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Abstract. Positive configurations of points in the affine building
were introduced in [Le] as the basic object needed to define higher
laminations. We start by giving a self-contained, elementary definition
of positive configurations of points in the affine building and their
basic properties. Then we study the geometry of these configurations.
The canonical functions on triples of flags that were defined by Fock
and Goncharov in [FG1] have a tropicalization that gives functions
on triples of points in the affine Grassmannian. One expects that
these functions, though of algebro-geometric origin, have a simple
description in terms of the metric structure on the corresponding affine
building.

We give a several conjectures describing the tropicalized canonical
functions in terms of the geometry of affine buildings, and give proofs
of some of them. The statements involve minimal networks and have
some resemblance to the max-flow/min-cut theorem, which also plays
a role in the proofs in unexpected ways. The conjectures can be
reduced to purely algebraic statements about valuations of lattices
that we argue are interesting in their own right.

One can view these conjectures as the first examples of intersection
pairings between higher laminations. They fit within the framework
of the Duality Conjectures of [FG1].
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1 Introduction

This paper has two goals: the first is to give a simple exposition of positive
configurations of points in the affine building; the second is to begin the study
of the rich geometry of this object. In particular, we lay out several conjectures
that give a geometric interpretation of the beautiful set of canonical functions
that were defined by Fock and Goncharov in [FG1]. These conjectures serve
as the first step towards defining the intersection pairing between higher lami-
nations, which is naturally a pairing between higher laminations for Langlands
dual groups.
We start with some motivation. The canonical functions were originally defined
on the space of configurations of three principal affine flags associated to the
group G = SLn(R) (with appropriate adjustments, one can let G = PGLn(R)
or GLn(R)). There is a canonical function fijk for every triple of non-negative
integers i, j, k such that i+ j + k = n.
To a principal affine flag, one can associate a horocycle in the symmetric space
X = G/K, where K ⊂ G is the maximal compact subgroup of G. One can
interpret the value of the canonical functions on a triple of affine flags in terms
of the minimal total weighted distance of a spanning network between the three
corresponding horocycles.
We are interested in the tropicalization of these functions, explained in [Le] and
[GS]. Whereas the canonical functions parameterize configurations of principal
affine flags, the tropicalized canonical functions parameterize (positive) virtual
configurations of points in the affine building associated to G. (The adjective
“virtual” is a technicality that will not be relevant for this paper, while the
adjective “positive” will be explained later on, and is not of central importance.)
The affine building associated to G is the natural tropical analogue of the
symmetric space.
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These tropicalized functions again should have a geometric interpretation: we
expect that they are given by the minimal total weighted distance of a spanning
network between three horocycles in the affine building. However, we would
rather work with points in the affine building than with horocycles. For this
reason, we conjecture that there is a more refined and simpler description of
these functions in terms of the geometry of configurations of points in the affine
building.
For our purposes, we will restrict our attention to configurations of points
in the affine building, which is the most important case. The extension to
virtual configurations is straightforward. So the question becomes: given a
configuration of three points in the affine building, how do we calculate, in a
geometric way, the value of the tropicalized functions f t

ijk on this configuration?
We conjecture that they are given by the minimal total weighted distance of a
spanning network between the three points in the affine building.
Let us elaborate on the conjecture. We will see below that the affine building
has a (non-symmetric) distance function valued in the coweight lattice. If x1

and x2 are points in the affine building, d(x1, x2) will be a dominant coweight.
Let x1, x2, x3 be any configuration of points in the affine Grassmannian. Let
ωi, ωj , ωk be fundamental weights of SLn with i+j+k = n. Then we conjecture
that

f t
ijk(x1, x2, x3) = min

p
{ωi · d(p, x1) + ωj · d(p, x2) + ωk · d(p, x3)},

where the minimum is taken over all p in the affine building.
The functions f t

ijk are defined in terms of finding the most negative value of
some determinant expression. On the other hand, the conjecture states that
the same quantity is computed by minimizing some weighted network. Thus
the maximum of one type of quantity is the minimum of another, and the
statement resembles max-flow/min-cut.
Below, we prove two special cases of the conjecture, which are in some sense
orthogonal:

1. the configuration of points x1, x2, x3 is small in a precise sense described
below

2. the points x1, x2, x3 all lie in an apartment of the building

We think that combining the approaches of these two special cases could pos-
sibly prove the entire conjecture. It is very interesting to us that our proofs of
both cases use max-flow/min-cut, but in each case in a very different way. We
think of these conjectures as a kind of max-flow/min-cut for affine buildings.

Acknowledgments We thank Po-Shen Loh and Aaron Pixton for helpful
conversations and their interest in this work. We are also grateful for the sup-
port of NSF Grant DMS-1041500 and the Math Olympiad Summer Program,
where much of this work was done.
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2 Background

2.1 Affine Grassmannian and affine buildings

We now begin by laying out the necessary definitions. First we will give an
introduction to the affine Grassmannian and the affine building.
Let us define the affine Grassmannian. Let G be a simple, simply-connected
complex algebraic group and let G∨ be its Langlands dual group. Let F be a
field, which for our purposes will always be R or C. Let O = F[[t]] be the ring
of formal power series over F. It is a valuation ring, where the valuation val(x)
of an element

x =
∑

k

akt
k ∈ F((t))

is the minimum k such that ak 6= 0.
Let K = F((t)) be the fraction field of O. Then

Gr(F) = Gr(G) = G(K)/G(O)

is the set of F-points of the affine Grassmannian for G. It can be viewed as a
direct limit of F-varieties of increasing dimension.
For G = SLn, a point in the affine Grassmannian corresponds to a finitely
generated, rank n, O-submodule of Kn such that if v1, . . . , vn are generators
for this submodule, then

v1 ∧ · · · ∧ vn = e1 ∧ · · · ∧ en,

where e1, . . . , en is the standard basis of Kn. We will often call such full rank
O-submodules lattices. G(K) acts on the space of lattices with the stabilizer of
each lattice being isomorphic to G(O), which acts by changing the basis of the
submodule while leaving the submodule itself fixed. We will later make use of
this interpretation.
The affine Grassmannian Gr also has a metric valued in dominant coweights:
the set of pairs of elements of Gr up to the action of G(K) is exactly the set of
double cosets

G(O)\G(K)/G(O).

These double cosets, in turn, are in bijection with the cone Λ+ of dominant
coweights of G. Recall that the coweight lattice Λ is defined as Hom(Gm, T ).
The coweight lattice contains dominant coweights, those coweights lying in the
dominant cone. For example, for G = GLn, the set of dominant coweights is
exactly the set of µ = (µ1, . . . , µm), where µ1 ≥ µ2 ≥ · · · ≥ µn and µi ∈ Z. Let
us explain why the set of double cosets is in bijection with the set of dominant
coweights.
Given any dominant coweight µ of G, there is an associated point tµ in the
(real) affine Grassmannian: to a coweight µ = (µ1, . . . , µm) we associate the
element of G(K) with diagonal entries t−µi , and then project to the affine
Grassmannian. Any two points p and q of the affine Grassmannian can be
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translated by an element of G(K) to t0 and tµ, respectively, for some unique
dominant coweight µ. This gives the identification of the double coset space
with Λ+.
Under this circumstance, we will write

d(p, q) = µ

and say that the distance from p to q is µ.
Let us collect some facts about this distance function d. Note that this distance
function is not symmetric; one can easily check that

d(q, p) = −w0d(p, q)

where w0 is the longest element of the Weyl group of G (recall that the Weyl
group acts on both the weight space Λ∗ and its dual Λ). However, there is a
partial order on Λ defined by λ > µ if λ−µ is positive (i.e., in the positive span
of the positive co-roots). Under this partial ordering, the distance function
satisfies a version of the triangle inequality. By construction, the action of
G(K) on the affine Grassmannian preserves this distance function.
We are interested in the affine Grassmannian, but not in its finer structure as a
variety. In fact, we will only consider properties of the affine Grassmannian that
depend on the above distance function, and possibly on some positive struc-
ture. For this reason, we will introduce affine buildings, a sort of combinatorial
skeleton of the affine Grassmannian.
Let us first introduce the affine building for G = PGLn. The affine Grass-
mannian for G = PGLn consists of lattices (finitely generated, rank n O-
submodules of Kn) up to scale: two lattices L and L′ are equivalent if L = cL′

for some c ∈ C((t)). The set of vertices of the affine building for PGLn is
precisely given by the points of the affine Grassmannian Gr(PGLn).
For any lattices L0, L1, . . . , Lk, there is a k-simplex with vertices at
L0, L1, . . . , Lk if and only if (replacing each lattice by an equivalent one if
necessary)

L0 ⊂ L0 ⊂ · · · ⊂ Lk ⊂ t−1L0.

This gives the affine building the structure of a simplicial complex. The affine
building for G = SLn is the same simplicial complex, but where we restrict
our attention to those vertices that come from the affine Grassmannian for
G = SLn.
The non-symmetric, coweight-valued metric we defined above descends from
the affine Grassmannian to the affine building. The notion of a geodesic with
respect to his metric is sometimes useful. For our purposes, a geodesic in
the building is a path that travels along edges in the building from vertex to
vertex, such that the sum of the distances from vertex to vertex is minimal (with
respect to the partial order defined above). It is a property of affine buildings
that geodesics exist. Note that in general there will be many geodesics between
two any points.
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2.2 Canonical functions

We now define the canonical functions of triples of affine flags, which will lead
up to the definition of the associated functions on triples of points in the affine
Grassmannian.
Let G = SLn and let U ⊂ G be the subgroup of unipotent upper triangular
matrices. An element of G/U is called a principal affine flag. In concrete terms,
a principal affine flag is given by a set of n vectors v1, . . . , vn where we only
care about the forms

v1 ∧ · · · ∧ vk

for k = 1, 2, . . . , n− 1. We will require that

v1 ∧ · · · ∧ vn

is the standard volume form.
We are interested in the space of (generic) triples of flags up to the left transla-
tion action of G. Suppose we have three flags F1, F2, F3 which are represented
by u1, . . . , un, v1, . . . , vn and w1, . . . , wn respectively. Fock and Goncharov
define a canonical function fijk of this triple of flags for every triple of non-
negative integers i, j, k such that i + j + k = n and i, j, k < n. It is defined
by

fijk(F1, F2, F3) = det(u1, u2, . . . , ui, v1, v2, . . . vj , w1, w2, . . . , wk),

and it is G-invariant by definition. Note that when one of i, j, k is 0, these
functions only depend on two of the flags. We can call such functions edge
functions, and the remaining functions face functions.
Given a cyclic configuration ofm flags, imagine the flags sitting at the vertices of
an m-gon, and triangulate the m-gon. Then taking the edge and face functions
on the edges and faces of this triangulation, we get a set of functions on a cyclic
configuration of flags.

Theorem 1. For any triangulation, the edge and face functions form a coordi-
nate chart. Different triangulations yield different functions that are related to
the original functions by a positive rational transformation (a transformation
involving only addition, multiplication and division) [FG1].

We will now analogously define the triple distance functions f t
ijk on a configu-

ration of three points in the affine Grassmannian for SLn. The functions f t
ijk

are the same as the functions Hijk, which were defined in a slightly different
way in [K]. Recall that the affine Grassmannian is given by G(K)/G(O). For
G = SLn, a point in the affine Grassmannian can be thought of as a finitely
generated, rank n O-submodule of Kn such that if v1, . . . , vn are generators for
this submodule, then

v1 ∧ · · · ∧ vn = e1 ∧ · · · ∧ en
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where e1, . . . , en is the standard basis of Kn.
Let x1, x2, x3 be three points in the affine Grassmannian, thought of as O-
submodules of Kn. For i, j, k as above, we will consider the quantity

fijk(x1, x2, x3) = −val(det(u1, . . . , ui, v1, . . . vj , w1, . . . , wk)) (1)

as u1, . . . , ui range over elements of the O-submodule x1, v1, . . . vj range over
elements of the O-submodule x2, and w1, . . . , wk range over elements of the O-
submodule x3. Define f t

ijk(x1, x2, x3) as the maximum value of of this quantity,
i.e., the largest value of

−val(det(u1, . . . , ui, v1, . . . vj , w1, . . . , wk))

as all the vectors u1, . . . , ui, v1, . . . vj , w1, . . . , wk range over elements of the
respective O-submodules x1, x2, x3.
There is a more invariant way to define f t

ijk. Lift x1, x2, x3 to elements g1, g2, g3,

of G(K), then project to three flags F1, F2, F3 ∈ G(K)/U(K). Then define f t
ijk

to be the maximum of −val(fijk(F1, F2, F3)) over the different possible lifts
followed by projection from G(K)/G(O) to G(K)/U(K).

Remark 2. The edge functions recover the distance between two points in
the affine Grassmannian (and hence also the affine building). First, let
fij(x1, x2) := f t

ij0(x1, x2, x3) for any x3, where i + j = n. Then fij(x1, x2) =
ωj · d(x1, x2) = ωi · d(x2, x1) where ωi is a fundamental weight for SLn.
Let us give a quick proof of this fact. Any two points x1, x2 in the affine
Grassmannian can be translated to the lattices generated by {e1, . . . , en} and
{t−µ1e1, . . . , t

−µnen} respectively, so that d(x1, x2) = µ = (µ1, . . . , µn). Here µ
is some coweight for SLn, so that µ1 ≥ µ2 ≥ · · · ≥ µn and µ1 + · · ·+ µn = 0.
Then

fij(x1, x2) = −val(det(t−µ1e1, . . . , t
−µj ej, ej+1, . . . , en))

= µ1 + · · ·+ µj = ωj · d(x1, x2).

2.3 Positive configurations and conjectures

Now we may define positive configurations of points in the affine building.

Definition 3. Let x1, x2, . . . xm be m points of the real affine Grassmannian.
Then x1, x2, . . . xm will be called a positive configuration of points in the affine
Grassmannian if and only if there exist ordered bases for xi,

vi1, vi2, . . . , vin,

such that for each 1 ≤ p < q < r ≤ m, and each triple of non-negative integers
i, j, k such that i+ j + k = n,

• f t
ijk(xp, xq, xr) = −val(det(vp1, . . . , vpi, vq1, . . . vqj , vr1, . . . , vrk))
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• the leading coefficient of det(vp1, . . . , vpi, vq1, . . . vqj , vr1, . . . , vrk) is posi-
tive.

Note that it is important in the above definition that we are taking the valu-
ations of the determinants of the first i (respectively j, k) vectors among the
bases for xp (respectively xq, xr), and not just any i (respectively j, k) vectors.

Remark 4. By the results of [Le], it is sufficient to verify the two conditions
above for only those triples p, q, r occuring in any one triangulation of the m-
gon. The valuation condition and the positivity condition for one triangulation
implies the these conditions for any other triangulation, and hence for an ar-
bitrary triple p, q, r.

We can now introduce our conjectures on the tropical functions f t
ijk. We need

some notation first. Let ωi be the i-th fundamental weight for SLn: ωi =
(1, . . . , 1, 0, . . . , 0) where there are i 1’s and n − i 0’s. Recall that for any two
points p, q in the affine Grassmannian, d(p, q) is an element of the coweight
lattice for SLn.

Conjecture 5. (Weak form) Let x1, x2, x3 be a positive configuration of points
in the affine Grassmannian. Then

f t
ijk(x1, x2, x3) = min

p
ωi · d(p, x1) + ωj · d(p, x2) + ωk · d(p, x3),

where the minimum is taken over all p in the affine Grassmannian.

There is a stronger, perhaps bolder, form of the conjecture, which is also inter-
esting, although it is less related to the geometry of laminations:

Conjecture 6. (Strong form) Let x1, x2, x3 be any configuration of points in
the affine Grassmannian. Then

f t
ijk(x1, x2, x3) = min

p
ωi · d(p, x1) + ωj · d(p, x2) + ωk · d(p, x3),

where the minimum is taken over all p in the affine Grassmannian.

We can make a few elementary observations.

Observation 7. On positive configurations of points in the affine building, the
functions f t

ijk only depend on metric properties of the configuration within the
building: if there is an isometry of the building mapping x1, x2, x3 to x′

1, x
′
2, x

′
3,

then f t
ijk(x1, x2, x3) = f t

ijk(x
′
1, x

′
2, x

′
3) [Le]

Thus our conjecture is giving a more precise description of how the functions
fijk measure metric properties of the configuration.

Observation 8. One inequality in the conjecture is clearly true. We have that
for any configuration of points x1, x2, x3 in the affine Grassmanian,

f t
ijk(x1, x2, x3) ≤ min

p
ωi · d(p, x1) + ωj · d(p, x2) + ωk · d(p, x3),
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This observation follows from the fact that f t
ijk (in fact, fijk) is invariant

under the diagonal action of G(K) on x1, x2, x3, so it is enough to verify the
inequality in the case when p is the trivial lattice spanned by e1, . . . , en. Thus
the conjecture reduces to showing the other inequality.

Observation 9. If one of i, j, k is equal to 0, then the conjecture holds. In
particular, the conjecture is true for SL2. For example, if k = 0,

f t
ij0(x1, x2, x3) = ωi · d(p, x1) + ωj · d(p, x2)

for any p lying on a geodesic between x1 and x2.

Let x1, x2, . . . xm be any configuration of points in the affine Grassmannian,
with ordered bases for xi,

vi1, vi2, . . . , vin,

satisfying

f t
ijk(xp, xq, xr) = −val(det(vp1, . . . , vpi, vq1, . . . vqj , vr1, . . . , vrk)).

For any set of dominant coweights (λ1, λ2, . . . , λm), where

λi = (λi1, λi2, . . . , λin), λi1 ≥ λi2 ≥ · · · ≥ λin,

we can form the configuration of points

x′
1, x

′
2, . . . x

′
m

where x′
i has basis

t−λi1vi1, t
−λi2vi2, . . . , t

−λinvin

(it is easy to check the positivity of the configuration x′
1, x

′
2, . . . x

′
m). We have

the following observation [Le]:

Observation 10. For sufficiently large coweights (λ1, λ2, . . . , λm), and any
1 ≤ p, q, r ≤ m, we have that

f t
ijk(x

′
p, x

′
q, x

′
r) = min

p
ωi · d(p, x

′
1) + ωj · d(p, x

′
2) + ωk · d(p, x

′
3).

In other words, the conjecture is true asymptotically.
Let us note that the previous observation was originally shown in [Le] for
positive configurations, but the same proof works for all configurations.

2.4 Relationship to the Duality Conjectures

The duality conjectures of Fock and Goncharov posit a relationship between
the spaces AG,S and XG∨,S where G∨ is the Langlands dual group to G. In
particular, the main part of the conjecture state that there should be a bijection
between XG∨,S(Z

t) (the tropical points of XG,S) and a basis of functions for
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AG,S . This bijection should satisfy many compatibility relations which we will
not discuss here.
This pairing further specializes to a pairing

XG∨,S(Z
t)×AG,S(Z

t) → Z.

The pairing works as follows: a point l ∈ XG∨,S(Z
t) corresponds to a function

fl on AG,S. A point l′ ∈ AG,S(Z
t) comes from a taking valuations of some

Laurent-series valued point xl′ ∈ AG,S(K). Then the pairing between l and l′

is defined by
(l, l′) = −valfl(xl′ ).

The value of (l, l′) is independent of the choice of the point xl′ , as the conjec-
tures state that fl should be a positive rational function on AG,S (in fact, it
should be a Laurent polynomial in the cluster co-ordinates).
Equivalently, we can describe the pairing as follows. Given a point l ∈
XG∨,S(Z

t), take the corresponding function fl on AG,S. Then if l′ ∈ AG,S(Z
t),

then
(l, l′) = f t

l (l
′).

Points of XG∨,S(Z
t) and AG,S(Z

t) correspond to higher laminations for the
groups G∨ and G, respectively. The pairing between XG∨,S(Z

t) and AG,S(Z
t)

should realize the intersection pairing between higher laminations. When
G = SL2, this construction reduces to the usual intersection pairing between
laminations on a surface [FG1].
The functions fijk can be used to give all the cluster functions in a particular
cluster for AG,S . In particular, take a triangulation of the surface S. On each
triangle, we have a configuration of three flags, and we can therefore put the
functions fijk om each triangle. This gives all the functions in one cluster.
The cluster variables (in fact, all cluster monomials) in this cluster are part of
the basis parameterized by XG∨,S(Z

t). Let f correspond to one of the functions
in one of the triangles in the triangulation of S. Then f is associated to the
tropical point of XG∨,S(Z

t) where the corresponding tropical cluster x-variable
is 1 and all other x variables are set to 0. (For every cluster and cluster variable
for AG,S one can canonically associate a cluster and cluster variable for XG∨,S .
This is partly a reflection of the fact that the dual pair of spaces forms a cluster
ensemble.)
Our conjectures give a way of computing f t(l′) for l′ ∈ AG,S(Z

t). Thus they
give a geometric interpretation of the intersection pairings. The pairing extends
linearly to a pairing between l ∈ XG∨,S(Z

t) and l′ ∈ AG,S(Z
t) whenever l

has positive co-ordinates in one of the cluster co-ordinate systems for XG∨,S

associated to a triangulation of S constructed in [FG1]. Thus they give the
pairing

XG∨,S(Z
t)×AG,S(Z

t) → Z.

for any l′ ∈ AG,S(Z
t) and l contained in a union of open cones inside XG∨,S(Z

t).
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In the case whereG = SL2 the function f will correspond to an arc between two
punctures or marked points of S. We also have that a point l′ ∈ AG,S(Z

t) de-
scribes an integral measured lamination, which consists of a weighted collection
on non-intersecting simple closed curves. In this case, f t(l′) is the intersection
number of the arc with the lamination l′. This intersection pairing extends
additively to any collection of weighted non-intersecting arcs.

3 Main theorem

In this section we prove some partial results towards the strong version of the
conjecture.
Because we will be dealing with the case of G = SLn, GLn or PGLn, and
because we would like to deal with all these cases uniformly we will reformulate
the conjectures in terms of lattices. By a lattice we mean a C[[t]]-submodule
of the vector space C((t))n generated by n vectors linearly independent over
C((t)). The simplest lattice is the “elementary” lattice E = C[[t]]n.
Let i1, . . . , ik be nonnegative integers that sum to n, and let L1, . . . , Lk be
lattices. Define the determinantal valuation

f t
i1,...,ik

(L1, . . . , Lk) =

max
vij∈Li

−val det(v11, . . . , v1ii , v21, . . . , v2i2 , . . . , vk1, . . . , vkik ).

We are primarily interested in the cases k = 1, 2, and 3.
The unary determinantal valuation

f t
n(L) = max

vj∈L
−val det(v1, . . . , vn)

can easily be computed by choosing any C[[t]]-basis v1, . . . , vn for L.
As we saw previously, the binary determinantal valuation vij(L,M) is also well
understood:

Proposition 11. Let L and M be lattices. Then there exists g ∈ GLn(C((t)))
and integers a1 ≥ a2 ≥ · · · ≥ an such that

gL = 〈e1, e2, . . . , en〉

gM =
〈
t−a1e1, t

−a2e2, . . . , t
−anen

〉
.

Moreover, fij(gL, gM) = a1 + . . .+ aj and

f t
ij(L,M) = a1 + . . .+ aj +

if t
n(L) + j[f t

n(M)− a1 − · · · − an]

n
.

We see that the numbers a1, . . . , an are unique up to adding a fixed constant
to all of them (though g is far from unique).
We reformulate our main conjecture as saying that the ternary determinantal
valuation can be expressed in terms of the binary one.
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Conjecture 12. Let L, M , N be lattices and i, j, k nonnegative integers,
i+ j + k = n. Then

f t
ijk(L,M,N) = min

lattices P
(f t

i,j+k(L, P ) + f t
j,i+k(M,P ) + f t

k,i+j(N,P )− 2f t
n(P ))

which can also be written as

f t
ijk(L,M,N) =

min
lattices P

(f t
ijk(L, P, P ) + f t

ijk(P,M,P ) + f t
ijk(P, P,N) − 2f t

ijk(P, P, P ))

The inequality ≤ between the two sides is not difficult to prove (Observation 8);
hence the content of the conjecture is the existence of a lattice P for which
equality holds.

3.1 The case of three “close” lattices

Our first partial result is as follows:

Theorem 13. Conjecture 12 holds when E ⊆ L,M,N ⊆ t−1E. In particular,
one of the choices

tE, L,M,N,L+M,L+N,M +N,L+M +N

works for P .

Proof. If E ⊆ L ⊆ t−1E, then L is determined by its projection U1 to the space
Fn ≡ t−1E/E. Likewise M ≃ E ⊕ U2 and N ≃ E ⊕ U3, where U1, U2, and
U3 are subspaces of V = Fn. Now a system of three subspaces of an ambient
space

U1

��
U2

//V U3
oo

forms a representation of the quiver •

��
• // • •oo

of Dynkin type D4 and thus

can be expressed as a direct sum of its 12 irreducible representations, of which
3 are excluded since they correspond to non-injective maps. In the following
diagram, we assign names to the remaining 9 representation types and their
basis vectors:

Rep. A A′ A′′ B B′ B′′ C D S
U1 aℓ bℓ b′ℓ cℓ uℓ

U2 a′ℓ bℓ b′′ℓ cℓ vℓ
U3 a′′ℓ b′ℓ b′′ℓ cℓ uℓ + vℓ
V aℓ a′ℓ a′′ℓ bℓ b′ℓ b′′ℓ cℓ uℓ, vℓ sℓ

(2)
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To compute fijk(L,M,N), we must search for a choice of vectors u1, . . . , ui ∈ L,
v1, . . . , vj ∈ M , w1, . . . , wk ∈ N minimizing the valuation of the determinant
in (1). There is no reason not to choose vectors in either t−1V or V , and then
the valuation of the determinant depends only on the number of t’s involved,
as long as the n underlying vectors in V are linearly independent. So we have
the following interpretation.

Lemma 14. We have fijk(L,M,N) = g, where g is the maximum number
of linearly independent vectors that may be chosen from U1, U2, U3, with the
restriction that at most i vectors from U1, j from U2, k from U3 may be chosen.

Moreover, we may limit our vectors to the bases of U1, U2, U3 constructed
above. Now g depends in a purely combinatorial way on i, j, k, and the
multiplicities of the irreducible representations.
We will now interpret g as the maximum flow in a certain graph. Draw four
layers of vertices as follows:

• A single source vertex;

• One representation vertex for each of the irreducible components of the
representation of D4 determined by U1, U2, U3;

• Three U -vertices, labeled U1, U2, and U3;

• A single sink vertex.

Then draw arrows from each level to the next as follows:

• Each representation vertex is joined to the source with an arrow whose ca-
pacity is the dimension of the portion of V that it corresponds to (always
1 except for the representation D, where it is 2);

• Each representation vertex is joined to each U -vertex Um with an arrow
whose capacity is the dimension of the portion of Um that it corresponds
to (always 0 or 1); for future reference, the arrows with capacity 1 are
labeled with the appropriate basis vector of Ui.

• The three U -vertices U1, U2, and U3 are joined to the sink with arrows
of capacity i, j, and k, respectively.

Now it is readily verified that any choice of basis vectors satisfying the condi-
tions of Lemma 14 can be represented by a flow in this graph, where for each
vector chosen, one unit of fluid flows from the source through the appropriate
representation-to-U edge and then out the sink. Hence the maximum flow is
g. We turn our attention to the cuts of the constructed graph. Note that once
each of the Um is either cut from or “soldered” to the sink (the vertices may be
identified once the decision is made not to cut the edge), the graph becomes a
union of noninteracting subgraphs, one for each representation vertex. So the
minimal cut in each of the eight cases is easily determined:
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1. If all three Um are cut, no further cuts are necessary, and we obtain a cut
of capacity i+ j + k = n.

2. If two of the Um are cut, say U2 and U3, then the representation vertices
with connections to U1 (namely, those of type A, B, B′, C, and D)
can be dealt with by cutting these connections, which are labeled by the
basis vectors of U1. Hence there are cuts of capacity j + k+dimU1 and,
symmetrically, i+ k + dimU2 and i+ j + dimU3.

3. If only one Um is cut, say U3, then we must further cut one unit for each
representation vertex of type A, A′, B, B′, B′′, or C, and two units for
each representation vertex of type D. This amounts to one unit for each
vector in a basis of U1 +U2. So we get cuts of capacity k+dim(U1 +U2)
and, symmetrically, j + dim(U1 + U3) and i+ dim(U1 + U2).

4. Finally, if none of the Um are cut, then there is no better option than
cutting the inflow to each representation vertex, excepting those of type
S, for which of course no cut is necessary. So we get a cut of capacity
dim(U1 + U2 + U3).

So we have reached a second checkpoint in the computation of fijk:

Lemma 15. fijk(L,M,N) = min{i+j+k, j+k+dimU1, i+k+dimU2, i+j+
dimU3, k+dim(U1+U2), j+dim(U1+U3), i+dim(U1+U2), dim(U1+U2+U3)}.

Finally, we must relate the eight terms on the right-hand side of this lemma
to the right-hand side of Conjecture 12 for the lattices P listed in Theorem
13. The key is that in max-flow/min-cut, there is always a flow that uses every
edge of the minimal cut at full capacity. We will use this flow to bound the f•,•
terms from above, proving that the right-hand side is at most fijk(L,M,N),
since as previously remarked the reverse inequality is trivial (Observation 8).

1. If i+ j+ k is the minimal cut, then there are i vectors from U1, j vectors
from U2, and k vectors from U3, all linearly independent. Picking P = E,
we find fi,j+k(L,E) ≤ i by taking the i linearly independent vectors from
L and filling out with vectors from V . Calculating the other two terms
by symmetry, we get

fi,j+k(L, tE) + fj,i+k(M, tE) + fk,i+j(N, tE)− 2fn(tE)

≤ i+ j + k

= fi,j,k(L,M,N).

2. If j+k+dimU1 is the minimal cut, then there are dimU1 ≤ i vectors from
U1, j vectors from U2, and k vectors from U3, all linearly independent.
We will pick P = L. The most difficult term is fj,i+k(M,L) which can
be bounded by picking the j vectors from U2 and the basis for U1, filling
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out with vectors from V , getting a bound of j+dimU1. The other terms
are either symmetric or trivial, and we get

fi,j+k(L,L) + fj,i+k(M,L) + fk,i+j(N,L)− 2fn(L)

≤ dimU1 + j + dimU1) + k + dimU1)− 2(dimU1)

= j + k + dimU1 = fi,j,k(L,M,N).

3. If k + dim(U1 + U2) is the minimal cut, there is a basis for U1 + U2

consisting of at most i vectors from U1 and at most j vectors from U2,
and also k vectors chosen from U3 that are linearly independent from
U1 + U2. We pick P = L + M . For fi,j+k(L,L + M), it is possible to
pick all the vectors in the basis of U1 +U2 (at most i from L and j from
M) before filling out with V . The term fj,i+k(M,L +M) is symmetric,
while in fk,i+j(N,L +M) we can get the k linearly independent vectors
in U3 as well as a basis of L+M . So in all, we get

fi,j+k(L,L+M) + fj,i+k(M,L+M) + fk,i+j(N,L+M)− 2fn(L+M)

≤ dim(U1 + U2) + dim(U1 + U2) + k + dim(U1 + U2))− 2(dim(U1 + U2))

= k + dim(U1 + U2) = fi,j,k(L,M,N).

4. Finally, if dim(U1 + U2 + U3) is the minimal cut, then U1 + U2 + U3 has
a basis consisting of at most i vectors from U1, j vectors from U2, and
k vectors from U3. This can be used to bound all the terms if we pick
P = L+M +N :

fi,j+k(L,L+M +N) + fj,i+k(M,L+M +N)+

fk,i+j(N,L +M +N)− 2fn(L+M +N)

≤ dim(U1 + U2 + U3) + dim(U1 + U2 + U3) + dim(U1 + U2 + U3)

− 2(dim(U1 + U2 + U3))

= dim(U1 + U2 + U3) = fi,j,k(L,M,N).

Of course, the other 4 possibilities for the minimal cut are symmetric.

3.1.1 Connection to Konig’s theorem

The portion of our proof of Theorem 13 lying between Lemmas 14 and 15 can
be thought of as a combinatorial problem in linear algebra. It can be related
to some familiar theorems in combinatorics in a way which we now describe.
Hall’s theorem or Hall’s Marriage Lemma is frequently described in terms of
the following story: n boys are to be married off to m girls, and each boy-girl
pair either likes or dislikes one another. A matching in which all the boys are
paired exists if and only if no subset of the boys likes a strictly smaller subset
of the girls. Or, in the inanimate language favored by mathematicians:
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Theorem 16 (Hall). If S1, S2, . . . , Sr are sets, then a system of distinct rep-
resentatives of the Si (one from each set) exists if and only if for each subset
I ⊆ [r],

∣
∣
∣
∣
∣

⋃

i∈I

Si

∣
∣
∣
∣
∣
≥ |I|.

A refinement of Hall’s theorem is Konig’s theorem. Instead of giving conditions
for a perfect matching to exist, it provides a formula for the maximum number
of disjoint pairs that may be made:

Theorem 17 (Konig). If S1, S2, . . . , Sr are sets, the maximum number of dis-
tinct representatives of the Si (at most one from each set) is

min
I⊆[r]

(∣
∣
∣
∣
∣

∑

i∈I

Si

∣
∣
∣
∣
∣
+ r − |I|

)

.

In [M], Theorem 2, Moshonkin “linearized” Hall’s theorem in the sense of
replacing sets by vector spaces and adjusting conditions accordingly. His result
is:

Theorem 18 (Moshonkin). If V1, V2, . . . , Vr are subspaces of an ambient vector
space V , then a system of linearly independent representatives of the Vi exists
if and only if for each subset I ⊆ [r],

dim
∑

i∈I

Si ≥ |I|.

In a similar vein, we would like to state and prove the following linearization
of Konig’s theorem:

Theorem 19. If V1, . . . , Vr are subspaces of an ambient space V , the maximum
number of linearly independent representatives from different Vi’s is

min
I⊆[r]

[

dim

(
∑

i∈I

Vi

)

+ r − |I|

]

. (3)

This result is applicable to our investigations in the following manner: if U1,
U2, U3 are subspaces, then the maximum number of linearly independent rep-
resentatives from different terms of the multiset

U1, . . . , U1
︸ ︷︷ ︸

i

, U2, . . . , U2
︸ ︷︷ ︸

j

, U3, . . . , U3
︸ ︷︷ ︸

k

is the quantity g in the statement of Lemma 14. On the other hand, the
expression (3) clearly can only reach its minimal value when the index set I
includes either all or none of each of the three strings of repeated Ui. Thus
Theorem 19 provides an alternative proof of Lemma 15 from Lemma 14.
We now deduce Theorem 19 from Theorem 18. In fact, the two theorems are
readily found to be equivalent.
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Proof of Theorem 19. Let M be the subset I ⊆ [r] that minimizes (3). Denote

m = |M |,

K = [r]\M,

k = |K| = r −m,

W =
∑

i∈M

Vi,

n = dimW.

We will construct the requisite n+k linearly independent representatives in the
following way: we will find a basis for W whose elements come from distinct Vi,
and we will supplement this basis with vectors in the k spaces Vi, i ∈ K, which
are all linearly independent in the quotient space V/W . The proof will apply
the minimality condition to sets I which are respectively subsets and supersets
of M .
We begin with the second step. Let Ṽi be the image of Vi in V/W . For each
I ⊆ K, we have the condition

dim

(
∑

i∈M∪I

Vi

)

+ r − (m+ |I|) ≥ n+ k

which simplifies to

dim
∑

i∈I

Ṽi ≥ |I|.

So the Ṽi, i ∈ K satisfy precisely the condition of Theorem 18 and hence a
system of linearly independent representatives exists.
The first step is only slightly trickier. For each I ⊆ M , we have

dim

(
∑

i∈I

Vi

)

+ r − |I| ≥ n+ k

which simplifies to

dim
∑

i∈I

Vi ≥ |I| ≥ n−m+ |I|.

This would be the condition of Theorem 18 were it not for the summand n−m.
So we use a trick. Plugging I = ∅, we see that m ≥ n. Let V ′ = V ⊕Fm−n and
V ′
i = Vi ⊕ Fm−n. Then the V ′

i , i ∈ M , satisfy the conditions of Theorem 18
and we can find a basis of V ′ with one vector from each V ′

i . Projecting down
to V , we have a spanning set, of which some n vectors form a basis.

Both Konig’s and Moshonkin’s theorems as well as our proof of Theorem 13
rely on max-flow/min-cut-type results. We believe that this is not accidental,
and that in general, defining intersection pairings between higher laminations
will involve proving statements about affine buildings that have the flavor of
max-flow/min-cut.
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3.2 Apartments

Let X = {x1, . . . , xn} be a basis for Kn over K. For any choice integers
c1, . . . , cn, the set of lattices of the form tcjxj , j = 1, 2, . . . , n form a subset of
the affind building called an apartment.

Our second result is a generalization of our conjecture in the situation where
L1, . . . , Lk all lie in the same apartment:

Theorem 20. If L1, . . . , Lk lie in the same apartment and i1, . . . , ik nonnega-
tive integers with sum n, then there exists a lattice P such that

f t
i1,...,ik

(L1, . . . , Lk) =
∑

j

f t
ij ,n−ij

(Lj , P )− (n− 1)f t
n(P ).

(Remark: We expect that the above generalization holds for general lattices
L1, . . . , Lk.)

Proof. Use the following combinatorial result:

Theorem 21 (Kuhn and Munkres). Let [cij ] be a real n× n matrix. Then the
maximal sum of a transversal of [cij ] equals the minimal sum

∑

i ai +
∑

j bj
where the ai and bj satisfy ai + bj ≥ cij for all i, j. If the cij are integers, the
a’s and b’s can be taken integral as well.

In our situation, we can first reduce to the case that k = n and all ij are 1. Then
write Li =

〈
t−ci1x1, . . . , t

−cinxn

〉
. Using the multilinearity of the determinant,

we can assume that the value of fi1,...,ik is attained by taking the valuation
of the determinant of generators t−cijxj of the respective lattices. Since all
the i’s must be distinct as must the j’s, the valuation of the determinant is
a transversal −

∑

i ciσ(i) for some σ ∈ Sn. Therefore v1···1(L1, . . . , Ln) is the
maximal transversal sum in the matrix [cij ].

By Kuhn-Munkres, there exist integers ai and bj such that ai + bj ≥ cij and

f t
1···1(L1, . . . , Ln) =

∑

i

ai +
∑

j

bj.

Choose the lattice

P =
〈
t−b1x1, . . . , t

−bnxn

〉
.

Obviously, equality ai+bj = cij must hold whenever cij belongs to the winning
transversal. So

f t
1,n−1(Li, P ) = max

k

(

cik +
∑

j 6=k

bj

)

=
∑

j

bj +max
k

(cik − bk) =
∑

j

bj + ai.

Since f t
n(P ) =

∑

j bj , we have the desired equality.
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4 Generalizations

Theorem 20 hints at some generalizations of conjectures. It is known that the
functions fi1,...,ik are cluster co-ordinates for k = 2, 3, 4, so that the correspond-
ing functions f t

i1,...,ik
also give intersection pairings between higher laminations.

In fact, we expect that this is true for all k.
Thus, in general, we conjecture that

f t
i1,...,ik

(L1, . . . , Lk) =
∑

j

f t
ij ,n−ij

(Li, P )− (k − 1)f t
n(P ).

Note that if L1, . . . Lk lie in the same apartment, then Theorem 20 gives the
above result. This gives one interpretation of the functions f t

i1,...,ik
in terms of

the geometry of the affine building.
Let us another interpretation when k = 4. We would like to calculate. We
conjecture f t

i1,i2,i3,i4
(L1, L2, L3, L4) is also given by the minimum of the two

following expressions:

f t
i4,n−i4

(L4, P ) + f t
i1,n−i1

(L1, P ) + f t
i4+i1,i2+i3

(P,Q)+

f t
i2,n−i2

(L2, Q) + f t
i3,n−i3

(L3, Q)− 2f t
n(P )− 2f t

n(Q)

where P and Q range over all lattices. If P and Q are normalized to have deter-
minant 1 (possibly by introducing fractional powers of t), we get the minimum
over P and Q of

f t
i1,n−i1

(L1, P ) + f t
i2,n−i2

(L2, P ) + f t
i1+i2,i3+i4

(P,Q)+

f t
i3,n−i3

(L3, Q) + f t
i4,n−i4

(L4, Q)

and
f t
i4,n−i4

(L4, P ) + f t
i1,n−i1

(L1, P ) + f t
i4+i1,i2+i3

(P,Q)+

f t
i2,n−i2

(L2, Q) + f t
i3,n−i3

(L3, Q).

If P = Q, these expressions reduce to the previous expression

f t
i1,n−i1

(L1, P ) + f t
i2,n−i2

(L2, P ) + f t
i3,n−i3

(L3, P ) + f t
i4,n−i4

(L4, P )− 3f t
n(P ).

The content of our conjecture is that allowing P 6= Q does not change the
minimum.
Equivalently, it is given by the minimum over P and Q of (again assuming that
P and Q are normalized to have determinant 0)

d(P,L1) · ωi1 + d(P,L2) · ωi2 + d(P,Q) · ωi3+i4 + d(Q,L3) · ωi3 + d(Q,L4) · ωi4

and

d(P,L4) · ωi4 + d(P,L1) · ωi1 + d(P,Q) · ωi2+i3 + d(Q,L2) · ωi2 + d(Q,L3) · ωi3 .
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Thus we conjecture that f t
i1,i2,i3,i4

(L1, L2, L3, L4) is calculated by the mini-
mum distance of a weighted network connecting the Li. However, this network
can take one of two shapes (three if one counts the degenerate case P = Q
separately). One recognizes that these two different networks, along with the
weights along the networks, are identical to the spin networks that calculate
the untropicalized function fi1,i2,i3,i4 .
We believe that in many other more general cases, the functions correspond-
ing to points of XG∨,S(Z

t) are calculated by some set equivalent spin networks
which calculate the same function, and that the associated tropical functions
are calculated by the minimal distance over these various weighted networks
inside the affine building. For example, when G = SL4 there are two inequiv-
alent spin networks with four leaves with weights ω2, ω1, ω2, ω3 in that cyclic
order. We believe that the corresponding tropical functions are given by the
minimums of

f t
2,2(L1, P )+f t

1,3(L2, P )+f t
3,1(P,Q)+f t

2,2(L3, Q)+f t
3,1(L4, Q)−2f t

n(P )−f t
n(Q)

and

f t
3,1(L4, P )+f t

2,2(L1, P )+f t
1,3(P,Q)+f t

1,3(L2, Q)+f t
2,2(L3, Q)−f t

n(P )−2f t
n(Q)

respectively. This points towards a general geometric interpretation of inter-
section pairings between higher laminations.
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