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1 Introduction

Let G be a locally compact group with unitary dual Ĝ , composed of classes of unitary

equivalence of strongly continuous irreducible representations. To have a manageable
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1540 Măntoiu and Ruzhansky

Fourier transformation, it will be assumed second countable, unimodular and postlim-

inal (type I). The formula

[Op(a)u](x) =

∫

G

( ∫

Ĝ

Trξ
[
ξ(y−1x)a(x, ξ)

]
dm̂(ξ)

)
u(y)dm(y) (1)

is our starting point for a global pseudo-differential calculus onG ; it involves operator-

valued symbols defined on G× Ĝ . In (1) dm is the Haar measure of the group G , dm̂

is the Plancherel measure on the space Ĝ and for the pair (x, ξ) formed of an element

x of the group and a unitary irreducible representation ξ : G → B(Hξ) , the symbol

a(x, ξ) is essentially assumed to be a trace-class operator in the representation Hilbert

space Hξ . In further extensions of the theory it is important to also include densely

defined symbols to cover, for example, differential operators on Lie groups (in which

case one can make sense of (1) for such a(x, ξ) by letting it act on the dense in Hξ

subspace of smooth vectors of the representation ξ , see [19]).

Particular cases of (1) have been previously initiated in [39, 41] and then inten-

sively developed further in [8, 9, 11, 12, 17, 42, 43] for compact Lie groups, and

in [18, 19, 20] for large classes of nilpotent Lie groups (graded Lie groups), as far-

reaching versions of the usual Kohn-Nirenberg quantization on G = Rn , cf. [22] .

The idea to use the irreducible representation theory of a type I group in defining

pseudo-differential operators seems to originate in [44, Sect. I.2], but it has not been

developed before in such a generality. All the articles cited above already contain

historical discussions and references to the literature treating pseudo-differential op-

erators (quantization) in group-like situations, so we are not going to try to put this

subject in a larger perspective.

Let us just say that an approach involving pseudo-differential operators with

representation-theoretical operator-valued symbols has the important privilege of be-

ing global. On most of the smooth manifolds there is no notion of full scalar-valued

symbol for a pseudo-differential operator defined using local coordinates. This is un-

fortunately true even in the rather simple case of a compact Lie group, for which the

local theory, only leading to a principal symbol, has been shown to be equivalent to the

global operator-valued one (cf. [39, 42]). On the other hand, in the present article we

are not going to rely on compactness, on the nice properties implied by nilpotency, not

even on the smooth structure of a Lie group. In the category of type I second count-

able locally compact groups one has a good integration theory on G and a manageable

integration theory on Ĝ, allowing a general form of the Plancherel theorem, and this

is enough to develop the basic features of a quantization. Unimodularity has been

assumed, for simplicity, but by using tools from [10] it might be possible to develop

the theory without it.

More structured cases (still more general than those studied before) will hopefully be

analysed in the close future, having the present paper as a framework and a starting

point. In particular, classes of symbols of Hörmander type would need more than a

smooth structure on G . The smooth theory, still to be developed, seems technically

difficult if the class of Lie groups is kept very general. Of course, only in this setting
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one could hope to cover differential operators and certain types of connected applica-

tions. On the other hand, the setting of our article allows studying multiplication and

invariant operators as very particular cases, cf. Subsection 7.3.

The formula (1) is a generalisation of the Kohn-Nirenberg quantization rule for the

particular case G = R
n. But for Rn there are also the so-called τ -quantizations

[Opτ(a)u](x) =

∫

Rn

(∫

Rn

a
(
(1− τ)x + τy, η

)
ei(x−y)ηdη

)
u(y)dy ,

related to ordering issues, with τ ∈ [0, 1] , and the Kohn-Nirenberg quantization is its

special case for τ = 0. It is possible to provide extensions of the pseudo-differential

calculus on type I groups corresponding to any measurable function τ : G → G . The

general formula turns out to be

[Opτ(a)u](x) =

∫

G

( ∫

Ĝ

Trξ

[
ξ(y−1x)a

(
xτ(y−1x)−1, ξ

)]
dm̂(ξ)

)
u(y)dm(y) , (2)

from which (1) can be recovered putting τ(x) = e (the identity) for every x ∈ G .

This formula and its integral version will be summarised in (37). The case τ(x) = x
is also related to a standard choice

[
OpidG(a)u

]
(x) =

∫

G

( ∫

Ĝ

Trξ
[
ξ(y−1x)a(y, ξ)

]
dm̂(ξ)

)
u(y) dm(y) , (3)

familiar at least in the case G = Rn (derivatives to the left, positions to the right). In

the presence of τ some formulae are rather involved, but the reader can take the basic

case τ(·) = e as the main example. Anyhow, for the function spaces we consider in

this paper, the formalisms corresponding to different mappings τ are actually isomor-

phic. Having in mind the Weyl quantization for G = Rn we deal in Section 4 with

the problem of a symmetric quantization, for which one has Opτ(a)∗ = Opτ(a⋆) ,

where a⋆ is an operator version of complex conjugation. We also note that if the

symbol a(x, ξ) = a(ξ) is independent of x, the operator Opτ(a) is left-invariant and

independent of τ , and can be rewritten in the form of the Fourier multiplier

F [Opτ(a)u] (ξ) = a(ξ)[Fu](ξ) , ξ ∈ Ĝ , (4)

at least for sufficiently well-behaved functions u, i.e. as an operator of “multiplica-

tion” of the operator-valued Fourier coefficients from the left.

One of our purposes is to sketch two justifications of formula (2), which both hold

without a Lie structure on G (we refer to [3, 30] to similar strategies in quite different

situations). They also enrich the formalism and have certain applications, some of

them included here, others subject of subsequent developments. Let us say some

words about the two approaches.

1. A locally compact group G being given, we have a canonical action by (left) trans-

lations on variousC∗-algebras of functions on G . There are crossed product construc-

tions associated to such situations, presented in Section 7.1: One gets ∗-algebras of
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scalar-valued functions on G × G involving a product which is a convolution in one

variable and a pointwise multiplication in the other variable, suitably twisted by the

action by translations. A C∗-norm with an operator flavour is also available, with re-

spect to which one takes a completion. Since we have to accommodate the parameter

τ , we were forced to outline an extended version of crossed products.

Among the representations of these C∗-algebras there is a distinguished one pre-

sented and used in Subsection 7.2, the Schrödinger representation, in the Hilbert space

L2(G) . If G is type I, second countable and unimodular, there is a nicely-behaved

Fourier transform sending functions on G into operator-valued sections defined over

Ĝ . This can be augmented to a partial Fourier transform sending functions on G× G

into sections over G × Ĝ . Starting from the crossed products, this partial Fourier

transform serves to define, by transport of structure, ∗-algebras of symbols with a

multiplication generalising the Weyl-Moyal calculus as well as Hilbert space repre-

sentations of the form (2). They are shown to be generated by products of suitable

multiplication and convolution operators.

The C∗-background can be used, in a slightly more general context, to generate co-

variant families of pseudo-differential operators, cf. Subsection 7.4. It also leads to

results about the spectrum of certain bounded or unbounded pseudo-differential oper-

ators, as it is presented in Subsection 7.4 and will be continued in a subsequent paper.

2. A second approach relies on Weyl systems. If G = Rn one can write

Op(a) =

∫

R2n

â(ξ, x)W (ξ, x) dxdξ ,

where the Weyl system (phase-space shifts)

{
W (ξ, x) := V (ξ)U(x) | (x, ξ) ∈ R

2n
}

is a family of unitary operators inL2(Rn) obtained by putting together translations and

modulations. This is inspired by the Fourier inversion formula, but notice that W is

only a projective representation; this is a precise way to codify the canonical commu-

tation relations between positions Q (generating V ) and momenta P (generating U )

and Op can be seen as a non-commutative functional calculus a 7→ a(Q,P ) ≡ Op(a) .

Besides its phase-space quantum mechanical interest, this point of view also opens the

way to some new topics or tools such as the Bargmann transform, coherent states, the

anti-Wick quantization, coorbit spaces, etc.

In Section 3 we show that such a “Weyl system approach” and its consequences are

also available in the context of second countable, unimodular type I groups; in particu-

lar it leads to (2). The Weyl system in this general case, adapted in Definitions 3.1 and

3.3 to the existence of the quantization parameter τ , has nice technical properties (in-

cluding a fibered form of square integrability) that are proven in Subsection 3.1. This

has useful consequences at the level of the quantization process, as shown in Subsec-

tion 3.2. In particular, it is shown that Opτ is a unitary map from a suitable class of

square integrable sections over G × Ĝ to the Hilbert space of all Hilbert-Schmidt op-

erators on L2(G) . The intrinsic ∗-algebraic structure on the level of symbols is briefly
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treated in Subsection 3.3. In Subsection 3.4 we rely on complex interpolation and

non-commutative Lp-spaces to put into evidence certain families of Schatten-class

operators.

Without assuming that G is a Lie group we do not have the usual space of smooth

compactly supported functions readily available as the standard space of test functions.

So, in Section 5, we will be using its generalisation to the setting of locally compact

groups by Bruhat [4], and these Bruhat spaces D(G) and D′(G) will replace the usual

spaces of test functions and distributions in our setting. An important fact is that

they are nuclear. Taking suitable tensor products one also gets a space D(G × Ĝ) of

regularising symbols and (by duality) a space D ′(G × Ĝ) of “distributions”, allowing

to define unbounded pseudo-differential operators.

In Subsection 5.3 we show that pseudo-differential operators with regularising

operator-valued symbols can be used to describe compactness of families of vectors

or operators in L2(G) .

Besides the usual ordering issue (derivatives to the left or to the right), already appear-

ing for Rn and connected to the Heisenberg commutation relations and the symplectic

structure of phase space, for general groups there is a second ordering problem coming

from the intrinsic non-commutativity of G. The Weyl system used in Section 3 relies

on translations to the right, aiming at a good correspondence with the previously stud-

ied compact and nilpotent cases. Another Weyl system, involving left translations, is

introduced in Section 6 and used in defining a left quantization. It turns out that this

one is directly linked to crossed product C∗-algebras.

We dedicated the last section to a brief overview of quantization on (connected, sim-

ply connected) nilpotent Lie groups. Certain subclasses have been thoroughly exam-

ined in references cited above, so we are going to concentrate on some new features.

Besides the extra generality of the present setting (non-graded nilpotent groups, τ -

quantizations, C∗-algebras), we are also interested in the presence of a second for-

malism, involving scalar-valued symbols. We show that it is equivalent to the one

involving operator-valued symbols, emerging as a particular case of the previous sec-

tions. This is a rather direct consequence of the excellent behaviour of the exponential

function in the nilpotent case. On one hand, the analysis in this paper here outlines

a τ -extension of the scalar-valued calculus on nilpotent Lie groups initiated by Melin

[33], see also [24, 25] for further developments on homogeneous and general nilpotent

Lie groups. On the other hand, it relates this to the operator-valued calculus developed

in [18, 19].

After some basic constructions involving various types of Fourier transformations are

outlined, the detailed development of the pseudo-differential operators with scalar-

valued symbol follows along the lines already indicated. So, to save space and avoid

repetitions, we will be rather formal and sketchy and leave many details to the reader.

Actually the Lie structure of a nilpotent group permits a deeper investigation that was

treated in [19] and should be still subject of future research.

Thus, to summarise, the main results of this paper are as follows:
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• We develop a rigorous framework for the analysis of pseudo-differential opera-

tors on locally compact groups of type I, which we assume also unimodular for

technical simplicity.

• We introduce notions of Wigner and Fourier-Wigner transforms, and of Weyl

systems, adapted to this general setting. These notions are used to define and

analyse τ -quantizations (or quantization by Weyl systems) of operators mod-

elled on families of quantizations on Rn that include the Kohn-Nirenberg and

Weyl quantizations.

• We develop the C∗-algebraic formalism to put τ -quantizations in a more gen-

eral perspective, also allowing analysis of operators with ‘coefficients’ taking

values in different C∗-algebras. The link with a left form of τ -quantization

is given via a special covariant representation, the Schrödinger representation.

This is further applied to investigate spectral properties of covariant families of

operators.

• Although the initial analysis is set for operators bounded on L2(G), this can

be extended further to include densely defined operators and, more generally,

operators from D(G) to D′(G). Since G does not have to be a Lie group (i.e.

there may be no compatible smooth differential structure on G) we show how

this can be done using the so-called Bruhat space D(G), an analogue of the

space of smooth compactly supported functions in the setting of general locally

compact groups.

• The results are applied to a deeper analysis of τ -quantizations on nilpotent Lie

groups. On one hand, this extends the setting of graded Lie groups developed

in depth in [18, 19] to more general nilpotent Lie groups, also introducing a

possibility for Weyl-type quantizations there. On the other hand, it extends

the invariant Melin calculus [33, 25] on homogeneous groups to general non-

invariant operators with the corresponding τ -versions of scalar-symbols on the

dual of the Lie algebra;

• We give a criterion for the existence of Weyl-type quantizations in our frame-

work, namely, to quantizations in which real-valued symbols correspond to self-

adjoint operators. We show the existence of such quantizations in several set-

tings, most interestingly in the setting of general groups of exponential type.

In this paper we are mostly interested in symbolic understanding of pseudo-differential

operators. Approaches through kernels exist as well, see e.g. Meladze and Shubin [32]

and further works by these authors on operators on unimodular Lie groups, or Christ,

Geller, Głowacki and Polin [6] on homogeneous groups – but see also an alternative

(and earlier) symbolic approach to that on the Heisenberg group by Taylor [44].

As we have explained, there exist several approaches to global quantizations of oper-

ators on groups, such as those worked out in detail in [39] and [18] in the settings of

compact and nilpotent groups, respectively, as well as the approach by Melin [33, 25]
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for nilpotent groups. As both points of view are effective in different applications, one

motivation for this paper is to describe a link between them explaining how one could

go from one description to the other. As a byproduct of such a link we managed to

extend the Melin’s formalism to non-invariant operators. Observing the similarities

between the compact and nilpotent cases in [39] and [18], respectively, and based on

Taylor’s observation [44], another motivation for this paper is to put both approaches

in a single framework, that of locally compact groups of type I. While losing the re-

sults depending on the differential structure of the group as a manifold, this framework

is still effective in handling a scope of spectral questions. Some applications to this

end are given in Section 4. Moreover, it greatly extends the variety of settings where

such pseudo-differential analysis becomes available. Furthermore, as the Weyl quan-

tization is particularly effective for certain problems, an additional motivation for our

analysis comes from the desire to understand the nature of the Weyl quantization in

the settings when it is not even clear how to define the midpoint x+y
2 for two points

x, y in the group. This problem becomes apparent already on the torus when such a

‘midpoint’ mapping is not continuous. Thus, in Section 4 we show that such Weyl-

type quantizations are still available in a large class of groups, including the class of

the exponential groups. The C∗-algebraic approach of Section 7 has been used in

[27] to prove Fredholm properties and to evaluate essential spectra of global pseudo-

differential operators. Other applications of the obtained constructions will appear

elsewhere. In particular, see [31] for applications in the case of nilpotent Lie groups

having flat coadjoint orbits, where further connections with Pedersen’s quantization

[37] are established.

2 Framework

In this section we set up a general framework of this paper, also recalling very briefly

necessary elements of the theory of type I groups and their Fourier analysis.

2.1 General

For a given (complex, separable) Hilbert space H , the scalar product 〈·, ·〉H will be

linear in the first variable and anti-linear in the second. One denotes by B(H) the

C∗-algebra of all linear bounded operators in H and by K(H) the closed bi-sided ∗-

ideal of all the compact operators. The Hilbert-Schmidt operators form a two-sided
∗-ideal B2(H) (dense in K(H)) which is also a Hilbert space with the scalar product

〈A,B〉B2(H) := Tr(AB∗) . This Hilbert space is unitarily equivalent to the Hilbert

tensor product H ⊗ H , where H is the Hilbert space opposite to H . The unitary

operators form a group U(H) . The commutant of a subset N of B(H) is denoted by

N ′.

Let G be a locally compact group with unit e and fixed left Haar measure m . Our

group will soon be supposed unimodular, so m will also be a right Haar measure. By

Cc(G) we denote the space of all complex continuous compactly supported functions

on G . For p ∈ [1,∞] , the Lebesgue spaces Lp(G) ≡ Lp(G;m) will always refer to
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the Haar measure. We denote by C∗(G) the full (universal) C∗-algebra of G and by

C∗
red(G) ⊂ B

[
L2(G)

]
the reduced C∗-algebra of G . Recall that any representation π

of G generates canonically a non-degenerate representionΠ of theC∗-algebraC∗(G) .

The notation A(G) is reserved for Eymard’s Fourier algebra of the group G .

The canonical objects in representation theory [14, 23] will be denoted by

Rep(G), Irrep(G) and Ĝ . An element of Rep(G) is a Hilbert space representa-

tion π : G → U(Hπ) ⊂ B(Hπ), always supposed to be strongly continuous. If it

is irreducible, it belongs to Irrep(G) by definition. Unitary equivalence of represen-

tations will be denoted by ∼=. We set Ĝ := Irrep(G)/∼= and call it the unitary dual

of G . If G is Abelian, the unitary dual Ĝ is the Pontryagin dual group; if not, Ĝ

has no group structure. A primary (factor) representation π satisfies, by definition,

π(G)′ ∩ π(G)′′ = C idHπ
.

Definition 2.1. The locally compact groupG will be called admissible if it is second

countable, type I and unimodular.

Admissibility will be a standing assumption and it is needed for most of the main

constructions and results. There are hopes to extend at least parts of this paper to

non-unimodular groups, by using techniques of [10].

Remark 2.2. We assume that the reader is familiar with the concept of type I group.

Let us only say that for such a group every primary representation is a direct sum of

copies of some irreducible representation; for the full theory we refer to [14, 23, 21].

In [23, Th. 7.6] (see also [14]), many equivalent characterisations are given for a

second countable locally compact group to be type I. In particular, in such a case, the

notion is equivalent to postliminarity (GCR). Thus G is type I if and only if for every

irreducible representation π one has K(Hπ) ⊂ Π
[
C∗(G)

]
.

The single way we are going to use the fact that G is type I is through one main

consequence of this property, to be outlined below: the existence of a measure on the

unitary dual Ĝ for which a Plancherel Theorem holds.

Example 2.3. Compact and Abelian groups are type I. So are the Euclidean and

the Poincaré groups. Among the connected groups, real algebraic, exponential (in

particular nilpotent) and semi-simple Lie groups are type I. Not all the solvable groups

are type I; see [23, Th. 7.10] for a criterion. A discrete group is type I [45] if and only

if it is the finite extension of an Abelian normal subgroup. So the non-trivial free

groups or the discrete Heisenberg group are not type I.

Remark 2.4. We recall that, being second countable,G will be separable, σ-compact

and completely metrizable; in particular, as a Borel space it will be standard. The

Haar measure m is σ-finite and Lp(G) is a separable Banach space if p ∈ [1,∞) . In

addition, all the cyclic representations have separable Hilbert spaces; this applies, in

particular, to irreducible representations.

A second countable discrete group is at most countable.

We mention briefly some harmonic analysis concepts; full treatement is given in [14,

23]. The precise definitions and properties will either be outlined further on, when

needed, or they will not be explicitly necessary.
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Both Irrep(G) and the unitary dual Ĝ := Irrep(G)/∼= are endowed with (standard)

Borel structures [14, 18.5]. The structure on Ĝ is the quotient of that on Irrep(G) and

is called the Mackey Borel structure. There is a measure on Ĝ , called the Plancherel

measure associated to m and denoted by m̂ [14, 18.8]. Its basic properties, connected

to the Fourier transform, will be briefly discussed below.

The unitary dual Ĝ is also a separable locally quasi-compact Baire topological space

having a dense open locally compact subset [14, 18.1]. Very often this topological

space is not Hausdorff (this is the difference between ”locally quasi-compact” and

”locally compact”).

Remark 2.5. We are going to use a systematic abuse of notation that we now ex-

plain. There is a m̂-measurable field
{
Hξ | ξ ∈ Ĝ

}
of Hilbert spaces and a measur-

able section Ĝ ∋ ξ 7→ πξ ∈ Irrep(G) such that each πξ : G → B(Hξ) is a irreducible

representation belonging to the class ξ . In various formulae, instead of πξ we will

write ξ , making a convenient identification between irreducible representations and

classes of irreducible representations. The measurable field of irreducible represen-

tations
{
(πξ,Hξ) | ξ ∈ Ĝ

}
is fixed and other choices would lead to equivalent

constructions and statements.

One introduces the direct integral Hilbert space

B
2(Ĝ) :=

∫ ⊕

Ĝ

B
2(Hξ) dm̂(ξ) ∼=

∫ ⊕

Ĝ

Hξ ⊗Hξ dm̂(ξ) , (5)

with the obvious scalar product

〈φ1, φ2〉B2(Ĝ) :=

∫

Ĝ

〈φ1(ξ), φ2(ξ)〉B2(Hξ)dm̂(ξ) =

∫

Ĝ

Trξ[φ1(ξ)φ2(ξ)
∗] dm̂(ξ) ,

(6)

where Trξ refers to the trace in B(Hξ) . More generally, for p ∈ [1,∞) one defines

Bp(Ĝ) as the family of measurable fields φ ≡
(
φ(ξ)

)
ξ∈Ĝ

for which φ(ξ) belongs to

the Schatten-von Neumann class Bp(Hξ) for almost every ξ and

‖φ‖
Bp(Ĝ):=

(∫

Ĝ

‖φ(ξ)‖p
Bp(Hξ)

dm̂(ξ)
)1/p

<∞ . (7)

They are Banach spaces. We also recall that the von Neumann algebra of decompos-

able operators B(Ĝ) :=
∫ ⊕

Ĝ
B(Hξ) dm̂(ξ) acts to the left and to the right in the Hilbert

space B2(Ĝ) in an obvious way.

On Γ := G× Ĝ , which might not be a locally compact space or a group, we consider

the product measure m⊗ m̂ . It is independent of our choice for m (if m is replaced by

λm for some strictly positive number λ , the corresponding Plancherel measure will

be λ−1m̂) . Very often we are going to need Γ̂ := Ĝ × G (this notation should not

suggest a duality) with the measure m̂⊗m . We could identify it with Γ (by means of

the map (ξ, x) 7→ (x, ξ)) but in most cases it is better not to do this identification.
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Associated to these two measure spaces, we also need the Hilbert spaces

B
2(Γ) ≡ B

2
(
G× Ĝ

)
:= L2(G) ⊗ B

2(Ĝ) (8)

and

B
2(Γ̂) ≡ B

2
(
Ĝ× G

)
:= B

2(Ĝ)⊗ L2(G) , (9)

also having direct integral decompositions.

2.2 The Fourier transform

The Fourier transform [14, 18.2] of u ∈ L1(G) is given in weak sense by

(Fu)(ξ) ≡ û(ξ) :=

∫

G

u(x)ξ(x)∗dm(x) ∈ B(Hξ) . (10)

Here and subsequently the interpretation of ξ ∈ Ĝ as a true irreducible representation

is along the lines of Remark 2.5. Actually, by the compressed form (10) we mean that

for ϕξ, ψξ ∈ Hξ one has

〈
(Fu)(ξ)ϕξ , ψξ

〉
Hξ

:=

∫

G

u(x)
〈
ϕξ, πξ(x)ψξ

〉
Hξ
dm(x) .

Some useful facts [14, 18.2 and 3.3]:

• The Fourier transform F : L1(G) → B(Ĝ) is linear, contractive and injective .

• For every ǫ > 0 there exists a quasi-compact subset Kǫ ⊂ Ĝ such that

‖(Fu)(ξ)‖B(Hξ) ≤ ǫ if ξ /∈ Kǫ .

• The map Ĝ ∋ ξ 7→‖ (Fu)(ξ) ‖B(Hξ)∈ R is lower semi-continuous. It is even

continuous, whenever Ĝ is Hausdorff.

Recall [14, 22, 21] that the Fourier transform F extends (starting fromL1(G)∩L2(G))

to a unitary isomorphism F : L2(G) → B2(Ĝ) . This is the generalisation of

Plancherel’s Theorem to (maybe non-commutative) admissible groups and it will play

a central role in our work.

Remark 2.6. It is also known [26, 21] that F restricts to a bijection

F(0) : L
2(G) ∩ A(G) → B

2(Ĝ) ∩ B
1(Ĝ) (11)

with inverse given by (the traces refer to Hξ)

(
F

−1
(0) φ

)
(x) =

∫

Ĝ

Trξ[ξ(x)φ(ξ)]dm̂(ξ) . (12)
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Rephrasing this, the restriction of the inverse F−1 to the subspace B2(Ĝ) ∩ B1(Ĝ)
has the explicit form (12), and this will be a useful fact. Note the consequence, valid

for u ∈ L2(G) ∩ A(G) and for m-almost every x ∈ G :

u(x) =

∫

Ĝ

Trξ[(Fu)(ξ)ξ(x)]dm̂(ξ) =

∫

Ĝ

Trξ[ξ(x)û(ξ)]dm̂(ξ) . (13)

In particular, this holds for u ∈ Cc(G) . The extension F(1) of F(0) to A(G) makes

sense as an isometry F(1) : A(G) → B1(Ĝ) .

Combining the quantization formula (1) with the Fourier transform (10), we can write

(1) also as

[Op(a)u](x) =

∫

Ĝ

Trξ[ξ(x)a(x, ξ)û(ξ)]dm̂(ξ) , (14)

which can be viewed as an extension of the Fourier inversion formula (13).

Remark 2.7. By a formula analoguous to (10), the Fourier transform is even defined

(and injective) on bounded complex Radon measures µ on G . One gets easily

sup
ξ∈Ĝ

‖Fµ‖B(Hξ) ≤‖µ‖M1(G) := |µ|(G) .

Remark 2.8. There are many (full or partial) Fourier transformations that can play

important roles, as

F ⊗ id : L2(G× G) → B
2(Γ̂) , id⊗ F : L2(G× G) → B

2(Γ) . (15)

F ⊗ F
−1 : B

2(Γ) → B
2(Γ̂) , F

−1 ⊗ F : B
2(Γ̂) → B

2(Γ) . (16)

They might admit various extensions or restrictions.

3 Quantization by a Weyl system

In this section we introduce a notion of a Weyl system in our setting and outline

its relation to Wigner and Fourier-Wigner transforms. This is then used to define

pseudo-differential operators through τ -quantization for an arbitrary measurable func-

tion τ : G → G . The introduced formalism is then applied to study (involutive)

algebra properties of symbols and operators as well as Schatten class properties in

the setting of non-commutative Lp-spaces. One of the goals here is to give rigorous

understanding to the τ -quantization formula (2).

3.1 Weyl systems and their associated transformations

Let us fix a measurable function τ : G → G . We will often use the notation τx ≡ τ(x)
to avoid writing too many brackets.

Definition 3.1. For x ∈ G and π ∈ Rep(G) one defines a unitary operator

W τ(π, x) in the Hilbert space L2(G;Hπ) ≡ L2(G)⊗Hπ by

[W τ(π, x)Θ](y) := π
[
y(τx)−1

]∗
[Θ(yx−1)] = π[τ(x)]π(y)∗[Θ(yx−1)] . (17)
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If π ∼= ρ , i.e. if ρ(x)U = Uπ(x) for some unitary operator U : Hπ → Hρ and for

every x ∈ G , then it follows easily that

W τ (ρ, x) = (id⊗ U)W τ (π, x)(id ⊗ U)−1.

We record for further use the formula

W τ ′

(π, x) =
[
id⊗ π(τ ′x)

][
id⊗ π(τx)∗

]
W τ(π, x)

=
[
id⊗ π

(
(τ ′x)(τx)−1

) ]
W τ(π, x)

(18)

making the connection between operators defined by different parametres τ, τ ′ as well

as the explicit form of the adjoint

[W τ(π, x)∗Θ](y) = π
[
yx(τx)−1

]
[Θ(yx)] .

One also notes that W τ(1, x) = R
(
x−1

)
, where R is the right regular representation

of G and 1 is the 1-dimensional trivial representation. In this case H1 = C , so

L2(G;H1) reduces to L2(G) .

Remark 3.2. One can not compose the operatorsW τ(π, x) andW τ(ρ, y) in general,

since they act in different Hilbert spaces. Note, however, that the family Rep(G)/∼=
of all the unitary equivalence classes of representations form an Abelian monoid with

the tensor composition

(π ⊗ ρ)(x) := π(x) ⊗ ρ(x) , x ∈ G ,

and the unit 1 (after a suitable reinterpretation in terms of equivalence classes). The

subset Ĝ = Irrep(G)/∼= is not a submonoid in general, but the generated submonoid,

involving finite tensor products of irreducible representations, could be interesting. It

is instructive to compute the operator in L2(G;Hπ ⊗Hρ)

[
W (π, x) ⊗ idρ

][
W (ρ, y)⊗ idπ

]
=

[
idL2(G) ⊗ ρ(x)⊗ idπ

]
W (π ⊗ ρ, yx) ; (19)

to get this result one has to identifyHπ⊗Hρ withHρ⊗Hπ . IfG is Abelian, the unitary

dual Ĝ is the Pontryagin dual group, the irreducible representations are 1-dimensional

and for ξ ≡ π ∈ Ĝ and η ≡ ρ ∈ Ĝ the identity (19) reads

W (ξ, x)W (η, y) = η(x)W (ξη, xy) .

Thus W : Ĝ × G → B[L2(G)] is a unitary projective representation with 2-cocycle

(multiplier)

̟ :
(
Ĝ× G

)
×
(
Ĝ× G

)
→ T , ̟

(
(ξ, x), (η, y)

)
:= η(x) .

Similar computations can be done for W τ with general τ .
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From now one we mostly concentrate on the family of operatorsW τ(ξ, x) where x ∈
G and ξ is an irreducible representation. Extrapolating from the case G = Rn, we call

this family a Weyl system.

Below, for an operator T in L2(G;Hξ) ∼= L2(G) ⊗ Hξ and a pair of vectors u, v ∈
L2(G) , the action of 〈Tu, v〉L2(G) ∈ B(Hξ) on ϕξ ∈ Hξ is given by

〈Tu, v〉L2(G) ϕξ :=

∫

G

[T (u⊗ ϕξ)](y)v(y) dm(y) ∈ Hξ . (20)

Definition 3.3. For (x, ξ) ∈ G× Ĝ and u, v ∈ L2(G) one sets

Wτ
u,v(ξ, x) := 〈W τ(ξ, x)u, v〉L2(G) ∈ B(Hξ) . (21)

This definition is suggested by the standard notion of representation coefficient func-

tion from the theory of unitary group representations. However, in general, Ĝ × G is

not a group, Wτ
u,v is not scalar-valued, and W τ(ξ, x)W τ(η, y) makes no sense.

Remark 3.4. Note the identity

〈
Wτ

u,v(ξ, x)ϕξ , ψξ

〉
Hξ

=
〈
W τ(ξ, x)(u ⊗ ϕξ), v ⊗ ψξ

〉
L2(G;Hξ)

, (22)

valid for u, v ∈ L2(G) , ϕξ, ψξ ∈ Hξ , (ξ, x) ∈ Γ̂ . It follows immediately from (21)

and (20). In fact (22) can serve as a definition of Wτ
u,v(ξ, x) .

Proposition 3.5. The mapping (u, v) 7→ Wτ
u,v defines a unitary map (denoted

by the same symbol) Wτ : L2(G) ⊗ L2(G) → B2(Γ̂) , called the Fourier-Wigner

τ -transformation.

Proof. Let us define the change of variables

cvτ : G× G → G× G , cvτ (x, y) :=
(
xτ(y−1x)−1, y−1x

)
(23)

with inverse (
cvτ

)−1
(x, y) =

(
xτ(y), xτ(y)y−1

)
. (24)

Using the definition and the interpretation (20), one has for ϕξ ∈ Hξ

Wτ
u,v(ξ, x)ϕξ =

∫

G

[W τ(ξ, x)(u ⊗ ϕξ)](z)v(z) dm(z)

=

∫

G

v(z)u(zx−1) ξ
(
zτ(x)−1

)∗
ϕξ dm(z)

=

∫

G

v(yτ(x)) u(yτ(x)x−1) ξ(y)
∗
ϕξ dm(y)

=

∫

G

(v ⊗ u)
[(
cvτ

)−1
(y, x)

]
ξ(y)∗ϕξ dm(y) .

By using the properties of the Haar measure and the unimodularity of G , it is easy to

see that the composition with the map cvτ , denoted by CVτ , is a unitary operator in
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L2(G × G) ∼= L2(G) ⊗ L2(G) . On the other hand, the conjugation L2(G) ∋ w 7→
w ∈ L2(G) is also unitary. Making use of the unitary partial Fourier transformation

(F ⊗ id) : L2(G)⊗ L2(G) → B
2(Ĝ)⊗ L2(G) ,

one gets

Wτ
u,v = (F ⊗ id)

(
CVτ

)−1
(v ⊗ u) (25)

and the statement follows.

The unitarity of the Fourier-Wigner transformation implies the next irreducibility re-

sult:

Corollary 3.6. Let K be a closed subspace of L2(G) such that W τ(ξ, x)(K ⊗

Hξ) ⊂ K ⊗Hξ for every (ξ, x) ∈ Γ̂ . Then K = {0} or K = L2(G) .

Proof. Suppose that K 6= L2(G) and let v ∈ K⊥ \ {0} .

Let us examine the identity (22), where u ∈ K , (ξ, x) ∈ Γ̂ and ϕξ, ψξ ∈ Hξ . Since

W τ(ξ, x)(u⊗ ϕξ) ∈ K⊗Hξ , the right hand side is zero. So the left hand side is also

zero for ϕξ, ψξ arbitrary, so Wτ
u,v(ξ, x) = 0 . Then, by unitarity

‖u‖2L2(G)‖v‖
2
L2(G) = ‖Wτ

u,v ‖
2
B2(Γ̂)

=

∫

G

∫

Ĝ

‖Wτ
u,v(ξ, x)‖

2
B2(Hξ)

dm(x)dm̂(ξ) = 0

and since v 6= 0 one must have u = 0 .

Depending on the point of view, one uses one of the notations Wτ
u,v or Wτ(u ⊗ v) .

We also introduce

Vτ
u,v ≡ Vτ (u⊗ v) := (F−1 ⊗ F )Wτ

v,u =

(id⊗ F )
(
CVτ

)−1
(v ⊗ u) ∈ L2(G) ⊗ B

2(Ĝ) ,
(26)

which reads explicitly

Vτ
u,v(x, ξ) =

∫

G

u
(
xτ(y)y−1

)
v
(
xτ(y)

)
ξ(y)∗dm(y) .

One can name the unitary mapping Vτ : L2(G) ⊗ L2(G) → B2(Γ) the Wigner

τ -transformation. We record for further use the orthogonality relations, valid for

u, u′, v, v′ ∈ L2(G) :

〈
Wτ

u,v,W
τ
u′,v′

〉
B2(Γ̂)

=
〈
u′, u

〉
L2(G)

〈
v, v′

〉
L2(G)

=
〈
Vτ
u,v,V

τ
u′,v′

〉
B2(Γ)

. (27)
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3.2 Pseudo-differential operators

Let, as before, τ : G → G be a measurable map. The next definition should be seen as

a rigorous way to give sense to the τ -quantization Opτ(a) introduced in (2).

We note that in general, due to various non-commutativities (of the group, of the

symbols), there are essentially two ways of introducing the quantization of this type -

these will be given and discussed in the sequel in Section 6, see especially formulae

(71) and (72). In the context of compact Lie groups these issues have been extensively

discussed in [39], see e.g. Remark 10.4.13 there, and most of that discussion extends

to our present setting. One advantage of the order of operators in the definition (2) is

that the invariant operators can be viewed as Fourier multipliers with multiplication

by the symbol from the left (4), which is perhaps a more familiar way of viewing such

operators in non-commutative harmonic analysis. However, it will turn out that the

other ordering has certain advantages from the point of view of C∗-algebra theories.

We postpone these topics to subsequent sections.

Definition 3.7. For a ∈ B2(Γ) (with Fourier transform â :=
(
F ⊗ F−1

)
a ∈

B2(Γ̂)) we define Opτ(a) to be the unique bounded linear operator in L2(G) associ-

ated by the relation

opτa(u, v) =
〈
Opτ(a)u, v

〉
L2(G)

(28)

to the bounded sesquilinear form opτa : L2(G)× L2(G) → C

opτa(u, v) :=
〈
â,Wτ

u,v

〉
B2(Γ̂)

=

∫

G

∫

Ĝ

Trξ
[
â(ξ, x)Wτ

u,v(ξ, x)
∗
]
dm(x)dm̂(ξ) (29)

or, equivalently,

opτa(u, v) :=
〈
a,Vτ

u,v

〉
B2(Γ)

=

∫

G

∫

Ĝ

Trξ
[
a(x, ξ)Vτ

u,v(x, ξ)
∗
]
dm(x)dm̂(ξ) . (30)

One says that Opτ(a) is the τ -pseudo-differential operator corresponding to the

operator-valued symbol a while the map a → Opτ(a) will be called the τ -pseudo-

differential calculus or τ -quantization.

To justify Definition 3.7, one must show that opτa is indeed a well-defined bounded

sesquilinear form. Clearly opτa(u, v) is linear in u and antilinear in v . Using the

Cauchy-Schwartz inequality in the Hilbert space B2(Γ̂) , the Plancherel formula and

Proposition 3.5, one gets

|opτa(u, v)| ≤ ‖ â‖
B2(Γ̂)‖W

τ
u,v ‖B2(Γ̂) = ‖a‖B2(Γ)‖u‖L2(G)‖v‖L2(G) .

This implies in particular the estimation ‖Opτ(a)‖B[L2(G)]≤‖a‖B2(Γ) . This will be

improved in the next result, in which we identify the rank-one, the trace-class and the

Hilbert-Schmidt operators in L2(G) as τ -pseudo-differential operators.

Theorem 3.8. 1. Let us define by

Λu,v(w) := 〈w, u〉L2(G) v , ∀w ∈ L2(G)
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the rank-one operator associated to the pair of vectors (u, v) . Then one has

Λu,v = Opτ
(
Vτ
u,v

)
, ∀u, v ∈ L2(G) . (31)

2. Let T be a trace-class operator in L2(G) . Then there exist orthonormal se-

qences (un)n∈N , (vn)n∈N and a sequence (λn)n∈N ⊂ C with
∑

n∈N
|λn| <∞

such that

T =
∑

n∈N

λnOp
τ
(
Vτ
un,vn

)
. (32)

3. The mapping Opτ sends unitarily B2(Γ) onto the Hilbert space composed of

all Hilbert-Schmidt operators in L2(G) .

Proof. 1. By the definition (30) and the orthogonality relations (27), one has for

u′, v′ ∈ L2(G)

〈
Opτ(Vτ

u,v)u
′, v′

〉
L2(G)

=
〈
Vτ
u,v,V

τ
u′,v′

〉
B2(Γ)

=
〈
u′, u

〉
L2(G)

〈
v, v′

〉
L2(G)

=
〈
Λu,vu

′, v′
〉
L2(G)

.

2. Follows from 1 and from the fact [46, pag. 494] that every trace-class operator T
can be written as T =

∑
n∈N

λnΛun,vn with un, vn, λn as in the statement.

3. One recalls that Λ defines (by extension) a unitary map L2(G) ⊗ L2(G) →
B2

[
L2(G)

]
and that Vτ is also unitary and note that

Opτ = Λ ◦
(
Vτ

)−1
= Λ ◦

(
Wτ

)−1
◦
(
F ⊗ F

−1
)
. (33)

Another proof consists in examining the integral kernel of Opτ(a) given in Proposition

3.9.

The unitarity of the map Opτ can be written in the form

Tr
[
Opτ(a)Opτ(b)∗

]
=

∫

G

∫

Ĝ

Trξ
[
a(x, ξ)b(x, ξ)∗

]
dm(x)dm̂(ξ) ,

where Tr refers to the trace in B
[
L2(G)

]
.

Proposition 3.9. If a ∈ B2(Γ) , then Opτ(a) is an integral operator with kernel

Kerτa ∈ L2(G× G) given by

Kerτa := CVτ (id⊗ F
−1)a . (34)
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Proof. Using the definitions, Plancherel’s Theorem and the unitarity of CVτ , one gets

〈Opτ(a)u, v〉L2(G) :=
〈
a,Vτ

u,v

〉
B2(Γ)

=
〈
a, (id⊗ F )

(
CVτ

)−1
(v ⊗ u)

〉
L2(G)⊗B2(Ĝ)

=
〈
(id⊗ F

−1)a,
(
CVτ

)−1
(v ⊗ u)

〉
L2(G)⊗L2(G)

=
〈
CVτ (id⊗ F

−1)a, (v ⊗ u)
〉
L2(G)⊗L2(G)

=

∫

G

∫

G

[
CVτ (id⊗ F

−1)a
]
(x, y)(v ⊗ u)(x, y)dm(y)dm(x)

=

∫

G

(∫

G

[
CVτ (id⊗ F

−1)a
]
(x, y)u(y)dm(y)

)
v(x)dm(x) ,

completing the proof.

Remark 3.10. We rephrase Proposition 3.9 as

Opτ = Int ◦ Kerτ = Int ◦ CVτ ◦ (id⊗ F
−1) , (35)

where Int : L2(G× G) → B
2
[
L2(G)

]
is given by

[Int(M)u](x) :=

∫

G

M(x, y)u(y)dm(y) .

Now we see that Opτ actually coincides with the one defined in (2), at least in a certain

sense. Formally, using (34), one gets

Kerτa(x, y) =

∫

Ĝ

Trξ

[
a
(
xτ(y−1x)−1, ξ

)
ξ(y−1x)

]
dm̂(ξ) (36)

and this should be compared to (2). The formula (36) is rigorously correct if, for

instance, the symbol a belongs to (id⊗F )Cc(G×G) , since the explicit form (12) of the

inverse Fourier transform holds on FCc(G) ⊂ F
[
A(G)∩L2(G)

]
= B1(Ĝ)∩B2(Ĝ) .

Thus we reobtain the formula (2) as

[Opτ(a)u](x) =

∫

G

Kerτa(x, y)u(y)dm(y)

=

∫

G

(∫

Ĝ

Trξ

[
ξ(y−1x)a

(
xτ(y−1x)−1, ξ

)]
dm̂(ξ)

)
u(y)dm(y) .

(37)

Remark 3.11. If τ, τ ′ : G → G are measurable maps, the associated pseudo-

differential calculi are related by Opτ
′

(a) = Opτ(aττ ′) where, based on (35), one

gets

(id⊗ F
−1)aττ ′ =

[
(id⊗ F

−1)a
]
◦ cvτ

′

◦
(
cvτ

)−1
. (38)
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One computes easily

cvτ
′τ (x, y) :=

[
cvτ

′

◦
(
cvτ

)−1]
(x, y) =

(
xτ(y)τ ′(y)−1, y

)
. (39)

However, it seems difficult to turn this into a nice explicit formula for aττ ′ , but this

is already the case in the Euclidean space too. The crossed product realisation is nicer

from this point of view (when “turned to the right”). Using (47) one can write

Schτ
′

(Φ) = Schτ (Φττ ′) , (40)

with Φττ ′ = Φ ◦ cvτ
′τ . See also Remark 7.4.

3.3 Involutive algebras of symbols

Since our pseudo-differential calculus is one-to-one, we can define an involutive al-

gebra structure on operator-valued symbols, emulating the algebra of operators. One

defines a composition law #τ and an involution #τ on B2(Γ̂) by

Opτ(a#τb) := Opτ(a)Opτ(b) ,

Opτ(a#τ ) := Opτ(a)∗.

The composition can be written in terms of integral kernels as

Kerτa#τb = Kerτa • Kerτb ,

where, by (35),

Kerτ := CVτ ◦ (id⊗ F
−1)

and • is the usual composition of kernels

(M •N)(x, y) :=

∫

G

M(x, z)N(z, y)dm(z) ,

corresponding to Int(M •N) = Int(M)Int(N) . It follows that for a, b ∈ B2(Γ̂)

a#τ b =
(
Kerτ

)−1(
Kerτa • Kerτb

)

= (id⊗ F ) ◦ (CVτ )−1
{[

CVτ ◦ (id⊗ F
−1)

]
a •

[
CVτ ◦ (id⊗ F

−1)
]
b
}
.

(41)

Similarly, in terms of the natural kernel involutionM•(x, y) :=M(y, x) (correspond-

ing to Int(M)∗ = Int(M•)) , one gets

a#τ =
(
Kerτ

)−1[
(Kerτa)

•
]
= (id⊗ F ) ◦ (CVτ )−1

{([
CVτ ◦ (id⊗ F

−1)
]
a
)•}

.

(42)
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Remark 3.12. As a conclusion,
(
B2(Γ),#τ ,

#τ
)

is a ∗-algebra. This is part of a

more detailed result, stating that
(
B2(Γ), 〈·, ·〉B2(Γ),#τ ,

#τ

)
is an H∗-algebra, i.e.

a complete Hilbert algebra [14, App. A]. Among others, this contains the following

compatibility relations between the scalar product and the algebraic laws

〈
a#τb, c

〉
B2(Γ)

=
〈
a, b#τ#τ c

〉
B2(Γ)

,

〈a, b〉B2(Γ) =
〈
b#τ , a#τ

〉
B2(Γ)

,

valid for every a, b, c ∈ B2(Γ) . The simplest way to prove all these is to recall that

B2
[
L2(G)

]
is an H∗-algebra with the operator multiplication, with the adjoint and

with the complete scalar product 〈S, T 〉B2 := Tr[ST ∗] and to invoke the algebraic

and unitary isomorphism B2(Γ)
Opτ

∼= B2
[
L2(G)

]
.

Formulae (41) and (42) take a more explicit integral form on symbols particular

enough to allow applying formula (12) for the inverse Fourier transform. Since, any-

how, we will not need such formulas, we do not pursue this here. Let us give, however,

the simple algebraic rules satisfied by the Wigner τ -transforms defined in (26) :

Corollary 3.13. For every u, v, u1, u2, v1, v2 ∈ L2(G) one has

Vτ
u1,v1#τ V

τ
u2,v2 = 〈v2, u1〉V

τ
u2,v1 (43)

and (
Vτ
u,v

)#τ
= Vτ

v,u . (44)

Proof. The first identity is a consequence of the first point of Theorem 3.8:

Opτ
(
Vτ
u1,v1#τ V

τ
u2,v2

)
= Opτ

(
Vτ
u1,v1

)
Opτ

(
Vτ
u2,v2

)

= Λu1,v1Λu2,v2

= 〈v2, u1〉Λu2,v1

= 〈v2, u1〉Op
τ
(
Vτ
u2,v1

)
,

which implies (43) because Opτ is linear and injective.

The relation (44) follows similarly, taking into account the identity Λ∗
u,v = Λv,u .

Remark 3.14. It seems convenient to summarise the situation in the following com-

mutative diagram of unitary mappings (which are even isomorphisms ofH∗-algebras):

L2(G) ⊗ L2(G) L2(G)⊗ B
2(Ĝ) B

2(Ĝ)⊗ L2(G)

B
2(Ĝ)⊗ L2(G) B

2
[
L2(G)

]
L2(G) ⊗ L2(G)

✲id⊗F

❄
F⊗id

❍❍❍❍❍❍❍❥
Schτ

❄
Opτ

✛F
−1⊗F

✲
Poτ

✛
Λ

✻
Wτ

❍❍❍❍❍❍❨
Vτ
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For completeness and for further use we also included two new maps. The first one is

given by the formula Poτ := Opτ ◦
(
F−1 ⊗ F

)
and it is the integrated form of the

family of operators
{
W τ (x, ξ) | (x, ξ) ∈ G× Ĝ

}
, defined formally by

Poτ(a) :=

∫

G

∫

Ĝ

Trξ
[
a(ξ, x)W τ (ξ, x)∗

]
dm(x)dm̂(ξ) . (45)

Here we can think that a =
(
F ⊗F−1

)
a . It is treated rigorously in the same way as

Opτ ; the correct weak definition is to set for u, v ∈ L2(G)
〈
Poτ(a)u, v

〉
L2(G)

=
〈
Opτ

[(
F

−1 ⊗ F
)
(a)

]
u, v

〉
L2(G)

=
〈
a,Wτ

u,v

〉
B2(Γ̂)

. (46)

The second one is the Schrödinger representation Schτ := Int ◦ CVτ defined for

Φ ∈ L2(G× G) by

[Schτ(Φ)v](x) :=

∫

G

Φ
(
xτ(y−1x)−1, y−1x

)
v(y) dm(y) . (47)

It satisfies Opτ = Schτ◦
(
id⊗F−1

)
and we put it into evidence because it is connected

to the C∗-algebraic formalism described in Subsection 7.2.

3.4 Non-commutative Lp-spaces and Schatten classes

Definition 3.15. For p ∈ [1,∞) we introduce the Banach space Bp,p(Γ̂) :=

Lp
[
G;Bp(Ĝ)

]
with the norm

‖a‖
Bp,p(Γ̂) :=

(∫

G

‖a(x)‖p
Bp(Ĝ)

dm(x)
)1/p

=
(∫

G

[ ∫

Ĝ

‖a(ξ, x)‖p
Bp(Hξ)

dm̂(ξ)
]
dm(x)

)1/p

,

where the convenient notation a(ξ, x) := [a(x)](ξ) has been used.

Note that B1,1(Γ̂) ∼= B1(Ĝ)⊗L1(G) (projective completed tensor product), while

B2,2(Γ̂) ∼= B2(Γ̂) = B2(Ĝ) ⊗ L2(G) (Hilbert tensor product). The double index

indicates that the spaces Bp,q(Γ̂) := Lp
[
G;Bq(Ĝ)

]
could also be taken into account

for p 6= q .

To put the definition in a general context, we recall some basic facts about non-

commutativeLp-spaces [38, 48]. A non-commutative measure space is a pair (M , T )
formed of a von Neumann algebra M with positive cone M+ , acting in a Hilbert

space K , endowed with a normal semifinite faithful trace T : M+ → [0,∞] . One

defines

S+ := {m ∈ M+ | T [s(m)] <∞} ,

where s(m) is the support of m , i.e. the smallest orthogonal projection e ∈ M

such that eme = m . Then S , defined to be the linear span of S+ , is a w∗-dense
∗-subalgebra of M . For every p ∈ [1,∞) , the map ‖·‖(p): S → [0,∞) given by

‖m‖(p) :=
[
T
(
|m|p

)]1/p
=

[
T
(
(m∗m)p/2

)]1/p
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is a well-defined norm. The completion of
(
S , ‖ · ‖(p)

)
is denoted by L p(M , T )

and is called the non-commutative Lp-space associated to the non-commutative mea-

sure space (M , T ) . The scale is completed by setting L ∞(M , T ) := M . It can

be shown that L 1(M , T ) can be viewed as the predual of M and the elements of

L p(M , T ) can be interpreted as closed, maybe unbounded, operators in K [38].

We are going to need two important properties of these non-commutative Lp-spaces.

• Duality: if p 6= ∞ and 1/p + 1/p′ = 1 , then
[
L p(M , T )

]∗ ∼= L p′

(M , T )
isometrically; the duality is defined by 〈m,n〉(p),(p′) := T (mn∗) (consequence

of a non-commutative Hölder inequality).

• Interpolation: the complex interpolation of these spaces follows the rule

[
L

p0(M , T ),L p1(M , T )
]
θ
= L

p(M ; T ) , θ ∈ (0, 1) ,
1

p
=

1− θ

p0
+

θ

p1
.

In our case the non-commutative measure space can be defined as follows: The von

Neumann algebra is

B
∞,∞(Γ̂) = B(Ĝ) ⊗̃L∞(G) =

∫ ⊕

Ĝ

B(Hξ)dm̂(ξ) ⊗̃L∞(G)

(weak∗-completion of the algebraic tensor product). Denoting as before by Trξ the

standard trace in B(Hξ) , then on B(Ĝ ) one has [15, Sect II.5.1] the direct integral

trace Tr :=
∫ ⊕

Ĝ
Trξ dm̂(ξ) and on B(Ĝ) ⊗̃L∞(G) the tensor product [48, 1.7.5]

T := Tr ⊗
∫
G

of Tr with the trace given by Haar integration in the commutative

von Neumann algebra L∞(G) . Thus one gets the non-commutative measure space(
B∞,∞(Γ̂), T

)
. It is not difficult to show that the associated non-commutative Lp-

spaces are the Banach spaces Bp,p(Γ̂) introduced in Definition 3.15 ([48, 1.7.5] is

useful again). In particular, we have the following rule of complex interpolation:

[
B

p0,p0(Γ̂),Bp1,p1(Γ̂)
]
θ
= B

p,p(Γ̂) , θ ∈ (0, 1) ,
1

p
=

1− θ

p0
+

θ

p1
.

On the other hand, the Schatten-von Neumann ideals Bp
[
L2(G)

]
are the non-

commutative Lp-spaces associated to the non-commutative measure space(
B
[
L2(G)

]
,Tr

)
. So they interpolate in the same way.

Proposition 3.16. For every p ∈ [2,∞] one has a linear contraction

Wτ : L2(G)⊗ L2(G) → B
p,p(Γ̂) . (48)

Proof. We have seen in Proposition 3.5 that Wτ is unitary if p = 2 . If we also check

the case p = ∞ , then (48) follows by complex interpolation. But the uniform estimate

‖Wτ
u,v(ξ, x)‖B(Hξ) ≤‖u‖L2(G)‖v‖L2(G)

is an immediate consequence of (22) and of the unitarity of W τ(ξ, x) in L2(G;Hξ) .
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For the next two results we switch our interest from Opτ to Poτ , given by (46), since

for such general groups G there is no inversion formula for the Fourier transform at

the level of the non-commutative Lp-spaces (the Hausdorff-Young inequality cannot

be used for our purposes).

Theorem 3.17. If a ∈ B1,1(Γ̂) = L1
[
G;B1(Ĝ)

]
then Poτ (a) is bounded in L2(G)

and ∥∥Poτ(a)
∥∥
B[L2(G)]

≤‖a ‖
B1,1(Γ̂) .

Proof. One modifies (46) to a similar definition by duality

〈
Poτ(a)u, v

〉
L2(G)

=
〈
a,Wτ

u,v

〉
(1),(∞)

:= T
(
a
[
Wτ

u,v

]∗)
,

based on the case p = ∞ of Proposition 3.16 and on the duality of the non-

commutative Lebesgue spaces.

By using complex interpolation between the end points p0 = 2 and p1 = ∞ , one gets

Corollary 3.18. If p ∈ [1, 2] , 1
p + 1

p′ = 1 and a ∈ Lp
[
G;Bp(Ĝ)

]
, then Poτ(a)

belongs to Bp′[
L2(G)

]
and

∥∥Poτ(a)
∥∥
Bp′ [L2(G)]

≤ ‖a‖
Bp,p(Γ̂) .

More refined results follow from real interpolation; the interested reader could write

them down easily.

4 Symmetric quantizations

Having in mind the well-known [22] Weyl quantization, we inquire about the existence

of a parameter τ allowing a symmetric quantization; if it exists, for emphasis, we

denote it by σ . By definition, this means that a#σ = a⋆ for every a ∈ B2(Γ) ,

where of course a⋆(x, ξ) := a(x, ξ)∗ (adjoint in B(Hξ)) for every (x, ξ) ∈ Γ . At the

level of pseudo-differential operators the consequence would be the simple relation

Opσ(a)∗ = Opσ(a⋆) , so “real-valued symbols” are sent into self-adjoint operators.

4.1 An explicit form for the adjoint

In order to study symmetry it is convenient to give a more explicit form of the invo-

lution (42); we need to alow different values of the parameter τ . For any measurable

map τ : G → G , let us define

τ̃ : G → G , τ̃(x) := τ
(
x−1

)
x . (49)

It is worth mentioning that if τ(·) = e then τ̃ = idG and if τ = idG then τ̃(·) = e . In

addition ˜̃τ = τ holds.

If G = R
n and τ := t idRn with t ∈ [0, 1] , one has τ̃ = (1 − t)idRn and the next

proposition is well-known for pseudo-differential operators on Rn.
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Proposition 4.1. One has Opτ(a)∗ = Opτ
′

(a⋆) for every a ∈ B(Γ) if and only if

τ ′ = τ̃ .

Proof. Hoping that Opτ(a)∗ = Opτ
′

(a⋆) for some τ ′ : G → G , by (35), one has to

examine the equality

([
CVτ ◦ (id⊗ F

−1)
]
a
)•

=
[
CVτ ′

◦ (id⊗ F
−1)

]
a⋆.

This and the next identities should hold almost everywhere with respect to the product

measure m⊗m . Using the easy relation

[(id⊗ F
−1)a⋆](y, z) = [(id⊗ F−1)a](y, z−1) ,

one gets immediately

([
CVτ ′

◦ (id⊗ F
−1)

]
a⋆
)
(y, z) = [(id⊗ F−1)a]

(
yτ ′(z−1y)−1, y−1z

)
. (50)

On the other hand

([
CVτ ◦ (id⊗ F

−1)
]
a
)•
(y, z) =

([
CVτ ◦ (id⊗ F−1)

]
a
)
(z, y)

=
[
(id⊗ F−1)a

](
zτ(y−1z)−1, y−1z

) (51)

and the two expressions (50) and (51) always coincide m ⊗ m-almost everywhere if

and only if

yτ ′(z−1y)−1 = zτ(y−1z)−1 , m⊗m− a.e. (y, z) ∈ G× G .

This condition can be transformed into

τ ′(z−1y) = τ
(
y−1z

)
z−1y , m⊗m− a.e. (y, z) ∈ G× G ,

which must be shown to be equivalent to τ ′ = τ̃ holding m-almost everywhere.

This follows if we prove thatA ⊂ G is m-negligible if and only ifM(A) := {(y, z) ∈
G×G | z−1y ∈ A} is m⊗m-negligible. Since m is σ-finite, there is a Borel partition

G = ⊔n∈NBn with m(Bn) <∞ for every n ∈ N . ThusM(A) = ⊔n∈NMn(A) , with

Mn(A) := {(y, z) ∈M(A) | z ∈ Bn} = {(y, z) ∈ G×Bn | y ∈ zA} .

Using the invariance of the Haar measure, one checks that (m ⊗ m)
[
Mn(A)

]
=

m(A)m(Bn) and the conclusion follows easily.

4.2 Symmetry functions

The measurable function σ : G → G is called a symmetry function if one has

Opσ(a)∗ = Opσ(a⋆) for every a ∈ B2(Γ) . When G is admissible and a symme-

try function exists we say that the group G admits a symmetric quantization. As a

consequence of Proposition 4.1 one gets
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Corollary 4.2. The map σ : G → G is a symmetry function if and only if for

almost every x ∈ G

σ(x) = σ(x−1)x . (52)

In particular, if σ is a symmetry function and a(·, ·) ∈ B2(Γ) is self-adjoint pointwise

(or m⊗ m̂-almost everywhere) then Opσ(a) is a self-adjoint operator in L2(G) .

The problem of existence of σ satisfying (52) seems rather obscure in general, so we

only treat some particular cases.

Proposition 4.3. 1. The product G :=
∏m

k=1Gk of a family of groups admit-

ting a symmetric quantization also admits a symmetric quantization.

2. The admissible central extension of a group admitting a symmetric quantization

by another group with this property is a group admitting a symmetric quantiza-

tion.

3. Any exponential Lie group (in particular any connected simply connected nilpo-

tent group) admits a symmetric quantization.

Proof. 1. Finite products of admissible groups are admissible. If σk is a symmetry

function for Gk , then σ
[
(xk)k

]
:=

(
σk(xk)

)
k

defines a symmetry function for G .

2. The structure of central group extensions can be described in terms of 2-cocycles up

to canonical isomorphisms. Let N be an Abelian locally compact group, H a locally

compact group and ̟ : H × H → N a 2-cocycle. On G := H × N one has the

composition law and the inversion

(h1, n1)(h2, n2) :=(h1h2, n1n2̟(h1, h2)) , (h, n)−1 :=
(
h−1, ̟(h−1, h)−1n−1

)
.

(53)

The properties of ̟ are normalisation ̟(h, eH) = eN = ̟(eH, h) , ∀h ∈ H , and the

2-cocycle identity

̟(h1, h2)̟(h1h2, h3) = ̟(h2, h3)̟(h1, h2h3) , ∀h1, h2, h3 ∈ H . (54)

We are given symmetry functions σH : H → H and σN : N → N thus satisfying

σH(h) = σH(h
−1)h , σN(n) = σN(n

−1)n = nσN(n
−1) .

We define the measurable map σ : G → G by

σ(h, n) : =
(
σH(h), σN

[
̟
(
σH(h

−1), h
)
n
])

=
(
σH(h

−1)h,̟
(
σH(h

−1), h
)
nσN

[
̟
(
σH(h

−1), h
)−1

n−1
])

;
(55)

the second line has been deduced from the first by using the properties of σH and σN
and the fact that N is commutative. We compute using (53) and (55)

σ
(
(h, n)−1

)
(h, n) = σ

(
h−1, ̟(h−1, h)−1n−1

)
(h, n)

=
(
σH(h

−1), σN
[
̟
(
σH(h), h

−1
)
̟(h−1, h)−1n−1

])
(h, n)

=
(
σH(h

−1)h, n σN
[
̟
(
σH(h), h

−1
)
̟(h−1, h)−1n−1

]
̟
(
σH(h

−1), h
))
.

(56)
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The first components in (55) and (56) are equal. The second ones would coincide if

one shows

̟
(
σH(h

−1), h
)−1

= ̟
(
σH(h), h

−1
)
̟(h−1, h)−1 ,

which is equivalent to

̟
(
σH(h), h

−1
)
̟
(
σH(h

−1), h
)
= ̟

(
h−1, h

)
. (57)

Taking in (54) h3 = h−1
2 = h and using the normalization of ̟ one gets

̟(h1, h
−1)̟(h1h

−1, h) = ̟(h−1, h) , ∀h1, h ∈ H .

Choosing h1 := σH(h) we get (57), because σH is a symmetry function.

3. Assume that G is a Lie group with Lie algebra g . It is known that the exponential

map exp : g → G restricts to a diffeomorphism exp : u → U , where u is a neigh-

borhood of 0 ∈ g (a ball centered in the origin, for example) and U is a neighborhood

of e ∈ G . The inverse diffeomorphism is denoted by log : U → u . One defines “the

midpoint mapping”

σ : U → G , σ(x) :=

∫ 1

0

exp[s log x]ds . (58)

We claim that

xσ(x−1) = σ(x) = σ(x−1)x , ∀x ∈ G . (59)

We prove the second equality; the first one is similar:

σ(x−1)x =

∫ 1

0

exp
[
s log(x−1)

]
ds x

=

∫ 1

0

exp
[
− s log(x)

]
ds exp

[
log(x)

]

=

∫ 1

0

exp
[
(1− s) log(x)

]
ds

=

∫ 1

0

exp
[
s log(x)

]
ds = σ(x) .

An exponential group G is, by definition, a Lie group for which one can take u = g

and U = G (i.e. the exponential map is a global diffeomorphism), case in which

the symmetry function σ is globally defined. In addition G is admissible. Connected

simply connected nilpotent group are exponential, by [7, Th. 1.2.1].

Example 4.4. For G = Rn one just sets σ(x) := x/2 (getting finally the Weyl

quantization).

If σ is required to satisfy σ(·−1) = σ(·)−1 (e.g. being an endomorphism), (52) reduces

to x = σ(x)2 for almost every x , which is equivalent to “any” element in G having

a square root; such a group does admit a symmetric quantization. This fails for many

groups, as G := Zn for instance.
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5 Extension to distributions

Having started with the formalism involving symbols in B2(Γ) and operators bounded

on L2(G), it is useful to be able to extend it to e.g. unbounded symbols and to oper-

ators which are only densely defined on L2(G). If the group G is a Lie group (has a

smooth manifold structure), we can, for example, think of operators acting from the

space of test functions to the space of distributions, or of operators having e.g. poly-

nomial growth of symbols. Without assuming that G is a Lie group we do not have

the usual space of smooth compactly supported functions readily available as the stan-

dard space of test functions. So we will be using its generalisation to locally compact

groups by Bruhat [4], and these Bruhat spaces D(G) and D′(G) will replace the usual

spaces of test functions and distributions, respectively, in our setting.

5.1 Smooth functions and distributions – Bruhat spaces

The Bruhat spaces D(G) and D′(G) have been introduced in [4], to which we refer

for further details. Most of their properties hold for every locally compact group,

but in some cases second countability is also used. Postliminarity, unimodularity or

amenability are not needed.

A good subgroup of G is a compact normal subgroup H of G such that G/H is (iso-

morphic to) a Lie group. The family of all good subgroups of G will be denoted by

good(G) ; it is stable under intersections. We are going to assume first that

⋂

H∈good(G)

H = {e} . (60)

Denoting the connected component of the identity by G0 , this happens, for instance,

if G/G0 is compact, in particular if G is connected. If (60) holds, every neighborhood

of e contains an element of good(G) . Then G can be seen as the projective limit of

the projective family of Lie groups

{
G/H → G/K | H,K ∈ good(G) ,K ⊂ H

}
.

For every good group H one sets D(G/H) := C∞
c (G/H) with the usual inductive limit

topology. Functions on quotients are identified with invariant functions on the group

by the map jH(v) := v ◦ qH , where qH : G → G/H is the canonical surjection. Thus

on

DH(G) := jH[D(G/H)] ⊂ Cc(G) ⊂ C0(G)

one can transport the topology of D(G/H) .

Definition 5.1. The Bruhat space D(G) of the locally compact group G is the

topological inductive limit of the family of subspaces {DH(G) | H ∈ good(G)} of

Cc(G) .

The strong dual of D(G) is denoted by D′(G) ; it contains D(G) densely. Its elements

are called distributions.
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The space D(G) is barrelled and bornological. It is continuously and densely con-

tained in Cc(G) and complete. If G is already a Lie group, then {e} ∈ good(G) and

clearly D(G) = C∞
c (G) .

The spaces D(G) and D′(G) are complete and Montel (thus reflexive) as well as nu-

clear.

We presented above the case in which our locally compact group satisfies⋂
H∈good(G) H = {e}. Following [4, Sect. 2], we briefly indicate what to do

without this assumption.

There exists an open subgroup G1 of G such that
⋂

H1∈good(G1)
H1 = {e} . Thus the

space D(G1) ⊂ Cc(G) is available. The group G is partitioned in classes modulo G1

to the left: G =
⋃
xG1 or to the right: G =

⋃
G1x . By left translations one generates

the subspaces D(xG1) of Cc(G) (with the transported topology); the elements are

particular types of continuous functions on G compactly supported in xG1 . Then

define DL(G) ⊂ Cc(G) to be the topological direct sum DL(G) :=
⊕

D(xG1) . It

comes out that the similarly constructed DR(G) :=
⊕

D(G1x) is the same subspace

of Cc(G) with the same topology. In addition, it does not depend on the choice of the

open subgroup G1 so it deserves the notation D(G) .

Then the construction of the space D′(G) follows similarly and all the nice properties

mentioned above still hold (cf. [4]). The main reason is the fact that topological direct

sums are rather easy to control. Subsequently we will have recourse to these Bruhat

spaces in the general case.

We are going to use the symbol ⊗ for the projective tensor product of locally convex

spaces; note, however, that this will only be applied to spaces known to be nuclear. By

the Kernel Theorem for Bruhat spaces [4, Sect. 5] one has

D(G× G) ∼= D(G)⊗D(G) ⊂ L2(G× G)

continuously and densely. Soon we are going to need the next result:

Lemma 5.2. The mapping

CV : D(G×G) → D(G×G) , [CV(Ψ)](x, y) := Ψ[cv(x, y)] = Ψ
(
x, y−1x

)
(61)

is a well-defined topological isomorphism. Its inverse CV−1 is the operation of com-

posing with

cv−1 : G× G → G× G , cv−1(x, y) :=
(
x, xy−1

)
.

By transposing the inverse one gets a topological isomorphism

CV :=
[
CV−1

]tr
: D′(G× G) → D′(G × G) ,

which is an extension of the one given in (61) (this explains the notational abuse).

Proof. The proof is quite straightforward, but rather long if all the details are included,

so it is essentially left to the reader. Besides using the definitions and the standard tools

of duality, one should also note the following:
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• If H is a good subgroup of G , then H × H is a good subgroup of G × G and

(G× G)/(H× H) is canonically isomorphic to (G/H)× (G/H) .

• For H ∈ good(G) there is a Lie group isomorphism

cvH : (G/H)× (G/H) → (G/H)× (G/H) ,

cvH(xH, yH) :=
(
(xH), (yH)−1xH

)
=

(
xH, y−1xH

)

and related to the initial change of variables cv through

cvH ◦
(
qH × qH

)
=

(
qH × qH

)
◦ cv .

This and the fact that cvH is a proper map easily allow us to conclude that

CV : DH×H(G× G) → DH×H(G× G) is a well-defined isomorphism for every

good subgroup H .

• Let G1 be a subgroup of G ; then cv carries G1 × G1 into itself isomorphically.

• Let G1 be an open subgroup of G such that
⋂

H1∈good(G1)
H1 = {e} . Then the

family
{
H1 × H1 | H1 ∈ good(G1)

}
is directed under inclusion and

⋂

H1∈good(G1)

H1 × H1 = {(e, e)} .

Remark 5.3. Of course, the case τ(x) = x can be treated the same way. If one

tries to do the same for the change of variables cvτ , in general one encounters rather

complicated conditions relating the map τ to the family good(G) . However, if G

is a Lie group, good(G) has a smallest element {e} and thus D(G) coincides with

C∞
c (G) . Then it is easy to see that the statements of the lemma hold if cvτ is proper

and τ : G → G is a C∞-function.

5.2 Restrictions and extensions of the pseudo-differential cal-

culus

Let us define D(Ĝ) := F [D(G)] with the locally convex topological structure trans-

ported from the Bruhat space D(G) . One has D(G) ⊂ Cc(G) ⊂ L2(G) ∩ A(G)

(continuously and densely), so D(Ĝ) is a dense subspace of B2(Ĝ) ∩ B1(Ĝ) (with

the intersection topology) and of B2(Ĝ) . Thus the explicit form of the inverse (12)

holds on D(Ĝ) . One also has

u(e) =

∫

Ĝ

Trξ[(Fu)(ξ)]dm̂(ξ) , ∀u ∈ D(G) .

We are going to use the dense subspace

D
(
Γ
)
≡ D

(
G× Ĝ

)
:= D(G)⊗D(Ĝ) ⊂ B

2(Γ) ,

Documenta Mathematica 22 (2017) 1539–1592



Pseudo-Differential Operators on Type I Groups 1567

possessing its own locally convex topology, obtained by transport of structure and the

completed projective tensor product construction. Taking also into account the strong

dual, one gets a Gelfand triple D
(
Γ
)
→֒ B2(Γ) →֒ D ′

(
Γ
)

.

Proposition 5.4. The calculus Op : L2(G) ⊗ B2(Ĝ) → B2
[
L2(G)

]

• restricts to a topological isomorphism Op : D(G)⊗D(Ĝ) → B
[
D′(G);D(G)

]
,

• extends to a topological isomorphismOp : D′(G)⊗D ′(Ĝ) → B
[
D(G);D′(G)

]
.

Proof. The proof can essentially be read in the diagrams

D(G)⊗D(Ĝ) D(G)⊗D(G) ∼= D(G × G)

B
[
D′(G);D(G)

]
D(G × G)

✲id⊗F
−1

❄

Op

❄

CV

✛
Int

and

D′(G)⊗D
′(Ĝ) D′(G)⊗D′(G) ∼= D′(G× G)

B
[
D(G);D′(G)

]
D′(G× G)

✲id⊗F
−1

❄

Op

❄

CV

✛
Int

The vertical arrows to the right are justified by Lemma 5.2. We leave the details to the

reader.

Techniques from [29] could be applied to define and study large Moyal algebras of

vector-valued symbols corresponding to the spaces B
[
D(G)

]
and B

[
D′(G)

]
of opera-

tors.

5.3 Compactness criteria

The next result shows that compactness of sets, operators and families of operators in

the Hilbert space L2(G) can be characterised by localisation with pseudo-differential

operators with symbols in D(Γ) . We adapt the methods of proof from [28], whose

framework cannot be applied directly.
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Theorem 5.5. 1. A bounded subset ∆ ofL2(G) is relatively compact if and only

if for every ǫ > 0 there exists a ∈ D(Γ) such that

sup
u∈∆

‖Opτ (a)u− u‖L2(G) ≤ ǫ . (62)

2. Let X be a Banach space. An element T ∈ B
[
X , L2(G)

]
is a compact operator

if and only if for every ǫ > 0 there exists a ∈ D(Γ) such that

‖Opτ (a)T − T ‖B[X ,L2(G)] ≤ ǫ .

3. Let L ⊂ B[L2(G)] be a family of bounded operators. Then L ⊂ K[L2(G)]
and its closure in K[L2(G)] is compact if and only if for every ǫ > 0 there exists

a ∈ D(Γ) such that

sup
T∈L

(
‖Opτ (a)T − T ‖B[L2(G)] + ‖Opτ (a)T ∗ − T ∗‖B[L2(G)]

)
≤ ǫ .

Proof. 1. If ∆ is relatively compact, it is totally bounded. Thus, for every ǫ > 0 ,

there is a finite set F such that for each u ∈ ∆ there exists u′ ∈ F with ‖u−u′‖L2(G)

≤ ǫ/4 . This finite subset generates a finite-dimensional subspace HF ⊂ L2(G) with

finite-rank corresponding projection PF . Then for every u ∈ ∆ , recalling our choice

for u′ and the fact that PFu
′ = u′, one gets

‖PFu− u‖L2(G) ≤‖PFu− PFu
′ ‖L2(G) + ‖PFu

′ − u′ ‖L2(G) + ‖u′ − u‖L2(G)

≤ 2 ‖u− u′ ‖L2(G) ≤ ǫ/2 .

Let now M := supu∈∆ ‖u‖L2(G) ; if we find a ∈ D(Γ) such that

‖Opτ (a)− PF ‖B[L2(G)] ≤ ǫ/2M (63)

one writes for every u ∈ ∆

‖Opτ (a)u−u‖L2(G) ≤‖Opτ (a)u−PFu‖L2(G) + ‖PFu−u‖L2(G) ≤ ǫ/2+ǫ/2 = ǫ

and the formula (62) is proved.

Since D(G × G) is dense in L2(G × G) , the subspace D(Γ) is dense in B2(Γ) .

Consequently, Opτ : B2(Γ) → B2[L2(G)] being unitary, one even gets an improved

version of (63) with the operator norm replaced by the Hilbert-Schmidt norm. This

finishes the “only if” implication.

We now prove the converse assertion. Fix ǫ > 0 and choose a ∈ D(Γ) such that

sup
u∈∆

‖Opτ (a)u− u‖L2(G) ≤ ǫ/2 .

Since D(Γ) ⊂ B2(Γ) , the operator Opτ (a) is Hilbert-Schmidt, in particular com-

pact. The set ∆ is assumed bounded, thus the range Opτ (a)∆ is totally bounded.
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Consequently, there is a finite set E such that for each u ∈ ∆ there exists u′′ ∈ E
satisfying ‖Opτ (a)u− u′′ ‖L2(G) ≤ ǫ/2 . Therefore

‖u− u′′ ‖L2(G) ≤‖u−Opτ (a)u‖L2(G) + ‖Opτ (a)u− u′′ ‖L2(G) ≤ ǫ/2+ ǫ/2 = ǫ ,

so the set ∆ is totally bounded, thus relatively compact.

2. The operator T is compact if and only if ∆ := T
(
{w ∈ X | ‖ w ‖X ≤ 1}

)
is

relatively compact in the Hilbert space L2(G) . By 1, this happens exactly when for

every ǫ > 0 there is a symbol a in D(Γ) such that

‖Opτ (a)T − T ‖B[X ,L2(G)] = sup
‖w‖X≤1

‖ [Opτ (a)− 1](Tw)‖L2(G) ≤ ǫ .

3. The set L is called collectively compact if
⋃

T∈L
T
(
{u ∈ L2(G) | ‖ u ‖L2(G) ≤

1}
)

is relatively compact in L2(G) . It is a rather deep fact [1, 34] that L is a relatively

compact subset of K[L2(G)] with respect to the operator norm if and only if both L

and L ∗ := {T ∗ | T ∈ L } are collectively compact. This and the point 2 lead to the

desired conclusion.

Remark 5.6. In Subsection 7.3 we are going to introduce multiplication operators

Mult(f) and left convolution operators ConvL(g) . Completing Theorem 5.5, one can

easily prove that a bounded subset ∆ of L2(G) is relatively compact if and only if for

every ǫ > 0 there exist f, g ∈ Cc(G) such that

sup
u∈∆

(
‖Mult(f)u− u‖L2(G) + ‖ConvL(g)u− u‖L2(G)

)
≤ ǫ .

Such type of results, in a much more general setting, have been proved in [16]. They

are not depending on the existence of a pseudo-differential calculus. On the other

hand, essentially by the same proof, we could assign f, g to the Bruhat space D(G) ,

which is not covered by [16].

6 Right and left quantizations

Our construction of the pseudo-differential calculus Opτ started from a concrete ex-

pression (17) for the Weyl system W τ ≡ W τ
R ; we set for x, y ∈ G , ξ ∈ Ĝ and

Θ ∈ L2(G,Hξ)

[W τ
R(ξ, x)Θ](y) := ξ

[
y(τx)−1

]∗
[Θ(yx−1)] . (64)

The extra index R hints to the fact that right translations are used in (64). Building

on (64) we constructed a “right” pseudo-differential calculus Opτ ≡ OpτR given on

suitable symbols a by

[OpτR(a)u](x) =

∫

G

(∫

Ĝ

Trξ

[
ξ(y−1x)a

(
xτ(y−1x)−1, ξ

)]
dm̂(ξ)

)
u(y)dm(y) .

(65)
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We recall that one gets integral operators, i.e. one can write

OpτR = Int ◦ KerτR = Int ◦ CVτ
R ◦ (id⊗ F

−1) , (66)

in terms of a partial Fourier transformation and the change of variables

cvτ ≡ cvτR : G× G → G× G , cvτR(x, y) :=
(
xτ(y−1x)−1, y−1x

)
. (67)

Besides (64) there is (at least) another version of a Weyl system, involving translations

to the left, given by

[W τ
L(ξ, x)Θ](y) := ξ

[
(τx)−1y

]∗
[Θ(x−1y)] . (68)

Using it, by arguments similar to those of Subsections 3.1 and 3.2, one gets a left

pseudo-differential calculus

[OpτL(a)u](x) =

∫

G

(∫

Ĝ

Trξ

[
ξ(xy−1)a

(
τ(xy−1)−1x, ξ

)]
dm̂(ξ)

)
u(y)dm(y) ,

(69)

which can also be written as

OpτL = Int ◦ KerτL = Int ◦ CVτ
L ◦ (id⊗ F

−1) , (70)

in terms of a different change of variables

cvτL : G× G → G× G , cvτL(x, y) :=
(
τ(xy−1)−1x, xy−1

)
.

Once again we get a unitary map OpτL : B2(Γ) → B2
[
L2(G)

]
and all the results

obtained above have, mutatis mutandis, analogous versions in the left calculus. In

particular, OpτL also have extensions to distribution spaces connected to the Bruhat

space, as in Section 5.

Remark 6.1. The parameter τ is connected to ordering issues even in the stan-

dard case G = Rn. In general, another ordering problem comes from the non-

commutativity of the group G and the non-commutativity of B(Hξ) for each irre-

ducible representation ξ : G → B(Hξ) . It is to this problem that we refer now. It is

worth writing again the two quantizations for the simple case τ(x) = e:

[OpR(a)u](x) =

∫

Ĝ

Trξ[ξ(x)a(x, ξ)û(ξ)]dm̂(ξ) , (71)

following easily from (65), and

[OpL(a)u](x) =

∫

Ĝ

Trξ[ξ(x)û(ξ)a(x, ξ)]dm̂(ξ) , (72)

following from (69). The two expressions coincide if G is Abelian, since then each

Hξ will be 1-dimensional. We will say more on this in Subsections 7.2 and 7.3.
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Remark 6.2. We note that the choices of left or right quantizations as in (71) and

(72) may lead to parallel equivalent (as in the case of compact Lie groups) or non-

equivalent (as in the case of graded Lie groups) theories. In the main body of the article

we adopted the conventions leading to OpR , mainly to recover the compact [39] and

the nilpotent [18] case (both already exposed in book form) as particular cases. But

the left quantization is connected to the formalism of crossed product C∗-algebras, as

will be seen subsequently, and this can be very useful for certain applications.

We also note that there may be no canonical way of calling the quantization “left” or

“right”. Thus, the terminology was opposite in [39, Remark 10.4.13], although it was

natural in that context. In the present paper, the adopted terminology is related to the

group actions in (64) and (68), respectively. It also seems natural from the formula

OpτL = SchτL ◦ (id ⊗ F )−1 obtained later in (83), where SchτL = r ⋊τ L appears

in (81) as the integrated form of the Schrödinger representation, with the left-regular

group action L given by [L(y)v](x) = v
(
y−1x

)
, and multiplication r(f)v = fv . In

any case, we refer to Section 7.2 for further interpretation of the quantization formulae

in terms of the appearing Schrödinger representations.

Remark 6.3. The measurable map σL : G → G is called a symmetry function

with respect to the left quantization if one has OpσL

L (a)∗ = OpσL

L (a⋆) for every a ∈

B2(Γ) . As in Proposition 4.1, one shows that OpτL(a)
∗ = Opτ̂L(a

⋆) , for τ̂(x) :=
x τ(x−1) , so σL must satisfy this time σL(x) = xσL(x

−1) (almost everywhere). An

analog of Proposition 4.3 also holds. For central extensions, instead of (55), one must

set

σL(h, n) :=
(
σH(h), σN

[
̟
(
h, σH(h

−1)
)
n
])
.

Note that, in the Lie exponential case, the function (58) is a symmetry function simul-

taneously to the left and to the right, cf. (59).

Let a be an element of B2(Γ) and τ, τ ′ : G → G two measurable functions. One has

Opτ
′

L (a) = Int
[
Kerτ

′

L,a

]
and OpτR(a) = Int

[
KerτR,a

]
.

It is easy to deduce from (66) and (70) the connection between the left and the right

kernel:

Kerτ
′

L,a = CVτ ′

L

(
CVτ

R

)−1[
KerτR,a

]
,

meaning that one has Kerτ
′

L,a = KerτR,a ◦ cv
τ,τ ′

R,L , where cvτ,τ
′

R,L :=
(
cvτR

)−1
◦ cvτ

′

L is

explicitly

cvτ,τ
′

R,L(x, y) =
(
τ ′(xy−1)−1xτ(xy−1), τ ′(xy−1)−1xτ(xy−1)yx−1

)
.

This relation looks frightening, but particular cases are nicer. Setting τ(x) = e =
τ ′(x) for instance, one gets cve,eR,L(x, y) =

(
x, xyx−1

)
, while τ = id = τ ′ leads to

cvid,idR,L (x, y) =
(
yxy−1, y

)
.

Investigating when cvτ,τ
′

R,L = idG×G holds (leading to Opτ
′

L (a) = OpτR(a) for every

a), one could be disappointed. It comes out quickly that xyx−1 = y for all x, y is a

necessary condition, so the group G must be Abelian! Then τ = τ ′ is the remaining

condition.
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1572 Măntoiu and Ruzhansky

7 The C∗-algebraic formalism

In this section we describe a general formalism in terms of C∗-algebras that becomes

useful as a background setting for pseudo-differential operators, in particular allow-

ing working with operators with coefficients taking values in various Abelian C∗-

algebras. Especially, an interpretation in terms of crossed product C∗-algebras be-

come handy making use of C∗-dynamical systems and their covariant representations.

We introduce an analogue of the Schrödinger representation and its appearance in τ -

quantizations. Consequently, we investigate the role of multiplication and convolution

operators in describing general families of pseudo-differential operators. The formal-

ism is then used to investigate covariant families of pseudo-differential operators and

establish several results concerning their spectra.

7.1 Crossed product C∗-algebras

We change now the point of view and place the pseudo-differential calculus in the set-

ting of C∗-algebras generated by actions of our group G on suitable function algebras.

For a full general treatment of C∗-dynamical systems and their crossed products we

refer to [36, 47].

Definition 7.1. A C∗-dynamical system is a triple (A, θ,G) where

• G is a locally compact group with Haar measure m ,

• A is a C∗-algebra,

• θ : G → Aut(A) is a strongly continuous action by automorphisms.

The third condition means that each θx : A → A is a C∗-algebra isomorphism, the

map G ∋ x 7→ θx(f) ∈ A is continuous for every f ∈ A and one has θx ◦ θy = θxy
for all x, y ∈ G .

Definition 7.2. 1. To a C∗-dynamical system (A, θ,G) we associate the Ba-

nach ∗-algebra structure onL1(G;A) (the space of all Bochner integrable func-

tions G → A) given by

‖Φ‖(1) :=

∫

G

‖Φ(x)‖A dm(x) ,

(Φ ⋄Ψ)(x) :=

∫

G

Φ(y) θy
[
Ψ(y−1x)

]
dm(y) ,

Φ⋄(x) := θx
[
Φ(x−1)∗

]
.

2. Then the crossed productC∗-algebra A⋊θG := Env
[
L1(G;A)

]
is the envelop-

ing C∗-algebra of this Banach ∗-algebra, i.e its completion in the universal

norm

‖Φ‖univ := sup
Π

‖Π(Φ)‖B(H) ,

where the supremum is taken over all the ∗-representations Π : L1(G,A) →
B(H) .
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The Banach space L1(G;A) can be identified with the projective tensor product

A⊗L1(G) , and Cc(G;A) , the space of all A-valued continuous compactly supported

function on G , is a dense ∗-subalgebra of L1(G,A) and of A⋊θG (cf. [47]).

Definition 7.3. Let (A, θ,G) be a C∗-dynamical system. A covariant representa-

tion is a triple (r, T,H) where

• H is a Hilbert space,

• T : G → U(H) is a (strongly continuous) unitary representation,

• r : A → B(H) is a ∗-representation,

• T (x)r(f)T (x)∗ = r [θx(f)] , for every f ∈ A and x ∈ G .

It is known that there is a one-to-one correspondence between

• covariant representations of the C∗-dynamical system (A, θ,G) ,

• non-degenerate ∗-representations of the crossed product A⋊θG .

We only need the direct correspondence: The integrated form of the covariant repre-

sentation (r, T,H) is uniquely defined by r⋊T : L1(G;A) → B(H) , with

(r⋊T )(Φ) :=

∫

G

r[Φ(x)]T (x)dm(x) ;

then the unique continuous extension r⋊T : A⋊θ G → B(H) is justified by the

universal property of the enveloppingC∗-algebra.

This is the formalism one usually encounters in the references treating crossed prod-

ucts [36, 47]; in terms of pseudo-differential operators this would only cover the case

τ(·) = e , i.e. the Kohn-Nirenberg type quantization. To treat the general case of a

measurable map τ : G → G , one needs the modifications

(Φ ⋄τΨ)(x) :=

∫

G

θτ(x)−1τ(y)[Φ(y)] θτ(x)−1yτ(y−1x)

[
Ψ(y−1x)

]
dm(y) , (73)

Φ⋄τ

(x) := θτ(x)−1xτ(x−1)

[
Φ(x−1)

]∗
, (74)

in the ∗-algebra structure of L1(G;A) and the next modification of the integrated form

of a covariant representation (r, T,H) as

(r⋊τ T )(Φ) :=

∫

G

r
[
θτ(x)(Φ(x))

]
T (x) dm(x) . (75)

By taking enveloping C∗-algebras, one gets a family {A⋊
τ
θ G}τ of C∗-algebras in-

dexed by all the measurable mappings τ : G → G .
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1574 Măntoiu and Ruzhansky

Remark 7.4. In fact all these C∗-algebras are isomorphic: A⋊τ ′

θ G
νττ′

−→ A⋊τ
θG is an

isomorphism, uniquely determined by its action on L1(G;A) defined as

(νττ ′Φ) (x) := θτ(x)−1τ ′(x)[Φ(x)] .

The family of isomorphisms satisfy

ντ1τ2 ◦ ντ2τ3 = ντ1τ3 , ν−1
ττ ′ = ντ ′τ ,

and the relation r⋊τ ′

T = (r⋊τ T ) ◦ νττ ′ is easy to check. An important ingredient is

the fact that νττ ′ leaves the space L1(G;A) invariant (actually it is an isometry).

Remark 7.5. For further use, let us also examine ∗-morphisms in the setting of

crossed products (cf [47]). Assume that (A, θ,G) and (A′, θ′,G) are C∗-dynamical

systems and γ : A → A′ is an equivariant ∗-morphism, i.e. a ∗-morphism satisfying

γ ◦ θx = θ′x ◦ γ , ∀x ∈ G . (76)

One defines

γ⋊ : L1(G;A) → L1(G;A′) ,
[
γ⋊(Φ)

]
(x) := γ[Φ(x)] . (77)

It is easy to check that γ⋊ is a ∗-morphism of the two Banach ∗-algebra structures and

thus it extends to a ∗-morphism γ⋊ : A⋊τ
θG → A′⋊τ

θ′G . If γ is injective, γ⋊ is also

injective.

7.2 The Schrödinger representation and τ-quantizations

It will be convenient to assume that A is a C∗-subalgebra of LUCb(G) (bounded,

left uniformly continuous functions on G) invariant under left translations and that

[θy(f)](x) := f(y−1x) . The maximal choice A = LUCb(G) is very convenient, but

studying “pseudo-differential operators with coefficients of a certain type, modelled

by A”, can sometimes be useful. Applications and extensions will appear elsewhere.

For A-valued functions Φ defined on G and for elements x, q of the group, we are

going to use notations as [Φ(x)](q) = Φ(q, x) , interpreting Φ as a function of two

variables. The strange order of these variables is convenient to make the connection

with previous sections. We can also understand the action as given by θy(Φ(x))(q) =
Φ(y−1q, x) .
Thus on the dense subset L1(G;A) ⊂ A⋊τ

θG the composition law (73) becomes more

explicit

(Φ ⋄τΨ)(q, x) :=

∫

G

Φ
(
τ(y)−1τ(x)q, y

)
Ψ
(
τ(y−1x)−1y−1τ(x)q, y−1x

)
dm(y) ,

(78)

while the involution (74) becomes

Φ⋄τ

(q, x) := Φ
(
τ(x−1)−1x−1τ(x)q, x−1

)
. (79)

Documenta Mathematica 22 (2017) 1539–1592



Pseudo-Differential Operators on Type I Groups 1575

Remark 7.6. If G admits a symmetric quantization to the left and τ ≡ σL is

a symmetry function to the left, as in Remark 6.3, the involution boils down to

Φ⋄σL(q, x) := Φ
(
q, x−1

)
.

In the situation described above, we always have a natural covariant representation

(r, L,H) , called the Schrödinger representation, given in H := L2(G) by

[L(y)v](x) := v
(
y−1x

)
, r(f)v := fv ; (80)

thus L(y) is the unitary left-translation by y−1 in L2(G) and r(f) is just the operator

of multiplication by the bounded function f . The corresponding (modified) integrated

form

SchτL := r ⋊τL , (81)

computed as in (75), is given for Φ ∈ L1(G;A) and v ∈ L2(G) by the formula

[SchτL(Φ)v](x) =

∫

G

Φ
(
τ(z)−1x, z

)
v(z−1x) dm(z)

=

∫

G

Φ
(
τ(xy−1)−1x, xy−1

)
v(y) dm(y) .

(82)

The good surprise is that if we compose SchτL with the inverse of the partial Fourier

transform one finds again, at least formally, the left pseudo-differential representation

(69) and (70):

OpτL= SchτL ◦ (id⊗ F )−1 = Int ◦ CVτ
L ◦

(
id⊗ F

−1
)
. (83)

It is worth comparing this expression of SchτL in (82) with (47).

To extend the meaning of (83) beyond the L2-theory and to take full advantage of

the C∗-algebraic formalism, one needs to be more careful. Recall that the Fourier

transform defines an injective linear contraction F : L1(G) → B(Ĝ) . We already

mentioned that L1(G;A) can be identified with the completed projective tensor prod-

uct A⊗L1(G) . Then, by [46, Ex. 43.2], one gets a linear continuous injection

idA ⊗F : A⊗L1(G) → A⊗B(Ĝ)

and we endow the image
(
idA ⊗F

)[
A⊗L1(G)

]
with the Banach ∗-algebra structure

transported from L1(G;A) ∼= A⊗L1(G) through idA ⊗F .

Let us denote by Cτ
A the envelopping C∗-algebra A⋊τ

θ G of the Banach ∗-algebra

L1(G;A) (with the τ -structure indicated above). Similarly, we denote by Bτ
A the

envelopping C∗-algebra of the Banach ∗-algebra (idA ⊗F )
[
A⊗L1(G)

]
. By the

universal property of the enveloping functor, idA ⊗F extends to an isomorphism

FA : Cτ
A → Bτ

A .

Now OpτL := SchτL ◦ F−1
A defines a ∗-representation of the C∗-algebra Bτ

A in the

Hilbert space L2(G) , which is compatible with (83) when both expressions make

sense. It seems pointless to use different notations for the two basically identical

quantizations, one defined in the C∗-algebraical setting, starting from the Schrödinger
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representation, and the other introduced in Section 6, built on the family (68) of unitary

operators. The difference is merely a question of domains, but each of them can be still

extended or restricted (at least for particular classes of groups G ), being constructed

on the versatile operations Int ,CVτ ,F−1 .

Remark 7.7. Starting from (78) and (79), one also considers the transported com-

position

a#τb := FA

[
(F−1

A a) ⋄τ (F−1
A b)

]

defined to satisfy OpτL(a#
τ b) = OpτL(a)Op

τ
L(b) as well as the involution

a#
τ

:= FA

[
(F−1

A a)⋄
τ
]

verifying OpτL(a
#τ

) = OpτL(a)
∗.

Remark 7.8. As a consequence of Remark 7.4 (see also Remark 38) and of the

properties of envelopping C∗-algebras, there are isomorphisms µτ,τ ′ : Bτ
A → Bτ ′

A

leaving
(
idA ⊗F

)[
L1(G;A)

]
invariant and satisfying

OpτL = Opτ
′

L ◦ µτ,τ ′ , τ, τ ′ : G → G .

Therefore, the C∗-subalgebra

DA := OpτL
(
Bτ

A

)
= SchτL

(
Cτ
A

)
⊂ B

[
L2(G)

]
(84)

is τ -independent. It could be called the C∗-algebra of left global pseudo-differential

operators with coefficients in A on the admissible group G .

Proposition 7.9. TheC∗-algebraDA is isomorphic to the reduced crossed product(
A⋊τ

θG
)
red

. If G is amenable, the representation OpτL : Bτ
A → DA ⊂ B

[
L2(G)

]
is

faithful.

Proof. Of course, it is enough to work with one of the mappings τ : G → G , for

instance for τ(x) = e . Since FA is an isomorphism, it suffices to study the ∗-

representation SchL := r ⋊ L : CA := A⋊θ G → B
[
L2(G)

]
and its range. For

this we are going to recall the left regular ∗-representation Left of the crossed product

in the Hilbert space H := L2(G× G) ∼= L2
(
G;L2(G)

)
and show that SchL and Left

are ”unitarily equivalent up to multiplicity”. The range of Left in B
[
L2(G × G)

]
is,

by definition, the reduced crossed product
(
A⋊τ

θG
)
red

. Since Left is injective if (and

only if) G is amenable [47], this would finish our proof.

The ∗-representation Left = r′ ⋊ L′ is the integrated form of the covariant represen-

tation (r′, L′,H ) given by

[r′(f)ν](q, x) := f(xq)ν(q, x) , x, q ∈ G , f ∈ A , ν ∈ L2(G× G) ,

[L′(y)ν](q, x) := ν(q, y−1x) , x, y, q ∈ G , ν ∈ L2(G× G) .

Then the unitary operatorW : L2(G× G) → L2(G× G) defined by

(Wν)(q, x) := ν(q, xq)
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satisfies for all f ∈ A and y ∈ G

W ∗r′(f)W = idL2(G) ⊗ r(f) , W ∗L′(y)W = idL2(G) ⊗ L(y) ,

which readily implies the unitary equivalence at the level of ∗-representations

W ∗Left(Φ)W = idL2(G) ⊗ SchτL(Φ) , ∀Φ ∈ CA ,

and we are done.

Remark 7.10. Explicit descriptions of the C∗-algebras Bτ
A are difficult to achieve.

Even for G = Rn some of the elements of Bτ
A are not ordinary functions on (Rn)∗ ×

Rn .

Remark 7.11. Let us denote by C0(G) theC∗-algebra of all the continuous complex-

valued functions on G which converge to 0 at infinity (they are arbitrarily small outside

sufficiently large compact subsets). It is well-known [47] that the Schrödinger ∗-

representation sends C0(G)⋊θ G onto K
[
L2(G)

]
⊂ B

[
L2(G)

]
; it is an isomorphism

between C0(G)⋊θG and K
[
L2(G)

]
if and only if G is amenable. This provides classes

of compact global pseudo-differential operators:

K
[
L2(G)

]
= OpτL

(
Bτ

C0(G)

)
= SchτL

[
C0(G)⋊θG

]
, (85)

giving a characterisation of compact operators.

Remark 7.12. One sees that, in the process of construction of the crossed product

C∗-algebra, taking the completion in the envelopping norm supplies a lot of interesting

new elements. One has

L2(G×G) ∼= B
2(Ĝ×G) ∼= B

2
[
L2(G)

]
⊂ K

[
L2(G)

]
∼= C0(G)⋊θG = L1

(
G; C0(G)

)

(the last expression involves the closure in the enveloping norm), while L2(G × G)
and L1

(
G; C0(G)

)
are incomparable as soon as G is an infinite group. There are many

Hilbert-Schmidt operators whose symbols are not partial Fourier transforms of ele-

ments from the class L1
(
G; C0(G)

)
.

Remark 7.13. Recall that K
[
L2(G)

]
= OpτL

(
Bτ

C0(G)

)
is an irreducible family of

operators in L2(G) . So if B is a space of symbols containing (id⊗F )
[
Cc
(
G; C0(G)

)]

or B2(Γ̂) , and if OpτL(b) makes sense for every b ∈ B , then OpτL(B) is irreducible.

This happens, for instance, if B = Bτ
A and C0(G) ⊂ A . In many other situations

OpτL(B) could be reducible. Let us set [R(z)u](x) := u(xz) ; a simple computation

shows that R(z)OpτL(b)R(z
−1) = OpτL(bz) , where bz(x, ξ) := b(xz, ξ) . Thus, if

b does not depend on the first variable, OpτL(b) commutes with the right translations

and irreducibility is lost for A := C . The same happens if A is defined through a

periodicity (invariance) condition with respect to some nontrivial closed subgroup of

G .
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7.3 Multiplication and convolution operators

We reconsider the Schrödinger covariant representation
(
r, L, L2(G)

)
of the C∗-

dynamical system (A, θ,G) where, as before, A ⊂ LUCb(G) is invariant under left

translations.

Let us define ConvL : L1(G) → B
[
L2(G)

]
by the formula (interpreted in weak sense)

ConvL(f) :=

∫

G

f(y)L(y)dm(y) =

∫

G

f(y)W τ
L(1, y)(y)dm(y) . (86)

Clearly ConvL(f) is the operator of left-convolution with f : one has ConvL(f)v =
f ∗ v for every v ∈ L2(G) . It is easy to check the right-invariance:

ConvL(f)R(x) = R(x)ConvL(f) , ∀ f ∈ L1(G) , x ∈ G . (87)

The map ConvL extends to a C∗-epimorphism from the group C∗-algebra C∗(G) =
C⋊θG to the reduced group C∗-algebra C∗

red(G) =
(
C⋊θG

)
red

⊂ B
[
L2(G)

]
, which

is an isomorphism if and only if G is amenable [47].

Of course, the family of right-convolution operators
{
u 7→ ConvR(f)u := u ∗ f |

f ∈ L1(G)
}

is also available and it has similar properties. The analog of (86) is in

this case

ConvR(f) :=

∫

G

f̌(y)R(y)dm(y) , with f̌(y) := f(y−1) .

Note the commutativity property

ConvL(f)ConvR(f
′) = ConvR(f

′)ConvL(f)

as well as the identities

ConvL(f)ConvL(f
′) = ConvL(f ∗ f ′) , ConvR(f)ConvR(f

′) = ConvR(f
′ ∗ f) .

Remark 7.14. More generally, one can also define ConvL(µ) and ConvR(µ) for any

bounded complex Radon measure µ ∈ M1(G) . Let us denote by L(G) := [L(G)]′′

the left von Neumann algebra of G and by R(G) := [R(G)]′′ the right von Neumann

algebra of G . One has ConvL
[
M1(G)

]
⊂ L(G) and ConvR

[
M1(G)

]
⊂ R(G) .

It is easy to check that

F ◦ ConvL(f) ◦F
−1 = DecR(Ff ) and F ◦ ConvR(f) ◦F

−1 = DecL(Ff ) ,

where

DecR(Ff) ,DecL(Ff) ∈ B(Ĝ) :=

∫ ⊕

Ĝ

B(Hξ) dm̂(ξ) ⊂ B
[
B

2(Ĝ)
]

are decomposable (multiplication) operators defined for every ϕ ∈ B2(Ĝ) by

[DecR(Ff )ϕ](ξ) := ϕ(ξ)(Ff )(ξ) , [DecL(Ff)ϕ](ξ) := (Ff )(ξ)ϕ(ξ) .
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We want to compute OpτL(g ⊗ β) = SchτL
[
g ⊗ (F−1β)

]
, where g is some bounded

uniformly continuous function on G and the inverse Fourier transform of β belongs to

L1(G) . Of course we set (g ⊗ β)(x, ξ) := g(x)β(ξ) ∈ B(Hξ) . One gets the formula

([OpτL(g ⊗ β)]u) (x) =

∫

G

g
[
τ(xy−1)−1x

]
(F−1β)(xy−1)u(y) dm(y) ,

which is not very inspiring for general τ . But using the notation Mult(g) := r(g)
(a multiplication operator in L2(G) given in (80)) , one gets the particular cases, for

OpL ≡ OpeL:

(
[OpL(g ⊗ β)]u

)
(x) = g(x)

∫

G

(F−1β)(xy−1)u(y) dm(y)

= g(x)

∫

G

(F−1β)(z)u(z−1x) dm(z) ,

which can be rewritten

OpL(g ⊗ β) = Mult(g)ConvL(F
−1β) , (88)

and ([
OpidL (g ⊗ β)

]
u
)
(x) =

∫

G

(F−1β)(xy−1)g(y)u(y) dm(y)

=

∫

G

(F−1β)(z)(gu)(z−1x) dm(y) ,

i.e.

OpidL (g ⊗ β) = ConvL(F
−1β)Mult(g) . (89)

Thus in the quantization OpL ≡ OpeL the operators of multiplication stay at the left

and those of left-convolution to the right and vice versa for the quantization OpidL .

Remark 7.15. In both (88) and (89) left convolution operators appear. But using the

right quantization OpτR one gets

([OpτR(g ⊗ β)] u) (x) =

∫

G

g
[
xτ(y−1x)−1

]
(F−1β)(y−1x)u(y) dm(y) ,

with particular cases

OpR(g ⊗ β) = Mult(g)ConvR(F
−1β) ,

OpidR(g ⊗ β) = ConvR(F
−1β)Mult(g) ,

and this should be compared with (88) and (89).

Remark 7.16. As mentioned in Remark 7.8, the represented C∗-algebra

DA := SchτL (A⋊
τ
θ G) = OpτL

[
FA(A⋊

τ
θ G)

]
⊂ B

[
L2(G)

]
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is independent of τ . Actually it coincides with the closed vector space spanned by

products of the form Mult(g)ConvL(f) (respectively ConvL(f)Mult(g)) with g ∈ A
and, say, f ∈

(
L1 ∩ L2

)
(G) (or even f ∈ D(G)) . So this closed vector space is

automatically a C∗-algebra, although this is not clear at a first sight. The remote

reason is the last axiom of Definition 7.3.

Remark 7.17. In [11, 13], in the case of a compact Lie group G , precise character-

isations of the convolution operators belonging to the Schatten-von Neumann classes

B
p
[
L2(G)

]
are given. The main result [11, Th. 3.7] holds, with the same proof, for

arbitrary compact groups.

When G is not compact, the single compact convolution operator is 0 = OpτL(0) =
ConvL(0) = ConvR(0) . A way to see this is to recall Remark 7.11 and to note that

the constant function g = 1 belongs to C0(G) if and only if G is compact. Another,

more direct, argument is as follows: If G is not compact then R(x) converges weakly

to 0 when x → ∞ . Multiplication to the left by a compact operator would improve

this to strong convergence. But for u ∈ L2(G) and a compact ConvL(f) one has

‖ConvL(f)u‖L2(G) = ‖R(x)ConvL(f)u‖L2(G) = ‖ConvL(f)R(x)u‖L2(G) −→
x→∞

0

and this implies ConvL(f) = 0 . Replacing R(·) by L(·) , a similar argument shows

that the single compact right convolution operator is the null operator.

7.4 Covariant families of pseudo-differential operators

An important ingredient in constructing the Schrödinger representation has been the

fact that the C∗-algebra A was an algebra of (bounded, uniformly continuous) func-

tions on G . If A is just an Abelian C∗-algebra endowed with the action ρ of our group

G , by Gelfand theory, it is connected to a topological dynamical system (Ω, ̺,G) . The

locally compact space Ω is the Gelfand spectrum of A and we have the G-equivariant

isomorphism A ∼= C0(Ω) if the action ρx of x ∈ G on C0(Ω) is given just by composi-

tion with ̺x−1 . In this section we are going to prove that to such a data one associates

a covariant family of pseudo-differential calculi with operator-valued symbols. For

convenient bundle sections h defined on Ω× Ĝ one gets families
{
Opτ(ω)(h) | ω ∈ Ω

}

of “usual” left pseudo-differential operators (the index L will be omitted). By co-

variance, modulo unitary equivalence, they are actually indexed by the orbits of the

topological dynamical system, while their spectra are indexed by the quasi-orbits in

Ω .

As before, the locally compact groupG is supposed second countable, unimodular and

type I, while τ : G → G is measurable.

Since the Schrödinger covariant representation (80) no longer makes sense as it

stands, we are going to construct for each point ω ∈ Ω a covariant representation(
r(ω), L, L

2(G)
)

and then let the formalism act. One sets explicitly

[
r(ω)(f)u

]
(x) := f

[
̺x(ω)

]
u(x) , f ∈ C0(Ω) , u ∈ L2(G) , x ∈ G , (90)

[
L(y)u

]
(x) := u(y−1x) , u ∈ L2(G) , x, y ∈ G . (91)
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Proceeding as in Subsection 7.2, one constructs the integrated form Schτ(ω) := r(ω)⋊L

associated to the covariant representation
(
r(ω), L, L

2(G)
)

and then sets

Opτ(ω) := Schτ(ω) ◦ F
−1
C0(Ω) . (92)

As in Subsection 7.2, the isomorphism FΩ ≡ FC0(Ω) is the extension of the Banach
∗-algebra monomorphism

idC0(Ω) ⊗F : L1
(
G; C0(Ω)

)
∼= C0(Ω)⊗L1(G) → C0(Ω)⊗B(G)

to the enveloping C∗-algebra C0(Ω)⋊τ
ρG ; the fact that A = C0(Ω) is more general

as before is not important. Setting Bτ
Ω ≡ Bτ

C0(Ω) for the enveloping C∗-algebra of(
idC0(Ω)⊗F

)[
L1

(
G; C0(Ω)

)]
(with the transported structure), we have the isomor-

phism

FΩ : C0(Ω)⋊
τ
ρG → Bτ

Ω .

One gets for every section

{
h(ω, ξ) ∈ B(Hξ) | ξ ∈ Ĝ , ω ∈ Ω

}

from
(
idC0(Ω)⊗F

)[
L1

(
G; C0(Ω)

)]
a family of operators

{
Opτ(ω)(h) =

(
r(ω)⋊L

)(
FC0(Ω)h

)
∈ B

[
L2(G)

] ∣∣ ω ∈ Ω
}

given explicitly (but somewhat formally) by

[
Opτ(ω)(h)u

]
(x) =

∫

G

( ∫

Ĝ

Trξ
[
ξ(xy−1)h

(
̺τ(xy−1)−1x(ω), ξ

)]
dm̂(ξ)

)
u(y)dm(y) .

(93)

More generally, the family
{
Opτ(ω)(h) | ω ∈ Ω

}
makes sense for h ∈ Bτ

Ω , but it is

no longer clear when the symbol h can still be interpreted as a function on Ω× Ĝ .

Proposition 7.18. Let h ∈ Bτ
Ω . If ω, ω′ belong to the same ̺-orbit, thenOpτ(ω)(h)

and Opτ(ω′)(h) are unitarily equivalent.

Proof. The points ω, ω′ are on the same orbit if and only if there exists z ∈ G such

that ω′ = ̺z(ω) . In terms of the unitary right translation [R(z)u](·) := u(·z) , the

operatorial covariance relation

R(z)Opτ(ω)(h)R(z)
∗ = Opτ(̺z(ω))(h) (94)

follows by an easy but formal calculation relying on (93). This can be upgraded to

a rigorous justification by a density argument, but it is better to argue as follows:

Formula (94) for arbitrary h ∈ Bτ
Ω is equivalent to

R(z)Schτ(ω)(Φ)R(z)
∗ = Schτ(̺z(ω))(Φ) , ∀Φ ∈ C0(Ω)⋊

τ
ρG .
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Since Schτ(ω′) is the integrated form of the covariant representation
(
r(ω′), L, L

2(G)
)

indicated in (90) and (91), it is enough to prove

R(z)L(x)R(z)∗ = L(x) , ∀x, z ∈ G

and

R(z) r(ω)(f)R(z)
∗ = r(̺z(ω))(f) , ∀ z ∈ G , f ∈ C0(Ω) .

The first one is trivial. The second one follows from

[
R(z) r(ω)(f)R(z)

∗u
]
(x) =

[
r(ω)(f)R(z

−1)u
]
(xz)

= f
[
̺xz(ω)

][
R(z−1)u

]
(xz)

= f
[
̺x

(
̺z(ω)

)]
u(x)

=
[
r(̺z(ω))(f)u

]
(x) ,

completing the proof.

Remark 7.19. In fact one has

Opτ(ω)(h) = OpτL
(
h(ω)

)
, with h(ω)(x, ξ) := h

(
̺x(ω), ξ

)
. (95)

This relation supplies another interpretation of the family
{
Opτ(ω)(h) | ω ∈ Ω

}
. We

can see it as being obtained by applying the left quantization procedure OpτL of the

preceding sections to a family
{
h(ω) | ω ∈ Ω

}
of symbols (classical observables)

defined in G × Ĝ , associated through the action ̺ to a single function h on Ω × Ĝ .

Note that this family satisfies the covariance condition

h̺z(ω)(x, ξ) = h(ω)(xz, ξ) , x, z ∈ G , ξ ∈ Ĝ , ω ∈ Ω . (96)

Using the reinterpretation (95), the unitary equivalence (94) can be reformulated only

in terms of the quantization OpτL as

R(z)OpτL
(
h(ω)

)
R(z)∗ = OpτL

(
h(̺z(ω))

)
,

which is easily proved directly using relation (96) if h is not too general.

We recall that a quasi-orbit for the action ̺ is the closure of an orbit. If Oω :=
̺G(ω) is the orbit of the point ω ∈ Ω , we denote by Qω := Oω = ̺G(ω) the

quasi-orbit generated by ω . As a preparation for Theorem 7.20, we decompose the

correspondance Φ 7→ Schτω(Φ) into several parts. The starting point is the chain

C0(Ω)
γω
−→ C0(Qω)

βω
−→ LUCu(G) ,

involving the restriction ∗-morphism

γω : C0(Ω) → C0(Qω) , γω(f) := f |Qω
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and the composition ∗-morphism

βω : C0(Qω) → LUCu(G) ,
[
βω(g)

]
(x) := g

[
̺x(ω)

]
.

Note that βω is injective, since ̺G(ω) is dense in Qω . Both these ∗-morphisms are

equivariant in the sense of Remark 7.5 if on C0(Ω) one has the action ρ , on C0(Qω)
its obvious restriction and on LUCu(G) the action θ of G by left translations, as in

Subsection 7.2. Correspondingly, one gets the chain

C0(Ω)
⋊

γ⋊

ω−→ C0(Qω)
⋊

β⋊

ω−→ LUCu(G)
⋊

SchτL−→ B
[
L2(G)

]
.

We indicated crossed products of the formB⋊τG byB⋊ (leaving the actions unnoticed)

and the ∗-morphism δ⋊ acting between crossed products is deduced canonically from

an equivariant ∗-morphism δ by the procedure described in Remark 7.5. The arrow

SchτL is just the left Schrödinger representation of Subsection 7.2. It is easy to check

that

SchτL ◦ β⋊

ω ◦ γ⋊ω = Schτ(ω) , (97)

which also leads to recapturing (95) after a partial Fourier transformation.

Note that some points ω ∈ Qω′ could generate strictly smaller quasi-orbits Qω ⊂
Qω′ . On the other hand a quasi-orbit can be generated by points belonging to different

orbits, so Proposition 7.18 is not enough to prove the following result.

Theorem 7.20. Suppose that the group G is admissible and amenable and that

h ∈ Bτ
Ω .

1. If ω, ω′ generate the same ̺-quasi-orbit, then Opτ(ω)(h) and Opτ(ω′)(h) have

the same spectrum.

2. If (Ω, ̺,G) is a minimal dynamical system then all the operators Opτ(ω)(h) have

the same spectrum.

3. Assume that Ω is compact and metrizable and endowed with a Borel probabil-

ity measure µ which is ̺-invariant and ergodic. Then the topological support

supp(µ) is a ̺-quasi-orbit and one has µ
[{
ω ∈ Ω | Oω = supp(µ)

}]
= 1 .

The operators Opτ(ω)(h) corresponding to points generating this quasi-orbit

have all the same spectrum; in particular sp
[
Opτ(ω)(h)

]
is constant µ-a.e.

Proof. 1. Let us denote by Qω := ̺G(ω) the quasi-orbit generated by ω and similarly

for ω′. We show that if Qω ⊂ Qω′ then sp
[
Opτ(ω)(h)

]
⊂ sp

[
Opτ(ω′)(h)

]
and this

clearly implies the statement by changing the role of ω and ω′. Actually, by (92),

under the stated inclusion of quasi-orbits, one needs to show that sp
[
Schτ(ω)(Φ)

]
⊂

sp
[
Schτ(ω′)(Φ)

]
for every element Φ of the crossed product C0(Ω)⋊τ

ρG .
The basic idea, trivial consequence of the definitions, is the following: If Υ : C′ → C

is a ∗-morphism between two C∗-algebras and g′ is an element of C′, then sp[Υ(g′) |
C] ⊂ sp

[
g′ | C′

]
, and we have equality of spectra if Υ is injective. The notation

indicates the C∗-algebra in which each spectrum is computed.
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In our case, by (97), one can write

Schτ(ω)(Φ) =
[
SchτL◦ β

⋊

ω

][
γ⋊ω (Φ)

]
and Schτ(ω′)(Φ) =

[
SchτL ◦ β⋊

ω′

][
γ⋊ω′(Φ)

]
.

Since G is amenable SchτL is injective and, as remarked before, β⋊
ω and β⋊

ω are always

injective. Thus we are left with proving that

sp
[
γ⋊ω (Φ) |C0(Qω)

⋊
]
⊂ sp

[
γ⋊ω′(Φ) |C0(Qω)

⋊
]
, (98)

assuming the inclusion Qω ⊂ Qω′ of quasi-orbits. We use now

Υ ≡ γ⋊ω′,ω : C0(Qω′)⋊τ
ρG → C0(Qω)⋊

τ
ρG ,

which is obtained by applying the functorial construction of Remark 7.5 to the covari-

ant restriction ∗-morphism

γω′,ω : C0(Qω′) → C0(Qω) , γω′,ω(f) := f |Qω
.

Note that γω = γω′,ω ◦ γω′ (succesive restrictions), which functorially implies γ⋊ω =
γ⋊ω′,ω ◦ γ⋊ω′ . Then γ⋊ω (Φ) = γ⋊ω′,ω

[
γ⋊ω′(Φ)

]
and (98) and thus the result follows.

2. In a minimal dynamical system, by definition, all the orbits are dense. Thus any

point generates the same single quasi-orbit Q = Ω and one applies 1.

3. The statement concerning the properties of supp(µ) is contained in [2, Lemma

3.1]. Then the spectral information follows applying 1. once again.

The final point of Theorem 7.20 treats “a random Hamiltonian of pseudo-differential

type”. Almost everywhere constancy of the spectrum in an ergodic random setting

is a familiar property proved in many other situations [5, 35]. But note that a pre-

cise statement about the family of points giving the almost sure spectrum is available

above.

8 The case of nilpotent Lie groups

We now give the application of the introduced construction to the case of nilpotent Lie

groups. Two previous main approaches seem to exist here. The first one uses the fact

that, since the exponential mapping is a global diffeomorphism, one can introduce

classes of symbols and the symbolic calculus on the group from the one on its Lie

algebra. This allows for operators on a nilpotent Lie group G to have scalar-valued

symbols which can be interpreted as functions on the dual g′ of its Lie algebra. Such

approach becomes effective mostly for invariant operators on general nilpotent Lie

groups [33, 24, 25], see also [44] for the case of the Heisenberg group. The second

approach applies also well to noninvariant operators on G and leads to operator-valued

symbols, as developed in [18, 19]. This is also a special case (with τ(·) = e) of τ -

quantizations developed in this paper.

We now extend both approaches to τ -quantizations with the link between them pro-

vided in Remark 8.5.
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8.1 Some more Fourier transformations

Let us suppose that G is a nilpotent Lie group with unit e and Haar measure m ; it

will also be assumed connected and simply connected. Such a group is unimodular,

second countable and type I, so it fits in our setting and all the previous constructions

and statements hold.

Let g be the Lie algebra of G and g′ its dual. If Y ∈ g and X ′ ∈ g′ we set 〈Y |X ′〉 :=
X ′(Y ) . We shall develop further the theory in this nilpotent setting, but only to the

extent the next two basic properties are used:

1. the exponential map exp : g → G is a diffeomorphism, with inverse log : G →
g , [7, Th. 1.2.1];

2. under exp the Haar measure on G corresponds to the Haar measure dX on g

(normalised accordingly), cf [7, Th. 1.2.10].

It follows from the properties above that Lp(G) is isomorphic to Lp(g) . Actually, for

each p ∈ [1,∞] , one has a surjective linear isometry

Lp(G)
Exp
−→ Lp(g) , Exp(u) := u ◦ exp

with inverse

Lp(g)
Log
−→ Lp(G) , Log(u) := u ◦ log .

There is a unitary Fourier transformation F : L2(g) → L2(g′) associated to the

duality 〈· | ·〉 : g× g′ → R . It is defined by

(Fu)(X ′) :=

∫

g

e−i〈X|X′〉u(X)dX ,

with inverse given (for a suitable normalization of dX ′) by

(F−1u′)(X) :=

∫

g′

ei〈X|X′〉u′(X ′)dX ′.

Now composing with the mappings Exp and Log one gets unitary Fourier transfor-

mations

F := F ◦ Exp : L2(G) → L2(g′) , F−1 := Log ◦ F−1 : L2(g′) → L2(G) ,

the second one being the inverse of the first. They are defined essentially by

(Fu)(X ′) =

∫

g

e−i〈X|X′〉u(expX)dX =

∫

G

e−i〈log x|X′〉u(x)dm(x) ,

(F−1u′)(x) =

∫

g′

ei〈log x|X′〉u′(X ′)dX ′.
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Recalling Plancherel’s Theorem for unimodular second countable type I groups, one

gets finally a commuting diagram of unitary transformations

L2(G) L2(g)

B
2(Ĝ) L2(g′)

✲Exp

❄

F

❅
❅
❅
❅❅❘

F

❄

F

✲
I

The lower horizontal arrow is defined as I := F ◦ F−1 = F ◦ Exp ◦ F−1 and is

given explicitly on B1(Ĝ) ∩ B2(Ĝ) by

(Iφ)(X ′) =

∫

G

∫

Ĝ

e−i〈log x|X′〉Trξ
[
φ(ξ)ξ(x)

]
dm(x)dm̂(ξ) .

Remark 8.1. If G = Rn it is possible, by suitable interpretations, to identify G ∼ Ĝ

with g and with g′ (as vector spaces) and then the three Fourier transformations F ,F
and F will concide and I will become the identity.

8.2 A quantization by scalar symbols on nilpotent Lie groups

To get pseudo-differential operators one could start, as in Subsection 7.2, with a C∗-

dynamical system (A, θ,G) where A is a C∗-algebra of bounded left-uniformly con-

tinuous functions on G which is invariant under the action θ by left translations. We

compose the left Schrödinger representation (82) with the inverse of the partial Fourier

transform

id⊗ F : (L1 ∩ L2)(G;A) → A⊗ L2(g′) ,

finding the pseudo-differential representation

Opτ
L := SchτL ◦ (id⊗ F−1) = Int ◦ CVτ

L◦
(
id⊗ F−1

)
(99)

which can afterwards be extended to the relevant envelopingC∗-algebra. One gets

[
Op

τ
L(s)u

]
(x) =

∫

G

∫

g′

ei〈log(xy
−1)|X′〉s

(
τ(xy−1)−1x,X ′

)
u(y) dm(y)dX ′ , (100)

so Opτ
L(s) is an integral operator with kernel Kerτ(s) : G× G → C given by

Kerτ(s)(x, y) =

∫

g′

ei〈log(xy
−1)|X′〉s

(
τ(xy−1)−1x,X ′

)
dX ′ .

Examining this kernel, or using directly (99), one sees that (100) also defines a unitary

mapping

Op
τ
L : L

2(g′ × G) → B
2
[
L2(G)

]
.

Actually there is a Weyl system on which the construction of pseudo-differential op-

erators with symbols s : g′ × G → C can be based:
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Definition 8.2. For (x,X ′) ∈ G × g′ one defines a unitary operator Wτ
L(x,X

′)
in L2(G) by

[Wτ
L(x,X

′)u](z) : = ei〈log[τ(x)
−1z]|X′〉u(x−1z)

= ei〈log[τ(x)
−1z]|X′〉[L(x)u](z) .

By direct computations, one shows the following

Lemma 8.3. Let us denote by Q the operator of multiplication by the variable in

L2(G) . For any pairs (x,X ′), (y, Y ′) ∈ G× g′ one has

Wτ
L(x,X

′)Wτ
L(y, Y

′) = Υτ
[
(x,X ′), (y, Y ′);Q

]
Wτ

L(xy,X
′ + Y ′) ,

where Υτ
[
(x,X ′), (y, Y ′);Q

]
is the operator of multiplication by the function

z 7→ Υτ
[
(x,X ′), (y, Y ′); z

]
= exp

{
i
[
〈 log

[
τ(x)−1z

]
− log

[
τ(xy)−1z

]
| X ′ 〉−

− 〈 log
[
τ(xy)−1z

]
− log

[
τ(y−1)x−1z

]
| Y ′ 〉

]}
.

Remark 8.4. The family C(G;T) of all continuous functions on G with values in the

torus is a Polish group and the mapping Υ : (G × g′) × (G × g′) → C(G;T) can be

seen as a 2-cocycle. We are not going to pursue here the cohomological meaning and

usefulness of these facts.

In terms of the Weyl system
{
Wτ

L(x,X
′) | (x,X ′) ∈ G× g′

}
one can write

Opτ
L(s) :=

∫

G

∫

g′

s̃(X ′, x)Wτ
L(x,X

′) dm(x)dX ′ ; (101)

we used the notation s̃ := (F ⊗ F−1)s . The technical details are similar but simpler

than those in Subsection 3.2 and are left to the reader.

Remark 8.5. One also considers the composition ♯τ defined to satisfy the equality

Op
τ
L(r ♯τ s) = Op

τ
L(r)Op

τ
L(s) , as well as the involution ♯τ verifying Op

τ
L(s

♯τ ) =
Opτ

L(s)
∗. Then

(
L2(g′ × G), ♯τ ,

♯τ
)

will be a ∗-algebra. It is isomorphic to the ∗-

algebra
(
B2(Ĝ×G),#τ ,

#τ
)

defined in Subsection 3.3. Actually one has the follow-

ing commutative diagram of isomorphisms:

L2(G)⊗ L2(G) L2(G)⊗ B
2(Ĝ)

L2(G)⊗ L2(g′) B
2[L2(G)]

❍❍❍❍❍❍❍❥
SchτL

✲id⊗F

❄
id⊗F

❄
OpτL

✲
Opτ

L

One justifies this diagram by comparing (99) with (83). The conclusion of this dia-

gram is that for simply connected nilpotent Lie groups the “operator-valued pseudo-

differential calculus” OpτL with symbols defined on G × Ĝ can be obtained from the
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“scalar-valued pseudo-differential calculus” Opτ
L (which provides a quantization on

the cotangent bundle G× g′ ∼= T ′(G)) just by composing at the level of symbols with

the isomorphism (id⊗ F) ◦ (id⊗ F )−1 = id⊗
(
F ◦ F−1

)
.

Remark 8.6. In Prop. 4.3 we have shown that a connected simply connected nilpo-

tent Lie group G admits a symmetric quantization, corresponding to the map τ = σ
given by (58) globally defined. With this choice one also has s♯σ(x,X ′) = s(x,X ′)
for every (x,X ′) ∈ G× g′ .

Remark 8.7. A right quantization Op
τ
R with scalar symbols is also possible; for

completeness, we list the main quantization formula

Opτ
R := SchτR ◦ (id⊗ F−1) ≡ Int ◦ CVτ

R◦
(
id⊗ F−1

)
, (102)

where CVτ
R is the change of variables given by the composition with the mapping

cvτ ≡ cvτR : G× G → G× G , cvτR(x, y) :=
(
xτ(y−1x)−1, y−1x

)
, (103)

see also (23). Here, SchτR := Int ◦ CVτ
R also allows for an integrated interpretation

similar to (81). More explicitly, Opτ
R can be written as

[
Op

τ
R(s)u

]
(x) =

∫

G

∫

g′

ei〈log(y
−1x)|X′〉s

(
xτ(y−1x)−1, X ′

)
u(y) dm(y)dX ′ , (104)

so Opτ
R(s) is an integral operator with kernel Kerτ(s),R : G× G → C given by

Kerτ(s),R(x, y) =

∫

g′

ei〈log(y
−1x)|X′〉s

(
xτ(y−1x)−1, X ′

)
dX ′ .

Consequently, we have the commutative diagram of isomorphisms of H∗-algebras

L2(G)⊗ L2(G) L2(G)⊗ B
2(Ĝ)

L2(G)⊗ L2(g′) B
2[L2(G)]

❍❍❍❍❍❍❍❥
SchτR

✲id⊗F

❄
id⊗F

❄
OpτR

✲
Opτ

R

where all the listed mappings in this diagram are unitary, and where Opτ = OpτR is

the τ -quantization formula (2) that we have started with, and so

Opτ = OpτR = Op
τ
R ◦

[
id⊗

(
F ◦ F

−1
)]
.
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