E2 such that π = π1 ⊕ π2.

Proof. We view E1 and E2 as subspaces of E1⊕E2, so we may drop the isometry I
from our notation. The implication (3)⇒(1) is trivial. We are going to prove
(1)⇒(2)⇒(3). First assume that I is a ∗-intertwiner. Then I is an intertwiner.
In particular, E1 ⊆ E. Write ξ ∈ E as ξ = ξ1 + ξ2 with ξ1 ∈ E1, ξ2 ∈ E2.
Since I∗ is an intertwiner, ξ1 = I∗(ξ) ∈ E1. Hence ξ2 = ξ − ξ1 ∈ E ∩ E2.
Thus (1) implies (2).
If (2) holds, then E1 ⊆ E is π-invariant and π|E1

= π1 because I is an inter-
twiner. We claim that E2 := E ∩ E2 is π-invariant as well. Let ξ ∈ E2 and
η ∈ E1. Then 〈η, π(a)ξ〉 = 〈π(a∗)η, ξ〉 = 〈π1(a

∗)η, ξ〉 = 0 because π1(a
∗)η ∈ E1

is orthogonal to E2. Since E1 is dense in E1, this implies π(a)ξ ∈ E⊥
1 = E2, and

this implies our claim.
The condition (2) implies E = E1 ⊕ E2 as a vector space with E2 = E2 ∩ E

because E1 ∩ E2 = {0}. Then E2 is dense in E2 because E is dense in E1 ⊕ E2.
Thus (E2, π|E2

) is a representation of A on E2. And (E, π) is the direct sum
of (E1, π1) and (E2, π|E2

) because E = E1 ⊕ E2 and π1 = π|E1
. Thus (2)

implies (3).
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3 Integrable representations and C∗-hulls

From now on, we tacitly assume representations to be closed. Proposition 2.5
shows that this is no serious loss of generality.
Let A be a unital ∗-algebra. We assume that a class of “integrable” (closed) rep-
resentations of A on Hilbert modules is chosen. Let Repint(A,D) ⊆ Rep(A,D)
be the full subcategory with integrable representations on Hilbert D-modules
as objects. Being full means that the set of arrows between two integrable
representations of A is still the set of all isometric intertwiners. We sometimes
write Repint(A) and Rep(A) for the collection of all the categories Repint(A,D)
and Rep(A,D) for all C∗-algebras D. A C∗-hull is a C∗-algebra B with natural
isomorphisms Rep(B,D) ∼= Repint(A,D) for all C∗-algebras D. More precisely:

Definition 3.1. A C∗-hull for the integrable representations of A is a
C∗-algebra B with a family of bijections Φ = ΦE from the set of represen-
tations of B on E to the set of integrable representations of A on E for all
Hilbert modules E over all C∗-algebras D with the following properties:

• compatibility with isometric intertwiners: an isometry E1 →֒ E2 (not
necessarily adjointable) is an intertwiner between two representations ̺1

and ̺2 of B if and only if it is an intertwiner between Φ(̺1) and Φ(̺2);

• compatibility with interior tensor products: if F is a correspondence
from D1 to D2, E is a Hilbert D1-module, and ̺ is a representation
of B on E , then Φ(̺⊗D1

1F) = Φ(̺) ⊗D1
1F as representations of A on

E ⊗D1
F .

The compatibility with isometric intertwiners means that the bijections Φ for
all E with fixed D form an isomorphism of categories Rep(B,D) ∼= Repint(A,D)
which, in addition, does not change the underlying Hilbert D-modules. The
compatibility with interior tensor products expresses that these isomorphisms
of categories for different D are natural with respect to C∗-correspondences.

Definition 3.2. A weak C∗-hull for the integrable representations of A is a
C∗-algebra B with a family of bijections Φ between representations of B and
integrable representations of A on Hilbert modules that is compatible with
unitary ∗-intertwiners and interior tensor products.

Much of the general theory also works for weak C∗-hulls. But the Induction
Theorem 9.26 fails for weak C∗-hulls, as shown by a counterexample in §9.6.

Proposition 3.3. Let a class of integrable representations of A have a weak

C∗-hull B. Let (E1, π1) and (E2, π2) be integrable representations of A on

Hilbert D-modules E1 and E2, and let ̺i be the corresponding representations

of B on Ei for i = 1, 2. An adjointable operator x : E1 → E2 is a ∗-intertwiner

from (E1, π1) to (E2, π2) if and only if it is an intertwiner from ̺1 to ̺2.

Proof. Working with the direct sum representations on E1 ⊕ E2 and the ad-
jointable operator

(
0 x
0 0

)
, we may assume without loss of generality that
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E1 = E2 = E , E1 = E2 = E, π1 = π2 = π, and ̺1 = ̺2 = ̺. The ad-
jointable intertwiners for the representation ̺ of B form a C∗-algebra B′: the
commutant of B in B(E). We claim that the ∗-intertwiners for the representa-
tion π of A also form a C∗-algebra A′. Intertwiners and hence ∗-intertwiners
form an algebra. Thus A′ is a ∗-algebra. We show that it is closed.
Let (xi)i∈N be a sequence of adjointable intertwiners for (E, π) that converges in
norm to x ∈ B(E). Let ξ ∈ E. Then xi(ξ) ∈ E because each xi is an intertwiner.
Since π(a)(xiξ) = xiπ(a)ξ is norm-convergent for each a ∈ A, the sequence
xi(ξ) is a Cauchy sequence for the graph topology on E. Since representations
are tacitly assumed to be closed, this Cauchy sequence converges in E, so that
x(E) ⊆ E. Moreover, x(π(a)ξ) = π(a)x(ξ) for all a ∈ A, ξ ∈ E, so x is again
an intertwiner. Thus the algebra of intertwiners is norm-closed. This implies
that A′ is a C∗-algebra.
Since the family of bijections Repint(A) ∼= Rep(B) is compatible with unitary
∗-intertwiners, a unitary operator on E is a ∗-intertwiner for A if and only if it is
an intertwiner for B. That is, the unital C∗-subalgebras A′, B′ ⊆ B(E) contain
the same unitaries. A unital C∗-algebra is the linear span of its unitaries
because any self-adjoint element t of norm at most 1 may be written as

t = 1/2
(
t+ i

√
1− t2

)
+ 1/2

(
t− i

√
1− t2

)

and t± i
√
1− t2 are unitary. Thus A′ = B′. This is what we had to prove.

Corollary 3.4. Let Repint(A) have a weak C∗-hull B. Direct sums and

summands of integrable representations remain integrable, and the family of

bijections Repint(A) ∼= Rep(B) preserves direct sums.

Proof. Let π1, π2 be representations of A on Hilbert D-modules E1, E2. Let
Si : Ei →֒ E1 ⊕ E2 for i = 1, 2 be the inclusion maps. First we assume that
π1, π2 are integrable. Let ̺i be the representation of B on Ei corresponding
to πi, and let π be the integrable representation of A on E1⊕E2 corresponding
to the representation ̺1 ⊕ ̺2 of B. The isometries Si are intertwiners from ̺i
to ̺1 ⊕ ̺2. By Proposition 3.3, they are ∗-intertwiners from πi to π. Hence
π = π1 ⊕ π2 by Proposition 2.27. Thus π1 ⊕ π2 is integrable and the family
of bijections Repint(A) ∼= Rep(B) preserves direct sums. The same argument
works for infinite direct sums.
Now we assume instead that π1 ⊕ π2 is integrable. Let ̺ be the representa-
tion of B corresponding to π1 ⊕ π2. The orthogonal projection onto E1 is a
∗-intertwiner on the representation π1⊕π2 by Proposition 2.27, and hence also
on ̺ by Proposition 3.3. Thus ̺ = ̺1 ⊕ ̺2 for some representations ̺i of B
on Ei. Let π′

i be the integrable representation of A corresponding to ̺i. The
isometry Si is a

∗-intertwiner from ̺i to ̺1⊕̺2 and hence from π′
i to π1⊕π2 by

Proposition 3.3. This implies π′
i = πi, so that πi is integrable for i = 1, 2.

Definition 3.5. Let B be a weak C∗-hull for A. The universal integrable
representation of A is the integrable representation (B, µ) of A on B that
corresponds to the identity representation of B on itself.
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Proposition 3.6. Let B with a family of bijections Φ between representations

of B and integrable representations of A on Hilbert modules be a weak C∗-hull

for the integrable representations of A. Let (B, µ) be the universal integrable

representation of A. Then Φ(E) ∼= (B, µ) ⊗B E for any C∗-correspondence E
from B to D. (The proof makes this isomorphism more precise.)

Proof. Let ̺ : B → B(E) be a representation of B on a Hilbert module E .
Then u : B ⊗̺ E ∼−→ E , b ⊗ ξ 7→ ̺(b)ξ, is a unitary ∗-intertwiner between
the interior tensor product of the identity representation of B with E and
the representation ̺ on E . As Φ is compatible with interior tensor products
and unitary ∗-intertwiners, u is a unitary ∗-intertwiner between (B, µ) ⊗B E
and Φ(̺). Therefore, the image u(B⊙E) = ̺(B)E is a core for Φ(̺), and a ∈ A
acts on this core by a 7→ u(µ(a)⊗ 1)u∗ or, explicitly, a · (̺(b)ξ) = ̺(µ(a)b)ξ for
all a ∈ A, b ∈ B, ξ ∈ E .

Put in a nutshell, the whole isomorphism between integrable representations
of A and representations of B is encoded in the single representation (B, µ)
of A on B. This is similar to Schmüdgen’s approach in [29]. In the following,
we disregard the canonical unitary u in the proof of Proposition 3.6 and write
Φ(̺) = (B, µ) ⊗B E .
A (weak) C∗-hull B does not solve the problem of describing the integrable
representations of A. It only reduces it to the study of the representations of
the C∗-algebra B. This reduction is useful because it gets rid of unbounded
operators. If B is of type I, then any Hilbert space representation of B is a
direct integral of irreducible representations, and irreducible representations
may, in principle, be classified. Thus integrable Hilbert space representations
of A are direct integrals of irreducible integrable representations, and the latter
may, in principle, be classified. But if B is not of type I, then the integrable
Hilbert space representations of A are exactly as complicated as the Hilbert
space representations of B, and giving the C∗-algebra B may well be the best
one can say about them.

Proposition 3.7. A class of integrable representations has at most one weak

C∗-hull.

Proof. Let B1 and B2 be weak C∗-hulls for the same class of integrable repre-
sentations of A. The identity map on B1, viewed as a representation of B1 on
itself, corresponds first to an integrable representation of A on B1 and further
to a representation of B2 on B1. This is a “morphism” from B2 to B1, that
is, a nondegenerate ∗-homomorphism B2 → M(B1). Similarly, we get a mor-
phism from B1 to B2. These morphisms B1 ↔ B2 are inverse to each other
with respect to the composition of morphisms because the maps they induce
on representations of B1 and B2 on B1 and B2 are inverse to each other. An
isomorphism in the category of morphisms is an isomorphism of C∗-algebras in
the usual sense by [6, Proposition 2.10].
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Now take any representation (B, µ) of A on B. When is this the universal
integrable representation of a (weak) C∗-hull? Let D be a C∗-algebra and E a
Hilbert D-module. For a representation ̺ : B → B(E), let Φ(̺) = (B, µ) ⊗̺ E
be the induced representation of A on E as in the proof of Proposition 3.6. A
representation of A is called B-integrable if it is in the image of Φ.

Proposition 3.8. The C∗-algebra B is a weak C∗-hull for the B-integrable

representations of A if and only if

(1) if two representations ̺1, ̺2 : B ⇒ B(H) on the same Hilbert space H
satisfy µ⊗B ̺1 = µ⊗B ̺2 as closed representations of A, then ̺1 = ̺2.

It is a C∗-hull if and only if (1) and the following equivalent conditions hold:

(2) Let (H, π) be a representation of A on a Hilbert space H and let (H0, π0)
be a subrepresentation on a closed subspace H0 ⊆ H; that is, H0 ⊆ H

and π0(a) = π(a)|H0
for all a ∈ A. If both π0 and π are B-integrable,

then H = H0 ⊕ (H ∩H⊥
0 ) as vector spaces.

(3) Isometric intertwiners between B-integrable Hilbert space representations

of A are ∗-intertwiners.

(4) B-integrable subrepresentations of B-integrable Hilbert space representa-

tions of A are direct summands.

The conditions (1)–(4) together are equivalent to

(5) let ̺ : B → B(H) be a Hilbert space representation and let (H, π) be the

associated representation of A on H. If (H0, π|H0
) is a B-integrable sub-

representation of (H, π) on a closed subspace H0 ⊆ H, then the projection

onto H0 commutes with ̺(B).

Proof. The map Φ is compatible with interior tensor products by Lemma 2.24.
The condition (1) says that Φ is injective on Hilbert space representations.
We claim that this implies injectivity also for representations on a Hilbert
module E over a C∗-algebra D. Let ̺1, ̺2 be representations of B on E with
µ ⊗B ̺1 = µ ⊗B ̺2. Let D → B(H) be a faithful representation. Then the
representations ̺1 ⊗D 1 and ̺2 ⊗D 1 on the Hilbert space E ⊗D H satisfy
µ ⊗B ̺1 ⊗D 1 = µ ⊗B ̺2 ⊗D 1 by Lemma 2.24. Then condition (1) implies
̺1⊗D 1 = ̺2⊗D 1. Since the representation B(E)→ B(E ⊗DH) is faithful, this
implies ̺1 = ̺2. So Φ is injective also for representations on E .
The image of Φ consists exactly of the B-integrable representations of A by
definition. A unitary operator u ∗-intertwines two representations (E1, π1) and
(E2, π2) of A if and only if π2 = uπ1u

∗, where uπ1u
∗ denotes the representation

with domain u(E1) and (uπ1u
∗)(a) = uπ1(a)u

∗. Similarly, u intertwines two
representations ̺1 and ̺2 of B if and only if ̺2 = u̺1u

∗. Hence (1) implies
that a unitary that ∗-intertwines two B-integrable representations of A also
intertwines the corresponding representations of B. The converse is clear. So B
is a weak C∗-hull for the B-integrable representations if and only if (1) holds.
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The equivalence between (2), (3) and (4) follows from Proposition 2.27 by
writing H = H0 ⊕H⊥

0 . Assume that B is a C∗-hull. An isometric intertwiner
for A is also one for B. Then it is a ∗-intertwiner for A and its range projection
is an intertwiner for B by Proposition 3.3. Thus both (3) and (5) follow if B
is a C∗-hull.
Conversely, assume (1) and (3). We are going to prove that B is a C∗-hull for
the B-integrable representations of A. We have already seen that B is a weak
C∗-hull. We must check compatibility with isometric intertwiners.
Let D be a C∗-algebra and let E1, E2 be Hilbert D-modules with representations
̺1, ̺2 of B. The corresponding representations (Ei, πi) of A for i = 1, 2 are the
closures of the representations on ̺i(B)Ei given by πi(a)(̺i(b)ξ) := ̺i(µ(a)b)(ξ)
for a ∈ A, b ∈ B, ξ ∈ Ei. Hence an isometric intertwiner for B is also one for A.
Conversely, let I : E1 →֒ E2 be a Hilbert module isometry with I(E1) ⊆ E2 and
π2(a)(Iξ) = I(π1(a)ξ) for all a ∈ A, ξ ∈ E1. We must prove ̺2(b)I = I̺1(b)
for all b ∈ B.
Let ϕ : D →֒ B(K) be a faithful representation on a Hilbert space K. Equip
Hi := Ei⊗ϕK with the induced representations ˜̺i of B and π̃i of A for i = 1, 2.

Since the family of bijections Φ: Rep(B)
∼−→ Repint(A) is compatible with

interior tensor products, it maps ˜̺i to π̃i. The operator I induces an isometric
intertwiner Ĩ from π̃1 to π̃2 by Lemma 2.21.
Since π̃1 and π̃2 are B-integrable, we are in the situation of (3). So Ĩ is
a ∗-intertwiner from π̃1 to π̃2. Thus Ĩ is an intertwiner from ˜̺1 to ˜̺2 by
Proposition 3.3. That is, Ĩ ˜̺1(b) = ˜̺2(b)Ĩ for all b ∈ B. Equivalently,
(I̺1(b)ξ)⊗ η = (̺2(b)Iξ)⊗ η in E2 ⊗ϕH for all b ∈ B, ξ ∈ E , η ∈ H. Since the
representation ϕ is faithful, this implies I̺1(b)ξ = ̺2(b)Iξ for all b, ξ, so that
I̺1(b) = ̺2(b)I for all b, that is, I intertwines ̺1 and ̺2. Thus Φ is compatible
with isometric intertwiners.
Since (5) holds for C∗-hulls, we have proved along the way that (1) and (3)
imply (5). It remains to show, conversely, that (5) implies (3) and (1). In the
situation of (3), the projection P onto H0 commutes with B by (5). Thus the
representation of B on H is a direct sum of representations on H0 and H⊥

0 .
This is inherited by the induced representation of A and its domain. So (5)
implies (3).
In the situation of (1), form the direct sum representation ̺1 ⊕ ̺2 on H ⊕H
and let H0 := {(ξ, ξ) | ξ ∈ H}. The representation of A corresponding to
̺1 ⊕ ̺2 is µ ⊗̺1

H ⊕ µ ⊗̺2
H. Since µ ⊗̺1

H = µ ⊗̺2
H by assumption,

the domain of µ ⊗̺1
H ⊕ µ ⊗̺2

H is H ⊕ H for some dense subspace H ⊆ H,
and H0 := {(ξ, ξ) | ξ ∈ H} is a dense subspace in H0 that is invariant for
the representation µ ⊗̺1

H ⊕ µ ⊗̺2
H. The restricted representation on this

subspace is B-integrable because it is unitarily equivalent to µ⊗̺1
H = µ⊗̺2

H.
Therefore, the projection ontoH0 commutes with the representation ofB by (5).
Thus ̺1 = ̺2. So (5) implies (1).

The equivalent conditions (2)–(4) may be easier to check than (5) because they
do not involve the C∗-hull.
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Corollary 3.9. Let A be a ∗-algebra and let Bi be C∗-algebras with represen-

tations (Bi, µi) of A for i = 1, 2. Assume that for each Hilbert space H, the

maps Φi : Rep(Bi,H)→ Rep(A,H), ̺i 7→ (Bi, µi)⊗̺i
H, are injective and have

the same image. Then there is a unique isomorphism B1
∼= B2 intertwining

the representations (Bi, µi) of A for i = 1, 2.

Hence a C∗-envelope as defined in [7] is unique if it exists.

Proof. Both B1 and B2 are weak C∗-hulls for the same class of representations
of A by Proposition 3.8. Proposition 3.7 gives the isomorphism B1

∼= B2.

Remark 3.10. The Hilbert space representations of a C∗-algebra only determine
its bidual W∗-algebra, not the C∗-algebra itself. Hence it is remarkable that
the conditions in Proposition 3.8 and Corollary 3.9 only need Hilbert space
representations. For Corollary 3.9, this works because the bijection between
the representations is of a particular form, induced by representations of A.

The condition (1) in Proposition 3.8 is required in several other theories that
associate a C∗-algebra to a ∗-algebra, such as the host algebras of Grundling [10,
11], the C∗-envelopes of Dowerk and Savchuk [7], or the notion of a C∗-algebra
generated by affiliated multipliers by Woronowicz [32], see [32, Theorem 3.3]
or the proof of Theorem 5.19 below.

Definition 3.11. Let A be a ∗-algebra. A class of “integrable” representa-
tions of A on Hilbert modules over C∗-algebras is admissible if it satisfies the
conditions (1)–(4) below, and weakly admissible if it satisfies (1)–(3).

(1) If there is a unitary ∗-intertwiner from an integrable representation to
another representation, then the latter is integrable.

(2) If D and D′ are C∗-algebras, F is a correspondence from D to D′, and
(E, π) is an integrable representation of A on a Hilbert D-module E , then
the representation (E, π)⊗D F on E ⊗D F is integrable.

(3) Direct sums and summands of integrable representations are integrable.

(4) Any integrable subrepresentation of an integrable representation of A on
a Hilbert space is a direct summand.

Lemma 3.12. Any class of integrable representations with a (weak) C∗-hull is

(weakly) admissible.

Proof. If there is a C∗-hull, Proposition 3.8 implies (4) in Definition 3.11. If
there is a weak C∗-hull, then (1) and (2) in Definition 3.11 follow from the
compatibility with unitary ∗-intertwiners and interior tensor products in the
definition of a C∗-hull, and (3) follows from Corollary 3.4.

Proposition 3.13. Let A be a unital ∗-algebra and let E be a Hilbert module

over a C∗-algebra D. There is a natural bijection between the sets of represen-

tations of A on E and K(E). It preserves integrability if the class of integrable
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representations of A is weakly admissible or, in particular, if it has a weak

C∗-hull.

Proof. We may view E as an imprimitivity bimodule between K(E) and the
ideal I in D that is spanned by the inner products 〈ξ, η〉D for ξ, η ∈ E . Let E∗

be the inverse imprimitivity bimodule, which is a Hilbert module over K(E)
with K(E∗) ∼= I. Then K(E) ∼= E ⊗D E∗ and E∗ ⊗K(E) E = I.
If (π,E) is a representation of A on E , then (π,E) ⊗D E∗ is a representation
of A on E ⊗D E∗ = K(E). This maps Rep(A, E) to Rep(A,K(E)). If (̺,K)
is a representation of A on K(E), then (̺,K) ⊗K(E) E is a representation of A
on K(E) ⊗K(E) E ∼= E . This maps Rep(A,K(E)) to Rep(A, E). We claim that
these two maps are inverse to each other. Both preserve integrability by (2) in
Definition 3.11.
The map Rep(A, E)→ Rep(A,K(E))→ Rep(A, E) sends a representation (π,E)
of A on E to the representation (π,E) ⊗D (E∗ ⊗K(E) E) = (π,E) ⊗D I of A on
E ∼= E ⊗D I by Lemma 2.24. This is the restriction of π to E · I ⊆ E. Since E is
also a Hilbert module over I, it is nondegenerate as a right I-module. Therefore,
if (ui) is an approximate unit in I, then lim ξui = ξ for all ξ ∈ E . Then also
lim π(a)ξui = π(a)ξ for all ξ ∈ E, a ∈ A, so lim ξui = ξ in the graph topology for
all ξ ∈ E. Thus E ·I = E, and we get the identity map on Rep(A, E). A similar,
easier argument shows that we also get the identity map on Rep(A,K(E)).

4 Polynomials in one variable I

Let A = C[x] with x = x∗. A (not necessarily closed) representation of A on a
Hilbert D-module E is determined by a dense D-submodule E ⊆ E and a single
symmetric operator π(x) : E→ E, that is, π(x) ⊆ π(x)∗. Then π(xn) = π(x)n.

Lemma 4.1. The graph topology on E is generated by the increasing sequence

of norms ‖ξ‖n := ‖〈ξ, (1 + π(x2n))ξ〉‖ for n ∈ N.

Proof. We must show that for any a ∈ C[x] there are C > 0 and n ∈ N with
‖ξ‖a ≤ C‖ξ‖n. We choose n so that a has degree at most n. Then there is

C > 0 so that C(1 + t2n) > 1 + |a(t)|2 for all t ∈ R. Thus the polynomial
b := C(1+ x2n)− (1+ a∗a) is positive on R. So the zeros of b are complex and
come in pairs λj ± iµj for j = 1, . . . , n with λj , µj ∈ R by the Fundamental

Theorem of Algebra. Then b =
∏n
j=1

(
(x − λj)

2 + µ2
j

)
=

∑2n

k=1 b
2
k, where

each bk is a product of either x − λj or µj for j = 1, . . . , k, so bk = b∗
k. Thus

‖ξ‖a ≤ C‖ξ‖n.

Thus the monomials {xn | n ∈ N} form a strong generating set for C[x]. A
representation of C[x] is determined by the closed operators π(xn) for n ∈ N

by Proposition 2.9. In contrast, it is not yet determined by the single closed
operator π(x) because {x} is not a strong generating set:

Example 4.2. We construct a closed representation of C[x] on a Hilbert space
with π(x2) (

(
π(x)

)
2. Let H := L2(T), viewed as the space of Z-periodic
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functions on R. Let H0 := C∞(T) and let π0 : C[x] → End(H0) be the poly-
nomial functional calculus for the operator i d

dt . The graph topology generated
by this representation of C[x] is the usual Fréchet topology on C∞(T). So the
representation of C[x] on C∞(T) is closed. Now for some λ ∈ T, let

H := {f ∈ C∞(T) | f (n)(λ) = 0 for all n ≥ 1}.

This is a closed, C[x]-invariant subspace in H0. Let π be the restriction of π0

to H0. This is also a closed representation of C[x]. Its domain H is dense in H0

in the graph norm of x, but not in the graph norm of x2. So π(x) = π0(x) and

π(x2) ( π0(x2) =
(
π(x)

)2
.

All notions of integrability for representations of C[x] that we shall consider
imply π(xn) = π(x)n. Under this assumption, an integrable representation
of C[x] is determined by the single closed operator π(x).
Let B := C0(R). Let X be the identity function on R, viewed as an unbounded
multiplier of B. We define a closed representation (B, µ) of A on C0(R) by

B := {f ∈ B | ∀n : Xn · f ∈ B} and µ(xn)f := Xn · f for f ∈ B, n ∈ N.
(4.3)

Theorem 4.4. Let (E, π) be a representation of A = C[x] on a Hilbert mod-

ule E over a C∗-algebra D. The following are equivalent:

(1) π = µ⊗̺ 1E for a representation ̺ : B → B(E);

(2) π(a) is regular and self-adjoint for each a ∈ Ah := {a ∈ A | a = a∗};

(3) π(xn) is regular and self-adjoint for each n ∈ N;

(4) π(x) is regular and self-adjoint and π(xn) = π(x)n for all n ∈ N;

(5) π(x) is regular and self-adjoint and E =
⋂∞
n=1 dom π(x)n.

Call representations with these equivalent properties integrable. The C∗-

algebra C0(R) is a C∗-hull for the integrable representations of A with (B, µ)
as the universal integrable representation.

Proof. If a ∈ Ah, then µ(a) is a self-adjoint, affiliated multiplier of B. Hence
µ(a) ⊗D 1 is a regular, self-adjoint operator on B ⊗̺ E ∼= E for any repre-
sentation ̺ of B on E by [17, Proposition 9.10]. Thus (1) implies (2). The
implication (2)⇒(3) is trivial. The operator π(xn) is always contained in
the n-fold power π(x)n. The latter is symmetric, and a proper suboperator
of a symmetric operator cannot be self-adjoint. Thus (3) implies (4). The
set {xn | n ∈ N} is a strong generating set for C[x] by Lemma 4.1. Equa-
tion (2.10) gives E =

⋂∞
n=1 dom π(xn) for any (closed) representation. Thus (4)

implies (5).
Assume (5) and abbreviate t = π(x). The functional calculus for t is a nonde-
generate ∗-homomorphism ̺ : C0(R) → B(E) (see [17, Theorem 10.9]). Let π′
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be the representation µ⊗̺ 1 of A on E associated to ̺. We claim that π = π′.
The functional calculus extends to affiliated multipliers and maps the identity
function on R to the regular, self-adjoint operator t. This means that π′(x) = t.
Then π′(xn) ⊆ tn. This implies π′(xn) = tn because π′(xn) is self-adjoint and tn

is symmetric. Since the set {xn | n ∈ N} is a strong generating set for C[x],
the domain of π′ is

⋂
domπ′(xn) = E by condition (5) and (2.10). On this

domain, π(x) and π′(x) act by the same operator because they have the same
closure. Thus π = π′ and (5) implies (1). So all five conditions in the theorem
are equivalent.
To show that B is a C∗-hull for the class of representations described in (1),
we check (5) in Proposition 3.8. An integrable representation of A on a Hilbert
space H corresponds to a self-adjoint operator t on H by (5). An integrable
subrepresentation is a closed subspace H0 of H with a self-adjoint operator t0
on H0 whose graph is contained in that of t. Since t0 is self-adjoint, the
subspaces (t0 ± i)(dom(t0)) = (t ± i)(dom(t0)) are equal to H0. The Cayley
transform u of t maps (t+ i)(dom(t0)) onto (t− i)(dom(t0)). Thus it maps H0

onto itself. Since u− 1 generates the image of B = C0(R) under the functional
calculus, the projection onto H0 is B-invariant.

Example 4.5. Regularity and self-adjointness are independent properties of a
symmetric operator. Examples of regular symmetric operators that are not self-
adjoint are easy to find, see §6. We are going to construct a representation π
of C[x] on a Hilbert module for which π(a) is self-adjoint for each a ∈ C[x] with
a = a∗, but π(x) is not regular. We follow the example after Théorème 1.3
in [21], which Pierrot attributes to Hilsum.
Let H be the Hilbert space L2([0, 1]) and let T1 and T2 be the operators i d

dx
on H with the following domains. For T1, we take 1-periodic smooth functions;
for T2, we take the restrictions to [0, 1] of smooth functions on R satisfying
f(x + 1) = −f(x). Both T1 and T2 are essentially self-adjoint. Let D :=
C([−1, 1]) and E := C([−1, 1],H). Let E ⊆ E be the dense subspace of all
functions f : [−1, 1] × [0, 1] → C such that ∂n

∂nxf(t, x) is continuous for each
n ∈ N,

∂n

∂nx
f(t, 1) = sign(t) · ∂

n

∂nx
f(t, 0) (4.6)

for all t ∈ [−1, 1], x ∈ R, t 6= 0, and

∂n

∂nx
f(0, 0) =

∂n

∂nx
f(0, 1) = 0. (4.7)

Equivalently, f(t, ␣) belongs to the domain of T1
n = T n1 for all n ∈ N, t ≤ 0

and to the domain of T2
n = T n2 for all n ∈ N, t ≥ 0; indeed, this forces ∂n

∂nxf
to be continuous on [−1, 1]× [0, 1] and to satisfy the boundary conditions (4.6).
These imply (4.7) by continuity. Let xn ∈ C[x] act on E by

(
i d

dx

)n
. This defines

a closed ∗-representation of C[x] on E with E =
⋂
n∈N

domπ(x)n.

The closure π(x) is the irregular self-adjoint operator described in [21]. Let
a ∈ C[x] with a = a∗. Then ̺(a) is (regular and) self-adjoint for any integrable
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representation ̺ of C[x] by Theorem 4.4. Therefore, the restriction of π(a) to a
single fibre of E at some t ∈ [−1, 1] \ {0} is a self-adjoint operator on L2([0, 1])
because T1 and T2 are self-adjoint and E =

⋂
n∈N

domπ(x)n. The restriction

of π(a)∗ at t = 0 is contained in the self-adjoint operators a(T1) and a(T2)
by continuity. We claim that a(T1) ∩ a(T2) = π(a)|t=0. This claim implies
that π(a)∗ is contained in π(a), that is, π(a) is self-adjoint.
Let a ∈ C[x] have degree n. Then the graph norms for a and xn are equivalent
in any representation by the proof of Lemma 4.1. Hence a(Ti) and T ni have
the same domain. The domain of T ni consists of functions [0, 1] → C whose
nth derivative lies in L2 and whose derivatives of order strictly less than n
satisfy the boundary condition for Ti. Hence the domain of T n1 ∩T n2 consists of
those functions [0, 1]→ C whose nth derivative lies in L2 and whose derivatives
of order strictly less than n vanish at the boundary points 0 and 1. This is
exactly the domain of the closure of (T1 ∩ T2)

n = π(xn)|t=0. On this domain
the operators a(T1) ∩ a(T2) and π(a)|t=0 both act by the differential operator
a(i d

dx ).

The algebra A = C[x] has many Hilbert space representations coming from
closed symmetric operators that are not self-adjoint. There is, however, no
larger admissible class of integrable representations:

Proposition 4.8. Assume that an admissible class of integrable representa-

tions of A = C[x] contains all representations coming from self-adjoint Hilbert

space operators. Then any integrable representation of A on a Hilbert module

comes from a regular, self-adjoint operator.

Proof. We first prove that there can be no more integrable Hilbert space rep-
resentations than those coming from self-adjoint operators. Let (H, π) be an
integrable representation on a Hilbert space H. We may extend the closed
symmetric operator t := π(x) on H to a self-adjoint operator t2 on a larger
Hilbert space H2. This gives a representation π2 of A on H2 as in Theorem 4.4,
which is integrable by assumption. The inclusion map H →֒ H2 is an isometric
intertwiner from π to π2. Hence π is a direct summand of π2 by (4) in Defini-
tion 3.11. Thus π(xn) is self-adjoint for each n ∈ N, and π is the representation
induced by t.
Now let (E, π) be an integrable representation of A on a Hilbert D-module E .
For any Hilbert space representation ϕ : D → B(H), the induced representation
of A on the Hilbert space E ⊗ϕ H is also integrable by (2) in Definition 3.11.

Thus π(xn)⊗ϕ 1H is self-adjoint for any Hilbert space representation ϕ : D →
B(H).
A closed, densely defined, symmetric operator T on a Hilbert D-module E is
self-adjoint and regular if and only if, for any state ω on D, the closure of
T ⊗D 1 on the Hilbert spaces E ⊗DHω is self-adjoint; here Hω means the GNS-
representation for ω. This is called the Local–Global Principle by Kaad and
Lesch ([15, Theorem 1.1]); the result was first proved by Pierrot ([21, Théorème
1.18]). We will take up Local–Global Principles more systematically in §5.
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Thus π(xn) is regular and self-adjoint for each n ∈ N. So π is obtained from
the regular self-adjoint operator π(x) as in Theorem 4.4.

Example 4.9. There are many admissible classes of representations of C[x]
that are smaller than the class in Theorem 4.4. There are even many such
classes that contain the same Hilbert space representations. For instance, let
B := C0((−∞, 0))⊕C0([0,∞)) with the representation of polynomials by point-
wise multiplication. This is a C∗-hull for a class of representations of C[x] by
Theorem 8.2 below. Since the standard topologies on R and (−∞, 0) ⊔ [0,∞)
have the same Borel sets, both C∗-hulls C0((−∞, 0)) ⊕ C0([0,∞)) and C0(R)
give the same integrable Hilbert space representations because of the Borel
functional calculus. But there are regular, self-adjoint operators on Hilbert
modules that do not give a B-integrable representation. The obvious example
is the multiplier X of C0(R) that generates the universal integrable represen-
tation of C[x].

Can there be an admissible class of representations of C[x] that contains some
representation on a Hilbert space that does not come from a self-adjoint oper-
ator? We cannot rule this out completely. But such a class would have to be
rather strange. By Proposition 4.8, it cannot contain all self-adjoint operators.
By Example 2.26, it cannot contain all representations coming from positive
symmetric operators because then there would be isometric intertwiners among
integrable representations that are not ∗-intertwiners. The following example
rules out symmetric operators with one deficiency index 0:

Example 4.10. Let t be a closed symmetric operator on a Hilbert space H of
deficiency indices (0, n) for some n ∈ [1,∞]. Then dom∞(t) :=

⋂∞
n=1 dom(tn)

is a core for each power tk by [28, Proposition 1.6.1]. Thus there is a closed

representation π of C[x] with domain dom∞(t) and π(xk) = tk for all k ∈ N.
By assumption, the operator t + i is surjective, but t − i is not. That is, the
Cayley transform c := (t− i)(t+i)−1 is a non-unitary isometry. The operator t
may be reconstructed from c as in [17, Equation (10.11)]. Here c∗ is surjective,
so this simplifies to dom(t) = (1− c)c∗H = (1− c)H, and t(1− c)ξ = i(1 + c)ξ
for all ξ ∈ H. Thus c(dom t) ⊆ dom t and ct ⊆ tc because

ct
(
(1− c)ξ

)
= ic(1 + c)ξ = i(1 + c)(cξ) = t(1− c)(cξ) = (tc)

(
(1− c)ξ

)
.

Then ctn ⊆ tnc for all n ∈ N. Thus c is an isometric intertwiner from π to itself
by Proposition 2.15. If c∗ were an intertwiner as well, then c∗(dom t) ⊆ dom t
and c∗(t± i)ξ = (t± i)c∗ξ for all ξ ∈ dom(t). So

c∗c(t+ i)ξ = c∗(t− i)ξ = (t− i)c∗ξ = c(t+ i)c∗ξ = cc∗(t+ i)ξ.

This is impossible because c∗c 6= cc∗ and t+i is surjective. So the isometry c is
an intertwiner, but not a ∗-intertwiner. This is forbidden for admissible classes
of integrable representations.
If t has deficiency indices (n, 0) instead, then −t has deficiency indices (0, n)
and its Cayley transform is an isometric intertwiner that is not a ∗-intertwiner
by the argument above.
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5 Local–Global principles

Definition 5.1. Let A be a ∗-algebra with a weakly admissible class of inte-
grable representations (Definition 3.11).
The Local–Global Principle says that a representation π of A on a Hilbert
D-module E is integrable if (and only if) the representations π⊗̺1 are integrable
for all Hilbert space representations ̺ : D → B(H).
The Strong Local–Global Principle says that a representation π ofA on a Hilbert
D-module E is integrable if (and only if) the representations π⊗̺1 are integrable
for all irreducible Hilbert space representations ̺ : D → B(H).
Roughly speaking, the Local–Global Principle says that the class of integrable
representations on Hilbert modules is determined by the class of integrable
representations on Hilbert spaces. Examples where the Local–Global Principle
fails are constructed in §6 and §8. We do not know an example with the
Local–Global Principle for which the Strong Local–Global Principle fails.
An irreducible representation ̺ : D → B(H) is unitarily equivalent to the GNS-
representation for a pure state ψ onD. The tensor product E⊗̺H is canonically
isomorphic to the completion Eψ of E to a Hilbert space for the scalar-valued
inner product 〈x, y〉C := ψ(〈x, y〉D). The induced representation π ⊗D 1 of A
on Hψ is the closure of the representation π with domain E ⊆ E ⊆ Eψ.
Any representation ̺ : D → B(H) is a direct sum of cyclic representations, and
these are GNS-representations of states. Since any weakly admissible class
of integrable representations is closed under direct sums, the Local–Global
Principle holds if and only if integrability of π⊗̺1 for all GNS-representations ̺
of states on D implies integrability of π.

Example 5.2. Define integrable representations of the polynomial algebra C[x]
as in Theorem 4.4. Thus they correspond to regular, self-adjoint operators on
Hilbert modules. The main result in [15] says that the integrable representa-
tions of C[x] satisfy the Local–Global Principle. This is where our notation
comes from. We already used this to prove Proposition 4.8. The Strong Local–
Global Principle for integrable representations of C[x] is only conjectured in [15].
This conjecture had already been proved by Pierrot in [21, Théorème 1.18] be-
fore [15] was written. It is based on the following Hahn–Banach type theorem
for Hilbert submodules:

Theorem 5.3 ([21, Proposition 1.16]). Let D be a C∗-algebra and let E be a

Hilbert D-module. Let F ( E be a proper, closed Hilbert submodule. There is

an irreducible Hilbert space representation ̺ : D → B(H) with F⊗̺H ( E⊗̺H.

Corollary 5.4 ([21, Corollaire 1.17]). Let E be a Hilbert module over a

C∗-algebra D. Let F1,F2 ( E be two closed Hilbert submodules. If F1 6=
F2, then there is an irreducible Hilbert space representation ̺ : D → B(H)
with F1 ⊗̺ H 6= F2 ⊗̺ H as closed subspaces in E ⊗̺ H.

Corollary 5.5 ([21, Théorème 1.18]). Let T be a closed, semiregular operator

on a Hilbert D-module E. The operator T is regular if and only if, for each
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irreducible representation ̺ : D → B(H) on a Hilbert space H, the closures

of T ⊗̺ 1 and T ∗ ⊗̺ 1 on E ⊗̺ H are adjoints of each other.

Hence T is regular and self-adjoint if and only if T ⊗̺ 1 is a self-adjoint oper-

ator on E ⊗̺H for each irreducible Hilbert space representation ̺ : D → B(H).

We now apply the above results of Pierrot. First we deduce a criterion for rep-
resentations to be equal. Then we prove that certain definitions of integrability
automatically satisfy the Strong Local–Global Principle.

Theorem 5.6. Let A be a ∗-algebra and let πi for i = 1, 2 be (closed) repre-

sentations of A on a Hilbert module E over a C∗-algebra D. The following are

equivalent:

(1) π1 = π2;

(2) π1 ⊗̺ H = π2 ⊗̺ H for each irreducible Hilbert space representation ̺
of D;

(3) π1(a) = π2(a) for each a ∈ A.

Proof. The equivalence (3) ⇐⇒ (1) is Proposition 2.9, and (1) clearly implies
(2). Thus we only have to prove that not (3) implies not (2). Assume that
there is a ∈ A with π1(a) 6= π2(a). The graphs Γ1 and Γ2 of π1(a) and π2(a)
are different Hilbert submodules of E ⊕ E . Corollary 5.4 gives an irreducible
representation ̺ of D with Γ1 ⊗̺ H 6= Γ2 ⊗̺ H. This says that π1(a)⊗̺ 1H 6=
π2(a)⊗̺ 1H because Γi ⊗̺ H is the graph of πi(a)⊗̺ 1H.

How do we specify which representations π of a ∗-algebra A are integrable?
There are two basically different ways. The “universal way” specifies the uni-
versal integrable representation. That is, it starts with a representation (B, µ)
on a C∗-algebra B that satisfies (1) in Proposition 3.8 and takes the class of
B-integrable representations. The “operator way” imposes conditions on the
operators π(a), such as regularity and self-adjointness of π(a) or strong com-
mutation relations.
In good cases, the same class of integrable representations may be specified in
both ways. For instance, Theorem 4.4 shows that several classes of represen-
tations of C[x] are equal. The first is defined by the universal representation
on C0(R). The second asks π(a) to be regular and self-adjoint for all a ∈ Ah.
We are going to make the “operator way” more precise so that all classes of
representations defined in this way satisfy the Strong Local–Global Principle.
This is a powerful method to prove Local–Global Principles.

Definition 5.7. Let A be a ∗-algebra and Rep′(A) some weakly admissible
class of representations of A on Hilbert modules over C∗-algebras. A natural

construction of Hilbert submodules (of rank n ∈ N≥1) associates to each repre-
sentation π on a Hilbert module E that belongs to Rep′(A) a Hilbert submodule
F(π) ⊆ En, such that
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(1) if u : E1
∼−→ E2 is a unitary ∗-intertwiner between two representations π1

and π2 in Rep′(A), then u⊕n : En1 → En2 maps F(π1) onto F(π2);

(2) let D1 and D2 be C∗-algebras and let G be a D1, D2-correspondence;
let π be a representation in Rep′(A) on a Hilbert D1-module E ; then the
canonical isomorphism En ⊗D1

G ∼−→ (E ⊗D1
G)n maps F(π) ⊗D1

G onto
F(π ⊗D1

G);

(3) if πi for i in a set I are representations in Rep′(A) on HilbertD-modules Ei
over the same C∗-algebraD, then the canonical isomorphism

(⊕ Ei
)n ∼−→⊕ Eni maps F

(⊕
πi

)
onto

⊕F(πi).

In brief, F(π) ⊆ En is compatible with unitary ∗-interwiners, interior tensor
products, and direct sums.

A smaller class of representations Rep′′(A) ⊆ Rep′(A) is defined by a submodule

condition if there are two natural constructions of Hilbert submodules Fi(π),
i = 1, 2, of the same rank n, such that a representation π in Rep′(A) belongs
to Rep′′(A) if and only if F1(π) = F2(π).

A class of representations Repint(A) ⊆ Rep(A) is defined by submodule condi-

tions if it is defined by transfinite recursion by repeating the step in the previous
paragraph. More precisely, there are a well-ordered set I with a greatest ele-
ment M and least element 0 and subclasses Repi(A) ⊆ Rep(A) for i ∈ I such
that

(1) Rep0(A) = Rep(A) and RepM (A) = Repint(A);

(2) Repi+1(A) ⊆ Repi(A) is defined by a submodule condition for each i ∈ I;

(3) Repi(A) =
⋂
i′<i Rep

i′(A) if i 6= 0 and i 6= i′ + 1 for all i′ ∈ I.

The following lemma makes this definition meaningful, the following theorem
makes it interesting.

Lemma 5.8. If Rep′(A) ⊆ Rep(A) is weakly admissible and Rep′′(A) ⊆
Rep′(A) is defined by a submodule condition, then Rep′′(A) is also weakly

admissible. If (Repi(A))i∈I is a set of weakly admissible subclasses, then⋂
i∈I Rep

i(A) is weakly admissible. Any class of representations defined by

submodule conditions is weakly admissible.

Theorem 5.9. If Repint(A) ⊆ Rep(A) is defined by submodule conditions, then

it satisfies the Strong Local–Global Principle.

Before we prove these two results, we give examples of classes of representa-
tions defined by one or more submodule conditions, and a few counterexamples.
These show that a class of integrable representations defined in the operator
way is often but not always defined by submodule conditions.
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Example 5.10. The regularity condition for a ∈ Ah requires π(a) to be regu-
lar and self-adjoint. Equivalently, the closures of (π(a) ± i)(E) for both signs
are dense in E ; this is equivalent to π(a) having a unitary Cayley transform.
Sending π to the image of π(a) + i or π(a)− i is a natural construction of a
Hilbert submodule. Hence the condition that π(a) is regular and self-adjoint
is equivalent to the combination of two submodule conditions of rank 1.

Alternatively, we may proceed as in the definition of regularity for non-self-
adjoint operators. Let Γ(T ) denote the closure of the graph of an operator T . A
closed operator T is regular if and only if the direct sum of Γ(T ) and U0(Γ(T

∗))
is E ⊕ E , where U0(ξ1, ξ2) := (ξ2,−ξ1). If a ∈ Ah, then regularity and self-
adjointness of π(a) together are equivalent to the equality of

F1(π) := Γ(π(a))⊕ U0(Γ(π(a
∗))) and F2(π) := E ⊕ E .

We claim that F1 and F2 are natural constructions of Hilbert submodules of
rank 2. This is trivial for F2. That F1 is compatible with unitary intertwiners
and direct sums is an easy exercise. The construction F1 is compatible with
interior tensor products because the graph of (π ⊗D1

1G)(a) is Γ(π(a))⊗D1
G.

For instance, (2) in Theorem 4.4 defines integrable representations of C[x] by
regularity conditions. We generalise this in Theorem 5.17 below.

Example 5.11. The class of representations where π(a) is regular for some a ∈ A
is always weakly admissible by [17, Proposition 9.10]. The first example in §6
shows a class of representations defined by such a condition that does not satisfy
the Local–Global Principle, in contrast to Theorem 5.9. Hence asking for π(a)
to be regular for some a ∈ A cannot be a submodule condition. The problem is
that the inclusion Γ(π(a)∗)⊗D 1G ⊆ Γ

(
(π(a)⊗D 1G)

∗
)
for a correspondence G

may be strict.

Example 5.12. Let a1, a2 ∈ Ah and suppose that t1 := π(a1) and t2 := π(a2)
are self-adjoint, regular operators for all representations in Rep′(A); we may
achieve this by submodule conditions as in Example 5.10 in previous steps of
a recursive definition. We say that t1 and t2 strongly commute if their Cayley
transforms u1 and u2 commute. Equivalently, u1 commutes with t2, that is,
u1t2u

∗
1 = t2. The graphs of t2 and u1t2u

∗
1 are natural constructions of Hilbert

submodules of rank 2. Therefore, strong commutation of π(a1) and π(a2) is a
submodule condition.

Example 5.13. Let I ⊳ A be an ideal. A nondegeneracy condition for I asks
the closed linear span of π(I)E to be all of E ; here E is the domain of π. This
means that F1(π), the closed linear span of π(a)ξ for a ∈ I, ξ ∈ E, is equal to
F2(π) = E . These are natural constructions of Hilbert submodules of rank 1.
So a nondegeneracy condition is a submodule condition.
For instance, let I be a non-unital ∗-algebra and let A = Ĩ be its unitisation.
Any representation of I extends uniquely to a unital representation of A. The
class of nondegenerate representations of I inside the class of all representations
of A is defined by a submodule condition.
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More generally, let V1, V2 ⊆ A be vector subspaces and ask the closed linear
spans of π(a)ξ for a ∈ Vj , ξ ∈ E to be equal for j = 1, 2. This is a submodule

condition as well. For instance, the condition π(a+ i)E = E for a ∈ Ah is of
this form. It holds if and only if the Cayley transform of π(a) is an isometry
(possibly without adjoint).
Often we need a mild generalisation of the above construction, see Example 5.14
below. Suppose that we have constructed a representation ϕ(π) of a unital
∗-algebra A′ on E for any representation π in Rep′(A), such that π 7→ ϕ(π) is
compatible with unitary ∗-intertwiners, direct sums, and interior tensor prod-
ucts; the last property means that ϕ(π⊗D1

1G) = ϕ(π)⊗D1
1G as representations

on E⊗D1
G. Then we may ask the nondegeneracy condition for an ideal in A′ in-

stead. In particular, A′ may be a weak C∗-hull for some class of representations
containing Rep′(A).

Example 5.14. Let a1, . . . , an ∈ Ah be commuting, symmetric elements and
suppose that π(aj) for j = 1, . . . , n are strongly commuting, self-adjoint, regular
operators for all representations in Rep′(A); we may achieve all this by previous
submodule conditions as in Examples 5.10 and 5.12. A closed spectral condition

asks the joint spectrum of π(a1), . . . , π(an) to be contained in a closed subset
X ⊆ Rn.
We claim that this is a submodule condition. Under our assumptions, the
functional calculus Φ: C0(R

n) → B(E) exists. Our spectral condition means
that Φ(C0(R

n \ X))E = 0. The construction of Φ is clearly compatible with
unitary ∗-intertwiners and direct sums. It is also compatible with interior
tensor products, that is, the functional calculus for π ⊗ 1(a1), . . . , π ⊗ 1(an)
maps f 7→ Φ(f)⊗ 1. Hence Φ(C0(R

n \X))E is a naturally constructed Hilbert
submodule of E . So our spectral condition for closed X ⊆ Rn is a submodule
condition.
More generally, let X ⊆ Rn be locally closed, that is, X is relatively open in its
closure X. Suppose that the spectral condition for X holds for all representa-
tions in Rep′(A), say, by previous recursion steps. Then the functional calculus
homomorphism for π(a1), . . . , π(an) exists and descends to C0(X). The spec-

tral condition for X asks the restriction of this homomorphism to the ideal
C0(X) ⊳ C0(X) to be nondegenerate. This is a submodule condition by Exam-
ple 5.13.

Example 5.15 (see [31, §3]). Let Aµ for some µ ∈ R\{0} be the unital ∗-algebra
generated by two elements v, n with the relations v∗v = vv∗ = 1, n∗n =
nn∗, v∗nv = µn. This is the algebra of polynomial functions on the quantum
group Eµ(2). The relations allow to write any element as a linear combination
of vk ·g(n, n∗) for k ∈ Z and a polynomial g. It follows that the graph topology
of a representation of Aµ is generated by the graph norms of (n∗n)k for k ∈ N.

Thus a representation is closed if and only if its domain is
⋂∞
k=0 π((n

∗n)k),
compare the proof of (2.10).
The C∗-algebra of Eµ(2) is a C∗-hull for a certain class of integrable represen-

tations of Aµ that is defined by submodule conditions. First, we require π(n)

Documenta Mathematica 22 (2017) 1375–1466



Representations by Unbounded Operators 1403

to be a regular, normal operator; equivalently, π(n+ n∗) and −iπ(n− n∗)
are regular and self-adjoint, and they strongly commute; these are submod-
ule conditions by Examples 5.10 and 5.12. Secondly, we require the spectrum
of π(n) (or the joint spectrum of its real and imaginary part) to be contained in
Xµ := {z ∈ C | |z| ∈ µZ}∪{0}; this is a submodule condition by Example 5.14.

Finally, we require π(n∗n)k to be regular and self-adjoint for all k ≥ 1. These
are submodule conditions by Example 5.10.
We claim that an integrable representation on E is equivalent to a pair (V,N)
consisting of a unitary operator V and a regular, normal operator N on E
with spectrum contained in Xµ, subject to the relation V ∗NV = µN . First,
any such pair (V,N) gives an integrable representation of Aµ with domain⋂∞
k=0 dom(Nk). Conversely, if π is an integrable representation, then let

N := π(n), V := π(v). These have the properties required above. Since

π((n∗n)k) is self-adjoint and contained in the symmetric operator (N∗N)k, we

must have π((n∗n)k) = (N∗N)k. So the domain of the representation of Aµ is⋂∞
k=0 dom(Nk).

The regular, normal operator N with spectrum in Xµ defines a functional
calculus ̺ on C0(Xµ). The commutation relation v∗nv = µn is equivalent to
V ∗̺(f)V = ̺(α(f)) for the automorphism α(f)(x) := f(µx) on C0(Xµ). As a
consequence, the crossed product C∗-algebra C0(Xµ)⋊α Z is a C∗-hull for our
class of integrable representations.
By the way, this also follows from our Induction Theorem. For this, we
give Aµ the unique Z-grading where v has degree 1 and n has degree 0. Then
(Aµ)0 = C[n, n∗], and we call a representation of C[n, n∗] integrable if n is reg-
ular and normal with spectrum contained in Xµ. The C∗-hull for this class of
integrable representations of C[n, n∗] is C0(Xµ). In this case, all representations
of C[n, n∗] are inducible to Aµ, and the induced C∗-hull for Aµ is C0(Xµ)⋊αZ.

Interesting classes of representations defined by submodule conditions occur in
Theorems 5.21 and 8.6. The examples in [7, 27] are also defined by submodule
conditions, compare Proposition 9.4.

Example 5.16. If the algebra A carries a topology, then we may restrict atten-
tion to representations of A that are continuous in some sense. For instance,
if G is a topological group and A = C[G] is the group ring of the underly-
ing discrete group, then representations of A are unitary representations of G,
possibly discontinuous. Among them, we may restrict to the continuous rep-
resentations (compare the definition of a host algebra for G in [11]). If G is
an infinite-dimensional Lie group, we may restrict further to representations
of C[G] that are smooth in the sense that the smooth vectors are dense. I do
not expect continuity or smoothness to be a submodule condition, and I do
not know when the classes of continuous or smooth representations satisfy the
Local–Global Principle or its strong variant.
Semiboundedness conditions ask for certain (regular) self-adjoint operators to
be bounded above, see [19]. If we specify the upper bound on the spectrum, this
is a spectral condition as in Example 5.14. When we let the upper bound go
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to ∞, however, then direct sums no longer preserve semiboundedness. There-
fore, semiboundedness conditions seem close enough to submodule conditions
to be tractable, but the details require further thought.

Proof of Lemma 5.8. Let F1 and F2 be natural constructions of Hilbert sub-
modules of rank n that define Rep′′(A) inside Rep′(A), and let Rep′(A)
be weakly admissible. Let πi for i = 1, 2 be representations on Hilbert
D-modules Ei for a C∗-algebra D that belong to Rep′(A). Let u : E1

∼−→ E2

be a unitary ∗-intertwiner from π1 to π2. If F1(π1) = F2(π1), then F1(π2) =
u⊕n

(
F1(π1)

)
= u⊕n

(
F2(π1)

)
= F2(π2). Thus π2 belongs to Rep′′(A) if π1

does. This verifies (1) in Definition 3.11 using (1) in Definition 5.7. Simi-
larly, (2) and (3) in Definition 5.7 show that Rep′′(A) inherits (2) and (3) in
Definition 3.11 from Rep′(A). Thus Rep′′(A) is again weakly admissible.
It is trivial that weak admissibility is hereditary for intersections. By transfinite
induction, it follows that any class of representations defined by submodule
conditions is weakly admissible.

Proof of Theorem 5.9. Let F1 and F2 be natural constructions of Hilbert
submodules of rank n that define Rep′′(A) inside Rep′(A), and assume
that Rep′(A) satisfies the Strong Local–Global Principle. Let π be a repre-
sentation on a Hilbert D-module E that does not belong to Rep′′(A). We
must find an irreducible representation ̺ of D on a Hilbert space H such that
π⊗̺H does not belong to Rep′′(A). If the representation does not even belong
to Rep′(A), this is possible because Rep′(A) satisfies the Strong Local–Global
Principle by assumption. So we may assume that π belongs to Rep′(A) but
not to Rep′′(A). Thus F1(π) and F2(π) are well defined and different Hilbert
submodules of En. Corollary 5.4 gives an irreducible representation ̺ of D on
a Hilbert space H such that F1(π) ⊗̺ H 6= F2(π) ⊗̺ H as closed subspaces of
En ⊗̺ H. Identify these with subspaces of (E ⊗̺ H)n. The condition (2) in
Definition 5.7 gives

F1(π ⊗̺ H) = F1(π)⊗̺ H 6= F2(π) ⊗̺ H = F2(π ⊗̺ H).

That is, π⊗̺H does not belong to Rep′′(A). Thus Rep′′(A) inherits the Strong
Local–Global Principle from Rep′(A).
The Strong Local–Global Principle is easily seen to be hereditary for inter-
sections. Hence any class of representations defined by submodule conditions
satisfies the Strong Local–Global Principle by transfinite induction.

Theorem 5.17. Let A be a ∗-algebra and let S ⊆ Ah. Let RepS(A) be the

class of all representations where the elements of S act by regular, self-adjoint

operators. This class is defined by submodule conditions and hence satisfies the

Strong Local–Global Principle. It is admissible if S is a strong generating set

for A.

Proof. Asking π(a) to be regular and self-adjoint for a single a ∈ S is a submod-
ule condition by Example 5.10. In order to ask this simultaneously for a set S,
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let ≺ be a well-ordering on S, and add an elementM with a ≺M for all a ∈ S.
Let Repa(A) ⊆ Rep(A) for a ∈ S ∪ {M} be the class of all representations π
where π(b) is regular and self-adjoint for all b ∈ S with b ≺ a. These subclasses
form a recursive definition of RepS(A) by submodule conditions as in Defini-
tion 5.7. Thus RepS(A) is defined by submodule conditions. Then it is weakly
admissible and satisfies the Strong Local–Global Principle by Lemma 5.8 and
Theorem 5.9.
From now on, we assume that S is a strong generating set. For RepS(A) to be
admissible, we must prove that any isometric intertwiner I : (E0, π0) →֒ (E, π)
between two Hilbert space representations in RepS(A) is a ∗-intertwiner.
If a ∈ S, then π(a) and π0(a) are regular, self-adjoint operators. Hence they
generate integrable representations of C[x] as in Theorem 4.4. The isometry I
intertwines these representations of C[x]. Hence it is a ∗-intertwiner by Theo-
rem 4.4. In particular, I∗ maps domπ(a) to domπ0(a) for each a ∈ S. Since S
is a strong generating set, (2.10) gives E0 =

⋂
a∈S domπ0(a) and similarly

for π. So I∗(E) ⊆ E0. Then E = E0 + (E ∩ E⊥
0 ) and I is a ∗-intertwiner by

Proposition 2.27.

Corollary 5.18. Let S ⊆ Ah be a strong generating set for a ∗-algebra A
and let B with universal representation µ be a weak C∗-hull. If the closed

multipliers µ(a) for a ∈ S are self-adjoint and affiliated with B, then B is a

C∗-hull.

Proof. All B-integrable representations belong to RepS(A) because the latter
is weakly admissible and contains the universal B-integrable representation.
Since RepS(A) is admissible by Theorem 5.17, any smaller class of integrable
representations inherits the equivalent conditions (2)–(4) in Proposition 3.8,
which characterise C∗-hulls among weak C∗-hulls.

Theorem 5.19. Let A be a ∗-algebra, B a C∗-algebra, (B, µ) a representation

of A on B, and T1, . . . , Tn ∈ A. Assume that µ(T1), . . . , µ(Tn) are self-adjoint

and affiliated with B and generate B in the sense of Woronowicz, see [32,
Definition 3.1]. Then B is a C∗-hull for the B-integrable representations of A
defined by (B, µ), and these satisfy the Strong Local–Global Principle.

Proof. To show that B is a C∗-hull, we check the condition (5) in Proposi-
tion 3.8. Let ̺ : B → B(H) be a representation of B on a Hilbert space H and
let (E, π) be the corresponding B-integrable representation of A. Let (E0, π|E0

)
be a B-integrable representation on a closed subspace E0 ⊆ E and let P ∈ B(E)
be the projection onto E0. We must show that ̺(B) is contained in the commu-
tant of P . Equivalently, ̺ is a morphism in the notation of [32] to the algebra
K = K(E0)⊕K(E⊥

0 ) of all compact operators on E that commute with P .
Let 1 ≤ i ≤ n. Since Ti is self-adjoint and regular as an adjointable operator
on the Hilbert B-module B, it generates an integrable representation of the
polynomial algebra C[x] on B as in Theorem 4.4. These integrable representa-
tions form an admissible class. Therefore, a B-integrable representation of A
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gives an integrable representation of C[x] when we compose with the canonical
map ji : C[x] → A, x 7→ Ti, and take the closure. And since π and π|E0

are
both B-integrable, π|E0

◦ ji is a direct summand in π ◦ ji. Equivalently, the
unbounded operator π(Ti) is affiliated with K.
The extension of ̺ to affiliated multipliers maps µ(Ti) to π(Ti), which is affili-
ated with K. Hence ̺ is a morphism to K because these affiliated multipliers
generate B. Thus B is a C∗-hull for the B-integrable representations by Propo-
sition 3.8.
Now we check the Strong Local–Global Principle. Let (E, π) be a representation
of A on a Hilbert D-module E . Assume that the representation (E, π) ⊗ω Hω
is integrable for each irreducible representation ω of D on a Hilbert space Hω
in the sense that it comes from a representation of B. We must show that the
representation (E, π) is integrable.
The condition that π(Ti) be self-adjoint and regular is a submodule condition by
Example 5.10. Hence the class of representations with this property satisfies the
Strong Local–Global Principle by Theorem 5.9. Therefore, π(Ti) is a regular,
self-adjoint operator on E for i = 1, . . . , n.
Let ω be the direct sum of all irreducible representations of D; this is a faithful
representation of D on some Hilbert space H. The induced representation j
of K(E) on K := E ⊗DH is faithful as well. By assumption, the representation
π ⊗D 1 of A on K is integrable, so it comes from a representation σ of B.
The extension of σ to affiliated multipliers maps µ(Ti) η B to (π ⊗D 1)(Ti).
Since π(Ti) is a regular operator on E , it is an affiliated multiplier of K(E),
see [20] or Proposition 3.13. Thus (π ⊗D 1)(Ti) is affiliated with the image
of K(E) on K by [17, Proposition 9.10]. Thus σ(µ(Ti)) η K(E) for i = 1, . . . , n.
Since the affiliated multipliers µ(Ti) generate B in the sense of Woronowicz, σ
factors through a morphism τ : B → K(E). This is the same as a representation
of B on E . Let π′ be the representation of A on E associated to τ . If ̺ is
an irreducible Hilbert space representation of D, then π ⊗̺ H = π′ ⊗̺ H by
construction of τ . Hence Theorem 5.6 gives π = π′. Since π′ is integrable by
construction, so is π.

The first counterexample in §6 exhibits a symmetric affiliated multiplier that
generates a C∗-algebra, such that the Local–Global Principle fails and B is not
a C∗-hull. Without self-adjointness, we only get the following much weaker
statement:

Lemma 5.20. Let A be a ∗-algebra, B a C∗-algebra, (B, µ) a representation

of A on B, and T1, . . . , Tn ∈ A. Assume that µ(T1), . . . , µ(Tn) are affiliated

with B and generate B in the sense of Woronowicz. Then B is a weak C∗-hull

for the B-integrable representations of A.

Proof. To show that B is a weak C∗-hull, we check (1) in Proposition 3.8.
Let ̺1, ̺2 be representations of B on a Hilbert space H with (B, µ) ⊗̺1

H =
(B, µ) ⊗̺2

H. We claim that ̺1 ⊕ ̺2 : B → B(H2) = M2(B(H)) maps B into
the multiplier algebra of the diagonally embedded copy K of K(H). This is
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equivalent to ̺1 = ̺2. Since (B, µ)⊗̺1
H = (B, µ)⊗̺2

H, the extension of ̺1⊕̺2

to affiliated multipliers maps µ(Ti) η B to an operator of the form (Xi, Xi) for
i = 1, . . . , n; these are affiliated with K. Since these affiliated multipliers
generate B, ̺1 ⊕ ̺2 is a morphism from B to K. Thus B is a weak C∗-hull
for A.

5.1 Universal enveloping algebras

We illustrate our theory by an example. Let g be a finite-dimensional Lie
algebra over R and let A = U(g) be its universal enveloping algebra with the
usual involution, where elements of g are skew-symmetric. A representation
of A on E , possibly not closed, is equivalent to a dense submodule E ⊆ E
with a Lie algebra representation π : g → EndD(E) satisfying 〈ξ, π(X)(η)〉 =
−〈π(X)(ξ), η〉 for all X ∈ g, ξ, η ∈ E.

Let G be a simply connected Lie group with Lie algebra g and let B := C∗(G).
A representation of C∗(G) on a Hilbert module E is equivalent to a strongly
continuous, unitary representation of G on E . Given such a representation,
let E∞ ⊆ E be its subspace of smooth vectors. This is the domain of a closed
representation of U(g). We call a representation of U(g) integrable if it comes
from a unitary representation of G in this way.

In particular, G acts continuously on C∗(G) by left multiplication with unitary
multipliers. Let B = C∗(G)∞ be the right ideal of smooth elements for this
G-action, equipped with the canonical U(g)-module structure µ. By the univer-
sal property of C∗(G), the pair (B, µ) is the universal integrable representation.
That is, a representation of U(g) is integrable if and only if it is of the form
(B, µ) ⊗̺ E for a representation ̺ of C∗(G).

Let X1, . . . , Xd form a basis of g. The Laplacian is L := −∑d
i=1 X

2
i ∈ U(g).

Theorem 5.21 ([21, Théorème 2.12]). A representation (π,E) of U(g) is in-

tegrable if and only if π(Ln) is regular and self-adjoint for all n ∈ N.

Proof. Since Pierrot does not require representations to be closed, his state-
ment is slightly different from ours. Pierrot shows that there is a continuous
representation ̺ of G with differential X 7→ π(X) if and only if T := π(L)
is self-adjoint and regular. His proof shows that all elements of

⋂∞
n=1 dom T n

are smooth vectors for ̺. Conversely, all smooth vectors must belong to this
intersection. A representation of U(g) is determined by its domain and the
closed operators π(X) for X ∈ g. So a closed representation (E, π) of U(g) is
integrable if and only if T is self-adjoint and regular and E =

⋂∞
n=1 dom T n.

Moreover, the proof shows that the graph topology for a representation with
regular self-adjoint T is determined by the graph norms of Ln for all n ∈ N. If
π(Ln) is self-adjoint, then it must be equal to T n because π(Ln) ⊆ T n and T n

is symmetric. Therefore, if π(L) is regular and self-adjoint, then the domain
of π is

⋂∞
n=1 domT n if and only if π(Ln) is regular and self-adjoint also for all

n ≥ 2.
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Theorem 5.22. The class of integrable representations of U(g) has C∗(G) as

a C∗-hull and is defined by submodule conditions. So it satisfies the Strong

Local–Global Principle.

Proof. By Theorem 5.21, a representation is integrable if and only if all elements
of the set {Ln | n ∈ N} act by a regular and self-adjoint operator. Hence the
assertion follows from Theorem 5.17.
Alternatively, the closed multipliers of C∗(G) associated to iX1, . . . , iXd are
regular and affiliated with C∗(G) and generate C∗(G) by [32, Example 3 in §3].
Hence C∗(G) is a C∗-hull and the Strong Local–Global Principle holds by The-
orem 5.19.

The results of Vassout [30] get close to proving an analogue of Theorem 5.22 for
an s-simply connected Lie groupoidG with compact base. This analogue would
replace g by the space of smooth sections of the Lie algebroidA(G), and U(g) by
the ∗-algebra of G-equivariant differential operators on G, a subalgebra of the
∗-algebra of G-pseudodifferential operators. Any symmetric, elliptic element
of U(g) should be a possible replacement for the Laplacian in Theorem 5.22.

6 Polynomials in one variable II

We discuss two classes of “integrable” representations of the ∗-algebra C[x] with
x = x∗ which are weakly admissible, but not admissible, and which violate the
Local–Global Principle. Both examples have a weak C∗-hull, on which all pow-
ers of the generator x act by an affiliated multiplier. In the first example, these
affiliated multipliers generate the weak C∗-hull, but not in the second. Nei-
ther Theorem 5.17 nor Theorem 5.19 apply because the generating affiliated
multipliers are not self-adjoint. The first example shows that a C∗-algebra gen-
erated by affiliated multipliers in the sense of Woronowicz need not be a C∗-hull,
though it is always a weak C∗-hull by Lemma 5.20. The second example shows
that a weak C∗-hull need not be generated by affiliated multipliers.
Let S ∈ B(ℓ2N) be the unilateral shift. Let Q be the closed symmetric operator
on ℓ2N with Cayley transform S. Thus Q has deficiency index (0, 1). The
domain of Q is (1 − S)ℓ2N, and Q(1 − S)ξ := i(1 + S)ξ for all ξ ∈ ℓ2N (see
also Example 4.10). We may identify ℓ2N with the Hardy space H2. Then Q
becomes the Toeplitz operator with the unbounded symbol i(1 + z)(1− z)−1.
Let T be the Toeplitz C∗-algebra, that is, the C∗-subalgebra of B(ℓ2N) gener-
ated by S. Every element in T is of the form Tϕ+K, where Tϕ is the Toeplitz
operator with symbol ϕ ∈ C(S1) and K is a compact operator. Let T0 ⊳ T be
the kernel of the unique ∗-homomorphism T → C that maps S to 1.

Proposition 6.1. There is a symmetric, affiliated multiplier Q of T0 with

domain (1−S) ·T0 and Q · (1−S) · t := i(1+S) · t for all t ∈ T0. It generates T0

in the sense of Woronowicz.

Proof. We claim that the right ideal (1−S)S∗T0 ⊆ T0 is dense. This would fail
for T because the continuous ∗-homomorphism T → C, S 7→ 1, annihilates this
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right ideal. First, (1− S)S∗K(ℓ2N) is dense in K(ℓ2N) because (1 − S)S∗ has
dense range on ℓ2N. So the closure of (1− S)S∗T0 contains K(ℓ2N). Secondly,
(1−S)S∗T0/K(ℓ2N) is dense in T0/K(ℓ2N) ∼= C0(S

1 \{1}) because the function
(1 − z)z on S1 vanishes only at 1.
An affiliated multiplier of T0 is the same as a regular operator on T0, viewed
as a Hilbert module over itself. Since (1 − S)S∗T0 is dense in T0, there is a
regular, symmetric operator Q′ on T0 that has S as its Cayley transform, see
[17, Chapter 10]. The operator Q′ has the domain (1 − S)S∗T0 and acts by
Q′ · (1 − S)S∗t := i(1 + S)S∗t. Rewriting any t ∈ T0 as t = S∗St, we may
replace S∗t by t here. Thus Q′ = Q.
Since Q + i maps (1 − S)t to i(1 + S)t + i(1 − S)t = 2it, it is surjective, and
(Q+ i)−1 = 1

2i (1 − S) belongs to T0. Hence (Q+ i)∗ = Q∗ − i is the inverse of
1

−2i (1−S∗). SoQ∗ has domain (1−S∗)T0 and maps (1−S∗)t 7→ i(1−S∗)t−2it =
−i(1+S∗)t. As expected, Q∗ contains Q: we may write (1−S)t = S∗St−St =
(1 − S∗)(−St), and Q∗ maps this to −i(1 + S∗)(−St) = i(S + 1)t.
Next we show that Q∗Q+1 is the inverse of 1

4 (1−S)(1−S∗) ∈ T0. We compute

Q∗Q(1− S)(1− S∗)t = iQ∗(1 + S)(1− S∗)t = iQ∗(1 + S − S∗ − SS∗)t

= iQ∗(1−S∗)(2+S−SS∗)t = (1+S∗)(2+S−SS∗)t = (4−(1−S)(1−S∗))t.

This implies (Q∗Q + 1)(1 − S)(1 − S∗)t = 4t. Since this is already surjective
and Q∗Q+ 1 is injective, the domain of Q∗Q+ 1 is exactly (1− S)(1− S∗)T0,
and Q∗Q+ 1 is the inverse of 1

4 (1− S)(1− S∗) ∈ T0 as asserted.
Let ̺1 and ̺2 be two Hilbert space representations of T0 whose extension to
affiliated multipliers maps Q to the same unbounded operator. Then they
also map the Cayley transform S of Q to the same partial isometry. So
̺1(S) = ̺2(S), which gives ̺1 = ̺2. Thus Q separates the representations
of T0. Since (Q∗Q + 1)−1 ∈ T0 as well, [32, Theorem 3.3] shows that the
affiliated multiplier Q generates T0.

The domain of Qn is the right ideal (1− S)n · T0, which is dense in T0 for the
same reason as (1−S) ·T0. Even more, the right ideal (1−S)n+1 ·T0 is dense in
(1−S)n ·T0 in the graph norm of Qn. Thus the intersection T of this decreasing
chain of dense right ideals (1− S)nT0 is still dense in T0 by [28, Lemma 1.1.2].
This intersection is the domain of a closed representation µ of C[x] on T0 with
µ(xn) = Qn. We call a representation of C[x] on a Hilbert module E Toeplitz

integrable if it is of the form (T, µ)⊗̺ E for some representation ̺ : T0 → B(E).

Proposition 6.2. The class of Toeplitz integrable representations of C[x] is

weakly admissible with the weak C∗-hull T0. It is not admissible, so T0 is

not a C∗-hull. The Toeplitz integrable representations violate the Local–Global

Principle.

A representation (E, π) of C[x] on a Hilbert module E over a C∗-algebra D is

Toeplitz integrable if and only if it has the following properties:

(1) π(x+ i)nE = E for all n ∈ N≥1;
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(2) π(x) is regular.

Toeplitz integrable representations on E are in bijection with regular, symmetric

operators T on E for which T + i is surjective.

Proof. We checked condition (1) in Proposition 3.8 in the proof of Proposi-
tion 6.1. Thus T0 is a weak C∗-hull for the Toeplitz integrable representa-
tions, and this class is weakly admissible. Any self-adjoint operator on a
Hilbert space generates a Toeplitz integrable representation of C[x] because
T0/K(ℓ2N) ∼= C0(R); so does Q itself. Thus both Example 4.10 and Proposi-
tion 4.8 show that the class of Toeplitz integrable representations is not admis-
sible. So T0 is not a C∗-hull.
We claim that the representation (T, µ) of C[x] on T0 has the properties (1)
and (2) in the proposition. First, (µ(x) + i)n acts by (2i)n(1 − S)−n on its
dense domain T :=

⋂∞
k=1(1 − S)kT0. Since (1 − S)k+1T0 is norm dense in

(1−S)kT0, the closure of (µ(x)+ i)n is equal to (2i)n(1−S)−n with its natural
domain (1 − S)nT0, and this operator is surjective. Secondly, µ(x) = Q is
regular.
The property (1) is a sequence of submodule conditions, see Example 5.13.
Hence it is inherited by interior tensor products by Lemma 5.8. So is the
property (2) by [17, Proposition 9.10]. Hence both (1) and (2) are necessary
for a representation (E, π) to be Toeplitz integrable.
Conversely, let (E, π) be a representation of C[x] on E that satisfies (1) and (2).
Then the closed, symmetric operator T := π(x) on E is regular by (2). So
its Cayley transform s is an adjointable partial isometry such that (1 − s)s∗

has dense range (see [17, Chapter 10]). Even more, s is an isometry because
(T + i)E = E . Thus s generates a unital representation ̺ of T . The restriction
of ̺ to T0 is nondegenerate because (1− s)s∗ has dense range. Let π′ := µ⊗̺ 1
be the representation of C[x] associated to ̺. Then

π′((x+ i)n) = (2i)n(1− s)−n ⊇ π((x + i)n).

Assumption (1) implies that E is dense in the domain of (2i)n(1− s)−n in the
graph norm of (2i)n(1 − s)−n. Hence even π′((x+ i)n) = (2i)n(1 − s)−n =
π((x + i)n). Since the domains of π(x)n form a decreasing sequence, induction
on n now shows that π′(xn) = π(xn). The set {xn} is a strong generating set
for C[x] by Lemma 4.1. Thus π = π′ by Proposition 2.9. This finishes the
proof that Toeplitz integrable representations of C[x] are characterised by the
properties (1) and (2) and that they are in bijection with regular, symmetric
operators T for which T + i is surjective.
For a counterexample to the Local–Global Principle, let N̄ = N ∪ {∞} be the
one-point compactification of N and D = C(N̄). Let E ⊆ C(N̄, ℓ2N) consist of
all continuous functions f : N̄→ ℓ2N with f(∞)⊥δ0. The unilateral shift S on
C(N̄, ℓ2N) restricts to a non-adjointable isometry s on this subspace. Let T be
the inverse Cayley transform of s. This is a closed, symmetric operator on E
that is irregular because its Cayley transform is not adjointable. If ̺ : D →
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B(H) is a Hilbert space representation, then the induced representation of C[x]
is associated to the closed operator T ⊗̺ 1. The operator (T ⊗̺ 1) + i remains
surjective, and T ⊗̺ 1 is regular because it acts on a Hilbert space. So T ⊗̺ 1
generates a Toeplitz integrable representation for all representations ̺ of D.
Since T itself does not generate a Toeplitz integrable representation, the Local–
Global Principle is violated.

Condition (1) in Proposition 6.2 is a submodule condition. If regularity without
self-adjointness were a submodule condition as well, then the Toeplitz integrable
representations of C[x] would be defined by submodule conditions; so the failure
of the Local–Global Principle for them would contradict Theorem 5.19.
The identical inclusion T0 →֒ M(K(ℓ2N)) is a representation of the weak
C∗-hull T0 on K(ℓ2N) and thus corresponds to a Toeplitz integrable represen-
tation of C[x] on K(ℓ2N). This is simply the restriction of (T, µ) to the Hilbert
T0-submodule K(ℓ2N) ⊂ T0, with domain T ∩ K(ℓ2N) and the same action µ
of C[x]. Call a representation purely Toeplitz integrable if it is of the form
(T ∩K(ℓ2N), µ)⊗̺ E for some representation ̺ : K(ℓ2N)→ B(E).

Proposition 6.3. The purely Toeplitz integrable representations of C[x] form

a weakly admissible class that is not admissible, and K(ℓ2N) is a weak C∗-hull

for it, but not a C∗-hull. This class violates the Local–Global Principle. The

closed multiplier Q = µ(x) of T0 is affiliated with K(ℓ2N) but does not gener-

ate K(ℓ2N).
A representation (E, π) of C[x] on a Hilbert module E over a C∗-algebra D is

purely Toeplitz integrable if and only if it has the following property in addition

to those in Proposition 6.2:

(3) the closure of
⋃∞
n=1(π(x − i)nE)⊥ is E.

Proof. Since K(ℓ2N) has fewer representations than T0, the condition (1) in
Proposition 3.8 for K(ℓ2N) follows from the corresponding property for T0,
which we have already checked in the proof of Proposition 6.1. Hence K(ℓ2N)
is a weak C∗-hull for the purely Toeplitz representations of C[x].
Since Q gives a purely Toeplitz representation of C[x] on ℓ2(N), the class of
purely Toeplitz integrable representations is not admissible by Example 4.10.
Therefore, its weak C∗-hull is not a C∗-hull. The same counterexample as in
the proof of Proposition 6.2 shows that the Local–Global Principle fails for the
purely Toeplitz representations.
Any closed operator on ℓ2N is affiliated with K(ℓ2N). In particular, so is Q. In
the identical representation of K(ℓ2N) on the Hilbert space ℓ2N, the image of Q
is affiliated with T0 by Proposition 6.1. But the representation of K(ℓ2N) is not
by a morphism to T0 because the inclusion map K(ℓ2N) →֒ T0 is degenerate.
Hence Q does not generate K(ℓ2N) in the sense of Woronowicz.
The element Pn := 1 − Sn(S∗)n ∈ K(ℓ2N) ⊆ T0 is the orthogonal projection
onto the span of δ0, . . . , δn−1. A representation of T0 maps Pn to an orthogonal
projection whose image is the orthogonal complement of the image of Sn. This

Documenta Mathematica 22 (2017) 1375–1466



1412 Ralf Meyer

is also the orthogonal complement of the image of π(x− i)n. These orthogonal
complements form an increasing chain of complementable submodules, and π
is purely Toeplitz if and only if their union is all of E . This proves our charac-
terisation of purely Toeplitz representations.

7 Bounded and locally bounded representations

Let A be a ∗-algebra. A bounded representation of A on a Hilbert module E
is a ∗-homomorphism π : A → B(E). Corollary 2.11 says that a closed repre-
sentation is bounded once π(a) is globally defined for a in a strong generating
set of A. Finite-dimensional representations are always bounded. In particular,
characters are bounded. Thus commutative ∗-algebras have many bounded
representations. Many other ∗-algebras, such as the Weyl algebra, have no
bounded representations. In this section, we are going to study C∗-hulls related
to bounded representations. These are only relevant if A has many bounded
representations.

Any bounded representation π of A is bounded in some C∗-seminorm q on A,
that is, ‖π(a)‖ ≤ q(a) for all a ∈ A. Then π extends to the (Hausdorff)
completion Aq of A in the seminorm q, which is a unital C∗-algebra.

If p, q are two C∗-seminorms on A, then max{p, q} is a C∗-seminorm as well.
Thus the set N (A) of C∗-seminorms on A is directed. For q, q′ ∈ N (A) with
q ≤ q′, let ϕq,q′ : Aq′ → Aq be the ∗-homomorphism induced by the identity
map on A. The C∗-algebras Aq and the ∗-homomorphisms ϕq,q′ for q ≤ q′

in N (A) form a projective system of C∗-algebras. Each ∗-homomorphism ϕq,q′

is unital and surjective because its image contains A, which is unital and dense
in Aq′ .

The C∗-seminorms in N (A) define a locally convex topology on A, where a
net converges if and only if it converges in any C∗-seminorm. Let A with the
canonical map j : A → A be the completion of A in this topology. This is a
C∗-algebra if and only if there is a largest C∗-seminorm on A. In general, A is
the projective limit of the diagram of unital C∗-algebras (Aq, ϕq,q′) described
above. Thus A is a unital pro-C∗-algebra, see [22].

As a concrete example, we describe A for a commutative ∗-algebra A.

Definition 7.1. Let Â be the set of ∗-homomorphisms A → C, which we
briefly call characters. Each a ∈ A gives a function â : Â → C, â(χ) := χ(a).
We equip Â with the coarsest topology making these functions continuous.
That is, a net (χi)i∈I in Â converges to χ ∈ Â if and only if limχi(a) = χ(a)
for all a ∈ A. Let τc be the compactly generated topology associated to this
topology, that is, a subset in Â is closed in τc if and only if its intersection with
any compact subset in Â is closed.

If a ∈ A, then its Gelfand transform â is a continuous function on Â. This
defines a ∗-homomorphism A → C(Â). If the usual topology on Â is locally
compact or metrisable, then it is already compactly generated and hence equal
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to τc. The topology τc may have more closed subsets and hence more continuous
functions to C. So C(Â) ⊆ C(Â, τc).

Proposition 7.2. Let A be a commutative ∗-algebra. The directed set N (A)
of C∗-seminorms on A is isomorphic to the directed set of compact subsets of Â,

where K ⊆ Â corresponds to the C∗-seminorm

‖a‖K := sup{|â(χ)| | χ ∈ K}.

The C∗-completion of A in this C∗-seminorm is C(K). And A ∼= C(Â, τc),
where the inclusion map j : A→ A is the Gelfand transform A→ C(Â, τc), a 7→
â.

Proof. Let q be a C∗-seminorm on A. Let Âq ⊆ Â be the subspace of all

q-bounded characters, that is, χ ∈ Âq if and only if |χ(a)| ≤ q(a) for all
a ∈ A. These are precisely the characters that extend to characters on the
C∗-completion Aq. Conversely, since A is dense in Aq, any character on Aq
is the unique continuous extension of a q-bounded character on A. And the
subspace topology on Âq ⊆ Â is equal to the canonical topology on the spec-
trum of Aq: a net of q-bounded characters that converges uniformly on A also
converges uniformly on Aq. Thus

Aq ∼= C(Âq)

by the Gelfand–Naimark Theorem, and so Âq ⊆ Â is compact for each q ∈
N (A).
If q ≤ q′, then Âq ⊆ Âq′ and ϕqq′ : Aq′ ։ Aq is the restriction map for the

subspace Âq ⊆ Âq′ . The pro-C∗-algebra A is the limit of this diagram of

commutative C∗-algebras. Since all the maps Âq ⊆ Âq′ are injective, A is

the algebra of continuous functions on
⋃
q∈N (A) Âq with the inductive limit

topology. That is, a subset of
⋃
q∈N (A) Âq is closed if and only if its intersection

with each Âq is closed, where Âq carries the (compact) subspace topology

from Â.
Any character χ on A is bounded with respect to some C∗-seminorm; for in-
stance, ‖a‖χ := |χ(a)|. Thus

⋃
q∈N (A) Âq = Â as a set. If K ⊆ Â is compact,

then â ∈ C(Â) for a ∈ A must be uniformly bounded on K, so that

‖a‖K := sup{|â(χ)| | χ ∈ K}

is a C∗-seminorm on A. Thus K ⊆ Âq for some q ∈ N (A). Hence the inductive

limit topology on
⋃
q∈N (A) Âq is τc.

We return to the general noncommutative case. The class of q-bounded repre-
sentations for a fixed q ∈ N (A) is easily seen to be weakly admissible. The class
of bounded representations with variable q is not weakly admissible unless A
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has a largest C∗-seminorm because it is not closed under direct sums. We are
going to define the larger class of “locally bounded” representations to rectify
this. Roughly speaking, a representation is locally bounded if and only if it
comes from a representation of the pro-C∗-algebra A. Before we define locally
bounded representations, we characterise q-bounded representations by some
slightly weaker estimates.

Proposition 7.3. Let A be a ∗-algebra and let q be a C∗-seminorm on A.

Let (E, π) be a representation of A on a Hilbert module E over some

C∗-algebra D and let ξ ∈ E. The following are equivalent:

(1) there is C > 0 with ‖〈ξ, π(a)ξ〉‖ ≤ Cq(a) for all a ∈ A;

(2) there is C > 0 with ‖π(a)ξ‖ ≤ Cq(a) for all a ∈ A;

(3) ‖π(a)ξ‖ ≤ ‖ξ‖q(a) for all a ∈ A.

The set of vectors ξ with these equivalent properties is a norm-closed A,D-

submodule of E. The representation of A on this submodule extends to the

C∗-completion Aq.

Proof. The implications (3)⇒(2)⇒(1) are trivial. Conversely, assume (1) and
let a ∈ A. Let (bn)n∈N be a sequence in A that converges in Aq towards
the positive square-root of q(a)2 − a∗a. Then the sequence (a∗a + b∗

nbn) in A
converges in the norm q to q(a)2 ∈ A. If (1) holds, then

lim
n→∞

〈ξ, π(a∗a+ b∗
nbn)ξ〉 = q(a)2〈ξ, ξ〉.

Since 0 ≤ 〈π(a)ξ, π(a)ξ〉 ≤ 〈π(a)ξ, π(a)ξ〉 + 〈π(bn)ξ, π(bn)ξ〉 = 〈ξ, π(a∗a +

b∗
nbn)ξ〉 for all n, this implies ‖π(a)ξ‖ ≤ lim‖〈ξ, π(a∗a+ b∗

nbn)ξ〉‖ = q(a)2‖ξ‖2
.

Thus (1) implies (3).
The set Eq of vectors ξ ∈ E satisfying (2) is a vector subspace and closed
under left multiplication by elements of A and right multiplication by elements
of D. On this subspace, the graph and norm topologies coincide because of (3).
The subspace Eq is closed in the norm topology by the Principle of Uniform
Boundedness. The ∗-representation of A on this submodule is globally defined
and bounded by the C∗-seminorm q. Hence it extends to a representation
of Aq.

Definition 7.4. Let (E, π) be a representation of A on a Hilbert module E . A
vector ξ ∈ E is bounded if it satisfies the equivalent conditions in Proposition 7.3
for some q ∈ N (A). The representation is locally bounded if the bounded vectors
are dense in E in the graph topology.

By Proposition 7.3, the q-bounded vectors in E for a fixed q ∈ N (A) form a
closed A,D-submodule Eq ⊆ E , on which the representation of A extends to the
C∗-completion Aq and hence to a representation of A. Since N (A) is directed
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and Eq ⊆ Eq′ if q ≤ q′, the family of sub-bimodules Eq ⊆ E is directed. The set
of bounded vectors is the increasing union

Eb :=
⋃

q∈N (A)

Eq.

Since π|Eq
extends to A for each q, there is a representation π̄ of the pro-

C∗-algebra A on Eb ⊆ E . The representation (E, π) is locally bounded if and
only if (Eb, π̄ ◦ j) is a core for it. Thus (E, π) is the closure of the “restriction”
π̄ ◦ j of π̄ to A.
We do not claim that π̄ is closed, and neither do we claim that π̄ ◦ j is locally
bounded for any representation of A: we need the representation of A to be
locally bounded as well:

Definition 7.5. A representation (π,E) of a pro-C∗-algebra A is locally

bounded if the vectors ξ ∈ E for which A → E , a 7→ π(a)ξ, is continuous
form a core.

Proposition 7.6. Composition with j : A→ A induces an equivalence between

the categories of locally bounded representations of A and A which is compatible

with isometric intertwiners and interior tensor products.

Proof. The ∗-homomorphism j induces an isomorphism between the directed
sets of C∗-seminorms on A and A. Therefore, a representation π̄ of A is locally
bounded if and only if the vectors ξ with ‖π̄(a)ξ‖ ≤ q(a)‖ξ‖ for all a ∈ A, for
some q ∈ N (A), form a core. Since j(A) is dense in A, this is equivalent to
‖π(a)ξ‖ ≤ q(a)‖ξ‖ for all a ∈ A. Thus the closure of π̄ ◦ j is locally bounded if
and only if π̄ is.
An isometric intertwiner π̄1 →֒ π̄2 also intertwines the closures of π̄1 ◦ j and
π̄2 ◦ j by Lemma 2.14. Conversely, an isometric intertwiner between two locally
bounded representations of A must map q-bounded vectors to q-bounded vec-
tors for any q ∈ N (A). Thus it remains an isometric intertwiner between the
canonical extensions of the representations to A. So the equivalence between
the locally bounded representations of A and A is compatible with isometric
intertwiners. It is also compatible with interior tensor products, that is, the
closure of (π̄ ⊗D 1G) ◦ j is π̄ ◦ j ⊗D 1G .

Proposition 7.7. All irreducible, locally bounded Hilbert space representations

are bounded.

Proof. If π is irreducible, then the closed A-submodule Eq for a C∗-seminorm q
is either {0} or E . The latter must happen for some q if π is locally bounded.

Thus local boundedness is not an interesting notion for irreducible representa-
tions.
If A has no C∗-seminorms, then A = {0} and A has no locally bounded rep-
resentations, so that the following discussion will be empty. Even if the map
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j : A → A is not injective, there are examples where all “integrable” represen-
tations of A come from A. An important case is the unit fibre for the canonical
Z-grading on the Virasoro algebra studied in [27, §9.3]. In this case, A is not
commutative, but all irreducible, integrable representations are characters and
hence locally bounded.

Proposition 7.8. If π is a locally bounded representation, then π(a) is regular

and self-adjoint for each a ∈ Ah.

Proof. The map of left multiplication by j(a) ± i on A is invertible because
j(a) ∈ A is symmetric and A is a pro-C∗-algebra. Therefore, π̄(j(a)) ± i ⊆
π(a) ± i has dense range on E . Thus π(a) is regular and self-adjoint, see
[17, Chapter 10].

Corollary 7.9. Let A be a ∗-algebra. The class Repb(A) of locally bounded

representations of A is admissible.

Proof. Being locally bounded is clearly invariant under unitary ∗-intertwiners
and direct sums. It is also invariant under direct summands because a
∗-intertwiner maps bounded vectors to bounded vectors. If ξ ∈ E is bounded,
then ξ ⊗ η ∈ E ⊗D F is bounded for any C∗-correspondence F . Thus a locally
bounded representation on E induces one on E ⊗D F .
Since Ah is a strong generating set for A by Example 2.8, the class of repre-
sentations for which all a ∈ Ah act by a regular and self-adjoint operator is
admissible by Theorem 5.17. This class contains the locally bounded represen-
tations by Proposition 7.8. Hence this subclass is also admissible.

Any pro-C∗-algebra A contains a dense unital C∗-subalgebra Ab of bounded
elements, see [22, Proposition 1.11]. For instance, if A is commutative, so that
A ∼= C(Â, τc) by Proposition 7.2, then Ab = Cb(Â, τc) consists of the bounded

continuous functions.

Let (E, π) be a locally bounded representation of A. This comes from a locally
bounded representation (Eb, π̄) of A by Proposition 7.6. The closure of the
restriction of π̄ to Ab is a representation of a unital C∗-algebra. Hence it is a
unital ∗-homomorphism ̺ : Ab → B(E) by Lemma 2.12.

Proposition 7.10. Two locally bounded representations π1 and π2 of A on a

Hilbert module E are equal if and only if they induce the same representation

of Ab.

Proof. Of course, π1 and π2 induce the same representation of Ab if π1 = π2.
Conversely, assume that π1 and π2 induce the same representation ̺ of Ab.
If a ∈ Ah, then the Cayley transform ca of j(a) ∈ A is a unitary element
of Ab. The Cayley transforms of π1(a) and π2(a) are both equal to ̺(ca).
Hence π1(a) = π2(a). Since this holds for all a ∈ Ah, Proposition 2.9 gives
π1 = π2.
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The C∗-algebra Ab usually has many representations that do not come from
locally bounded representations of A. Hence it is not a C∗-hull. It is, however,
a useful tool to decide when a representation µ of A on a C∗-algebra B is a
weak C∗-hull, that is, when A separates the Hilbert space representations of B:

Proposition 7.11. Let µ be a locally bounded representation of A on a

C∗-algebra B and let ̺ : Ab → M(B) = B(B) be the associated representa-

tion of Ab. The image of ̺ is dense in M(B) in the strict topology if and

only if B is a weak C∗-hull for the class of B-integrable representations of A
defined by µ.

Proof. Combine Proposition 7.10 and the following proposition for D = Ab.

Proposition 7.12. Let µ be a representation of A on a C∗-algebra B. Let D
be a C∗-algebra and ϕ : D → M(B) a ∗-homomorphism. Assume that two

representations ̺1, ̺2 of B on a Hilbert space H satisfy µ⊗̺1
1H = µ⊗̺2

1H

if and only if ¯̺1 ◦ ϕ = ¯̺2 ◦ ϕ, where ¯̺1 and ¯̺2 denote the unique strictly

continuous extensions of ̺1, ̺2 to M(B). Then B is a weak C∗-hull for a

class of integrable representations of A if and only if ϕ(D) is dense in M(B)
in the strict topology.

Proof. We use the criterion for weak C∗-hulls in (1) in Proposition 3.8. Assume
first that ϕ(D) is strictly dense in M(B). Let ̺1, ̺2 be two Hilbert space
representations of B that satisfy µ⊗̺1

1H = µ⊗̺2
1H. Extend ̺1, ̺2 to strictly

continuous representations ¯̺1, ¯̺2 ofM(B). By assumption, ¯̺1◦ϕ = ¯̺2◦ϕ, that
is, ¯̺1 and ¯̺2 are equal on ϕ(D). Since they are strictly continuous and ϕ(D)
is strictly dense, we get ¯̺1 = ¯̺2 and hence ̺1 = ̺2. Thus the condition (1) in
Proposition 3.8 is satisfied, making B a weak C∗-hull of A.
Conversely, assume that ϕ(D) is not strictly dense inM(B). We claim that the
image of D is not weakly dense in the bidual W∗-algebra B∗∗. Any positive
linear functional on B extends to a strictly continuous, positive linear func-
tional onM(B) by extending its GNS-representation to a strictly continuous
representation ofM(B). By the Jordan decomposition, the same remains true
for self-adjoint linear functionals and hence for all bounded linear functionals
on B. Furthermore, such extensions are unique because B is strictly dense
inM(B). Hence restriction to B maps the space of strictly continuous linear
functionals onM(B) isomorphically onto the dual space B∗ of B, which is also
the space of weakly continuous linear functionals on B∗∗. If ϕ(D) is not strictly
dense in M(B), then the Hahn–Banach Theorem gives a non-zero functional
in B∗ that vanishes on the image of D. When viewed as a weakly continuous
functional on B∗∗, it witnesses that ϕ(D) is not weakly dense in B∗∗.
Let ̺ : B → B(H) be the direct sum of all cyclic representations of B. Then ̺
extends to an isomorphism of W∗-algebras from B∗∗ onto the double commu-
tant ̺(B)′′ of B in B(H). The extension of ̺ toM(B) restricts to a represen-
tation ¯̺ ◦ ϕ : D → B(H). Since we assume that the image of D is not strictly
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dense in M(B), our claim shows that ¯̺ ◦ ϕ(D) is not weakly dense in ̺(B)′′.
By the bicommutant theorem, this is equivalent to ¯̺◦ ϕ(D)′ 6= ̺(B)′.
Since these commutants are C∗-algebras, they are the linear spans of the uni-
taries that they contain. So there is a unitary operator U in ¯̺◦ ϕ(D)′ that is
not contained in ̺(B)′. So ̺2 := U̺U∗ 6= ̺, but ¯̺2 ◦ϕ = ¯̺◦ϕ. By assumption,
the latter implies µ⊗̺1H = µ⊗̺2

1H. So A fails to separate the representations
̺, ̺2 of B although they are not equal. Hence B is not a weak C∗-hull of A.

Remark 7.13. Proposition 7.12 applies whenever we can somehow produce
enough bounded operators from a representation of A so that these bounded
operators and the original representation have the same unitary ∗-intertwiners.
For instance, it applies if the elements of a strong generating set for A act by
regular operators, so that we may take their bounded transforms.

The quotient map Aq ։ Aq′ for q ≥ q′ in N (A) identifies the primitive
ideal space Prim(Aq′) with a closed subspace of Prim(Aq). Let PrimA :=⋃
q∈N (A) Prim(Aq). Let a ∈ A and p ∈ Prim(A). Then the norm ‖a‖p of the

image of a in Aq/p is the same for all q ∈ N (A) with p ∈ Prim(Aq). Hence the
function p 7→ ‖a‖p on Prim(A) is well defined.

Definition 7.14. An element a ∈ A vanishes at ∞ if for every ε > 0 there
is q ∈ N (A) such that ‖a‖p < ε for p ∈ Prim(A) \ Prim(Aq). An element
a ∈ A is compactly supported if there is q ∈ N (A) with a ∈ p for all p ∈
Prim(A) \ Prim(Aq). Let C0(A) and Cc(A) be the subsets of elements that
vanish at ∞ and have compact support, respectively.

It may happen that C0(A) = {0}. In the following, we are interested in the
case where C0(A) is dense in A. For instance, C0(R) is dense in C(R).

Lemma 7.15. The subset C0(A) is a closed ideal in Ab. The subspace Cc(A)
is a two-sided ∗-ideal in A. It is norm-dense in C0(A). More generally, if D is

a C∗-algebra and ϕ : D → A is a ∗-homomorphism, then ϕ−1(Cc(A)) is dense

in ϕ−1(C0(A)).

Proof. The quotient maps A ։ Aq ։ Aq/p for p ∈ Prim(Aq) are
∗-homomorphisms. Thus C0(A) is a ∗-subalgebra of A. An element a ∈ A
is bounded if and only if the norms of its images in Aq for q ∈ N (A) are uni-
formly bounded. The norm of a inAq is the maximum of ‖a‖p for p ∈ Prim(Aq).
Hence a is bounded if and only if the function ‖a‖p on Prim(A) is bounded.
Thus C0(A) consists of bounded elements, and it is an ideal in Ab. We claim
that the limit a of a norm-convergent sequence (an)n∈N in C0(A) again vanishes
at ∞. Given ε > 0, there is n0 ∈ N so that ‖a− an‖p ≤ ‖a− an‖ < ε/2 for all
n ≥ n0 and all p ∈ Prim(A). Since an vanishes at ∞, there is q ∈ N (A) with
‖an‖p < ε/2 for p /∈ Prim(Aq). Thus ‖a‖p < ε for p /∈ Prim(Aq). Thus C0(A)
is a closed ideal in Ab.
The condition a ∈ p for fixed p ∈ Prim(A) defines a closed two-sided ∗-ideal
in A. Hence Cc(A) is a two-sided ∗-ideal in A. Let a ∈ C0(A) and ε > 0.
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Let fε ∈ Cb([0,∞)) be increasing and satisfy fε(t) = 0 for 0 ≤ t < ε and
fε(t) = 1 for 2ε ≤ t. Then ‖a − afε(a∗a)‖ ≤ 2ε, and fε(a

∗a) ∈ p if ‖a∗a‖p ≤
ε. Hence afε(a

∗a) ∈ Cc(A) for all ε > 0. Thus Cc(A) is dense in C0(A).
Similarly, if ϕ : D → A is a ∗-homomorphism, x ∈ D, and ϕ(x) ∈ C0(A), then
ϕ(xfε(x

∗x)) ∈ Cc(A) and limε→0 xfε(x
∗x) = x in the norm topology on D.

Theorem 7.16. Let A be a ∗-algebra and let A be its pro-C∗-algebra completion.

If C0(A) is dense in A, then C0(A) is a C∗-hull for the class of locally bounded

representations of A.

We shall prove a more general theorem that still applies if C0(A) is not dense
in A. Then probably there is no C∗-hull for the class of all locally bounded
representations. We may, however, find C∗-hulls for smaller classes of represen-
tations. We describe such classes of representations by a generalisation of the
spectral conditions in Example 5.14. The spectral condition for a locally closed
subset in Rn implicitly uses a subquotient of C0(R

n). We are going to describe
subquotients of the pro-C∗-algebra A. We then associate a class Repb(A,K)
of locally bounded representations of A to a subquotient K. If C0(K) is dense
in K, then C0(K) is a C∗-hull for Repb(A,K). Theorem 7.16 is the special case
K = A.
Let J ⊳ A be a closed, two-sided ∗-ideal in the pro-C∗-algebra A. Being closed,
the ideal J is complete in the subspace topology, so it is also a pro-C∗-algebra.
Thus J = lim←−Jq, where Jq ⊳ Aq is the image of J in the quotient Aq. The
quotient A/J is complete if A is metrisable, that is, its topology is defined
by a sequence of C∗-seminorms. It need not be complete in general, however.
Therefore, we replace the quotient A/J by its completion B, which is a pro-
C∗-algebra as well. It is the projective limit of the quotients Aq/Jq for all
q ∈ N (A). A subquotient of A is a closed, two-sided ∗-ideal K ⊳ B with B as
above.
Let Repb(A,K) consist of all representations π of A with the following proper-
ties:

(1) π is locally bounded, so it comes from a locally bounded representation π′

of A;

(2) the representation π′ annihilates J ;

(3) the representation π̄ of B induced by π′ is nondegenerate on K, that is,
π̄(K)(E) is a core for π̄.

Define the C∗-algebra C0(K) and its dense ideal Cc(K) by replacing A by K in
Definition 7.14. Equivalently, C0(K) = C0(B) ∩ K.
We may choose J = 0 and K = A. Then Repb(A,A) = Repb(A) simply
consists of all locally bounded representations of A. Hence Theorem 7.16 is the
special case K = A of the following theorem:

Theorem 7.17. If C0(K) is dense in K, then Repb(A,K) has the C∗-

hull C0(K).
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Proof. First we claim that Repb(A,K) is equivalent to the class of nondegener-
ate, locally bounded representations of the pro-C∗-algebraK as in Definition 7.5.
If K = A, this is Proposition 7.6. A locally bounded representation π′ of A de-
scends to a representation π′′ of the quotientA/J if and only if it annihilates J ;
the induced representation of A/J remains locally bounded with respect to the
family of C∗-seminorms from the quotient mappings A/J ։ Aq/Jq. Hence it
extends uniquely to a locally bounded representation π̄′′ of the completion B.
Thus locally bounded representations of A for which the corresponding repre-
sentation of A annihilates J are equivalent to locally bounded representations
of B.
We claim that a nondegenerate, locally bounded representation ̺ of K extends
uniquely to B. Let q be a continuous seminorm on B, also write q for its re-
striction to K. The q-bounded vectors for ̺ form a nondegenerate Kq-module.
The module structure extends uniquely to the multiplier algebra of Kq, and Bq
maps to this multiplier algebra because Kq ⊳ Bq. Letting q vary gives a locally
bounded representation of B that remains nondegenerate on K. Conversely, any
such representation of B is obtained in this way from its restriction to K. Thus
representations of A that belong to Repb(A,K) are equivalent to nondegener-
ate, locally bounded representations of the pro-C∗-algebra K. The equivalence
above is compatible with isometric intertwiners, direct sums and interior tensor
products, compare Proposition 7.6.
Lemma 7.15 shows that Cc(K) := Cc(B) ∩ K is dense in K. This is an ideal
in B as an intersection of two ideals. Hence left multiplication defines a repre-
sentation of B on K with core Cc(K), which is locally bounded by construction.
Through the canonical homomorphisms A → A → B, this becomes a repre-
sentation of A. This representation clearly belongs to Repb(A,K). We claim
that it is the universal representation for the class Repb(A,K). So let π be
any representation in Repb(A,K). Then π comes from a unique nondegenerate,
locally bounded representation π̄ of K. We must show that it comes from a
unique nondegenerate representation ̺ of C0(K).
Let ̺ be the restriction of π̄ to C0(K). Then ̺(Cc(K))E ⊆ Eb ⊆ E. We are
going to prove that this is a core. The bilinear map K ⊙ Eb → E is separately
continuous with respect to the pro-C∗-algebra topology on K and the inductive
limit topology on Eb =

⋃
q∈N (A) Eq. We have assumed that it has dense range.

Since Cc(K) is dense in K, the image of Cc(K)⊙ Eb is a core. Thus ̺(Cc(K))E
is dense in E in the graph topology. The representation ̺ is nondegenerate,
and the associated representation of A is π. So π comes from a representation
of C0(K).
The uniqueness of ̺ means that C0(K) is a weak C∗-hull for some class of
integrable representations of A. We check this using Proposition 7.11. For
q ∈ N (A), the image of Ab inM(Kq) contains Kq and hence is strictly dense.
This implies that the image of Ab inM(C0(K)) is strictly dense. So C0(K) is
a weak C∗-hull for a class of representations of A by Proposition 7.11 It is even
a C∗-hull because the class of locally bounded representations is admissible by
Corollary 7.9.
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8 Commutative C∗-hulls

Let A be a commutative ∗-algebra. We are going to describe all commutative

weak C∗-hulls for A. Actually, we describe all locally bounded weak C∗-hulls,
and these turn out to be the same as the commutative ones. We study when a
C∗-hull satisfies the (Strong) Local–Global Principle and when the class of all

locally bounded representations has a C∗-hull. We compare the class of locally
bounded representations with the class of representations defined by requiring
all a ∈ Ah to act by a regular, self-adjoint operator.

Proposition 8.1. Let A be a ∗-algebra and let B = C0(X) be a commutative

C∗-algebra. Any representation of A on B has Cc(X) as a core and is lo-

cally bounded. There is a natural bijection between representations of A on B,
∗-homomorphisms A→ C(X), and continuous maps Â→ X.

Proof. Let (B, µ) be a representation. Since B is dense in B, for any x ∈ X
there is f ∈ B with f(x) 6= 0. Then there is an open neighbourhood of x on
which f is non-zero. A compact subsetK of X may be covered by finitely many
such open neighbourhoods. This gives finitely many functions f1, . . . , fn ∈ B

so that
∑
fi · fi(x) > 0 for all x ∈ K. This sum again belongs to the right

ideal B, and hence B contains Cc(X). There is an approximate unit (ui)i∈I
for C0(X) that belongs to Cc(X). If b ∈ B, then limµ(a)bui = µ(a)b for all
a ∈ A. That is, lim bui = b in the graph topology. Since bui ∈ Cc(X), Cc(X)
is a core for (B, µ).
Given a ∈ A, we define a function fa : X → C by fa(x) := (µ(a)b)(x)·b(x)−1 for
any b ∈ Cc(X) with b(x) 6= 0. This does not depend on the choice of b, and fa
is continuous in the open subset where b 6= 0. Thus fa ∈ C(X). The map
A → C(X), a 7→ fa, is a ∗-homomorphism. Conversely, any ∗-homomorphism
A→ C(X) gives a representation of A on C0(X) with core Cc(X) by µ(a)b =
fa · b for all a ∈ A, b ∈ Cc(X). The maps that go back and forth between
representations on C0(X) and ∗-homomorphisms A → C(X) are inverse to
each other.
A ∗-homomorphism f : A→ C(X) gives a continuous map X → Â by mapping
x ∈ X to the character a 7→ f(a)(x). Conversely, a continuous map g : X → Â
induces a ∗-homomorphism g∗ : A→ C(X), g∗(a)(x) := g(x)(a), and these two
constructions are inverse to each other.
Let f : X → Â be a continuous map. Then f maps compact subsets in X to
compact subsets of Â. If K ⊆ X is compact, then any element in C0(K \∂K) ⊆
C0(X) is ‖␣‖f(K)-bounded for the C∗-seminorm on A associated to the compact

subset f(K) ⊆ Â. Thus all elements in Cc(X) are bounded. Since Cc(X) is a
core for the representation of A associated to f , this representation is locally
bounded.

Theorem 8.2. Let A be a commutative ∗-algebra, let B = C0(X) be a com-

mutative C∗-algebra, let f : X → Â be a continuous map, and let (B, µ) be

the corresponding representation of A on B. Call a representation of A on a
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Hilbert module E X-integrable if it is isomorphic to (B, µ)⊗̺ E for a represen-

tation ̺ of B on E. The following are equivalent:

(1) f : X → Â is injective;

(2) B is a weak C∗-hull for the X-integrable representations;

(3) B is a C∗-hull for the X-integrable representations.

Furthermore, any locally bounded weak C∗-hull of A is commutative.

Proof. If f is not injective, then there are x 6= y in X with f(x) = f(y).
The evaluation maps at x and y are different 1-dimensional representations
of B that induce the same representation of A. Hence the condition (1) in
Proposition 3.8 is violated and so B is not a weak C∗-hull. Conversely, assume
that f is injective.
The representation of A on B associated to f is locally bounded by Proposi-
tion 8.1 and hence induces a representation of the unital C∗algebra Cb(Â, τc) of
bounded elements in A ∼= C(Â, τc), see Proposition 7.2. Explicitly, this repre-
sentation composes functions with f . Since f is injective, D := f∗(Cb(Â, τc)) ⊆
Cb(X) separates the points of X . We show that D is strictly dense in
Cb(X) ∼=M(B).
If K ⊆ X is compact, then the image of f∗(Cb(Â, τc))|K in the quotient C(K)
of C0(X) separates the points of K. Since this image is again a C∗-algebra,
it is equal to C(K) by the Stone–Weierstraß Theorem. Let f ∈ Cb(X). For
any compact subset K ⊆ X , there is dK ∈ D with dK |K = f . By functional
calculus, we may arrange that ‖dK‖∞ ≤ ‖f‖. The net (dK) indexed by the
directed set of compact subsets K ⊆ X is uniformly bounded and converges
towards f in the topology of uniform convergence on compact subsets. Hence
it converges towards f in the strict topology (compare [11, Lemma A.1]). This
finishes the proof that f∗(Ab) is strictly dense inM(C0(X)). Proposition 7.11
shows that B is a weak C∗-hull for the B-integrable representations of A.
Any X-integrable representation of A is locally bounded. The class Repb(A) of
locally bounded representations of A is admissible by Corollary 7.9. Hence the
smaller class of X-integrable representations inherits the equivalent conditions
(2)–(4) in Proposition 3.8. Thus C0(X) is even a C∗-hull.
Let B with the universal representation (B, µ) be a locally bounded weak
C∗-hull. Then the image of Cb(Â, τ0) in the multiplier algebra of B is strictly
dense by Proposition 7.11. ThusM(B) is commutative, and then so is B. Thus
a locally bounded weak C∗-hull is commutative.

Theorem 8.3. Let A be a commutative ∗-algebra, let B = C0(X) be a

commutative C∗-algebra, and let f : X → Â be an injective continuous map.

Let Repint(A,X) be the class of X-integrable representations. The following

statements are equivalent if Â is metrisable:

(1) f : X → Â is a homeomorphism onto its image;
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(2) Repint(A,X) is defined by submodule conditions;

(3) Repint(A,X) satisfies the Strong Local–Global Principle;

(4) Repint(A,X) satisfies the Local–Global Principle;

(5) if lim f(xn) = f(x) for a sequence (xn)n∈N in X and x ∈ X, then

already lim xn = x.

The implications (1)⇒(2)⇒(3)⇒(4)⇒(5) hold without assumptions on Â.

I do not know whether (1)–(4) are equivalent in general. The condition (5) is
there to allow to go back from (4) to (1) at least for metrisable Â.

Proof. First we check (5)⇒(1) if Â is metrisable. If f is not a homeomorphism
onto its image, then there is a subset U ⊆ X that is open, such that f(U) is
not open in the subspace topology on f(X) ⊆ Â. Since Â is metrisable, there
is x ∈ U and a sequence in f(X)\ f(U) that converges towards f(x). This lifts
to a sequence (xn)n∈N in X \ U such that lim f(xn) = f(x). We cannot have
lim xn = x because xn never enters the open neighbourhood U of x.

The implication (2)⇒(3) is Theorem 5.9, and (3)⇒(4) is trivial. We are going
to verify (1)⇒(2) and (4)⇒(5). This will finish the proof of the theorem.

Assume (1). Let π be a representation in Repint(A,X). Then π is locally
bounded, and the operators π(a) for a ∈ Ah are regular and self-adjoint by
Proposition 7.8. Furthermore, their Cayley transforms belong to the image of
Ab
∼= Cb(Â, τc), which is commutative. Hence the operators π(a) for a ∈ Ah

strongly commute with each other. The class Repint(A) of representations of A
with the property that all π(a), a ∈ Ah, are regular and self-adjoint and strongly
commute with each other is defined by submodule conditions by Examples 5.10
and Example 5.12.

Let Y :=
∏
a∈Ah

S1. Given a representation in Repint(A), there is a unique
representation ̺ : C(Y )→ B(E) that maps the ath coordinate projection to the
Cayley transform of π(a). We map Â to Y by sending χ ∈ Â to the point
(cχ(a))a∈Ah

∈ Y . Here cχ(a) is the Cayley transform of the number χ(a) ∈ R

or, equivalently, the value of the Cayley transform of the unbounded function
â ∈ C(Â) at χ. This is a homeomorphism onto its image because for a net of
characters (χi) and a character χ on A, we have limχi(a) = χ(a) if and only if
lim cχi(a) = cχ(a). Thus the composite map X → Â→ Y is a homeomorphism
onto its image as well. This forces the image to be locally closed because Y is
compact and X locally compact, and a subspace of a locally compact space is
locally compact if and only if its underlying subset is locally closed (see [2, I.9.7,
Propositions 12 and 13]).
Let X ⊆ Y be the closure of the image of X in Y . Then X is open in X.
All representations in Repint(A) carry a unital ∗-homomorphism C(Y )→ B(E).
Asking for this to factor through the quotient C(X) of C(Y ) is a submod-
ule condition as in Example 5.14. Asking for the induced ∗-homomorphism
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C(X)→ B(E) to remain nondegenerate on C0(X) is another submodule condi-
tion as in Example 5.14.

The class Rep′(A) defined by these two more submodule conditions is weakly
admissible by Lemma 5.8. The universalX-integrable representation belongs to
Rep′(A); by weak admissibility, this is inherited by all X-integrable representa-
tions. Conversely, we claim that any representation in Rep′(A) is X-integrable.

If π ∈ Rep′(A), then the unital ∗-homomorphism C(Y ) → B(E) descends to
a nondegenerate ∗-homomorphism ̺ : C0(X) → B(E). By construction, the
extension of ̺ to multipliers maps the Cayley transform of f∗(a) ∈ C(X) for
a ∈ Ah to the Cayley transform of π(a). Let π′ be the X-integrable represen-
tation of A associated to ̺. The regular, self-adjoint operators π′(a) and π(a)
have the same Cayley transform for all a ∈ Ah. Hence π′(a) = π(a) for all
a ∈ Ah. The subset Ah is a strong generating set for A by Example 2.8. Hence
Proposition 2.9 gives π′ = π. Thus Repint(A,X) is the class of representa-
tions defined by the submodule conditions above. This finishes the proof that
(1)⇒(2).

Now we prove (4)⇒(5) by contradiction. Let (xn)n∈N and x be as in (5).
Let N̄ = N ∪ {∞} be the one-point compactification of N and view the se-
quence (xn) and x as a map ξ : N̄ → X . This map is not continuous, but
composition with f gives a continuous map N̄ → Â. Hence Proposition 8.1
gives a representation (D, µ) of A on C(N̄). This is not X-integrable because
the map N̄→ X is not continuous. We claim, however, that the representation
(D, µ)⊗̺H is X-integrable for any GNS-representation ̺ on a Hilbert space H.
A state on C(N̄) is the same as a Radon measure on N̄. Since N̄ is count-
able, any Radon measure is atomic. Thus the resulting GNS-representation
is a direct sum of irreducible representations associated to characters. Each
character on C(N̄) gives an X-integrable representation because ξ(N̄) ⊆ f(X).
Hence (D, µ) is a counterexample to the Local–Global Principle. So (4) cannot
hold if (5) fails.

Example 8.4. Let A = C[x], so that Â = R. Let X be R with the discrete
topology, and let f : X → R be the identity map. This is a continuous bijection,
but not open. Hence the class of X-integrable representations violates the
Local–Global Principle by Theorem 8.3. Nevertheless, C0(X) is a C∗-hull for
the class of X-integrable representations of A by Theorem 8.2. An X-integrable
representation ofA is integrable as in Theorem 4.4, and so it comes from a single
regular, self-adjoint operator T := π(x). The representation of C[x] associated
to T is X-integrable if and only if E =

⊕
λ∈R
Eλ, where Eλ := {ξ ∈ E | Tξ = λξ}

for λ ∈ R is the λ-eigenspace of T .

Another example of a C∗-hull for C[x] where X → R is bijective but not a
homeomorphism onto its image is discussed in Example 4.9.

Theorem 8.5. There is a C∗-hull for Repb(A) if and only if the compactly

generated topology τc on Â is locally compact, and then the C∗-hull is C0(Â, τc).
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Proof. Assume first that (Â, τc) is locally compact. The pro-C∗-algebra comple-
tion A that acts on locally bounded representations of A is C(Â, τc) by Propo-
sition 7.2. The primitive ideal space of C(K) for a compact subspace K ⊆ Â is
simply K, and ‖a‖p = |a(p)| for a ∈ C(Â, τc) and p ∈ PrimC(K) ∼= K. There-

fore, a function f ∈ C(Â, τc) vanishes at∞ in the sense of Definition 7.14 if and
only if it vanishes at ∞ in the usual sense. The subalgebra C0(A) = C0(Â, τc)
is dense in A because τc is locally compact. Now Theorem 7.16 shows that
C0(A) = C0(Â, τc) is a C∗-hull for the class of locally bounded representations
of A.

Conversely, let B be a (weak) C∗-hull for the locally bounded representations
of A. Then B is commutative by Theorem 8.2. Let Y be the spectrum
of B. The representation of A on B ∼= C0(Y ) corresponds to a continu-
ous map f : Y → Â by Proposition 8.1. Let D = C0(X) be a commutative
C∗-algebra. Any representation of A on D is locally bounded. So the bijection
Repb(A,D) ∼= Rep(B,D) is a bijection between the spaces of continuous maps
X → Â and X → Y . More precisely, this bijection is composition with f .

For the one-point space X , this bijection says that f : Y → Â is bijective.
The bijection for all compact X means that f becomes a homeomorphism if
we replace the topologies on Y and Â by the associated compactly generated
ones. The topology on Y is already compactly generated because Y is locally
compact. Hence f is a homeomorphism from Y to (Â, τc). So τc is locally
compact.

Let Repint(A) be the class of all representations with the property that π(a)
is regular and self-adjoint for all a ∈ Ah. We are going to compare Repint(A)
and Repb(A). Proposition 7.8 gives Repb(A) ⊆ Repint(A).

Theorem 8.6. The class Repint(A) is admissible and defined by submodule

conditions. Hence it satisfies the Strong Local–Global Principle. The opera-

tors π(a) for a ∈ Ah strongly commute for all π ∈ Repint(A).

Let S ⊆ Ah be a strong generating set for A. If π(a) is regular and self-adjoint

for all a ∈ S, then already π ∈ Repint(A).

Proof. The class RepS(A) of representations defined by requiring π(a) to be
regular and self-adjoint for all a ∈ S for a strong generating set S is admissible
and defined by submodule conditions by Theorem 5.17. The class Repint(A) is
defined by submodule conditions as well by Example 5.10. So is the subclass
Rep′(A) of all representations in Repint(A) for which the operators π(a) for
all a ∈ Ah strongly commute (Example 5.12). Hence our three classes of
representations satisfy the Strong Local–Global Principle by Theorem 5.9.

The classes Repint(A) and Rep′(A) have the same Hilbert space representa-
tions by [28, Theorem 9.1.2]. Since S is a strong generating set, the domain
of any representation π in RepS(A) is

⋂
a∈S dom(π(a)) by (2.10). This con-

tains
⋂
a∈S,n∈N

dom(π(a)n). Now [28, Theorem 9.1.3] shows that RepS(A) and
Repint(A) contain the same Hilbert space representations. Since our three
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classes of representations satisfy the (Strong) Local–Global Principle and have
the same Hilbert space representations, they are equal.

Theorem 8.7. If A is commutative and countably generated, then

Repint(A) = Repb(A).

Proof. Proposition 7.8 gives Repb(A) ⊆ Repint(A). Conversely, let (E, π) be a
representation on a Hilbert module E in Repint(A); that is, π(a) is regular and
self-adjoint for each a ∈ A. Let (ai)i∈N be a countable generating set for A. We
may assume without loss of generality that ai = a∗

i for all i ∈ N and that (ai)
is a basis for A and hence a strong generating set. Let ξ ∈ E. We are going
to approximate ξ by bounded vectors for π. This will show that π is locally
bounded.

For each i ∈ N, there is a canonical homomorphism αi : C[x] → A map-
ping x 7→ ai. The closure of π ◦ αi is an integrable representation of C[x]
as in condition (2) in Theorem 4.4. Hence it corresponds to a representa-
tion ̺i : C0(R) → B(E), the functional calculus of π(ai). The operators π(a)
for a ∈ Ah strongly commute by Theorem 8.6. Thus the Cayley transform
of ai commutes with π(a) and, in particular, maps the domain of π(a) to it-
self. The same remains true for ̺i(f) for all f ∈ C0(R) because we get them
by the (bounded) functional calculus for the Cayley transform of π(ai). So
̺i(f)(E) ⊆ E by (2.6) and ̺i(f)π(a) = π(a)̺i(f) for all f ∈ C0(R), a ∈ A as
operators on E. Now we show that π ◦ αi is locally bounded. If f ∈ Cc(R) is
supported in a compact subset K ⊆ R, then

‖π(h(ai))̺i(f)ξ‖ = ‖̺i(h · f)ξ‖ ≤ C sup{|h(x)| | x ∈ K}

for all h ∈ C[x]; thus ̺i(f)ξ is bounded for the representation π ◦ αi. There is
an approximate unit (fn) for C0(R) that lies in Cc(R). Then lim ̺i(fn)ξ = ξ for
all ξ ∈ E, even in the graph topology for π because π(a)̺i(fn)ξ = ̺i(fn)π(a)ξ
for all a ∈ A, fn ∈ C0(R), ξ ∈ E. Therefore, the bounded vectors of the
form ̺(f)ξ with f ∈ Cc(R), ξ ∈ E form a core for π ◦ αi. So π ◦ αi is locally
bounded.

We now refine this construction to approximate ξ by bounded vectors for the
whole representation π. We construct ̺i as above. Fix i, k ∈ N and let ξ′ :=(
1 + π(a2

0) + · · · + π(a2
k)

)
ξ ∈ E. The argument above gives fi,k ∈ Cc(R) with

0 ≤ fi,k ≤ 1 and ‖̺i(fi,k)ξ′ − ξ′‖ < 2−k. Thus ‖̺i(fi,k)ξ − ξ‖aj
< 2−k in the

graph norm for aj for 0 ≤ j ≤ k. For k, l ∈ N, let

ξk,l := ̺0(f0,k)̺1(f1,k+1) · · · ̺l(fl,k+l)ξ.

The operators ̺i(fi,j) are norm-contracting, map E into itself, and commute
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with each other and with the unbounded operators π(a) for all a ∈ A. Hence

‖ξk,l − ξk,l+d‖aj
≤

d∑

i=1

‖ξk,l+i−1 − ξk,l+i‖aj

≤
d∑

i=1

‖̺l+i(fl+i,k+l+i)ξ − ξ‖aj
≤

d∑

i=1

2−k−l−i = 2−k−l

for all k, l, d ∈ N, 0 ≤ j ≤ k + l + 1. Since we assumed (aj) to be a strong
generating set, the graph norms for aj generate the graph topology. So the
estimate above shows that (ξk,l)l∈N with fixed k is a Cauchy sequence in E in
the graph topology. Thus it converges to some ξk ∈ E. Letting ξk,−1 := ξ, the
above estimate remains true for l = −1 and gives ‖ξk,l − ξ‖aj

≤ 2−k+1 for all

j ≤ k, uniformly in l ∈ N. This implies ‖ξk − ξ‖aj
≤ 2−k+1 for j ≤ k, so that

lim ξk = ξ in the graph topology. It remains to show that each ξk is a bounded
vector.
Fix k, i ∈ N and let b ∈ A. Choose Ri > 0 so that fi,k+i is supported in
[−Ri, Ri]. If l ≥ i, then π(b)ξk,l ∈ ̺i(C0(−Ri, Ri))E because ̺i(fi,k+i) occurs
in the definition of ξk,l. As above, this implies ‖π(ai)π(b)ξk‖ ≤ Ri‖π(b)ξk‖ for
all b ∈ A. Thus

q(a) := sup
b∈A

‖π(a)π(b)ξk‖
‖π(b)ξk‖

is finite for a = ai. Since ai is a basis for A and q is subadditive, we get
q(a) < ∞ for all a ∈ A. Since q(a) is the operator norm of π(a)|π(A)ξk

, it is a
C∗-seminorm on A. By construction, ‖π(a)ξk‖ ≤ q(a) for all a ∈ A, that is, ξk
is bounded.

Proposition 8.8. If Repint(A) has a weak C∗-hull, then Repint(A) =
Repb(A).

Proof. Let B with the universal representation (B, µ) be a weak C∗-hull for
Repint(A). First we claim that B is commutative. Let ω : B →֒ B(H) be a
faithful representation. This corresponds to an integrable representation π of A.
Since the equivalence Repint(A,H) ∼= Rep(B,H) is compatible with unitary
∗-intertwiners, the commutant of ω(B) is the C∗-algebra of ∗-intertwiners of π
by Proposition 3.3. The commutant of this is a commutative von Neumann
algebra by [28, Theorem 9.1.7]. So the bicommutant of ω(B) is commutative.
This forces B to be commutative.
Any representation of A on a commutative C∗-algebra is locally bounded by
Theorem 8.2. If the universal representation for Repint(A) is locally bounded,
then all representations in Repint(A) are locally bounded, so that Repint(A) =
Repb(A). Thus Repint(A) only has a weak C∗-hull if Repint(A) = Repb(A).

Example 8.9. Let A be the ∗-algebra C[(xi)i∈N] of polynomials in countably
many symmetric generators. Then Â ∼=

∏
N
R with the product topology. This
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is metrisable. So τc is the usual product topology. Since this is not locally
compact, Repb(A) has no C∗-hull, not even a weak one (Theorem 8.5). Since A
is countably generated, Repint(A) = Repb(A) by Theorem 8.7. A commutative
(weak) C∗-hull for some class of representations ofA is equivalent to an injective,
continuous map X → Â for a locally compact space X by Theorem 8.2.

Let G be a topological group. A host algebra for a G is defined in [12] as
a C∗-algebra B with a continuous representation λ of G by unitary multipli-
ers, such that for each Hilbert space H, the map that sends a representation
̺ : B → B(H) to a unitary representation ̺ ◦λ of G is injective. We claim that
commutative C∗-hulls for the polynomial algebra C[(xi)i∈N] are equivalent to
host algebras of the topological group R(N) :=

⊕
N
R.

Let C∗(Gd) be the C
∗-algebra of G viewed as a discrete group. Representations

of C∗(Gd) are equivalent to representations of the discrete group underlying G
by unitary multipliers. Since any representation of C∗(Gd) is bounded, any
weakly admissible class of representations of C∗(Gd) is admissible by Corol-
lary 7.9. Call a representation of C∗(Gd) continuous if the corresponding repre-
sentation of G is continuous. This class is easily seen to be weakly admissible,
hence admissible. The unital ∗-homomorphism C∗(Gd)→M(B) associated to
the unitary representation λ for a host algebra B is continuous by assumption.
Thus B-integrable representations of C∗(Gd) are continuous. The injectivity
requirement in the definition of a host algebra is exactly the condition (1) in
Proposition 3.8, and this is equivalent to B being a C∗-hull. Thus a host al-
gebra for G is the same as a C∗-hull or weak C∗-hull for a class of continuous
representations of C∗(Gd).
In applications, we would rather study continuous representations of G through
the Lie algebra of G instead of through the inseparable C∗-algebra C∗(Gd).
The Lie algebra of G = R(N) is the Abelian Lie algebra R(N), and its universal
enveloping algebra is the polynomial algebra A = C[(xi)i∈N]. Call a represen-
tation of A integrable if it belongs to Repint(A) = Repb(A).
Let E be a Hilbert module. We claim that an integrable representation ofA on E
is equivalent to a strictly continuous, unitary representation of the group R(N)

on E . Indeed, a unitary representation of R is equivalent to a representation of
C∗(R) ∼= C0(R), and these are equivalent to integrable representations of C[x]
as in Theorem 4.4. In an integrable representation of C[(xi)i∈N], the opera-
tors π(xi) for i ∈ N strongly commute by Theorem 8.6. Hence the resulting
representations of C0(R) commute. Equivalently, the resulting continuous rep-
resentations of R commute, so that we may combine them to a representation
of the Abelian group R(N). Conversely, a continuous unitary representation
of R(N) provides nondegenerate representations of C0(R

m) for all m ∈ N by
restricting the representation to Rm ⊆ R(N). These correspond to a compatible
family of representations of the polynomial algebras C[x1, . . . , xm] for m ∈ N.
The intersection of their domains is dense by [28, Lemma 1.1.2]. So these repre-
sentations combine to a representation of A = C[(xi)i∈N]. Hence an integrable
representation of A on a Hilbert module as in Theorem 8.6 is equivalent to a
continuous representation of R(N).
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9 From graded ∗-algebras to Fell bundles

Let G be a discrete group with unit element e.

Definition 9.1. A G-graded ∗-algebra is a unital algebra A with a linear direct
sum decomposition A =

⊕
g∈GAg with Ag ·Ah ⊆ Agh, A∗

g = Ag−1 , and 1 ∈ Ae
for all g, h ∈ G. Thus Ae ⊆ A is a unital ∗-subalgebra.

The articles [7, 27] study many examples of G-graded ∗-algebras.
We fix some notation used throughout this section. Let E be a Hilbert module
over a C∗-algebra D. Let (E, π) be a representation of A on E . Let πg : Ag →
EndD(E) for g ∈ G be the restrictions of π, so π =

⊕
g∈G πg. Since π is a

∗-homomorphism,

πg(ag)πh(ah) = πgh(ag · ah), πg−1(a∗
g) ⊆ πg(ag)∗

for all ag ∈ Ag, ah ∈ Ah. The last condition means that 〈ξ, πg(ag)η〉 =
〈πg−1 (a∗

g)ξ, η〉 for all ξ, η ∈ E. In particular, πe : Ae → End(E) is a representa-
tion of Ae.

Lemma 9.2 (compare [27, Lemma 12]). The families of norms ‖ξ‖a := ‖π(a)ξ‖
for a ∈ A and for a ∈ Ae generate equivalent topologies on E. Hence the

representation πe : Ae → EndD(E) is closed if and only if π is closed.

Proof. Any element of A is a sum a =
∑
g∈G ag with ag ∈ Ag and only finitely

many non-zero terms. We estimate ‖ξ‖a ≤
∑
g∈G‖ξ‖ag

, and ‖ξ‖ag
≤ 5

4‖ξ‖a∗

gag

by the proof of Lemma 2.2. Since a∗
gag ∈ Ae, the graph topologies for πe and π

are equivalent.

9.1 Integrability by restriction

Definition 9.3. Let a weakly admissible class of integrable representations
of Ae on Hilbert modules be given. We call a representation of A on a Hilbert
module integrable if its restriction to Ae is integrable.

Here “restriction of π” means the representation πe with the same domain E

as π. This is closed by Lemma 9.2.

Proposition 9.4. If integrability for representations of Ae is defined by sub-

module conditions, then the same holds for A. If the Local–Global Principle

holds for the integrable representations of Ae, it also holds for the integrable

representations of A. If the class of integrable representations of Ae is admis-

sible or weakly admissible, the same holds for A.

Proof. The first two statements and the claim about weak admissibility are
trivial because integrability for a representation ofA only involves its restriction
to Ae. Lemma 9.2 shows that restriction from A to Ae does not change the
domain. Hence (2) in Proposition 3.8 is inherited by A if it holds for Ae. That
is, admissibility of the integrable representations passes from Ae to A.
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It is unclear whether A also inherits the Strong Local–Global Principle from Ae.
This may often be bypassed using Theorem 5.9.

9.2 Inducible representations and induction

Let F be a Hilbert D-module and let F ⊆ F and ϕe : Ae → EndD(F) be a
representation of Ae on F . We try to induce ϕe to a representation of A as
in [27]. Thus we consider the algebraic tensor product A⊙F and equip it with
the obvious right D-module structure and the unique sesquilinear map that
satisfies

〈a1 ⊗ ξ1, a2 ⊗ ξ2〉 = δg,h〈ξ1, ϕe(a
∗
1a2)ξ2〉

for all g, h ∈ G, a1 ∈ Ag, a2 ∈ Ah, ξ1, ξ2 ∈ F. This map is sesquilinear
and descends to the quotient space A ⊙Ae

F. It is symmetric and D-linear
in the sense that 〈x, y〉 = 〈y, x〉∗ and 〈x, yd〉 = 〈x, y〉d. Let π be the action
of A on A ⊙Ae

F by left multiplication. This representation is formally a
∗-homomorphism in the sense that 〈x, π(a)y〉 = 〈π(a∗)x, y〉 for all a ∈ A, x, y ∈
A ⊙Ae

F. The only thing that is missing to get a representation of A on a
Hilbert D-module is positivity of the inner product. This requires a subtle
extra condition.

Proposition 9.5. The following are equivalent:

(1) the sesquilinear map on A⊙Ae
F defined above is positive semidefinite;

(2) for all g ∈ G, n ∈ N and all a1, . . . , an ∈ Ag, ξ1, . . . , ξn ∈ F, the element∑n
k,l=1〈ξk, ϕe(a∗

kal)ξl〉 ∈ D is positive;

(3) for all g ∈ G, n ∈ N and all a1, . . . , an ∈ Ag, ξ1, . . . , ξn ∈ F, the matrix(
〈ξk, ϕe(a∗

kal)ξl〉
)
k,l
∈Mn(D) is positive.

Proof. The condition (2) for fixed g ∈ G says that the sesquilinear map on
Ag ⊙Ae

F is positive semidefinite. Since the subspaces Ag ⊙Ae
F for different g

are orthogonal, this is equivalent to positive semidefiniteness on A⊙Ae
F. Thus

(1)⇐⇒ (2).
We prove (2) ⇐⇒ (3). Fix g ∈ G, n ∈ N, a1, . . . , an ∈ Ag and ξ1, . . . , ξn ∈ F.
Let y = (ykl) ∈ Mn(D) be the matrix in (3). By [17, Lemma 4.1], y ≥ 0 in
Mn(D) ⊆ B(Dn) if and only if 〈d, yd〉 ≥ 0 for all d = (d1, . . . , dn) ∈ Dn. That
is,

∑n
k,l=1 d

∗
kykldl ≥ 0 for all d1, . . . , dn ∈ D. Since F is a right D-module, this

condition for all ξi ∈ F, di ∈ D is equivalent to (2).

Definition 9.6. A representation ϕe of Ae is inducible (to A) if it satisfies the
equivalent conditions in Proposition 9.5.

If Ae were a C∗-algebra, it would be enough to assume 〈ξ, ϕe(a∗a)ξ〉 ≥ 0 for
all g ∈ G, a ∈ Ag, ξ ∈ F, which amounts to the condition a∗a ≥ 0 in Ae for
all g ∈ G, a ∈ Ag. This is part of the definition of a Fell bundle over a group.
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For more general ∗-algebras, the positivity conditions for different n ∈ N in
Proposition 9.5 may differ, compare [9].
Let A⊗Ae

F be the Hilbert module completion of A⊙Ae
F for the inner product

above. The ∗-algebra A acts on A⊙Ae
F by left multiplication, a1 · (a2 ⊗ ξ) :=

(a1a2) ⊗ ξ for a1, a2 ∈ A, ξ ∈ F. As in the proof of Lemma 2.18, this module
structure descends to the image of A⊙Ae

F in A⊗Ae
F and gives a well defined

representation π ofA onA⊗Ae
F . Its closure is called the induced representation

from ϕe, and its domain is denoted by A⊗Ae
F.

The decomposition A⊙Ae
F =

⊕
g∈GAg ⊙Ae

F is Ae-invariant and orthogonal
for the above inner product. Hence

A⊗Ae
F ∼=

⊕

g∈G

Ag ⊗Ae
F , (9.7)

where Ag ⊗Ae
F is the closure of the image of Ag ⊙Ae

F or, equivalently, the
Hilbert D-module completion of Ag⊙Ae

F with respect to the restriction of the
inner product. Each summand Ag ⊗Ae

F carries a closed representation of Ae
with domain Ag ⊗Ae

F, and π|Ae
is the direct sum of these representations.

Lemma 9.8. Let π be any representation of A. Then π|Ae
is inducible.

Proof. For g ∈ G, a1, . . . , an ∈ Ag, ξ1, . . . , ξn ∈ E, let y :=
∑n
k=1 π(ak)ξk.

Then

n∑

k,l=1

〈ξk, π|Ae
(a∗
kal)ξl〉 =

n∑

k,l=1

〈π(ak)ξk, π(al)ξl〉 = 〈y, y〉 ≥ 0.

Lemma 2.24 about the associativity of ⊗ has a variant for induction:

Lemma 9.9. Let D1, D2 be C∗-algebras, let E be a Hilbert D1-module and

let F be a C∗-correspondence between D1, D2. Let (ϕe,E) be an inducible

representation of A on E. Then the representation ϕe ⊗D1
F on E ⊗D1

F is

inducible and there is a canonical unitary ∗-intertwiner of representations of A,

(A⊗Ae
E)⊗D1

F ∼= A⊗Ae
(E ⊗D1

F).

Proof. Let E⊗D1
F ⊆ E ⊗D1

F be the domain of ϕe⊗D1
F . Let g1, . . . , gn ∈ G,

a1, . . . , an ∈ Agi
, and ω1, . . . , ωn ∈ E ⊗D1

F . Let ζ :=
∑n
k=1 ak ⊗ ωk ∈ A ⊙

(E⊗D1
F). To show that ϕe⊗D1

F is inducible, we must prove that 〈ζ, ζ〉 ∈ D2

is positive. Vectors in E⊙F form a core for ϕe ⊗D1
F by construction. Hence

there is a sequence of vectors of the form

ωj,τ :=

ℓj∑

i=1

ξτ,j,i ⊗ ητ,j,i, ξτ,j,i ∈ E, ητ,j,i ∈ F ,

which, for τ → ∞, converges to ωj in the graph norms of the elements
δgm,gk

a∗
mak ∈ Ae for all m, k = 1, . . . , n. Let ζτ :=

∑n
j=1 aj ⊗ ωj,τ . Then

lim
τ→∞

〈ζτ , ζτ 〉 = lim
τ→∞

〈ζτ , ζ〉 = lim
τ→∞

〈ζ, ζτ 〉 = 〈ζ, ζ〉
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in norm and

〈ζτ , ζτ 〉 =
〈∑

i,j

aj ⊗ ξτ,j,i ⊗ ητ,j,i,
∑

m,k

ak ⊗ ξτ,k,m ⊗ ητ,k,m
〉

=
∑

i,j,k,m

δgj ,gk
〈ητ,j,i, 〈ξτ,j,i, ϕe(a∗

jak)ξτ,k,m〉D1
· ητ,k,m〉D2

.

This is also the inner product of ζτ with itself in the tensor product (A⊗Ae
E)⊗F .

This is positive because ϕe is inducible and the usual tensor product of the
Hilbert D1-module A ⊗Ae

E with the D1, D2-correspondence F is a Hilbert
D2-module. Hence 〈ζτ , ζτ 〉 ≥ 0 for all τ . Since the positive elements in D2

form a closed subset, this implies 〈ζ, ζ〉 ≥ 0. Thus ϕe ⊗D1
F is inducible.

The argument above also shows that the linear span of vectors of the form
a ⊗ ξ ⊗ η with a ∈ A, ξ ∈ E, η ∈ F is a core for the representation of Ae on
A ⊗Ae

(E ⊗D1
F). Such vectors also form a core for the representation of A

on (A ⊗Ae
E) ⊗D1

F . The left actions of A and the D2-valued inner products
coincide on such vectors. Hence there is a unique unitary ∗-intertwiner that
maps the image of a⊗ξ⊗η in (A⊗Ae

E)⊗D1
F to its image inA⊗Ae

(E⊗D1
F).

9.3 C∗-Hulls for the unit fibre

We assume that the chosen class of integrable representations of Ae has a (weak)
C∗-hull Be. We want to construct a Fell bundle whose section C∗-algebra
is a (weak) C∗-hull for the integrable representations of A. At some point,
we need Be to be a full C∗-hull (compatible with isometric intertwiners) and
one more extra condition. But we may begin the construction without these
assumptions. First we build the unit fibre B+

e of the Fell bundle. It is a (weak)
C∗-hull for the inducible, integrable representations of Ae.
Let (Be, µe) be the universal integrable representation of Ae on Be. Let x− for
a self-adjoint element x in a C∗-algebra denote its negative part.

Definition 9.10. Let B+
e be the quotient C∗-algebra of Be by the closed two-

sided ideal generated by elements of the form

( n∑

k,l=1

b∗
k · µe(a∗

kal) · bl
)

−

for g ∈ G, a1, . . . , an ∈ Ag, b1, . . . , bn ∈ Be.

(9.11)
Let B+

e be the image of Be in B+
e and let µ+

e : Ae → EndB+
e
(B+

e ) be the
induced representation of Ae on this quotient.

The following proposition shows that the representation (B+
e , µ

+
e ) of Ae on B

+
e

is the universal inducible, integrable representation of Ae.

Proposition 9.12. Let (F, ϕe) be an integrable representation of Ae on a

Hilbert module F . Let ϕ̄e : Be → B(F) be the corresponding representation
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of Be. Then ϕe is inducible if and only if ϕ̄e factors through the quotient

map Be ։ B+
e . Thus B+

e is a C∗-hull for the inducible, integrable representa-

tions of Ae.

Proof. Assume first that ϕe is inducible. Let ξ ∈ F and let g ∈ G, a1, . . . , an ∈
Ag and b1, . . . , bn ∈ Be be as in (9.11). Let ξk := ϕe(bk)ξ. Since ϕe is inducible,
Proposition 9.5 implies

0 ≤
n∑

k,l=1

〈ξk, ϕe(a∗
kal)ξl〉 =

n∑

k,l=1

〈ξ, ϕ̄e(bk)∗ϕe(a
∗
kal)ϕ̄e(bl)ξ〉

=

〈
ξ, ϕ̄e




n∑

k,l=1

b∗
kµe(a

∗
kal)bl


 ξ

〉
.

Since ξ ∈ F is arbitrary, this means that ϕ̄e

(∑n
k,l=1 bkµe(a

∗
kal)bl

)
≥ 0 in

B(F). Equivalently, ϕ̄e annihilates the negative part of
∑n
k,l=1 bkµe(a

∗
kal)bl.

So ϕ̄e descends to a homomorphism on the quotient B+
e . Conversely, the

representation (B+
e , µ

+
e ) is inducible by Proposition 9.5. If ϕ̄+

e : B+
e → B(F) is

a representation, then the representation µ+
e ⊗ϕ̄+

e
1F
∼= ϕe on B+

e ⊗B+
e
F ∼= F

is inducible by Lemma 9.9. That is, ϕe is inducible if ϕ̄e factors through the
quotient map Be ։ B+

e .
Summing up, the representation ϕ̄e associated to an integrable representa-
tion ϕe of Ae descends to B+

e if and only if ϕe is inducible. The quotient
map induces a fully faithful embedding Rep(B+

e , D) →֒ Rep(Be, D). The argu-
ment above shows that its image consists of those representations of Be that
correspond to inducible, integrable representations of Ae under the correspon-
dence Rep(Be, D) ∼= Repint(Ae, D). Hence B+

e is a (weak) C∗-hull for the class
of inducible, integrable representations of Ae.

Definition 9.13. Let B+
g := Ag ⊗Ae

B+
e . This is a well defined Hilbert

B+
e -module because the representation (B+

e , µ
+
e ) of Ae on B+

e is inducible.
Let (B+

g , µ
+
e,g) be the induced representation of Ae on B

+
g . It has the image of

Ag ⊙Ae
B+
e as a core, with the representation µ+

e,g(ae)(ag ⊗ b) := (aeag)⊗ b for
ae ∈ Ae, ag ∈ Ag, b ∈ B+

e .

By definition, the right B+
e -module structure and the inner product on B+

g

are the unique extensions of the following pre-Hilbert module structure on
Ag ⊙Ae

B+
e : (ag ⊗ b1) · b2 := ag ⊗ (b1 · b2) for all ag ∈ Ag, b1 ∈ B+

e , b2 ∈ B+
e ,

and
〈a1 ⊗ b1, a2 ⊗ b2〉 := b∗

1µ
+
e (a

∗
1a2)b2 (9.14)

for a1, a2 ∈ Ag, b1, b2 ∈ B+
e . This is positive definite by Proposition 9.12. By

definition, B+
g is the norm completion of this pre-Hilbert B+

e -module, and B+
g

is the completion ofAg⊙Ae
B+
e in the graph topology for the representation µ+

e,g

of Ae.
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The Hilbert B+
e -modules B+

g are the fibres of our Fell bundle.
The Fell bundle structure on (B+

g )g∈G only exists under extra assump-
tions. Before we turn to these, we construct representations of the Hilbert
B+
e -modules B+

g from an integrable representation π of A on E . Let πg := π|Ag

and let π̄e : Be → B(E) be the representation of the C∗-hull corresponding
to πe. Since πe is inducible by Lemma 9.8, π̄e descends to a representation
π̄+
e : B+

e → B(E) by Proposition 9.12.
Let a ∈ Ag and b ∈ B+

e . The operator πg(a)π̄
+
e (b) is defined on all of E

because π̄+
e (b) maps E into the domain E of πe, which is also the domain

of πg(a) by Lemma 9.2. Its adjoint contains the densely defined opera-
tor π̄+

e (b
∗)πg−1(a∗), and the operator

π̄+
e (b

∗)πg−1 (a∗)πg(a)π̄
+
e (b) = π̄+

e (b
∗)πe(a

∗a)π̄+
e (b) = π̄+

e (b
∗ · µ+

e (a
∗a) · b)

is bounded. Hence π̄+
e (b

∗)πg−1 (a∗) extends to a bounded operator on E , which
is adjoint to πg(a)π̄

+
e (b). Thus πg(a)π̄

+
e (b) ∈ B(E). Define

π̄+
g : Ag ⊙B+

e → B(E), a⊗ b 7→ πg(a)π̄
+
e (b).

As above, we check that

π̄+
g (x1)

∗π̄+
g (x2) = π̄+

e (〈x1, x2〉), π̄+
g (x · b) = π̄+

g (x)π̄
+
e (b) (9.15)

for all x1, x2, x ∈ Ag ⊙B+
e , b ∈ B+

e , where the inner product is the one that
defines B+

g . Thus π̄
+
g extends uniquely to a bounded linear map

π̄+
g : B+

g → B(E),

which still satisfies (9.15). That is, it is a representation of the Hilbert mod-
ule B+

g with respect to π̄+
e .

Lemma 9.16. If π̄+
e : B+

e →֒ B(E) is faithful (hence isometric), then so is π̄+
g .

Proof. Let ξ ∈ B+
g . Then

‖ξ‖ = ‖〈ξ, ξ〉B+
e
‖1/2 = ‖π̄+

e (〈ξ, ξ〉B+
e
)‖1/2 = ‖π̄+

g (ξ)
∗π̄+
g (ξ)‖

1/2 = ‖π̄+
g (ξ)‖.

Next we want to prove that

π̄+
g (B

+
g ) · π̄+

h (B
+
h ) ⊆ π̄+

gh(B
+
gh) and π̄+

g (B
+
g )

∗ = π̄+
g−1(B

+
g−1 ) (9.17)

for all g, h ∈ G and for all integrable representations π of A. This would give
(π̄+
g (B

+
g ))g∈G a Fell bundle structure, which would lift to (B+

g )g∈G itself if π̄+
e

is faithful. Lemma 9.23 below gives (9.17) provided the closed linear span of
π̄+
e (B

+
e ) · π̄+

g (B
+
g ) is π̄

+
g (B

+
g ) for all g ∈ G. But this only holds if we impose two

extra assumptions. First, compatibility of integrability and induction gives B+
g

a canonical left B+
e -module structure. Secondly, compatibility of the weak

C∗-hull B+
e with isometric intertwiners ensures that the representation π̄+

g is
compatible with this left B+

e -module structure.
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9.4 Integrability and induction

Definition 9.18. We say that integrability is compatible with induction if in-
duction of inducible representations preserves integrability; that is, if ϕe is an
inducible, integrable representation of Ae on E and π is the representation of A
on A ⊗Ae

E induced by ϕe, then the representation πe := π|Ae
of Ae is again

integrable.

We shall use this assumption in Section 9.5 to prove (9.17). But first, we study
some sufficient conditions for integrability to be compatible with induction.
A direct sum of representations is integrable if and only if each summand is
integrable by Corollary 3.4. Hence integrability is compatible with induction if
and only if an inducible, integrable representation ϕe on F induces integrable
representations of Ae on Ag ⊗Ae

F for all g ∈ G.
Proposition 9.19. Integrability is compatible with induction if and only if the

representations (B+
g , µ

+
e,g) of Ae on B+

g are integrable for all g ∈ G.

Proof. The representations (B+
g , µ

+
e,g) of Ae on B

+
g are integrable for all g ∈ G

if and only if their direct sum is integrable. Denote this by (A ⊗Ae
B+
e , µ

+).
If integrability is compatible with induction, then (A ⊗Ae

B+
e , µ

+) must be
integrable because it is the induced representation of the universal integrable
(inducible) representation (B+

e , µ
+
e ) of Ae on B+

e . Conversely, by Lemma 9.9,
induction maps the representation (B+

e , µ
+
e )⊗̺ F of Ae associated to a repre-

sentation ̺ : B+
e → B(F) to the representation (A⊗Ae

B+
e , µ

+)⊗̺ F , which is
integrable if (A⊗Ae

B+
e , µ

+) is, see Definition 3.11.(2).

The (Strong) Local–Global Principle is useful to check that integrability is
compatible with induction:

Proposition 9.20. Assume that the integrable representations of Ae satisfy the

Strong Local–Global Principle and that induction maps irreducible, inducible,

integrable Hilbert space representations of Ae to integrable Hilbert space repre-

sentations of A. Then integrability is compatible with induction.

The same conclusion holds if the integrable representations of Ae satisfy the

Local–Global Principle and induction maps all inducible, integrable Hilbert

space representations of Ae to integrable Hilbert space representations of A.

Proof. Let B+
e with the representation (B+

e , µ
+
e ) of Ae be the C∗-hull for the

inducible, integrable representations of Ae. By Proposition 9.19, it suffices to
prove that the canonical representation of Ae on A⊗Ae

B+
e is integrable.

By the Strong Local–Global Principle, this follows if the induced representa-
tion π̃ of Ae on (A ⊗Ae

B+
e ) ⊗̺ H is integrable for each irreducible represen-

tation ̺ of B+
e on a Hilbert space H. The representation ̺ is equivalent to

an irreducible, inducible, integrable representation π of Ae on H, and π̃ is the
representation induced by π. By assumption, π̃ is integrable. This finishes the
proof in the case of the Strong Local–Global Principle. The argument in the
other case is the same without the word “irreducible.”
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Proposition 9.21. Assume the following. First, the integrable representations

of Ae satisfy the Strong Local–Global Principle. Secondly, all irreducible, in-

tegrable Hilbert space representations of Ae are finite-dimensional. Third, all

finite-dimensional inducible representations of Ae are integrable. And fourth,

each Ag is finitely generated as a right Ae-module. Then integrability is com-

patible with induction.

Proof. First, since B+
e is a quotient of Be, its irreducible representations form a

subset of the irreducible representations of Be. Thus the irreducible, inducible,
integrable Hilbert space representations of Ae are finite-dimensional as well. By
Proposition 9.20, it suffices to check that the induced representation of Ae on
Ag⊗Ae

H is integrable when H is a Hilbert space with an irreducible, inducible,
integrable representation. By our assumptions, H is finite-dimensional and Ag
is finitely generated as an Ae-module. Hence Ag ⊗Ae

H is finite-dimensional.
This representation is a direct summand in a representation of A on A⊗Ae

H
and hence inducible by Lemma 9.8. By assumption, the induced representation
of Ae on Ag ⊗Ae

H is integrable.

9.5 The Fell bundle structure

If integrability is compatible with induction, the representation µ+
e,g of Ae

on B+
g is integrable. It is inducible as well by Lemma 9.8 because it is a direct

summand in a representation of A. Hence there is a unique (nondegenerate)
representation µ̄+

e,g of B+
e on B+

g such that µ̄+
e,g(B

+
e )B

+
g is a core for µ+

e,g, and
µ+
e,g(ae)(µ̄

+
e,g(b)x) = µ̄+

e,g(µ
+
e (ae)b)x for all a ∈ Ae, b ∈ B+

e , x ∈ B+
g . Our next

goal is to show that the representations π̄+
e : B+

e → B(E) and π̄+
g : B+

g → B(E)
constructed using (9.15) are compatible in the sense that

π̄+
e (be) · π̄+

g (bg) = π̄+
g (µ̄

+
e,g(be)bg) for all be ∈ B+

e , bg ∈ B+
g . (9.22)

This is not automatic. The following lemma is the most subtle point in the
proof of the Induction Theorem.

Lemma 9.23. Equation (9.22) holds if B+
e is a C∗-hull, not just a weak C∗-hull.

Then also π̄+
e (B

+
e ) · π̄+

g (B
+
g ) = π̄+

g (B
+
g ) for all g ∈ G.

Proof. Let F := B+
g ⊗B+

e
E . The linear map B+

g ⊙ E → E , b ⊗ ξ 7→ π̄+
g (b)ξ,

for b ∈ B+
g , ξ ∈ E , preserves the inner products by (9.15). Hence it extends

to a well defined isometry I : F →֒ E . The representation µ̄+
e,g of B+

e on B+
g

induces a representation µ̄+
e,g⊗1E of B+

e on F . The meaning of (9.22) is that I
intertwines the representations µ̄+

e,g ⊗ 1 and π̄+
e of B+

e on F and E . These
representations correspond to the integrable representations µ+

e,g ⊗ 1 and πe
of Ae on F and E , respectively. Since B+

e is a C∗-hull, it suffices to prove
that I intertwines these representations of Ae.
We identify E ∼= B+

e ⊗π̄+
e
E and describe πe as µ

+
e ⊗π̄+

e
1E as in Proposition 3.6.

Then Lemma 9.9 gives a canonical unitary ∗-intertwiner

F := (Ag ⊗Ae
B+
e )⊗B+

e
E ∼= Ag ⊗Ae

(B+
e ⊗B+

e
E) ∼= Ag ⊗Ae

E
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of representations of Ae. An inspection of the proof shows that I corresponds
to the isometry I ′ : Ag ⊗Ae

E →֒ E defined by I ′(a⊗ ξ) := πg(a)ξ for all a ∈ Ag,
ξ ∈ E. Since I ′ is an Ae-intertwiner, so is I. This finishes the proof of (9.22).
Then π̄+

e (B
+
e ) · π̄+

g (B
+
g ) = π̄+

g (B
+
g ) follows because µ̄

+
e,g is nondegenerate.

Lemma 9.24. Assume π̄+
e (B

+
e ) · π̄+

g (B
+
g ) = π̄+

g (B
+
g ) for all g ∈ G. Then (9.17)

holds.

Proof. We write
.
= to denote that two sets of operators have the same closed

linear span. By definition, π̄+
g (B

+
g )

.
= πg(Ag)π̄

+
e (B

+
e ), and π̄

+
e (B

+
e )

∗ .
= π̄+

e (B
+
e )

because B+
e is dense in B+

e . Our assumption π̄+
g (B

+
g )

.
= π̄+

e (B
+
e ) · π̄+

g (B
+
g )

implies π̄+
g (B

+
g )

.
= π̄+

e (B
+
e )

∗πg(Ag)π̄
+
e (B

+
e ). We have seen above (9.15) that

π̄+
e (b

∗)πg−1 (a∗) = π̄+
e (b)

∗πg−1(a∗)

for b ∈ B+
e , a ∈ Ag extends to a bounded operator on E that is adjoint to the

bounded operator πg(a)π̄
+
e (b). Therefore,

(
π̄+
e (b1)

∗πg(a)π̄
+
e (b2)

)∗
= π̄+

e (b2)
∗πg−1 (a∗)π̄+

e (b1)

for all b1, b2 ∈ B+
e , a ∈ Ag; both sides are globally defined bounded operators

because π̄+
e (B

+
e ) maps E into E. The closed linear spans on the two sides

of this equality are π̄+
g (B

+
g )

∗ and π̄+
g−1 (B

+
g−1), respectively. Thus π̄+

g (B
+
g )

∗ =

π̄+
g−1 (B

+
g−1). As above, the operators π̄+

e (b)πg(a) for b ∈ (B+
e )

∗, g ∈ G, a ∈ Ag
are bounded and generate (B+

g−1)
∗ = B+

g . Hence

π̄+
g (B

+
g ) · π̄+

h (B
+
h )

.
= π̄+

e ((B
+
e )

∗)πg(Ag) · πh(Ah)π̄+
e (B

+
e )

⊆ π̄+
e (B

+
e )

∗ · πgh(Agh)π̄+
e (B

+
e )

.
= π̄+

gh(B
+
gh).

We used here that π is a homomorphism on A and that Ag · Ah ⊆ Agh.

Lemma 9.25. Assume that Be is a C∗-hull and that integrability is compatible

with induction. There is a unique Fell bundle structure on (B+
g )g∈G such that

the maps π̄+
g : B+

g → B(E) form a Fell bundle representation for any integrable

representation π of A on a Hilbert module E.

Proof. Lemmas 9.23 and 9.24 show that (9.17) holds under our assumptions.
Hence the multiplication and involution in B(E) restrict to a Fell bundle struc-
ture on the subspaces π̄+

g (B
+
g ) ⊆ B(E) for g ∈ G, such that the inclusions

π̄+
g (B

+
g ) →֒ B(E) give a Fell bundle representation.

The induced representation λ of A on the Hilbert B+
e -module A⊗Ae

B+
e gives

a faithful representation of B+
e because A⊗Ae

B+
e ⊇ Ae⊗Ae

B+
e = B+

e contains
the identity representation. Hence the resulting representations λ̄g of B+

g are
also faithful, even isometric, by Lemma 9.16. So the Fell bundle structure
on λ̄g(B

+
g ) lifts to B+

g , so that the maps λ̄g : B
+
g → B(E) form a Fell bundle

representation.
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Let π be any integrable representation of A. The exterior direct sum π ⊕ λ
on the Hilbert D ⊕ B+

e -module E ′ := E ⊕ (A ⊗Ae
B+
e ) is still integrable. The

resulting maps from B+
g to B(E ′) simply give block matrices π̄+

g (b) ⊕ λ̄g(b)
for b ∈ B+

g . The compressions to the direct summands E and A ⊗Ae
B+
e

therefore restrict to Fell bundle representations with respect to the Fell bundle
structure on (π̄+

g ⊕ λ̄g)(B+
g ) defined above. Since λ is faithful, the projection

(π̄+
g ⊕ λ̄g)(B+

g )→ λ̄g(B
+
g )
∼= B+

g is a Fell bundle isomorphism. Hence the map

B+
g

∼−→ (π̄+
g ⊕ λ̄g)(B+

g )→ π̄+
g (B

+
g ) is a Fell bundle representation.

Let (βg)g∈G be a Fell bundle over a discrete group G (see [8]). Then
β :=

⊕
g∈G βg is a G-graded ∗-algebra using the given multiplications and

involutions among the subspaces βg. The section C∗-algebra C∗(β) of the Fell
bundle is defined as the completion of β in the maximal C∗-seminorm. By
construction, a representation of C∗(β) is equivalent to a representation of the
Fell bundle. This holds also for representations on Hilbert modules.

Theorem 9.26. Let A be a graded ∗-algebra for which Ae has a C∗-hull. As-

sume that integrability is compatible with induction as in Definition 9.18. The

section C∗-algebra B of the Fell bundle (B+
g )g∈G constructed above is a C∗-hull

for the integrable representations of A.

Proof. Representations ofB are in natural bijection with Fell bundle representa-
tions: restricting a representation of B to the subspaces B+

g gives a Fell bundle
representation, and conversely a Fell bundle representation gives a representa-
tion of the ∗-algebra

⊕
g∈GB

+
g , which extends uniquely to the C∗-completion.

Lemma 9.25 says that any integrable representation π =
⊕

g∈G πg of A induces

a Fell bundle representation (π̄+
g )g∈G of (B+

g )g∈G and thus a representation ofB.
By construction, this family of maps Repint(A) → Rep(B) is compatible with
interior tensor products and unitary ∗-intertwiners. We are going to show that
this is a family of bijections.
First we describe an integrable representation (B, µ) of A on B. By construc-
tion, A ⊗Ae

B+
e =

⊕
g∈GB+

g is dense in B. This subspace carries a repre-
sentation of A by left multiplication. We extend this to the right ideal in B
generated by A ⊗Ae

B+
e to get a representation of A on B. Let (B, µ) be its

closure.
The representations µ̄+

e,g of B+
e on B+

g are defined so that µ̄+
e,g(B

+
e )B

+
g is an-

other core for the representation (B+
g , µ

+
e,g) of Ae on B

+
g . Therefore, B

+
e ·B is

a core for the restriction of the representation (B, µ) to Ae. This core shows
that (B, µ|Ae

) = (B+
e , µ

+
e )⊗Be

B, where the interior tensor product is with re-
spect to the canonical embedding B+

e →֒ B. Therefore, the restriction of (B, µ)
to Ae is integrable and the corresponding representation µ̄+

e of B+
e is simply

the inclusion map B+
e →֒ B. Thus the representation (B, µ) of A on B is also

integrable.
The integrable representation (B, µ) of A on B yields a representation µ̄+

g of
the Fell bundle (B+

g )g∈G in M(B) = B(B). By construction, the image of
ag ⊗ b ∈ Ag ⊙Ae

B+
e in B+

g acts by µ(ag)µ̄
+
e (b) = µ(ag) · b. That is, B+

g is
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represented by the canonical inclusion map B+
g →֒ B. The representation of B

associated to this Fell bundle representation is the identity map on B.

Interior tensor product with (B, µ) gives a family of maps Rep(B)→ Repint(A)
that is compatible with unitary ∗-intertwiners and interior tensor products.
Since the composite family of maps Rep(B) → Repint(A) → Rep(B) is com-
patible with interior tensor products and maps the identity representation of B
to itself, the composite map on Rep(B) is the identity.

Let (E, π) be an integrable representation of A on a Hilbert D-module E for
some C∗-algebra D. This yields a representation (π̄+

g )g∈G of the Fell bun-
dle (B+

g )g∈G and an associated representation π̄ of B. We claim that the
integrable representation (E′, π′) := (B, µ)⊗π̄ E is equal to (E, π). Both repre-
sentations have the same restriction to Ae because

(B, µ|Ae
)⊗π̄ E ∼= (B+

e , µ
+
e )⊗Be

B ⊗π̄ E ∼= (B+
e , µ

+
e )⊗π̄|Be

E ∼= (E, π).

Hence both representations have the same domain by Lemma 9.2.
And π̄+

e (B
+
e )E is a core for both. On π̄+

e (B
+
e )E , ag ∈ Ag acts by map-

ping π̄+
e (be)ξ to πg(ag)π̄

+
e (be)ξ = π̄(ag ⊗ be)ξ in both representations, where

we view ag ⊗ be ∈ B+
g ⊆ B. Since (E, π) and (E′, π′) have a common core, they

are equal.

This finishes the proof that our two families of maps Repint(A) ↔ Rep(B)
are inverse to each other. Thus B is a weak C∗-hull for the integrable repre-
sentations of A. Since Ae is a C∗-hull, the integrable representations of Ae
are admissible. So are the integrable representations of A by Proposition 9.4.
Thus B is a C∗-hull.

Remark 9.27. The fibres B+
e of the Fell bundle in Theorem 9.26 are described

in Definitions 9.10 and 9.13, including the right Hilbert B+
e -module structure

on B+
g . The rest of the Fell bundle structure needs technical extra assump-

tions. The simplest way to get it is by inducing the universal inducible, in-
tegrable representation of A on B+

e to an integrable representation of A on
the Hilbert B+

e -module A ⊗Ae
B+
e . The Fell bundle (B+

g )g∈G is represented
faithfully in B(A⊗Ae

B+
e ) by Lemma 9.16. The multiplication, involution, and

norm in our Fell bundle are simply the multiplication, involution and norm in
the C∗-algebra B(A ⊗Ae

B+
e ). The dense image of Ag ⊙Ae

B+
e in B+

g acts on
A⊗Ae

B+
e by ag ⊗ b 7→ πg(ag) · π̄+

e (b), where π̄
+
e (b) is the representation of the

C∗-hull B+
e associated to the induced representation of Ae on A⊗Ae

B+
e , which

is integrable by assumption.

9.6 Two counterexamples

Two assumptions limit the generality of the Induction Theorem 9.26. First,
integrability must be compatible with induction. Secondly, Be should be a
C∗-hull and not a weak C∗-hull. Equivalently, all isometric intertwiners between
integrable Hilbert space representations of Ae are ∗-intertwiners. We show by
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two simple counterexamples that both assumptions are needed. In particular,
there is no version of the Induction Theorem for weak C∗-hulls.
Both counterexamples involve the group G = Z/2 = {0, 1}. A G-graded
∗-algebra is a ∗-superalgebra, that is, a ∗-algebra with a decomposition A =
A0 ⊕A1 such that

A0 ·A0+A1·A1 ⊆ A0, A0 ·A1+A1·A0 ⊆ A1, A∗
0 = A0, A∗

1 = A1, 1 ∈ A0.

In both examples, A0 = C[x] with x = x∗.
In the first example, A is the crossed product for the action of Z/2 on A0 = C[x]
through the involution x 7→ −x. That is,

A = C〈x, ε | ε2 = 1, xε = −εx, x = x∗, ε = ε∗〉, x ∈ A0, ε ∈ A1.

Since A1 = εA0
∼= A0 as a right A0-module, any representation of A0 is in-

ducible.
Let B0 = C0((0,∞)) with the representation of A0 from the inclusion map

(0,∞) →֒ R = Â0 (see Proposition 8.1). This gives a C∗-hull for a class of
representations of A0 that is defined by submodule conditions and satisfies the
Strong Local–Global Principle by Theorems 8.2 and 8.3. The class of (0,∞)-
integrable representations consists of those representations of C[x] that are
generated by a regular, self-adjoint, strictly positive operator.
In a representation of A, the element ε ∈ A acts by a unitary involution that
conjugates π(x) to −π(x). Hence π(x) cannot be strictly positive. Thus the
zero-dimensional representation is the only representation of A whose restric-
tion to A0 is C0((0,∞))-integrable. The C∗-hull for this class is {0}. The-
orem 9.26 does not apply here because induced representations of inducible,
integrable representations of A0 are never integrable when they are non-zero.
The second example is the commutative ∗-superalgebra

A = C〈x, ε | ε2 = 1 + x2, xε = εx, x = x∗, ε = ε∗〉, x ∈ A0, ε ∈ A1.

Thus A1 = εC[x] ∼= A0 with the usual A0-bimodule structure and the inner

product 〈εa1, εa2〉 = (1 + x2) · a1 · a2. Since (1 + x2)|a|2 is positive in C[x] for
any a ∈ C[x], any representation of A0 is inducible.
Let (E, π) be a representation of A0 on a Hilbert module E over a C∗-algebraD.
The induced representation A1 ⊗A0

(E, π) lives on the Hilbert D-module com-
pletion E1 of E for the inner product 〈ξ1, ξ2〉1 := 〈ξ1, π(1 + x2)ξ2〉. Its domain
is E, viewed as a dense D-submodule in E1, and the representation of A0 is π
again. The operator π(x + i) on E extends to an isometry I : E1 →֒ E because

〈π(x+ i)ξ1, π(x+ i)ξ2〉 = 〈ξ1, π(x− i)π(x+ i)ξ2〉 = 〈ξ1, π(1 + x2)ξ2〉 = 〈ξ1, ξ2〉1

for all ξ1, ξ2 ∈ E. This isometry commutes with π(a) for all a ∈ A, so it is an
isometric intertwiner A1 ⊗A0

(E, π) →֒ (E, π).
Now let B0 with the universal representation (B0, µ0) be one of the two
noncommutative weak C∗-hulls T0 or K(ℓ2N) of C[x] described in §6. In
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a Toeplitz integrable representation, π(x + i) has dense range. Even more,
π(x+i)E is dense in E in the graph topology. Thus I is a unitary ∗-intertwiner
A1 ⊗A0

(E, π)
∼−→ (E, π) for any integrable representation (E, π) of A0.

Since all representations of A0 are inducible, the unit fibre of the Fell bundle
should be B0. The other fibre B1 is A1⊗A0

B0, which we have identified with B0.
The unitary A1 ⊗A0

B0
∼= B0 is a ∗-intertwiner between the representations

of A0 as well. Therefore, integrability is compatible with induction. And the
left B0-module structure µ̄0,1 on B1 in (9.22) is simply left multiplication.
Next we describe the induced representation of A on the Hilbert B0-module

A⊗A0
B0 = A0 ⊗A0

B0 ⊕A1 ⊗A0
B0
∼= B0 ⊕B0.

The representations of A and A0 on A ⊗A0
B0 have the same domain by

Lemma 9.2, and for A0 the domain is B0 ⊕ B0. We claim that A acts on
this domain by

x 7→
(
µ0(x) 0
0 µ0(x)

)
, ε 7→

(
0 µ0(x − i)

µ0(x+ i) 0

)
.

We have already seen this for x ∈ A0. Left multiplication by ε maps b ∈
B0 ⊆ B0 first to ε ⊗ b ∈ A1 ⊗A0

B0, which is mapped by the isometry I
to µ0(x + i)b ∈ B0 ⊆ B0. And it maps the element µ0(x + i)b ∈ B0 for
b ∈ B0, which corresponds to ε⊗ b in the odd fibre, to ε2 ⊗ b = µ0(x

2 + 1)b =
µ0(x − i)µ0(x+ i)b ∈ B0. This proves the formula for the action of ε.
The representation µ̄0 of B0 on A ⊗A0

B0 is the representation of the weak
C∗-hull that corresponds to the representation of A0 ⊆ A described above.
This is

µ̄0 : B0 →M2(B0), b 7→
(
b 0
0 b

)
.

Hence ε⊗ b ∈ A1 ⊗A0
B0 for b ∈ B0 acts by the matrix

(
0 µ0(x − i)

µ0(x+ i) 0

) (
b 0
0 b

)
=

(
0 µ0(x− i)b

µ0(x+ i)b 0

)
.

The map µ0(x+i)b 7→ µ0(x− i)b is the Cayley transform of µ0(x). For our two
weak C∗-hulls, this is the unilateral shift S ∈ M(B0) by construction. Thus
the odd fibre B1

∼= B0 of our Fell bundle should act by

µ̄1 : B0 →M2(B0), b 7→
(
0 Sb
b 0

)
.

The map µ̄0 is a ∗-representation, and (9.15) gives

µ̄1(b1)
∗µ̄1(b2) = µ̄0(b

∗
1b2), µ̄1(b1)µ̄0(b2) = µ̄1(b1b2)

for all b1, b2 ∈ B0. This is also obvious from our explicit formulas. But

µ̄0(b1)µ̄1(b2) =

(
0 b1Sb2

b1b2 0

)
and µ̄0(b1b2) =

(
0 Sb1b2

b1b2 0

)
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differ if, say, b1 = S∗, b2 = 1. In fact, µ̄0(B0)·µ̄1(B0) is not contained in µ̄1(B0).
Hence there is no Fell bundle structure on (Bg)g∈Z/2 for which (µ̄g)g∈Z/2 would
be a Fell bundle representation.

10 Locally bounded unit fibre representations

We now specialise the Induction Theorem 9.26 to the case where the universal
integrable representation of the unit fibre Ae is locally bounded. In this case,
we may first construct a pro-C∗-algebraic Fell bundle whose unit fibre is the
pro-C∗-algebra completion of Ae. This is relevant because pro-C∗-algebras are
much closer to ordinary C∗-algebras than general ∗-algebras. We will see the
importance of this in the commutative case, where the pro-C∗-algebraic Fell
bundle gives us a twisted partial group action on the space Â+

e of positive
characters.
As before, let G be a group and let A =

⊕
g∈GAg be a G-graded

∗-algebra. We
are interested in the locally bounded representations of Ae, and representations
of A that restrict to locally bounded representations on Ae. The class Repb(Ae)
of locally bounded representations of Ae is admissible by Corollary 7.9. So
any weak C∗-hull for some smaller class of representations will be an ordinary
C∗-hull.
Let Ae be the pro-C∗-algebra completion of the unit fibre Ae, that is, the
completion of Ae in the topology defined by the directed set N (Ae) of all
C∗-seminorms on Ae. Locally bounded representations of Ae are equivalent to
locally bounded representations of Ae by Proposition 7.6.
When is a locally bounded representation inducible?

Proposition 10.1. A locally bounded representation (E, ϕ) of Ae on a Hilbert

module E is inducible if and only if ϕ(a∗a) ≥ 0 for all a ∈ Ag, g ∈ G.

The difference to the general criterion for inducibility in Proposition 9.5 is that
we do not consider matrices.

Proof. The subspace Eb ⊆ E of bounded vectors is a core for ϕ. As in the
proof of Proposition 9.12, it suffices to prove the positivity of the inner product
for a finite linear combination

∑n
k=1 ak ⊗ ξk with ak ∈ Ag, ξk ∈ Eb for a

fixed g ∈ G. Since there are only finitely many ξk, there is a C∗-seminorm q
on Ae so that all ξk are q-bounded. Thus we may replace E by the Hilbert
submodule Eq of q-bounded vectors, where the representation of Ae extends
to the C∗-completion D := (Ae)q for q. Since we assume ϕ(a∗a) ≥ 0 for all
a ∈ Ag, this representation factors through the quotient of D by the closed
ideal I generated by the negative parts (a∗a)− for all a ∈ Ag, g ∈ G. The
D/I-valued inner product 〈a1, a2〉 := a∗

1a2 mod I on Ag is positive definite
by construction; since D/I is a C∗-algebra, we may use the usual notion of
positivity here, which does not involve matrices. Then the inner product on
the tensor product Ag ⊗D/I Eq is also positive definite. This is what we had to
prove.
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A pro-C∗-algebra has a functional calculus for self-adjoint elements. Hence we
may construct the negative parts (a∗a)− ∈ Ae for a ∈ Ag, g ∈ G. We let A+

e

be the completed quotient of Ae by the closed two-sided ideal generated by
these elements. This is another pro-C∗-algebra, and it is the largest quotient
in which a∗a ≥ 0 for all a ∈ Ag, g ∈ G. By Proposition 10.1, a locally
bounded representation of Ae is inducible if and only if the corresponding
locally bounded representation of Ae factors through A+

e .

Corollary 10.2. There is an equivalence between the inducible, locally

bounded representations of Ae and the locally bounded representations of the

pro-C∗-algebra A+
e , which is compatible with isometric intertwiners and inte-

rior tensor products.

Proof. Proposition 10.1 says that the equivalence in Proposition 7.6 maps the
subclass in Repb(Ae) of inducible, locally bounded representations of Ae onto
the subclass Repb(A+

e ) in Repb(Ae).

Let N (Ae)
+ be the directed set of C∗-seminorms on A+

e . This is isomorphic to
the subset of N (Ae) consisting of all C∗-seminorms q on Ae for which a∗a ≥ 0
holds in the C∗-completion (Ae)q for all a ∈ Ag, g ∈ G. We would like to
complete A to a ∗-algebra

⊕
g∈GA+

g with unit fibre A+
e , where each A+

g is

a Hilbert bimodule over A+
e . But such a construction does not work in the

following example.

Example 10.3. It can happen that the class of locally bounded representations
of Ae is not compatible with induction. Let End∗(C[N]) be the ∗-algebra of all
∞×∞-matrix with only finitely many entries in each row and each column,
with the usual matrix multiplication and involution. Let A be the Z/2-graded
∗-algebra of block 2× 2-matrices

(
a b
c d

)
, a ∈ C, b ∈ C[N], c ∈ C[N], d ∈ End∗(C[N]),

with the grading where a, d are even and b, c are odd. Here b and c are infinite
column and row vectors with only finitely many non-zero entries, respectively.
Thus A ∼= End∗(C[N]) with the grading induced by the grading on C[N] where
C · δ0 is the even part and the span of δi for i > 0 is the odd part.

The character (a, d) 7→ a is a bounded representation of the unit fibreA0. Induc-
tion gives the standard representation of A on the Hilbert space C⊕ ℓ2(N) ∼=
ℓ2(N) by matrix-vector multiplication. This representation is irreducible be-
cause already the ideal of finite matrices M∞(C) in A acts irreducibly. It is not
bounded, that is, some elements in End∗(C[N]) act by unbounded operators
on ℓ2(N). Hence it is not locally bounded by Proposition 7.7.

To rule out this problem, we now assume that induction from Ae to A and

restriction back to Ae maps bounded representations of Ae again to bounded

representations of Ae, briefly, that boundedness is compatible with induction.
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This implies that local boundedness is compatible with induction because a lo-
cally bounded representation contains bounded subrepresentations whose union
is a core for it. Our assumption is equivalent to the boundedness of the induced
representations of Ae on the Hilbert (A+

e )q-modules Ag⊗Ae
(A+

e )q for all g ∈ G
and q ∈ N (Ae)

+. That is, there is another norm q′ ∈ N (Ae)
+ such that

q(a∗b∗ba) = ‖ba‖2q ≤ ‖b‖
2
q′‖a‖2

q = q′(b)2 · q(a∗a)

for all a ∈ Ag, b ∈ Ae. Let A+
g be the completion of Ag in the topology

generated by the family of norms q(a∗a) for q ∈ N (Ae)
+.

Lemma 10.4. The multiplication maps and the involutions in (Ag)g∈G extend

to continuous maps A+
g ×A+

h → A+
gh and A+

g → A+
g−1 for g, h ∈ G.

Proof. Given q ∈ N (Ae)
+, let q′ ∈ N (Ae)

+ be such that q(a∗b∗ba) ≤ q′(b)2 ·
q(a∗a) for all a ∈ Ah, b ∈ Ae. If b ∈ Ag, a ∈ Ah, then

‖ba‖2q := q(a∗b∗ba) = q(a∗(b∗b)
1/2(b∗b)

1/2a) ≤ q′((b∗b)
1/2)2 · q(a∗a) = ‖b‖2q′‖a‖2q

That is, the multiplication is jointly continuous with respect to the topology
defining (A+

g )g∈G and hence extends to a jointly continuous map A+
g ×A+

h →
A+
gh.

Furthermore, q(aa∗)2 = q(aa∗aa∗) ≤ q′(a∗a)·q(aa∗) and hence q(aa∗) ≤ q′(a∗a)

for all a ∈ Ah. That is, ‖a∗‖2q ≤ ‖a‖
2
q′ for all a ∈ Ah. Thus the involution is

continuous as well.

The completion A+ :=
⊕

g∈GA+
g of A is again a ∗-algebra by Lemma 10.4.

By construction of A+
e , the inner products a∗a ∈ A+

e are positive for a ∈ Ag,
g ∈ G; this remains so for a ∈ A+

g because the subset of positive elements
in A+

e is closed. Thus (A+
g )g∈G has the usual properties of a Fell bundle over G,

except that the fibres are only Hilbert bimodules over a pro-C∗-algebra. We
interpret (A+

g )g∈G as a partial action of G on A+
e by Hilbert bimodules as

in [4].
Usually, the norms q(a∗a) and q(aa∗) on Ag are not equivalent for a fixed
q ∈ N (A)+. This prevents us from completing A+ to a pro-C∗-algebra. It
also means that the integrable representations of A are not locally bounded
on A, but only on Ae. This happens in interesting examples such as the Weyl
algebra discussed in §13. This phenomenon for Fell bundles is related to the
known problem that crossed products for group actions on pro-C∗-algebras only
work well if the action is strongly bounded, that is, the invariant continuous
C∗-seminorms are cofinal in the set of all continuous C∗-seminorms, see [14].

Proposition 10.5. Suppose that boundedness for representations of Ae is

compatible with induction to A. Representations of A that restrict to lo-

cally bounded representations on Ae are equivalent to representations of the
∗-algebra A+ =

⊕
g∈GA+

g that restrict to locally bounded representations

on A+
e ; this equivalence is compatible with isometric intertwiners and interior

tensor products.
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Proof. Let π be a representation of A for which πe is a locally bounded repre-
sentation of Ae. The representation πe is inducible by Lemma 9.8. Hence πe
is the closure of the restriction of a locally bounded representation π̄+

e of A+
e

by Corollary 10.2. The representation πg of Ag for g ∈ G is continuous with
respect to the topology defining A+

g and the graph topology on the domain
of πg because πg(a)

∗πg(a) = πe(a
∗a). Hence it extends uniquely to A+

g , and
this gives a representation π̄+ of

⊕A+
g such that π is the closure of π̄+ ◦j. It is

easy to see that this equivalence between the locally bounded representations
of A and the representations of

⊕
g∈GA+

g that are locally bounded on A+
e is

compatible with isometric intertwiners and interior tensor products.

We will explore the consequences of this in the case of commutative Ae in §11.
In that case, boundedness is automatically compatible with induction, and the
pro-C∗-algebraic Fell bundle A+

e gives rise to a twisted groupoid with object
space Â+

e . Thus the C∗-hull produced by the Induction Theorem 9.26 is a
twisted groupoid C∗-algebra when Ae is commutative and the integrable rep-
resentations of Ae are locally bounded.
Here we briefly consider the situation of Theorem 7.16 where C0(A+

e ) is dense
in A+

e and provides a C∗-hull for the class of locally bounded representations.
Then we define

C0(A+
g ) := {a ∈ Ag | a∗a ∈ C0(A+

e )}.
That is, a ∈ C0(A+

g ) if and only if for all ε > 0 there is q ∈ N (Ae)
+ such

that ‖a∗a‖p < ε for all p ∈ Prim(A+
e ) \ Prim(A+

e )q. Since the involutions
Ag → Ag−1 and Ag−1 → Ag are both continuous, they are homeomorphisms.
Thus a ∈ C0(A+

g ) if and only if aa∗ ∈ C0(A+
e ). The proof of Lemma 7.15 shows

that A+
g ·Cc(A+

e ) and Cc(A+
e ) · A+

g are dense in C0(A+
g ).

Theorem 10.6. Assume that boundedness is compatible with induction from Ae
to A and that C0(A+

e ) is dense in A+
e . Then C0(A+

g )g∈G is a Fell bundle over G
whose section C∗-algebra is a C∗-hull for the class of all representations of A
that restrict to a locally bounded representation of Ae.

Proof. The assumption that boundedness is compatible with induction allows
us to build the pro-C∗-algebraic Fell bundle (A+

g )g∈G. Call a representation
of A =

⊕
g∈GAg or A+ :=

⊕
g∈GA+

g integrable if the restriction to the unit

fibre Ae or A+
e is locally bounded, respectively. These classes of integrable

representations are equivalent by Proposition 10.5.
Since C0(A+

e ) is dense in A+
e , it is a C∗-hull for the locally bounded represen-

tations of A+
e by Theorem 7.17. Equivalently, it is a C∗-hull for the inducible,

locally bounded representations of Ae. Let C0(A+) :=
⊕

g∈GC0(A+
g ). Rep-

resentations of C0(A+) are equivalent to representations of the Fell bundle
C0(A+

g ). Thus we must prove that the class of all representations of C0(A+) is
equivalent to the class of integrable representations of A+. More precisely, the
equivalence maps a representation ̺ of C0(A+) on a Hilbert module E to the
representation π of A+ with the core ̺(Cc(A+

e ))E and π(a)̺(b)ξ := ̺(a · b)ξ for
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all a ∈ A+, b ∈ Cc(A+
e ), ξ ∈ E ; here a · b is the product in A+, which belongs

to C0(A+) if b ∈ Cc(A+
e ).

In the converse direction, we may simply restrict a locally bounded represen-
tation of A+ to the ∗-subalgebra C0(A+). This restriction is nondegenerate
because C0(A+

e ) ⊆ C0(A+) acts nondegenerately in any integrable representa-
tion of A+: this is part of the equivalence between representations of C0(A+

e )
and locally bounded representations of A+

e in Theorem 7.17. We claim that
the maps from representations of C0(A+) to integrable representations of A+

and back are inverse to each other.
Let π be an integrable representation of A+ on a Hilbert module E . The repre-
sentations π and π|A+

e
have the same domain by Lemma 9.2. Since π|A+

e
is lo-

cally bounded, π(Cc(A+
e ))E is a core for π|A+

e
. Since Cc(A+

e )·A+
g = A+

g ·Cc(A+
e )

for all g ∈ G, this subspace is π(A+)-invariant and thus a core for π. The repre-
sentation ̺ of C0(A+) is the closure of the restriction of π to C0(A+) ⊆ A+. By
definition, the representation of A+ has the core ̺(Cc(A+

e ))E and acts there by
π′(a)̺(b)ξ = ̺(a·b)ξ. The subspace ̺(Cc(A+

e ))E is a core for this representation
because the map ξ 7→ π′(a)̺(b)ξ is continuous in the norm topology on E and E

is dense in E . If ξ ∈ E, then ̺(b)ξ = π(b)ξ and hence π′(a)π(b)ξ = π(a)π(b)ξ
for all a ∈ A+, b ∈ Cc(A+

e ), ξ ∈ E. This implies π = π′, as desired.
Now start with a representation ̺ of C0(A+). Let π be the associated integrable
representation ofA+. It has the core ̺(Cc(A+

e ))E and acts there by π(a)̺(b)ξ =
̺(a · b)ξ for all a ∈ A+, b ∈ Cc(A+

e ), ξ ∈ E . In particular, if a ∈ C0(A+), then
π(a)̺(b)ξ = ̺(a · b)ξ = ̺(a)̺(b)ξ. Since C0(A+

e ) · C0(A+
g ) is dense in C0(A+

g )
for all g ∈ G, the restriction of ̺ to C0(A+

e ) remains nondegenerate. Therefore,
the set of ̺(b)ξ for b ∈ Cc(A+

e ), ξ ∈ E is dense in E . Hence ̺ is the restriction
of π to C0(A+) ⊆ A+, as desired.

The proof of Theorem 10.6 does not use the constructions in Section 9 and
so provides an alternative proof of the Induction Theorem in case the chosen
class of integrable representations of Ae is the class of all locally bounded
representations.

11 Fell bundles with commutative unit fibre

In this section, we apply the Induction Theorem in the case where Ae and the
chosen C∗-hull Be are commutative. This is the only case considered in [27].
Extra assumptions in [27] ensure that the C∗-hull for the integrable represen-
tations of A is the crossed product for a partial action of G on the space
Â+
e ⊆ Âe of positive characters. Without these assumptions, we shall get a

“twisted” crossed product for a partial action.
So let G be a discrete group and A =

⊕
g∈GAg a G-graded ∗-algebra such

that Ae is commutative. We have already classified the possible commutative
C∗-hulls for Ae in §8. In particular, all commutative weak C∗-hulls are already
C∗-hulls by Theorem 8.2, and they correspond to injective, continuous maps
from locally compact spaces to the spectrum Âe of Ae.
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Explicitly, let X be a locally compact space and let j : X → Âe be an injective,
continuous map. Let Be = C0(X) and define a representation of Ae on Be with
domain Cc(X) by (a · f)(x) = â(j(x)) · f(x) for all a ∈ Ae, f ∈ Cc(X), x ∈ X ,
where â(χ) = χ(a) for χ ∈ Âe. Let µe be the closure of this representation
of Ae on Be. The C∗-algebra Be with the universal representation µe is a
C∗-hull for a class Repint(Ae, X) of representations of Ae by Theorem 8.2, and
any commutative C∗-hull is of this form.
Let Repint(A,X) be the class of representations of A that restrict to a rep-
resentation in Repint(Ae, X) on Ae, as in Definition 9.3. If Repint(Ae, X)
is compatible with induction to A as in Definition 9.18, then Theorem 9.26
gives a Fell bundle whose section C∗-algebra is a C∗-hull for Repint(A,X). We
are going to characterise exactly when this happens and describe the C∗-hull
for Repint(A,X) as a twisted groupoid C∗-algebra.
Any representation of Ae on a commutative C∗-algebra is locally bounded by
Proposition 8.1. Hence the constructions in §10 specialise to our commutative
case. Actually, we shall make these results more explicit through independent
proofs. First we describe the C∗-hull B+

e for the inducible representations
in Repint(Ae, X) as in Proposition 10.1:

Lemma 11.1. Call a character χ ∈ Âe positive if χ(a∗a) ≥ 0 for all a ∈ Ag
and all g ∈ G. These form a closed subset Â+

e of Âe, and B+
e = C0

(
j−1(Â+

e )
)
.

Proof. The positive characters form a closed subset in Âe by definition of the
topology on Âe. We have constructed B+

e in Proposition 9.12 as a quotient
of Be, such that a representation is inducible if and only if it factors throughB+

e .
Thus B+

e corresponds to a certain closed subset of Âe. Its points are the
inducible characters of Ae. Let χ be a character. Any vector in Ag ⊗Ae,χ C

is of the form a ⊗ 1 for some a ∈ Ag, that is, there is no need to take linear
combinations. Hence the sesquilinear form on Ag ⊗Ae,χ C for all g ∈ G is
positive semidefinite if and only if χ(a∗a) ≥ 0 for all a ∈ Ag and all g ∈ G,

that is, χ is positive. Thus B+
e is the quotient corresponding to those x ∈ Âe

for which j(x) ∈ Âe is positive.

Theorem 11.2. Let g ∈ G and χ ∈ Â+
e . Then dimAg ⊗Ae,χ C ≤ 1. The set

Dg−1 := {χ ∈ Â+
e | dimAg ⊗Ae,χ C = 1}

is relatively open in Â+
e . The left Ae-module structure on Ag ⊗Ae,χ C ∼= C

for χ ∈ Dg−1 is by a character ϑg(χ) that belongs to Dg. The map ϑg is a

homeomorphism from Dg−1 onto Dg, and these maps form a partial action

of G on Â+
e , that is, ϑe = idÂ+

e
and ϑg ◦ ϑh ⊆ ϑgh for all g, h ∈ G.

Proof. As in the proof of Lemma 11.1, Ag ⊗Ae,χC is the Hausdorff completion
of Ag in the norm coming from the inner product 〈a1, a2〉 := χ(a∗

1a2). We write
λ · a for a ⊗ λ for a ∈ Ag, λ ∈ C throughout this proof, and we write a ≡ b if
a, b ∈ A have the same image in Ag ⊗Ae,χ C. Let a, b ∈ Ag satisfy χ(a∗a) 6= 0
and χ(b∗b) 6= 0. We must show that a and b are parallel in Ag ⊗Ae,χ C.
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The following computation makes [7, Footnote 3] explicit:

(a∗ab∗b)2 = a∗ab∗(ba∗)(ab∗)b = a∗a(b∗a)(b∗ba∗b) = a∗ab∗ba∗bb∗a

because Ae is commutative and the terms in parentheses belong to Ae. Hence

χ(a∗a)2χ(b∗b)2 = χ(a∗a)χ(b∗b)χ(a∗b)χ(b∗a).

Since χ(a∗a) 6= 0 and χ(b∗b) 6= 0, this implies

χ(a∗a)χ(b∗b) = χ(a∗b)χ(b∗a) = |χ(a∗b)|2 6= 0. (11.3)

The inner product on Ag⊗Ae,χC annihilates a · c⊗1−a⊗χ(c), which we write
as a · c− χ(c)a, for all a ∈ Ag, c ∈ Ae. Hence

a =
χ(a∗b)χ(b∗a)

χ(a∗a)χ(b∗b)
a ≡ aa∗bb∗a

χ(a∗a)χ(b∗b)
=

bb∗aa∗a

χ(a∗a)χ(b∗b)

=
χ(b∗a)χ(a∗a)

χ(a∗a)χ(b∗b)
b =

χ(b∗a)

χ(b∗b)
b. (11.4)

Thus all non-zero a, b ∈ Ag ⊗Ae,χ C are parallel, that is, dimAg ⊗Ae,χ C ≤ 1.
The space Ag⊗Ae,χC is non-zero if and only if there is a ∈ Ag with χ(a∗a) 6= 0.
Thus

Dg−1 = {χ ∈ Â+
e | χ(a∗a) 6= 0 for some a ∈ Ag}. (11.5)

The latter set is relatively open in Â+
e .

Let χ ∈ Dg−1 . Then dimAg ⊗Ae,χ C = 1. Hence the representation of Ae on
it is by a character, which we denote by ϑg(χ). This character is an inducible
representation by Lemma 9.8, and hence positive by Lemma 11.1. There is

b ∈ Ag with χ(b∗b) > 0. If a ∈ Ae, then (11.4) implies ab ≡ χ(b∗ab)
χ(b∗b) b. Thus

ϑg(χ)(a) =
χ(b∗ab)

χ(b∗b)
(11.6)

for all a ∈ Ae. Hence ϑg(χ)
(
(b∗)∗b∗

)
6= 0, so that ϑg(χ) ∈ Dg by (11.5).

Thus ϑg maps Dg−1 to Dg. Equation (11.6) also implies that the map ϑg is
continuous on the open set of characters in A+

e with χ(b∗b) > 0. Since these
open sets for different b ∈ Ag cover Dg−1 , the map ϑg is continuous on all
of Dg−1 .
Let g, h ∈ G and let χ ∈ Dh−1 and ϑh(χ) ∈ Dg−1 . Then there is bh ∈ Ah
with χ(b∗

hbh) > 0, and bg ∈ Ag with ϑh(χ)(b
∗
gbg) > 0. Thus χ(b∗

hb
∗
gbgbh) =

χ(b∗
hbh) · ϑh(χ)(b∗

gbg) > 0, and so (11.6) for b = bgbh ∈ Agh describes ϑgh.
Hence

ϑgh(χ)(a) =
χ(b∗

hb
∗
gabgbh)

χ(b∗
hb

∗
gbgbh)

=
ϑh(χ)(b

∗
gabg)

ϑh(χ)(b∗
gbg)

= ϑg
(
ϑh(χ)

)
(a).

Thus ϑgh ⊆ ϑgϑh for all g, h ∈ G. In addition, ϑe = idÂ+
e
. So the maps ϑg

form a partial action of G on Â+
e , see [8]. In particular, ϑg is a homeomorphism

from Dg−1 onto Dg with inverse ϑg−1 .
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In the examples considered in [7, 27], the space Â+
e is locally compact and the

C∗-hull for the integrable representations of A is the crossed product for the
partial action of G on Â+

e described above. In general, however, certain twists
are possible. The partial action ofG on Â+

e may be encoded in a transformation
groupoid G⋉ Â+

e , which has object space Â+
e , arrow space

⊔
g∈GDg−1 with the

disjoint union topology, range and source maps s(g, χ) := χ, r(g, χ) := ϑg(χ)
for g ∈ G, χ ∈ Dg−1 , and multiplication (g, ϑh(χ)) · (h, χ) := (g · h, χ) for all

g, h ∈ G, χ ∈ Dh−1 ∩ϑ−1
h (Dg−1). The unit arrow on χ is (1, χ), and the inverse

of (g, χ) is (g−1, ϑg(χ)). This is an étale topological groupoid because r and s
restrict to homeomorphisms on the open subsets Dg−1 of the arrow space. The

object space Â+
e need not be locally compact.

We are going to construct another topological groupoid Σ that is a central
extension of G⋉ Â+

e by the circle group T. That is, Σ comes with a canonical
functor to G⋉ Â+

e whose kernel is the group bundle Â+
e ×T. Such an extension

is also called a twisted groupoid in [25, Section 4], following a definition by
Kumjian [16]. A twisted groupoid with locally compact object space has a
twisted groupoid C∗-algebra. For a suitable injective continuous map X → Â+

e ,
we are going to identify the C∗-hull of the X-integrable representations of A
with the twisted groupoid C∗-algebra of the restriction of Σ to j(X+) ⊆ Â+

e .
A point in Σ is a triple (g, χ, [a]), where g ∈ G, χ ∈ Dg−1 , and [a] is a unit
vector in the 1-dimensional Hilbert space Ag⊗Ae,χC. We represent unit vectors
in Ag ⊗Ae,χ C by elements a ∈ Ag with χ(a∗a) = 1; two elements a, b ∈ Ag
with χ(a∗a) = χ(b∗b) = 1 represent the same unit vector [a] = [b] if and only
if χ(a∗b) = 1. We get the same set of equivalence classes if we allow a ∈ A
with χ(a∗a) > 0 and set [a] = [b] if χ(a∗b) > 0: then a1 := χ(a∗a)−1/2a
and b1 := χ(b∗b)−1/2b satisfy [a] = [a1], [b] = [b1], and [a] = [b] if and only
if χ(a∗

1b1) = 1 by (11.3). The circle group T acts on Σ by multiplication:
λ · (g, χ, [a]) := (g, χ, [λa]). The orbit space projection for this circle action is
the coordinate projection F : Σ ։ G⋉Â+

e , (g, χ, [a]) 7→ (g, χ). Next we equip Σ
with a topology so that this coordinate projection is a locally trivial principal
T-bundle.
For a ∈ A, let Ua := {χ ∈ Â+

e | χ(a∗a) 6= 0}. This is an open subset in Â+
e ,

and χ(a∗a) > 0 if χ ∈ Ua because χ is positive. The map σa : {g} × Ua → Σ,
(g, χ) 7→ (g, χ, [a]), for a ∈ Ag is a local section for the coordinate projection F .
If a, b ∈ Ag, and χ ∈ Ua ∩ Ub, then

[a] =

[
χ(b∗a)

χ(a∗a)1/2χ(b∗b)1/2
b

]
,

by (11.4). Since the functions sending χ to χ(b∗a), χ(a∗a) and χ(b∗b) are
continuous on Ae, the two trivialisations induce the same topology on the
restriction of Σ to {g} × (Ua ∩ Ub). For any χ ∈ Dg−1 , there is a ∈ Ag with
χ(a∗a) > 0. Thus the open subsets Ua cover Dg−1 . Consequently, there is a
unique topology on Σ that makes the local sections σa for all a ∈ Ag continuous,
and this topology turns Σ into a locally trivial T-bundle over G⋉ Â+

e .
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We define a groupoid with object space A+
e , arrow space Σ, and

r(g, χ, [a]) := ϑg(χ), s(g, χ, [a]) := χ,

(g, [ϑh(χ)], [a]) · (h, χ, [b]) := (g · h, χ, [a · b]);
we must show that this multiplication is well defined. We have ab ∈ Agh and

χ(b∗a∗ab) = ϑh(χ)(a
∗a) · χ(b∗b) 6= 0

by (11.6), so (g · h, χ, [a · b]) ∈ Σ. If χ(b∗b1) > 0 and ϑh(χ)(a
∗a1) > 0, then

χ(b∗a∗a1b1) > 0 by computations as in the proof of Theorem 11.2. Hence the
multiplication is well defined. It is clearly associative. The unit arrow on χ is
1χ := (1, χ, [1]), and (g, χ, [a])−1 = (g−1, ϑg(χ), [a

∗]). The multiplication, unit
map and inversion are continuous and the range and source maps are open
surjections (even locally trivial). So Σ is a topological groupoid.
The identity map on objects and the coordinate projection F : Σ → G ⋉ Â+

e

on arrows form a functor, which is a locally trivial, open surjection on arrows.
The kernel of F consists of those (g, χ, [a]) ∈ Σ for which F (g, χ, [a]) is a unit
arrow in G ⋉ Â+

e . Then g = 1, and a ∈ Ae is equivalent to [a] = [χ(a) · 1]
because χ(a∗χ(a)1) > 0. The map (g, χ, [a]) 7→ (χ, χ(a)) is an isomorphism
of topological groupoids from the kernel of F onto the trivial group bundle
Â+
e × T. Thus we have an extension of topological groupoids

Â+
e × T  Σ ։ G⋉ Â+

e .

The three groupoids above are clearly Hausdorff.
To construct C∗-algebras, we need groupoids with a locally compact object
space. Therefore, we replace Âe by a locally compact space X with an injec-
tive, continuous map j : X → Âe. Then Be = C0(X) is a C∗-hull for a class
Repint(Ae, X) of representations of Ae. By Lemma 11.1, the C∗-hull for the
class of X-integrable, inducible representations of Ae is B+

e = C(X+) with
X+ := j−1(Â+

e ) ⊆ X .

Proposition 11.7. Let j : X → Âe be an injective, continuous map. The

class Repint(A,X) is compatible with induction if and only if j(X+) ⊆ Â+
e is

invariant under the partial maps ϑg in Theorem 11.2 and the resulting partial

maps on X+ are continuous in the topology of X+. We briefly say that the

partial action of G on Â+
e restricts to X+.

Proof. By Proposition 9.19, it suffices to check that the induced representation
of Ae on Ag ⊗Ae

B+
e is X-integrable for g ∈ G if and only if the partial map

ϑg ◦ j on X factors through j and the resulting partial map j−1 ◦ ϑg ◦ j on X
is again continuous. View the Hilbert module Ag ⊗Ae

B+
e as a continuous

field of Hilbert spaces over X+. The fibres of this field have dimension at
most 1 by Theorem 11.2, and the set where the fibre is non-zero is the open
subset j−1(Dg−1). Hence K(Ag⊗Ae

B+
e )
∼= C0(j

−1(Dg−1 )). The representation
of Ae on Ag ⊗Ae

B+
e is equivalent to a representation on K(Ag ⊗Ae

B+
e ) by
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Proposition 3.13. This is equivalent to a continuous map j−1(Dg−1 ) → Âe by
Proposition 8.1. This map is ϑg ◦ j by a fibrewise computation. Hence the
induced representation of Ae on Ag⊗Ae

B+
e is X-integrable if and only if ϑg ◦ j

has values in j(X) and the partial maps j−1 ◦ ϑg ◦ j on X are continuous.

From now on, we assume that the partial action of G on Â+
e restricts to X+. By

Proposition 11.7, this assumption is necessary and sufficient for X-integrability
to be compatible with induction. The “restriction” of the partial action on Â+

e

to X+ is a partial action of G on X+ by partial homeomorphisms. Its trans-
formation groupoid G ⋉ X+ is constructed like G ⋉ Â+

e . Its set of arrows
is the subset of G ⋉ Â+

e of arrows with range and/or source in j(X+), and
the topology on the arrow space is the unique one that makes the inclusion
G⋉X+ → G⋉ Â+

e and the range and source maps G⋉X+ → X+ continuous.
There is also a unique topology on the restriction ΣX of Σ to j(X+) so that
there is an extension of topological groupoids

X+ × T  ΣX ։ G⋉X+.

Since X+ is locally compact, the groupoids in this extension are locally com-
pact, Hausdorff groupoids. Since G ⋉X+ is étale, it carries a canonical Haar
system, namely, the family of counting measures. There is also a unique nor-
malised Haar system on X+×T. These produce a unique Haar system on ΣX
by [5, Theorem 5.1], so that the groupoid C∗-algebra C∗(ΣX) is defined. The
twisted groupoid C∗-algebra C∗(G ⋉ X+,ΣX) of G ⋉ X+ with respect to the
twist ΣX is defined in [24]. It is related to the groupoid C∗-algebra of ΣX in
[5, Corollary 7.2].

Theorem 11.8. Let G be a discrete group and let A be a G-graded ∗-algebra

with commutative Ae. Let j : X → Âe be an injective, continuous map, such

that the partial action of G on Â+
e in Theorem 11.2 restricts to X+ as in

Proposition 11.7. Then C∗(G⋉X+,ΣX) is a C∗-hull for Repint(A,X).

Proof. The C∗-algebra C∗(G ⋉ X+,ΣX) may be defined as the full sec-
tion C∗-algebra of a certain Fell line bundle over the étale, locally compact
groupoid G ⋉ X+. The Fell line bundle involves the space of sections of
the Hermitian complex line bundle L := ΣX ×T C associated to the princi-
pal T-bundle ΣX ։ G ⋉ X+ and the multiplication maps Lg × Lh → Lgh
induced by the multiplication of ΣX (see [5]). By construction, the Hilbert
B+
e -module B+

g = Ag ⊗Ae
B+
e is isomorphic to the continuous sections of this

line bundle L over the subset {g} × DXg−1 of {g} × X+: an element a ⊗ b is

mapped to the continuous section that sends (g, x) for x ∈ X with j(x) ∈ Dg−1

to b(x) · χ(a∗a)
1/2[a]. The multiplication in ΣX is defined so that the multipli-

cation maps B+
g ⊗B+

e
B+
h → B+

gh are exactly the multiplication maps in the
Fell line bundle associated to ΣX .
Thus the Fell bundle (B+

g )g∈G constructed in Theorem 9.26 is isomorphic to the
Fell bundle (βg)g∈G, where βg is the space of C0-sections of L over {g}×Dg−1
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and the multiplication and involution come from the Fell line bundle structure
on L over the groupoid G⋉X+. The full section C∗-algebra of this Fell bundle
is canonically isomorphic to the section C∗-algebra of the corresponding Fell
bundle over the groupoid G ⋉X+ by results of [3]. The small issue to check
here is that it makes no difference whether we use C0-sections or compactly
supported continuous sections of L over {g} × Dg−1 . Both have the same
C∗-completion. This is a special case of general results about Fell bundles over
étale locally compact groupoids.

If (Bg)g∈G is any Fell bundle over G, then
⊕

g∈GBg is a ∗-algebra, to which
we may apply our machinery although all its representations are bounded.
Thus any Fell bundle over G may come up for some choice of the G-graded
∗-algebra A. Thus the section C∗-algebra of a Fell bundle (Bg)g∈G with com-
mutative unit fibre is always a twisted groupoid C∗-algebras of a twist of an
étale groupoid, namely, the transformation groupoid of a certain partial action
on the spectrum of the unit fibre associated to the Fell bundle. This result is
already known, even for Fell bundles over inverse semigroups with commutative
unit fibre, see [3].

If ΣX ∼= (G ⋉X+) × T as a groupoid, then C∗(G ⋉X+,ΣX) ∼= C∗(G ⋉X+).
This is the same as the crossed product for the partial action of G on X+. This
happens in all the examples in [7,27]. The possible twists have two levels. First,
ΣX may be non-trivial as a principal circle bundle over G⋉X+. Secondly, if it
is trivial as a principal circle bundle, the multiplication may create a non-trivial
twist.

The circle bundle ΣX ։ G ⋉ X+ is trivial if and only if its restriction to
{g}×Dg−1 is trivial for each g ∈ G. For a circle bundle, this means that there
is a nowhere vanishing section. For instance, if there is a ∈ Ag that gener-
ates Ag as a right Ae-module, then Ua = Dg−1 and σa is a global trivialisation
of ΣX |{g}×D

g−1
.

The complex line bundles over a space X are classified by the second cohomol-
ogy group H2(X,Z). If L is a line bundle, then the spaces of C0-sections of
L⊗n for n ∈ Z form a Fell bundle over Z, and the direct sum of these spaces
of sections is a Z-graded ∗-algebra such that the given line bundle L appears
in the resulting twisted groupoid. If H2(X,Z) 6= 0, the space X is at least
2-dimensional. There are indeed non-trivial complex line bundles over all com-

pact oriented 2-dimensional manifolds. The resulting ∗-algebra, however, has
only ∗-representations by bounded operators if X is compact. Examples where
unbounded operators appear must involve a non-trivial line bundle over a non-
compact space. These first appear in dimension 3. It is easy to write down a
Z-graded ∗-algebra A where B+

e is, say, S2 × R and B+
g involves the Bott line

bundle over S2. These examples seem artificial, however.

Now assume that ΣX is trivial as a principal circle bundle over (G⋉X+)1, that
is, ΣX ∼= (G⋉X+)1×T as a T-space. We may choose this homeomorphism to
be the obvious one on the open subset (1 ⋉X+) × T corresponding to 1 ∈ G.
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The multiplication must be of the form

(g1, ϑg2
(x), λ1) · (g2, x, λ2) = (g1 · g2, x, ϕ(g1, g2, x) · λ1 · λ2)

for some continuous T-valued function ϕ with ϕ(1, g, x) = 1 = ϕ(g, 1, x) for
all g, x; here ϕ is defined on the space of all triples (g1, g2, x2) ∈ G × G ×
X+ with x2 ∈ Dg−1

2

and ϑg2
(x2) ∈ Dg−1

1

; this space is homeomorphic to the

space (G⋉X+)2 of pairs of composable arrows in G ⋉X+. The associativity
of the multiplication in ΣX is equivalent to the cocycle condition

ϕ(g1, g2 · g3, x) · ϕ(g2, g3, x) = ϕ(g1 · g2, g3, x) · ϕ(g1, g2, ϑg3
(x)) (11.9)

for all g1, g2, g3 ∈ G, x ∈ X+ for which ϑg3
(x), ϑg2

◦ϑg3
(x), and ϑg1

◦ϑg2
◦ϑg3

(x)
are defined. A different trivialisation of the circle bundle ΣX ։ (G ⋉ X+)1

modifies ϕ by the coboundary

∂ψ(g1, g2, x) := ψ(g2, x)ψ(g1 · g2, x)
−1ψ(g1, ϑg2

(x)) (11.10)

of a continuous function ψ : (G ⋉X+)1 → T normalised by ψ(1, x) = 0 for all
x ∈ X+. Thus isomorphism classes of twists of G⋉X+ are in bijection with the
groupoid cohomologyH2(G⋉X,T), that is, the quotient of the group of contin-
uous maps ϕ : (G⋉X+)2 → T satisfying (11.9) by the group of 2-coboundaries
∂ψ of continuous 1-cochains ψ : (G⋉X+)1 → T, where ∂ψ is defined in (11.10).
In the easiest case, the function ϕ above does not depend on x. Then ϕ : G×
G→ T is a normalised 2-cocycle onG in the usual sense. These cocycles appear,
for instance, in the classification of projective representations of the group G.
This is related to the twists above because the Hilbert space representations
of the twisted group algebra for a 2-cocycle ϕ : G × G → T are exactly the
projective representations π : G → U(H) with π(g)π(h) = ϕ(g, h)π(gh) for all
g, h ∈ G.
The group Z has no nontrivial 2-cocycles. They do appear, however, for the
group Z2. A well known example is the noncommutative torus. Its usual gauge
action corresponds to a Z2-grading, where UnV m for the canonical generators
U, V has degree (n,m) ∈ Z2. In this case, Ae = C = Be = B+

e , and Â
+
e has

only one point. The transformation groupoid G⋉ Â+
e is simply G = Z2. This

is discrete, so Σ is always trivial as a principal circle bundle. Thus the only
non-trivial aspect of Σ is a 2-cocycle ϕ : Z × Z → T. The cohomology group
H2(Z2,T) is isomorphic to T, and the resulting twisted group algebras of Z2

are exactly the noncommutative tori.

Proposition 11.11. If there are subsets Sg ⊆ Ag such that Sg generates Ag as

a right Ae-module, Sg · Sh ⊆ Sgh, and χ(a∗b) ≥ 0 for all a, b ∈ Sg, g ∈ G, χ ∈
j(X) ⊆ Âe, then the twist ΣX is trivial and so the C∗-hull of A is C∗(G⋉X+).

Proof. If χ ∈ Dg−1 , then there is b ∈ Ag with χ(b∗b) 6= 0. Since Sg generates Ag
as a right Ae-module, we may write b =

∑n
i=1 ai ·ci with ai ∈ Sg, ci ∈ Ae. Then

χ(b∗b) =

n∑

i,j=1

χ(c∗
i )χ(cj)χ(a

∗
i aj).
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Hence there are i, j with χ(a∗
i aj) 6= 0. Then χ(a∗

i ai) 6= 0 by (11.3). This shows
that

⋃
a∈Sg

Ua = Dg−1 . We have (g, χ, [a]) = (g, χ, [b]) for all a, b ∈ Sg, χ ∈
j(X)∩Ua∩Ub because χ(a∗b) ≥ 0 for all χ ∈ j(X). Hence the local sections σa
of ΣX |{g}×D

g−1
for a ∈ Sg coincide on the intersections of their domains and

thus combine to a global trivialisation. This trivialisation is multiplicative as
well.

If Â+
e itself is locally compact, then we may take X+ = X = Â+

e with the
inclusion map j. Since Â+

e is closed in Âe, this happens if Âe is locally compact.

Theorem 11.12. Assume that Â+
e is locally compact in the topology τc. Call a

representation of A integrable if its restriction to Ae is locally bounded. Let Σ
be the twisted groupoid constructed above. Then C∗(G⋉(Â+

e , τc),Σ) is a C∗-hull

for the integrable representations of A.

Proof. If X+ = (Â+
e , τc), then integrability is compatible with induction

by Proposition 11.7 because the construction of the topology τc is natu-
ral and compatible with restriction to open subsets. Theorem 11.8 shows
that C∗(G ⋉ (Â+

e , τc),Σ) is a C∗-hull for the class of representations of A
whose restriction to Ae is Â+

e -integrable. The locally bounded representa-
tions of Ae are equivalent to the locally bounded representations of the pro-
C∗-algebra C(Âe, τc) by Propositions 7.2 and 7.6. Restrictions of represen-
tations of A to Ae are automatically inducible by Lemma 9.8. By a pro-
C∗-algebraic variant of Lemma 11.1, the inducible, locally bounded represen-
tations of Ae are equivalent to those representations of C(Âe, τc) that factor
through the quotient C(Â+

e , τc). Since Â+
e is locally compact, C0(Â

+
e , τc) is

dense in the pro-C∗-algebra C(Â+
e , τc). Hence C0(Â

+
e , τc) is a C∗-hull for the

inducible, locally bounded representations of Ae by Theorem 7.17.

Assume that Ae is countably generated. Then the usual topology on Âe is
metrisable and hence compactly generated, so that τc is the standard topology
on Âe. A representation of Ae is locally bounded if and only if all symmetric
elements of Ae act by regular, self-adjoint operators by Theorem 8.7. Thus a
representation π of A is integrable as in Theorem 11.12 if and only if π(a) is
regular and self-adjoint for all a ∈ Ae with a = a∗. This class of integrable
representations has the C∗-hull C∗(G⋉ Â+

e ,Σ) if Â
+
e is locally compact.

In particular, if Ae is finitely generated, then Âe is mapped homeomorphically
onto a closed subset of Rn for some n ∈ N by evaluating characters on a finite
set of symmetric generators. Thus Âe is locally compact. The discussion above
gives:

Corollary 11.13. Assume that Ae is finitely generated. Call a representation

of A integrable if its restriction to Ae is locally bounded. Then Â+
e is locally

compact and C∗(G ⋉ Â+
e ,Σ) for the twisted groupoid Σ constructed above is a

C∗-hull for the integrable representations of A. Moreover, a representation π
of A is integrable if and only if π(a) is regular and self-adjoint for all a ∈ Ae
with a = a∗.
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Corollary 11.13 covers all the examples considered in [7, 27], except for the
enveloping algebra W of the Virasoro algebra that is studied in [27, §9.3].
The ∗-algebra W is Z-graded. Its unit fibre W0 is noncommutative. The first
step in the study of its representations in [27, §9.3] is to replaceW by a certain
Z-graded quotient A := W/I, whose unit fibre A0 = W0/(I ∩W0) is commu-
tative by construction. The motivation is that all “integrable” representations
of W factor through A. The main result in [27, §9.3] shows that the partial
action of Z on Â+

e is free and that the disjoint union Y := X1 ⊔ X2 ⊔ X3 of
the three families of characters described in (61)–(63) of [27] is a fundamental
domain, that is, it meets each orbit of the partial action exactly once. Each
subset Xi is closed in Âe and locally compact and second countable in the
subspace topology. Hence so is Y . Since Z acts by partial homeomorphisms
and Y is a fundamental domain, there is a continuous bijection

X :=
⊔

n∈Z

(D−n ∩ Y )→ Â+
e , (n, y) 7→ ϑn(y).

Each D−n ∩Y is an open subset of Y , so that X is locally compact. I have not
checked whether this continuous bijection is a homeomorphism. If so, then Â+

e

would be locally compact and the results in [27] for the Virasoro algebra would
be contained in Theorem 11.12 after passing to the quotient W/I. If not, we
would use the locally compact spaceX . The partial action of Z on Â+

e is clearly
continuous on X as well, so that Theorem 11.8 applies.

12 Rieffel deformation

Let G be a discrete group. Given a normalised 2-cocycle on G, Rieffel deforma-
tion is a deformation functor that modifies the multiplication on a G-graded
∗-algebra by the 2-cocycle. There is a similar process for Fell bundles over G,
which we may transfer to section C∗-algebras. This is how Rieffel deformation
is usually considered. The setting of graded algebras or Fell bundles is easier.
We now define Rieffel deformation more precisely and show that it is compatible
with the construction of C∗-hulls in Theorem 9.26. This deformation process
has also recently been treated in [23].
A normalised 2-cocycle on a group G is a function Λ: G × G → U(1) with
Λ(e, g) = 1 = Λ(g, e) for all g ∈ G and

Λ(g, h · k)Λ(h, k) = Λ(g · h, k)Λ(g, h) (12.1)

for all g, h, k ∈ G. Let A =
⊕

g∈GAg be a G-graded algebra. Let AΛ be the
same G-graded vector space with the deformed multiplication and involution

∑

g∈G

ag ∗
∑

h∈G

bh :=
∑

g,h∈G

Λ(g, h)agbh,
(∑

ag
)†

:=
∑

Λ(g−1, g)a∗
g,

where ag, bg ∈ Ag for all g ∈ G. We call AΛ the Rieffel deformation of A with
respect to Λ.
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Lemma 12.2. The deformed multiplication and involution on AΛ give

a G-graded ∗-algebra with a ∗ b = ab if a ∈ Ae or b ∈ Ae, and a† ∗ b = a∗b for

all g ∈ G, a, b ∈ Ag.
Proof. The multiplication remains associative by the 2-cocycle condition (12.1).
The normalisation of Λ and (12.1) for g, g−1, g give Λ(g, g−1) = Λ(g−1, g) for
all g ∈ G. Thus

(a†
g)

† = Λ(g, g−1) · Λ(g−1, g)(a∗
g)

∗ = ag

for ag ∈ Ag. The normalisation condition and (12.1) for g, h, h−1 and
gh, h−1, g−1 for g, h ∈ G give

Λ(gh, h−1)Λ(g, h) = Λ(h, h−1),

Λ(g, g−1)Λ(gh, h−1) = Λ(gh, h−1g−1)Λ(h−1, g−1).

Hence Λ(g, g−1)Λ(h, h−1) = Λ(g, h)Λ(gh, h−1g−1)Λ(h−1, g−1). This implies

the condition (ag ∗ bh)† = b†
h ∗ a†

g for ag ∈ Ag, bh ∈ Ag:

(ag ∗ bh)† = Λ(g, h) · Λ(gh, (gh)−1) · (agbh)∗

= Λ(g, g−1) · Λ(h, h−1) · Λ(h−1, g−1) · b∗
ha

∗
g = b†

h ∗ a†
g.

Thus the deformed multiplication and involution give a ∗-algebra. The formula
a† ∗ b = a∗b for g ∈ G, a, b ∈ Ag is trivial, and a ∗ b = ab if a ∈ Ae or b ∈ Ae
follows from the normalisation of Λ.

The same formulas work if (Bg)g∈G is a Fell bundle over G. Let (BΛ
g )g∈G be

the same Banach space bundle as Bg with the multiplication and involution

ag ∗ bh := Λ(g, h)agbh and a†
g = Λ(g−1, g)a∗

g for g, h ∈ G, ag ∈ Bg, bh ∈ Bh.
By Lemma 12.2, the deformation does not change ab for a ∈ Be or b ∈ Be
and a∗b and ab∗ for a, b ∈ Bg. Hence BΛ

g = Bg as Hilbert Be-bimodules,
so that the positivity and completeness conditions for a Fell bundle are not
affected by the deformation. We call (BΛ

g )g∈G the Rieffel deformation of the
Fell bundle (Bg)g∈G with respect to Λ.
For a C∗-algebra of the form B = C∗(Bg) for a Fell bundle (Bg)g∈G over G,
we define its Rieffel deformation with respect to Λ as BΛ := C∗(BΛ

g ) for the
deformed Fell bundle.
If G is an Abelian group, then C∗(Bg) for a Fell bundle over G carries a canon-

ical continuous action of Ĝ, called the dual action. Conversely, any C∗-algebra
with a continuous Ĝ-action β is of the form B = C∗(Bg), where (Bg)g∈G is the
spectral decomposition of the action,

Bg = {b ∈ B | βχ(b) = χ(g) · b for all χ ∈ Ĝ}.

Thus Rieffel deformation takes a C∗-algebra with a continuous Ĝ-action to
another C∗-algebra with a continuous Ĝ-action. This is how it is usually for-
mulated. Since Ĝ is compact, there are no analytic difficulties with oscillatory
integrals as in [26].
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Theorem 12.3. Let A =
⊕

g∈GAg be a G-graded ∗-algebra and let Be be a

C∗-hull for a class of integrable representations of Ae. Assume that integrability

is compatible with induction for A. Let Λ be a normalised 2-cocycle on G. Then

integrability is also compatible with induction for AΛ, and the C∗-hull for the

integrable representations of AΛ is the Rieffel deformation with respect to Λ of

the C∗-hull for the integrable representations of A.

Proof. The compatibility condition in Definition 9.18 is equivalent to the in-
tegrability of Ag ⊗Ae

(E, π) for all g ∈ G, which only involves a single Ag
with its Ae-bimodule structure and the Ae-valued inner product 〈a, b〉 = a∗b
for a, b ∈ Ag. This is not changed by Rieffel deformation by Lemma 12.2.
Hence AΛ inherits the compatibility condition from A, and Theorem 9.26 ap-
plies to both A and AΛ.
The Hilbert B+

e -bimodule B+
g depends only on Ag with the extra structure

above and the universal inducible, integrable representation (B+
e , µ

+
e ) of Ae

by Remark 9.27. Since none of this is changed by Rieffel deformation, the Fell
bundle obtained from AΛ has the same fibres (B+

g )
Λ as B+

g . Rieffel deformation
changes the multiplication maps Ag×Ah → Agh and the involution Ag → Ag−1

for fixed g, h ∈ G only by a scalar. Inspecting the construction above, we see
that the multiplication maps B+

g ×B+
h → B+

gh and the involution B+
g → B+

g−1

in the Fell bundle are changed by exactly the same scalars. Hence the Fell
bundle for AΛ is (B+

g )
Λ. Now the assertion follows from Theorem 9.26.

13 Twisted Weyl algebras

We illustrate our theory by studying C∗-hulls of twisted n-dimensional Weyl
algebras for 1 ≤ n ≤ ∞. We begin with the case n = 1, where no twists occur.
Then we consider the case of finite n without twists and with twists. Finally,
we consider the case n =∞ with and without twists.
The (1-dimensional) Weyl algebra A is the universal ∗-algebra with one genera-
tor a and the relation aa∗ = a∗a+1. There is a unique Z-grading A =

⊕
n∈Z

An
with a ∈ A1. The

∗-subalgebraA0 is isomorphic to the polynomial algebra C[N ]
with N = a∗a, which is commutative. The other subspaces Ak ⊆ A for k ∈ N

are isomorphic to A0 as left or right A0-modules because Ak = A0 ·ak = ak ·A0

and A−k = (a∗)k · A0 = A0 · (a∗)k for all k ≥ 0. The spectrum Â0 of A0

is R, where the character C[N ] → C for t ∈ R evaluates a polynomial at t. A
character is positive if and only if it is positive on (a∗)kak and ak(a∗)k for all
k ≥ 1. This happens if and only if t ∈ N by [27, Example 10].
Since Na = a∗aa = (aa∗ − 1)a = a · (a∗a − 1) = a · (N − 1), the partial
automorphism ϑ1 of Â+

0 = N associated to the A0-bimodule A1 acts on Â+
e by

the automorphism N 7→ N − 1, which corresponds to translation by −1. By
induction, we get N · ak = a · (N − 1) · ak−1 = · · · = ak · (N − k). The domain
of ϑk is as big as it could possibly be, that is, it contains all n ∈ N with n ≥ k
by (11.5) (see also [27, Example 16]). For any k, l ∈ N there is a unique n ∈ Z

with k − n = l. Thus the transformation groupoid Z ⋉ϑ N is simply the pair

Documenta Mathematica 22 (2017) 1375–1466



1458 Ralf Meyer

groupoid on N. There can be no twist in this case. First, the pair groupoid
simply has no non-trivial twists. And secondly, the generators ak, (a∗)k for
k ≥ 0 satisfy the positivity condition in Proposition 11.11, which also rules out
a twist.
Since no proper non-empty subset of N is invariant under the partial action ϑ
of Z, a commutative C∗-hull for A0 for which integrability is compatible with
induction gives either B+

0 = C0(N) or B+
0 = {0}. In the second case, A has

no non-zero integrable representations. In the first case, the C∗-hull for the
integrable representations of A is the groupoid C∗-algebra K(ℓ2N) of the pair
groupoid N× N.
The universal representation of A on K(ℓ2N) is equivalent to a representa-
tion π of A on ℓ2N by Proposition 3.13. The domain of this representation
is the space S(N) of rapidly decreasing sequences, with π(a)(δk) =

√
kδk−1

for k ∈ N, so π(a∗)(δk) =
√
k + 1δk+1, π(N)(δk) = kδk. By Theorem 4.4, a

representation π of A0 on a Hilbert module E is integrable if and only π(Nk)
is regular and self-adjoint for each k ∈ N or, equivalently, π(N) is regular and

self-adjoint and π(Nk) = π(N)k for all k ∈ N. By definition, a representation
of A is integrable if and only if its restriction to A0 is integrable.
The Z-grading on the C∗-hull K(ℓ2N) is “inner”: it is induced by the Z-grading
on ℓ2N where δk has degree k. Equivalently, the dual action of T on K(ℓ2N)
associated to the Z-grading is the inner action associated to the unitary repre-
sentation U : T→ U(ℓ2N), where Uz(δk) := zkδk for all z ∈ T, k ∈ N.

Now let m ∈ N and let Θ = (Θjk) be an antisymmetric m × m-matrix. Let
λjk = exp(2πiΘjk). Let A

m,Θ be the ∗-algebra with generators a1, . . . , am and
the commutation relations aja

∗
j = a∗

jaj + 1 for 1 ≤ j ≤ m and

ajak = λjkakaj , a∗
jak = λ−1

jk aka
∗
j (13.1)

for 1 ≤ j 6= k ≤ m. Since λjk = λ−1
kj , the relations (13.1) for (j, k) and (k, j)

are equivalent; so it suffices to require (13.1) for 1 ≤ j < k ≤ m. The
∗-algebra Am,Θ is Zm-graded by giving aj degree ej ∈ Zm, where e1, . . . , em is
the standard basis of Zm.
We first consider the case Θ = 0 and write Am := Am,0. This is the
m-dimensional Weyl algebra, which is the tensor product of m copies of the
1-dimensional Weyl algebra, with the induced Zm-grading. Thus the zero fi-
bre Am0 for 0 ∈ Zm is isomorphic to the polynomial algebra C[N1, . . . , Nm] in
the m generators Nj = a∗

jaj . Its spectrum is Rm. Each Amk for k ∈ Zm is
isomorphic to Am0 both as a left and a right Am0 -module; the generator is the

product of a
kj

j for kj ≥ 0 or (a∗
j )

−kj for kj < 0 from j = 1, . . . ,m. Here the
order of the factors does not matter because Θ = 0. We may identify Amk
with the exterior tensor product of the A1-bimodules A1

k1
⊗ A1

k2
⊗ · · · ⊗ A1

km
.

Hence the space of positive characters on Am is Nm, and the partial action
of Zm on Nm is the exterior product of the partial actions of Z on N for the
1-dimensional Weyl algebras. That is, k ∈ Zm acts on Nm by translation by −k
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with the maximal possible domain. Thus the transformation groupoid Zm⋉Â+
0

is isomorphic to the pair groupoid of the discrete set Nm.
Once again, the only Zm-invariant subsets of Â+

0 are the empty set and Nm,
so that the only inducible commutative C∗-hulls of A0 for which integrability
is compatible with induction are {0} and C0(N

m). The first case is boring,
and the second case leads to the C∗-hull K(ℓ2Nm) of the m-dimensional Weyl
algebra.
As for m = 1, the universal representation of Am is equivalent to a repre-
sentation on ℓ2Nm. This has the domain S(Nm), and the representation is
determined by

π(aj)(δ(k1,...,km)) =
√
kjδ(k1,...,kj−1,...,km)

for (k1, . . . , km) ∈ Nm and j = 1, . . . ,m. Hence π(Nj)(δ(k1,...,km)) =
kjδ(k1,...,km). A representation of A is integrable if and only if its restriction
to A0 is integrable in the sense that it integrates to a representation of C0(R

m).
This automatically descends to a representation of C0(N

m) by Lemma 9.8.
There are several ways to characterise when a representation of C[N1, . . . , Nm]
integrates to a representation of C0(R

m). One is that π(Nj) for j = 1, . . . ,m

are strongly commuting, regular, self-adjoint operators and π(Nk
j ) = π(Nj)

k

for all j = 1, . . . ,m, k ∈ N, compare [28, Theorem 9.1.13].
The groups Zm form ≥ 2 have non-trivial 2-cocycles, and Am,Θ is, by definition,
a Rieffel deformation of Am,0 for the normalised 2-cocycle

Λ
(
(x1, . . . , xm), (y1, . . . , ym)

)
:=

m∏

j=1

m∏

k=j+1

λ
xkyj

jk . (13.2)

We could also use the cohomologous antisymmetric 2-cocycle

m∏

j=1

m∏

k=j+1

√
λjk

xkyj−xjyk

=

m∏

j,k=1

exp(−πiΘjkxjyk).

Theorem 12.3 says that the C∗-hull Bm,Θ of Am,Θ is the Rieffel deformation of
the C∗-hull Bm,0 of Am,0 for the same 2-cocycle.
In the classification of Fell bundles with commutative unit fibre, the important
cohomology is that of the transformation groupoid G ⋉ X+, not of G itself.
Here G⋉X+ is the pair groupoid of Nm.

Lemma 13.3 (compare [18, Lemma 2.9]). The cohomology of the pair groupoid

of a discrete set X with coefficients in an Abelian group H vanishes in all

positive degrees.

Proof. The set of composable n-tuples in the pair groupoid of X is Xn+1.
The groupoid cohomology with coefficients H is the cohomology of the chain
complex with cochains Cn := HXn+1

, the space of all maps Xn+1 → H , and

Documenta Mathematica 22 (2017) 1375–1466



1460 Ralf Meyer

with the boundary map ∂ : Cn → Cn+1,

∂ϕ(x0, . . . , xn) :=

n∑

i=0

(−1)iϕ(x0, . . . , x̂i, . . . , xn);

here the hat means that the entry xi is deleted. Pick some point x0 ∈ X and
let hϕ(x1, . . . , xn) := ϕ(x0, x1, . . . , xn) for all n ∈ N, x1, . . . , xn ∈ X , ϕ ∈ Cn+1.
Then ∂ ◦ h(ϕ) + h ◦ ∂(ϕ) = ϕ for all ϕ ∈ Cn, n ≥ 1. Thus the cohomology
vanishes in positive degrees.

Any twist of the pair groupoid on Nm is trivial by Lemma 13.3. Therefore, the
C∗-hull Bm,Θ is isomorphic to K(ℓ2Nm), the untwisted groupoid C∗-algebra
of the pair groupoid. The proof of Lemma 13.3 is explicit and so allows to
construct this isomorphism. We explain another way to construct it, using
properties of Rieffel deformation. Since the Z-grading on the C∗-hull K(ℓ2N)
is inner or, equivalently, the corresponding action of T is inner, the same holds
for the Zm-grading on the C∗-hull K(ℓ2Nm) and the corresponding Tm-action
on K(ℓ2Nm). Explicitly, the Tm-action is induced by the unitary representation
of Tm on ℓ2Nm defined by

U(z1,...,zm)δ(k1,...,km) := z−k1

1 · · · z−km

m δ(k1,...,km).

Rieffel deformation of C∗-algebras for inner actions does not change the iso-
morphism type of the C∗-algebra. Hence the C∗-hull for the integrable repre-
sentations of Am,Θ is also isomorphic to K(ℓ2Nm).
We make this more explicit in our Fell bundle language. Let U : Tm → UM(B)
be a strictly continuous homomorphism to the group of unitary multipliers of
a C∗-algebra B and let αz(b) := UzbU

∗
z for z ∈ Tm, b ∈ B be the resulting

inner action. Let (Bk)k∈Zm be the spectral decomposition of this action, that is,
b ∈ Bk if and only if αz(b) = zk · b for all z ∈ Tm. In particular, U ∈ UM(B0)
because Tm is commutative.
Assume for simplicity that the 2-cocycle Λ is a bicharacter as above. For fixed
k ∈ Zm, we view Λ(k, ␣): Zm → T as an element Λ̃(k) of the dual group Tm.
The map Λ̃ : Zm → Tm is a group homomorphism. The maps ψk : Bk → Bk,
b 7→ U∗

Λ̃(k)
· b, for k ∈ N are Banach space isomorphisms that modify the

multiplication as follows:

ψk(b1)ψl(b2) = U∗
Λ̃(k)

b1U
∗
Λ̃(l)

b2 = U∗
Λ̃(k+l)

αΛ̃(l)(b1)b2 = ψk+l(Λ(k, l) · b1b2).

They keep the involution unchanged. This is exactly what Rieffel deformation
does. Hence the maps ψk form an isomorphism between the undeformed and
Rieffel deformed Fell bundles. This finishes the proof that the Rieffel deformed
algebra for an inner action is canonically isomorphic to the original algebra.
The universal representation of Am,Θ on K(ℓ2Nm) again corresponds to a rep-
resentation of Am,Θ on ℓ2(Nm). We may construct it by carrying over the
isomorphism Bm,Θ ∼= Bm,0 between the C∗-hulls. This is the inverse of the
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isomorphism above, so it multiplies on the left by the unitary UΛ̃(k) of degree 0

on elements of degree k. We do exactly the same on elements of Am,Θ and so let
x ∈ Am,Θk for k ∈ Zm act on ℓ2Nm by the operator UΛ̃(k)π

m,0(x), where πm,0

is the universal representation of the untwisted Weyl algebra Am,0 on ℓ2Nm

described above. The same computation as above shows that this defines a
∗-representation of Am,Θ. We compute it explicitly.
First, the action of elements of Am,Θ0 on ℓ2Nm is not changed. The domain

of a representation of Am,Θ is equal to the domain of its restriction to Am,Θ0 .
Hence the domain of our representation is the Schwartz space S(Nm), as in the
untwisted case. Let 1 ≤ j ≤ m. The generator aj has degree ej ∈ Zm, and

Λ̃(ej) = (λ1,j , . . . , λj−1,j , 1, . . . , 1) ∈ Tm

for our first definition of Λ in (13.2). Thus

πm,Θ(aj)δ(k1,...,km) = UΛ̃(ej )π
m,0(aj)δ(k1,...,km)

=

(j−1∏

l=1

λkl

j,l

)√
kjδ(k1,...,kj−1,...,km).

These operators on S(Nm) satisfy the defining relations of Am,Θ.

The infinite-dimensional Weyl algebra A∞ is the universal ∗-algebra with gener-
ators aj for j ∈ N and relations a∗

jaj = aja
∗
j +1, ajak = akaj , and a

∗
jak = aka

∗
j

for 0 ≤ j < k. Let Z[N] be the free Abelian group on countably many genera-
tors. The Weyl algebra A∞ is Z[N]-graded, where aj has degree ej ∈ Z[N], the
jth generator of Z[N].
The ∗-algebra A∞ is a tensor product of infinitely many 1-dimensional Weyl
algebras. The zero fibre A∞

0 is the polynomial algebra in the generators Nj =

a∗
jaj for j ∈ N. Hence its spectrum is the infinite product Â∞

0 = RN, which is
not locally compact. The tensor product structure ofA∞ shows that a character
is positive if and only if each component is. That is, (A∞)+

0
∼= NN is a product

of countably many copies of the discrete space N. Since N is not compact, this
is not locally compact either. Hence to build a commutative C∗-hull for A∞

0 ,
we must choose some locally compact space X with a continuous, injective
map f : X → NN. Here we have simplified notation by assuming that already
f(X) ⊆ NN; otherwise, the first step in our construction would replace X by
X+ := f−1(NN). For X-integrability to be compatible with induction, we also
need f(X) to be invariant under the partial action of Z[N], and we need the
restricted partial action to lift to a continuous partial action on X .
The partial action of the group Z[N] on NN is the obvious one by translations.
It is free, and two points (nk) and (n′

k) in NN belong to the same orbit if
and only if there is k0 such that nk = n′

k for all k ≥ k0. Briefly, such points
are called tail equivalent. This partial action is minimal, that is, an open,
Z[N]-invariant subset is either empty or the whole space. Hence NN has no
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Z[N]-invariant, locally closed subsets. Thus NN has no Z[N]-invariant, locally
compact subspaces.

Let K be any compact subset of NN. Then the projection pj : N
N → N to the

jth coordinate must map K to a compact subset of N. So there is an upper
bound Mj with pj(K) ⊆ [0,Mj ]N := [0,Mj] ∩ N. Then K ⊆ ∏

j∈N
[0,Mj]N,

and the right hand side is compact. The closure of
∏
j∈N

[0,Mj]N under tail
equivalence is

X(Mk) :=
⋃

j∈N

(
Nj ×

∏

k>j

[0,Mk]N

)
,

the restricted product of copies of N with respect to the compact-open sub-
sets [0,Mj]N. There is a unique topology on X(Mk) where each subset
Nj ×∏

k>j [0,Mk]N is open and carries the product topology. This topology
is locally compact, and the partial action of Z[N] on X(Mk) by translation is
continuous.

Lemma 13.4. The Local–Global Principle fails for the X(Mk)-integrable repre-

sentations of A∞.

Proof. Since the mapX → Â∞
0 is not a homeomorphism onto its image and Â∞

0

is metrisable, the Local–Global Principle fails for the X-integrable represen-
tations of A∞

0 by Theorem 8.3. Applying induction from A∞
0 to A∞ to a

counterexample for the Local–Global Principle for A∞
0 produces such a coun-

terexample also for A∞. Explicitly, choose a sequence (nk) such that nk > Mk

for infinitely many k. Let xk := nkδk ∈ NN, that is, xk ∈ NN has only one
non-zero entry, which is nk in the kth place. This sequence belongs to X(Mk)

and converges to 0 in the product topology on Â∞
0 , but not in the topology

of X(Mk). The resulting representation of A∞
0 on C(N̄) is not X(Mk)-integrable,

but it becomes integrable when we tensor with any Hilbert space representation
of C(N̄), see the proof of Theorem 8.3. Now induce this (inducible) representa-
tion of A∞

0 to a representation of A∞ on C(N̄). This gives a counterexample
for the Local–Global Principle for A∞.

I do not know a class of integrable representations of A∞ with a C∗-hull for
which the Local–Global Principle holds.

Let S be the set of all words in the letters aj , a
∗
j . If χ ∈ NN is a positive

character and x, y ∈ S ∩ A∞
k for some k ∈ Z[N], then χ(x∗y) ≥ 0. Hence

Proposition 11.11 shows that there is no twist in our case, that is, the C∗-hull
of the X(Mk)-integrable representations of A

∞ is the groupoid C∗-algebra of the
transformation groupoid Z[N]⋉X(Mk). This C

∗-hull is canonically isomorphic
to one of the host algebras for A∞ constructed in [11], namely, to the one that
is denoted L[n] in [11] with nk = Mk + 1 for all k ∈ N. We remark in passing
that the construction of a full host algebra from these host algebras in [11] is
wrong: the resulting C∗-algebra has too many Hilbert space representations,
so it is not a host algebra any more, see the erratum [13].
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The compact subset T :=
∏
k∈N

[0,Mk]N that we started with is a complete
transversal in Z[N]⋉X(Mk), that is, the range map in Z[N]⋉X(Mk) restricted
to s−1(T ) is an open surjection onto X(Mk). Hence the groupoid Z[N]⋉X(Mk)

is Morita equivalent to its restriction to the compact subset T . This restriction
is the tail equivalence relation on T . Its groupoid C∗-algebra is well known: it
is the UHF-algebra for

∏
k∈N

(Mk + 1), that is, the infinite tensor product of
the matrix algebras

⊗
k∈N

MMk+1. The C
∗-algebra of Z[N]⋉X(Mk) itself is the

C∗-stabilisation of this UHF-algebra.
Thus the X(Mk)-integrable representations of A∞ are equivalent to the repre-
sentations of the (stabilisation of the) UHF-algebra of type

∏
k∈N

(Mk+1). This
depends very subtly on the choice of the sequence (Mk). There is no canon-
ical ∗-homomorphism between these UHF-algebras if we increase (Mk): for
some (Mk) ≤ (M ′

k), there is not even a non-zero map between their K-theory
groups. Instead, there are canonical morphisms, that is, there is a canonical
nondegenerate ∗-homomorphism C∗(Z[N ] ⋉X(M ′

k
)) →M(C∗(Z[N ] ⋉X(Mk)))

if (Mk) ≤ (M ′
k). They are constructed as follows. The inclusion map X(Mk) →֒

X(M ′

k
) is continuous with dense range, but not proper. Thus it induces an in-

jective, nondegenerate ∗-homomorphism C0(X(M ′

k
)) → Cb(X(Mk)). Therefore,

if a representation of A∞
0 is X(Mk)-integrable, then it is also X(M ′

k
)-integrable.

If a representation of A∞ has X(Mk)-integrable restriction to A∞
0 , then its re-

striction to A∞
0 is also X(M ′

k
)-integrable. When we apply this to the universal

representation of A∞ on the C∗-hull C∗(Z[N ] ⋉X(Mk)), this gives the desired
canonical morphism C∗(Z[N ] ⋉X(M ′

k
)) → C∗(Z[N ] ⋉X(Mk)) if (Mk) ≤ (M ′

k).

It is injective, say, because C∗(Z[N ] ⋉X(M ′

k
)) is simple.

Now let Θ = (Θjk)j,k∈N be a skew-symmetric matrix. It corresponds first to
a matrix λjk := exp(2πiΘjk) and then to a 2-cocycle Λ on Z[N] as in (13.2).
The Rieffel deformation of A∞ by Θ is the universal ∗-algebra A∞,Θ with the
same generators (aj)j∈N and the relations aja

∗
j = a∗

jaj + 1, ajak = λjkakaj ,

and a∗
jak = λ−1

jk aka
∗
j for 0 ≤ j < k. We define X(Mk) for a sequence (Mk) and

the X(Mk)-integrable representations of A∞,Θ as above. By Theorem 12.3,
this has a C∗-hull, namely, the Rieffel deformation of the C∗-hull for the
X(Mk)-integrable representations of the undeformed Weyl algebra. The Rieffel
deformation gives a twist of the groupoid Z[N]⋉X(Mk), and the C∗-hull is the
twisted groupoid C∗-algebra of Z[N]⋉X(Mk) for this twist.

Proposition 13.5. Let (Mk) ∈ NN. The C∗-hulls for the X(Mk)-integrable

representations of the twisted Weyl algebras A∞,Θ are isomorphic for all Θ.

Proof. The C∗-hull of A∞,Θ is a twisted groupoid algebra of the transformation
groupoid Z[N] ⋉X(Mk), which is isomorphic to the tail equivalence relation R
on X(Mk). We are going to prove that any twist X(Mk)×T  Σ ։ R is trivial.

Hence the C∗-hull of A∞,Θ is isomorphic to the untwisted groupoid C∗-algebra
of R for all Θ.
The arrow space of R is totally disconnected because X(Mk) is totally discon-
nected and R is étale. Hence any locally trivial principal bundle over R is
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trivial. Thus Σ ∼= R × T as a topological space, and the twist is described by
a continuous 2-cocycle ϕ : R(2) := R ×s,X,r R → T. We must show that ϕ is a
coboundary.

Let Rd for d ∈ N be the equivalence relation on X(Mk) defined by (nk) Rd (n
′
k)

if and only if nk = n′
k for all k ≥ d. This is an increasing sequence of open

subsets Rd ⊆ R with R =
⋃
Rd, and each Rd is also an equivalence rela-

tion. The equivalence relation Rd is isomorphic to the product of the pair
groupoid on Nd and the space X(Mk+d) for the shifted sequence (Mk+d)k∈N.
Thus the cohomology of Rd with coefficients in T is isomorphic to the co-
homology of the pair groupoid on Nd with values in the Abelian group of
continuous map X(Mk+d) → T. This cohomology vanishes in positive degrees
by Lemma 13.3. Therefore, for each d ∈ N there is ψd : Rd → T such that
ϕ|Rd

: Rd ×s,r Rd → T is the coboundary ∂ψd. The restriction of ψd+1 to Rd
and ψd both have coboundary ϕ|Rd

. Hence ψ−1
d+1|Rd

· ψd is a 1-cocycle on Rd.

Again by Lemma 13.3, there is χ : X → T with ψ−1
d+1|Rd

· ψd = ∂Rd
χ. We

replace ψd+1 by ψ′
d+1 := ψd+1 · ∂Rd+1

χ, where ∂Rd+1
χ means the coboundary

of χ on the groupoid Rd+1. This still satisfies ∂ψ′
d+1 = ∂ψd+1 = ϕ|Rd+1

, and
ψ′
d+1|Rd

= ψd. Proceeding like this, we get continuous maps ψ′
d : Rd → T for

all d ∈ N that satisfy ψ′
d+1|Rd

= ψ′
d and ∂ψ′

d = ϕ|Rd
for all d ∈ N. These

combine to a continuous map ψ′ : R→ T with ∂ψ′ = ϕ.
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