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Abstract. Let M,N be finitely generated modules over a local
complete intersection R. Assume that all the modules TorRi (M,N)
are zero for i > 0. We prove that the cohomological support of M ⊗R

N (in the sense of Avramov-Buchweitz) is equal to the geometric
join of the cohomological supports of M,N . This result gives a new
connection between two active areas or research, and immediately
produces several interesting corollaries. Naturally, it also raises many
intriguing new questions about the homological properties of modules
over a complete intersection, some of which are investigated in this
work.
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1 Introduction

Let (R,m, k) be a local complete intersection and M a finitely generated R-
module. Inspired by the ideas of Quillen in modular representations context,
Avramov and Buchweitz in [6] defined a geometric object attached to the total
Ext module

⊕

ExtiR(M,k). It was originally called the support variety, or
cohomological support ofM , and denoted by V ∗(M) (see Section 2 for details).
In this paper, we shall refer to this object as the cohomological support. It is
a closed subscheme of Pc−1

k , where c is the codimension of R.
The following is an immediate consequence of the theory of cohomologi-
cal supports developed in [6]: if M,N are non-zero and Tor-independent,
i.e. TorRi (M,N) = 0 for i > 0, then V ∗(M), V ∗(N) are disjoint and

dim V ∗(M ⊗R N) = dimV ∗(M) + dimV ∗(N) + 1.
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One of our main results in this paper gives a geometric clarification of this for-
mula, by proving that under the above hypothesis, the cohomological support
ofM ⊗RN is actually the join of V ∗(M), V ∗(N). Here, the join of two disjoint
closed subschemes is the closure of the union of all the lines joining two points,
one from each subscheme.

Theorem 1.1 (Theorem 3.1,Theorem 4.7). Let R be a local complete intersec-
tion, and M,N ∈ mod(R) with M,N 6= 0.

1. If Tor>0(M,N) = 0, then

V ∗(M ⊗N) = Join(V ∗(M), V ∗(N)).

2. If Ext>0(M,N) = 0, then

V ∗(Hom(M,N)) = Join(V ∗(M), V ∗(N)).

Thus, we provide a link between the theory of cohomological support to a very
classical concept of algebraic geometry. Unsurprisingly, this immediately leads
to many corollaries and interesting questions, some of them we also address in
this work.

The proof of the first part of Theorem 1.1 occupies Section 3. It combines
homological and geometric techniques (the preparatory materials are collected
in Section 2). In Section 4, we give some quick corollaries including the The-
orem 1.1 (2). In Section 5, we collect some examples regarding the case when
Tori(M,N) do not vanish. While computing these examples, we noticed certain
patterns involving the asymptotic behaviour of V ∗(Tori(M,N)), motivating us
to pose a couple of questions. Furthermore, in Section 5, we list a few situa-
tions which give us positive answers to our questions. In these investigations,
we show the following.

Theorem 1.2 (Corollary 5.10). Let (R,m, k) be a local complete intersection
of codimension c and M and N finitely generated R-modules. Fix m ∈ N. If
Tori(M,N) eventually has finite length, then there exists a ν ∈ N such that for
any n ≥ ν

V ∗(Torn(N,M)) ∪ V ∗(Torn+2m(N,M)) ∪ · · · ∪ V ∗( Torn+2mc(N,M))

=

∞
⋃

i=ν

V ∗(Tori(M,N)).

In particular, there exists an l ∈ N such that

∞
⋃

i=0

V ∗(Tori(M,N)) =
l
⋃

i=0

V ∗(Tori(M,N)).
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2 Background

2.1 The ring of cohomological operators

The study of cohomological supports over complete intersection rings was ini-
tiated by Avramov and Buchweitz in [6]. For the entirety of this section,
(R,m, k) will be a local complete intersection of codimension c such that
R̂ = Q/(f1, . . . , fc) where Q is a regular local ring and f = f1, . . . , fc a regular

sequence not contained in the square of the maximal ideal of Q. Let k̃ be
the algebraic closure of k. The cohomological support of a finitely generated
R-module M is essentially the support of ExtR̂(M̂, k) as a module over the
polynomial ring S = k[χ1, . . . , χc]. We will now elaborate on this defintion.
Let X be a finitely generated R̂-module. We recall a construction from [13]
which gives an action of S on ExtR̂(X, k). Let (F•, ∂) be a free resolution of

X over R̂. Each Fn = R̂in and we may view ∂ as a sequence of matrices with
entries in R̂. Let F̃n = Qin and ∂̃ be the lift of ∂ to F̃•. Since ∂

2 = 0, we know
that ∂̃2 is a sequence of matrices whose entries are in the ideal (f1, . . . , fc).
Thus we may write

∂̃2 =
c

∑

i=1

fiΦ̃i

where Φ̃i is a sequence of matrices with entries in Q. Set Φi = Φ̃i⊗R̂. Eisenbud
shows in [13] that multiplication by Φi is a degree -2 chain map from F• → F•.
It follows that Φ induces a degree 2 operator χi on

ExtR̂(X, k) =
∞
⊕

i=0

Exti
R̂
(X, k).

It is also shown in [13] that the oeprators χi commute with eachother,
i.e. χiχj = χjχi. Thus we can extend the action of the χi linearly to an ac-
tion of the polynomial ring S = k[χ1, . . . , χc], turning Ext(X, k) into a graded
S-module, where each χi is degree 2. Furthermore, Eisenbud shows in [13] that
this action is independent of our choices of F• and Φ̃i and that ExtR̂(X, k)
is actually a finitely generated S-module. The ring S is known as the ring
of cohomological operators and has been the focus of much study including
[3, 5, 7, 13, 18]. In fact, there are several equivalent methods for constructing
the action of S on Ext(X, k), the first of which was given in [14]: see [9] for a
detailed discussion.
The following result shows that the action is actually invariant up to a change
of coordinates of the ideal generated by the regular sequence.

Theorem 2.1 ([13, Proposition 1.7], cf. [9, (3.1)]). Let f1, . . . , fc and f
′
1, . . . , f

′
c

be two regular sequences of a regular local ring Q which generate the same ideal.
Write

fi =

c
∑

j=1

qi,jf
′
j
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with each qi,j ∈ Q. Letting χ1, . . . , χc and χ′
1, . . . , χ

′
c be the cohomological

operators associated to f1, . . . , fc and f ′
1, . . . , f

′
c respectively, we have

χ′
j =

c
∑

i=1

qi,jχi

Thus the matrix (qi,j) acts as a change of basis matrix, changing the coordinates

of Pc−1

k̃
. When k = k̃, any change of coordinates of Pc−1

k̃
corresponds to

choosing a different regular sequence which generates the ideal (f1, . . . , fc).
This important fact is critical to several proofs in this document, thus we state
it precisely.

Proposition 2.2. Assume that k is algebraically closed and set I = (f1, . . . , fc)
where f1, . . . , fc is a regular sequence of a regular local ring Q. Let

ϕ : Pc−1
k → Pc−1

k

be an automorphism, i.e. a change of coordinates. Then there exists a regular
sequence f ′

1, . . . , f
′
c generating I such that ϕ∗(χi) = χ′

i where χ1, . . . , χc and
χ′
1, . . . , χ

′
c are the cohomological operators associated to f1, . . . , fc and f

′
1, . . . , f

′
c

respectively.

Proof. Set ψ = ϕ−1, and let ϕ̃ and ψ̃ be the lifts of ϕ and ψ in Q such that
φ̃ = ϕ̃−1. We can regard ϕ̃ and ψ̃ as a matrices whose entries are qi,j ∈ Q and
pi,j ∈ Q respectively. Set

f ′
i =

c
∑

i=1

pi,jfj.

By Nakayama’s lemma, f ′
1, . . . , f

′
c generates I, and since there are c elements,

f ′
1, . . . , f

′
c is necessarily a regular sequence. However since ϕ̃ψ̃ is the identity,

we also have

fi =

c
∑

j=1

qi,jf
′
j .

It follows from Theorem 2.1 that

χ′
j =

c
∑

i=1

qi,jχi = ϕ∗(χj).

2.2 Cohomological supports

With the machinery of the cohomological operators in place, we may now
discuss cohomological supports. Using the notation of the last subsection, we
define

V (Q, f ;X) = {ā ∈ Ac
k̃
| g(ā) = 0 ∀g ∈ annS Ext(X, k)}

where k̃ is the algebraic closure of k.
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Definition 2.3. Let R be a complete intersection ring. Following [6], for a
finitely generated R-module M , the cohomological support, denoted V ∗(M), is
the projectivization in Pc−1

k̃
of the cone V (Q, f ; M̂). Occasionally, V ∗

R(M) will
be used to indicate which ring is used to compute the cohomological support.

Proposition 2.4 ([6, Theorem 5.3]). For any finitely generated R-module M ,
V ∗(M) is independent of the choices of Q, and f up to a change of coordinates.

Remark 2.5. What we call the cohomological support is referred to as the
support variety in [6] and other works. In [8], the terminology cohomological
support and cohomological variety are both used. Since geometers generally
require varieties to be irreducible closed subsets and since V ∗(M) is generally
not irreducible, we have decided to use the term cohomological support.

Remark 2.6. In [6] and in other works, the authors consider V ∗(M) as a cone
in Ac

k̃
. To facilitate the statement of certain results, we have found it easiest

to work in projective space.

The following is a combination of the results [6, Theorem 5.6,Theorem 6.1].

Theorem 2.7. For finitely generated R-modules M and N , the following are
equivalent.

1. V ∗(M) ∩ V ∗(N) = ∅

2. Tor≫0(M,N) = 0

3. Ext≫0(M,N) = 0

4. Ext≫0(N,M) = 0

Hence cohomological supports encode homological information about a module.
The following result gives another description of cohomological supports.

Theorem 2.8 ([6, Theorem 2.5],[3, Corollary 3.11]). Suppose that the residue
field k is algebraically closed. For any module M ∈ mod(R), we have

V ∗(M) = {(a1, . . . , ac) ∈ Pc−1
k | pdQ/(ã1f1+···+ãcfc) M̂ = ∞}

where ãi is a lift in Q of ai.

From this result and Lemma 2.17, we can easily deduce these corollaries.

Corollary 2.9. For a finitely generated R-module M , V ∗(M) = ∅ if and only
if pdM <∞. Also V ∗(k) = Pc−1

k̃
.

Corollary 2.10. Let f1, . . . , fc be a regular sequence of a regular local ring Q,
and let k[χ1, . . . , χc] be the ring of cohomological operators for Q/(f1, . . . , fc).
Take n such that 1 ≤ n ≤ c. Let H be the linear space defined by

χn+1 = · · · = χc = 0.

For any module M over Q/(f1, . . . , fc),

V ∗
Q/(f1,...,fn)

(M) = V ∗
Q/(f1,...,fc)

(M) ∩H.
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Corollary 2.11. Suppose M ∈ mod(R) and x ∈ R is regular on M . Then
V ∗(M) = V ∗(M/xM).

Proof. Let x̃ ∈ Q be a lift of x. Then x̃ is still regular on M and so M has
finite projective dimension over Q/a if and only if M/x̃M =M/xM does too.
The result now follows from Theorem 2.8.

A generalization of Corollary 2.9 exists involving complexity.

Definition 2.12. For a sequence (an)n≥0 of nonnegative integers, we can define
the complexity

cx(an)n≥0 = min{deg f | f ∈ Q[t] an ≤ f(n) ∀n≫ 0}+ 1.

For a module M , we set cxM = cx βn(M).

A module has finite projective dimension if and only if cxM = 0. Since R is a
complete intersection of codimension c, cx k equals c.

Proposition 2.13 ([6, Theorem 5.6]). For any R-module, we have
dimV ∗(M) = cxM − 1.

Remark 2.14. Note that in the previous result, we consider V ∗(M) as a closed
set of projective space instead of a cone in affine space.

The following are useful results on cohomological supports.

Theorem 2.15 ([10, Corollary 2.3],[8, Theorem 7.8]). If k is algebraically
closed, for each closed set V ⊆ Pc−1

k there is a maximal Cohen-Macaulay mod-
ule M such that V ∗(M) = V .

When working with cohomological supports, it is important to be able to reduce
to the case where R is complete and k is algebraically closed. These two results
which allow us to do this.

Lemma 2.16. For any R-module M , we have V ∗
R(M) = V ∗

R̂
(M̂).

Lemma 2.17 ([6, Lemma 2.2],[11, App., Théorèm 1, Corollaire])). There exists
a local complete intersection ring (R̃, m̃, k̃) of codimension c such that R̃ is a
flat extension of R, mR̃ = m̃, and the induced map k → k̃ is the inclusion of k
into its algebraic closure. Furthermore, we have V ∗

R(M) = V ∗
R̃
(M ⊗ R̃).

2.3 Thick subcategories

There is a deep connection between cohomological supports and the thick sub-
categories of mod(R). This connection begins with the following result.

Proposition 2.18 ([6, Theorem 5.6]). If

0 → X1 → X2 → X3 → 0
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is exact, then
V ∗(Xi) ⊆ V ∗(Xj) ∪ V

∗(Xl)

with {i, j, l} = {1, 2, 3}. In particular, V ∗(M) = V ∗(ΩM). Furthermore

V ∗(X ⊕ Y ) = V ∗(X) ∪ V ∗(Y )

Definition 2.19. A subcategory C ⊆ mod(R) is thick if

1. R ∈ C

2. C is closed under direct summands, that is if X ⊕ Y ∈ C then X,Y ∈ C

3. C has the two out of three property, that is if 0 → X1 → X2 → X3 → 0
and Xi, Xj ∈ C, then Xl ∈ C with {i, j, l} = {1, 2, 3}.

Let ThickM denote the smallest thick category containing M .

The thick subcategories of R are in bijection with the thick subcategories of
the triangulated category MCM(R), the stable category of maximal Cohen-
Macaulay modules. The category of modules of finite projective dimension is
thick. We can generalize this example: by Proposition 2.18, for any V ⊆ Pc−1

k̃
,

the category
{M ∈ mod(R) | V ∗(M) ⊆ V }

is thick. In fact, cohomological supports are used to classify the thick subcat-
egories in the complete intersection in [20], and, in the zero dimensional case,
[12, Remark 5.12]. The proceeding result follows from the classification of thick
subcategories [20, Remark 10.7].

Theorem 2.20. For two modules M,N ∈ mod(R), V ∗
Rp

(Mp) ⊆ V ∗
Rp

(Np) for
every p ∈ SingR if and only if ThickM ⊆ ThickN where ThickM and ThickN
are the smallest thick subcategories containing M and N .

Remark 2.21. The full classification theorem in [20] utilises the full scheme
structure of Pc−1

k instead of the closed points of Pc−1

k̃
, a context considered in

other works such as [6]. The difference between such approaches are subtle and
beyond the scope of this article.

2.4 Geometric join

In this subsection we give attention to another construction central to this
paper.

Definition 2.22. Let U, V ⊆ Pn
k be Zariski closed sets. We define the join of

U and V to be

Join(U, V ) =
⋃

u∈U v∈V
u6=v

line(u, v)

where line(u, v) is the projective line containing u and v.
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Remark 2.23. When U and V are disjoint Zariski closed sets, we may simplify
this definition to

Join(U, V ) =
⋃

u∈U v∈V

line(u, v).

and we still obtain a closed set, see [15, Example 6.17]. In most contexts in
this paper, we will be taking the join of disjoint sets.

Remark 2.24. There is some ambiguity with this definition when V is empty.
To that end, we establish the following convention:

Join(U, ∅) = U.

This is the convention followed in [1]. We justify this convention by considering
the join in affine space: the empty set corresponds to the the zero point and
the join of the cone and the zero point is simply the original cone.

The following in anopther interesting fact about joins.

Lemma 2.25 ([15, Proposition 6.13,Example 6.14]). If U and V are irreducible
closed sets, then Join(U, V ) is also irreducible.

To visualize the join, consider the following easy examples. The join of two
distinct points is a projective line, and the join of two skew lines is a three
dimensional projective linear space. In fact, the join of any two linear spaces
is the smallest linear space containing both of them.

Theorem 2.26 ([1, 1.1]). For two closed sets U, V ⊆ Pn
k , we have

dimJoin(U, V ) ≤ dimU + dimV + 1

and if U ∩ V = ∅, then

dimJoin(U, V ) = dimU + dimV + 1.

The converse is not true, and, in fact, it is not known in general when
dimJoin(U, V ) = dimU + dimV + 1 in the case U ∩ V 6= ∅ . In particular, an
active topic of research is understanding when Join(V, V ) 6= 2dimV + 1.

3 Joins of cohomological supports

In this section, let (R,m, k) be a local complete intersection of codimension c.
The goal of this section is to prove our first main result of this paper, namely
the following theorem.

Theorem 3.1. Let R be a local complete intersection, andM,N ∈ mod(R) with
M,N 6= 0. If Tor>0(M,N) = 0, then V ∗(M ⊗N) = Join(V ∗(M), V ∗(N)).

We prove Theorem 3.1 in a few steps. First we cite a critical fact.
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Lemma 3.2 ([19, Proposition 2.1]). If Tor>0(M,N) = 0, then cx(M ⊗ N) =
cxM + cxN .

We now prove a special case of the main result.

Lemma 3.3. If R has codimension two and Tor>0(M,N) = 0 with M,N 6= 0,
then

V ∗(M ⊗N) = Join(V ∗(M), V ∗(N)).

Proof. By Lemma 2.16 and Lemma 2.17, we may assume that R is complete
and k is algebraically closed. If pdM, pdN < ∞, then pdM ⊗ N < ∞ and
the conclusion is clear.
Assume that pdM = pdN = ∞. Since V ∗(M) and V ∗(N) are disjoint,
nonempty, and lie in P1

k, we know that dim V ∗(M) = dimV ∗(N) = 0. There-
fore, the complexity of both M and N is one. Since Tor>0(M,N) = 0, the
complexity of M ⊗N is two, and thus dimV ∗(M ⊗N) = 1. This means that

V ∗(M ⊗N) = P1
k = Join(V ∗(M), V ∗(N)).

We now assume that pdM < ∞ and pdN = ∞. Using the conventions in
Remark 2.11, we may assume thatM 6= 0. We wish to show that V ∗(M⊗N) =
V ∗(N). Letting

0 → Rnt → · · · → Rn0 →M → 0

be a free resolution, the sequence

0 → Nnt → · · · → Nn0 →M ⊗N → 0

is exact, implying V ∗(M ⊗N) ⊆ V ∗(N). By Lemma 3.2, we have

cx(M ⊗N) = cxM + cxN = cxN.

Therefore dimV ∗(M⊗N) is the same as dimV ∗(N). So if V ∗(N) is irreducible,
we are done. In particular, if dimV ∗(N) = 1, then V ∗(N) = P1

k and we are
done.
So suppose dim V ∗(N) = 0, that is V ∗(N) = {p1, . . . , pn} where pi are points.
The short exact sequence 0 → ΩN → Rm → N → 0 yields the short exact
sequence

0 →M ⊗ ΩN → Mm →M ⊗N → 0.

But since V ∗(M) is empty, we have V ∗(M ⊗ ΩN) = V ∗(M ⊗N) by Proposi-
tion 2.18. Thus, since V ∗(N) = V ∗(ΩN) we may assume that N is maximal
Cohen-Macaulay by replacing N with a sufficiently high syzygy. Therefore, by
Theorem 3.1 of [10], we may write N = N1 ⊕ · · · ⊕ Nn with V ∗(Ni) = {pi}.
Since each V ∗(Ni) is irreducible, we have

V ∗(M ⊗N) = V ∗(M ⊗N1 ⊕ · · · ⊕M ⊗Nn)

= V ∗(M ⊗N1) ∪ · · · ∪ V ∗(M ⊗Nn) = {p1} ∪ · · · ∪ {pn} = V ∗(N)

which completes the proof.
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Proposition 3.4. If Tor>0(M,N) = 0 with M,N 6= 0, then

Join(V ∗(M), V ∗(N)) ⊆ V ∗(M ⊗N).

Proof. By Lemma 2.16 and Lemma 2.17, we may assume that R is complete
and k is algebraically closed. We proceed by induction on the codimension
of R, which we will denote by c. When c = 1, the cohomological supports
lie in P0

k, a point. Thus the cohomological support of a module is either that
point or empty, depending on whether or not the module has finite projective
dimension. Since Tor>0(M,N) = 0, the result follows from the equality

cxM + cxN = cxM ⊗N.

If c = 2, the statement is true by Lemma 3.3.
Now suppose that c ≥ 3. It suffices to show that for any hyperplane H ⊆ Pc−1

k

we have
Join(V ∗(M), V ∗(N)) ∩H ⊆ V ∗(M ⊗N) ∩H

Since c ≥ 2, any hyperplane is a linear space with dimension at least one.
Therefore, for any x ∈ V ∗(M)∩H and y ∈ V ∗(N), the projective line between
x and y is also in H . Because of this, we have

Join(V ∗(M), V ∗(N)) ∩H = Join(V ∗(M) ∩H,V ∗(N) ∩H).

Thus we need to show that

Join(V ∗(M) ∩H,V ∗(N) ∩H) ⊆ V ∗(M ⊗N) ∩H.

To that end, we fix a hyperplane H . Now may write R = Q/(f1, . . . , fc) where
Q is a regular local ring and f1, . . . , fc is a regular sequence. By Proposition
2.2, we may change our coordinate system and assume that H = V (χ1) where
k[χ1, . . . , χc] is the ring of cohomological operators. Set T = Q/(f2, . . . , fc) and
f = f1. Note that T is a complete intersection with codimT = c−1, f is regular
on T , and R = T/(f). For any module X ∈ mod(R), V ∗

R(X) ∩H = V ∗
T (X) by

Corollary 2.10. Therefore we need to show that

Join(V ∗
T (M), V ∗

T (N)) ⊆ V ∗
T (M ⊗N).

Since TorR>0(M,N) = 0, by [4, Lemma 9.3.8], we have TorT1 (M,N) = M ⊗N

and TorT>1(M,N) = 0. It follows that TorT>0(M,ΩT N) = 0. After tensoring
0 → ΩT N → T t → N → 0 with M , we get the exact sequence

0 → M ⊗N → M ⊗ ΩT N →M t → M ⊗N → 0.

Thus, by induction and the above exact sequence, we have

Join(V ∗
T (M), V ∗

T (N)) = Join(V ∗
T (M), V ∗

T (ΩT N))

⊆ V ∗
T (M ⊗ ΩT N) ⊆ V ∗

T (M ⊗N) ∪ V ∗
T (M).
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Note, that we can only choose ΩT N to not be zero. A similar argument using
ΩT M gives us

Join(V ∗
T (M), V ∗

T (N)) ⊆ V ∗
T (M ⊗N) ∪ V ∗

T (N).

This implies that

Join(V ∗
T (M), V ∗

T (N)) ⊆ V ∗
T (M ⊗N) ∪ (V ∗

T (M) ∩ V ∗
T (N)) = V ∗

T (M ⊗N)

proving the claim.

Lemma 3.5. Suppose that c = codimR ≥ 2, R is complete, and k is al-
gebraically closed. Fix M ∈ mod(R) such that V ∗

R(M) = q for some point
q ∈ Pc−1

k . For any p ∈ Pc−1
k distinct from q, there exists an L ∈ MCM such

that V ∗
R(L) = p and V ∗

R(M ⊗ L) = Join(p, q).

Proof. As R is complete, we write R = Q/(f1, . . . , fc) where Q is a regular
local ring and f is a regular sequence. After a change of coordinates, we may

assume that p = (1, 0, 0, . . . , 0). Set T = Q/(f1), X = Ωd−1
T k where d = dimQ,

and L = X/(f2, . . . , fc)X . We prove that L is our desired module.

First, we show that V ∗(L) = p. Since pdT L = ∞, it follows from Theorem 2.8
that p ∈ V ∗(L). Take any point p′ ∈ Pc−1

k such that p′ 6= p. By Theorem 2.15,
there exists a Y ∈ mod(R) such that p′ = V ∗(Y ). It follows from Theorem 2.8
that pdT Y <∞. Furthermore, we have TorRi (Y, L)

∼= TorTi (Y,X) for all i > 0,
and thus TorR≫0(Y, L) = 0. Therefore V ∗(Y ) ∩ V ∗(L) = ∅ and so p′ /∈ V ∗(L).
We now have V ∗(X) = {p} as claimed.

Set l = Join(p, q). We now show that V ∗(M ⊗ L) = l. By proposition 3.4,
we have l ⊆ V ∗(M ⊗ L). Take any point r /∈ l. We claim that r is not in
V ∗(M⊗L). After changing coordinates, we may assume that r = (0, 1, 0, . . . , 0).
Set S = Q/(f1, f2) and X

′ = X/f2X . Let l′ be the projective line defined by
p and r. Since r /∈ l, we have q /∈ l′. Hence Corollary 2.10 implies that

V ∗
S (M) = V ∗

R(M)∩ l′ = ∅. Therefore, TorR
′

≫0(M,X ′) = 0. However, since X ′ is

maximal Cohen-Macaulay over S, Lemma 4.4 implies that TorS>0(M,X ′) = 0.
Since M ⊗ L ∼=M ⊗X ′, and since codimS = 2, Lemma 3.3 implies that

V ∗
S (M ⊗ L) = V ∗

S (M ⊗X ′) = Join(V ∗
S (M), V ∗

S (X
′)) = V ∗

S (X
′).

By Corollary 2.10 and Corollary 2.11, we have

V ∗
S (X

′) = V ∗
S (L) = V ∗

R(L) ∩ l
′ = p.

Therefore, we have p = V ∗
S (M ⊗L) = V ∗

R(M ⊗L)∩ l′ by Corollary 2.10. Since
r is in l′, r is not in V ∗(M ⊗ L), as desired.

We now proceed with the proof of the main result of this paper.
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Proof of Theorem 3.1. By Lemma 2.16 and Lemma 2.17, we may assume that
R is complete and k is algebraically closed. Proposition 3.4 gives us one con-
tainment, which leaves us to show the reverse containment:

V ∗(M ⊗N) ⊆ Join(V ∗(M), V ∗(N)).

We will proceed by induction using induction on

α(M,N) = 2 depthR − depthM − depthN.

Assume for the moment that we have shown the base case, i.e. the theorem is
true when when α(M,N) = 0, which is precisely the case when both M and
N are maximal Cohen-Macaulay. Suppose that α(M,N) > 0. Then one of the
modules, say M , is not maximal Cohen-Macaulay, and

α(ΩM,N) = α(M,N)− 1.

Tensoring the short exact sequence 0 → ΩM → Rs →M → 0 with N yields

0 → ΩM ⊗N → Ns →M ⊗N → 0.

By induction, we have the following

V ∗(M ⊗N) ⊆ V ∗(N) ∪ V ∗(ΩM ⊗N)

⊆ V ∗(N) ∪ Join(V ∗(ΩM), V ∗(N)) = Join(V ∗(M), V ∗(N))

which yields the desired inclusion.
We now prove the base case. Assume that α(M,N) = 0 or, equivalently, that
M and N are maximal Cohen-Macaulay modules. First we show the theorem
when V ∗(M) is simply a single point, say q. Take any p /∈ Join(V ∗(M), V ∗(N)).
By Lemma 3.5, there exists maximal Cohen-Macaulay module L such that
V ∗(L) = p and V ∗(M ⊗ L) = Join(p, q) = Join(V ∗(M), V ∗(L)). However,
since p /∈ Join(V ∗(M), V ∗(N)), there are no lines containing p, q and a point
in V ∗(N). Therefore V ∗(M ⊗ L) = Join(p, q) and V ∗(N) are disjoint. Since
M,N,L are all maximal Cohen-Macaulay, this shows that Tor>0(M,L) = 0 and
also Tor>0(M ⊗ L,N) = 0. Now let A•, B•, C• be free resolutions of L,M,N
respectively. Then, (M ⊗ L) ⊗ C• is quasi-isomorphic to Tot•(A• ⊗ B• ⊗ C•)
which is quasi-isomorphic to A• ⊗ (M ⊗N). Therefore

Tori(L,M ⊗N) ∼= Tori(M ⊗ L,N) = 0

for all i ≫ 0. This implies that V ∗(M ⊗ N) does not contain p = V ∗(L),
yielding the desired containment.
Now we show the general case. Again, take a point p /∈ Join(V ∗(M), V ∗(N)).
By Theorem 2.15, there exists an L ∈ mod(R) with V ∗(L) = p. In the previous
paragraph, we have shown that V ∗(M ⊗ L) = Join(V ∗(M), V ∗(L)). Thus the
argument in the previous paragraph still applies, completing the proof.
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4 Corollaries of Theorem 3.1

We now state some interesting corollaries of Theorem 3.1. The following is
immediate.

Corollary 4.1. If N is not zero and Tor>0(M,N) = 0, then

V ∗(M) ⊆ V ∗(M ⊗N).

From this we derive a plethora of other corollaries.

Corollary 4.2. If N 6= 0 and Tor>0(M,N) = 0, then the following hold.

1. Ext≫0(M ⊗N,L) = 0 ⇒ Ext≫0(M,L) = 0

2. Ext≫0(L,M ⊗N) = 0 ⇒ Ext≫0(L,M) = 0

3. Tor≫0(M ⊗N,L) = 0 ⇒ Tor≫0(M,L) = 0

Proof. The previous corollary shows that V ∗(M ⊗ N,L) = ∅ implies that
V ∗(M,L) = ∅.

Corollary 4.3. Suppose Tor>0(M,N) = 0. If

SingR ⊆ suppN ∪ (specR\ suppM)

then M is in ThickM ⊗N . In particular, if R is an isolated singularity, then
Tor>0(M,N) = 0 implies that M,N ⊆ ThickM ⊗N when M,N 6= 0.

Proof. First note that Tor>0(Mp, Np) = 0 for every p ∈ specR. Let p ∈ SingR.
Then either p ∈ suppN or p /∈ suppM . Then Corollary 4.1 implies that
V ∗
Rp

(Mp) ⊆ V ∗
Rp

((M ⊗ N)p) for all p ∈ SingR. The result then follows by
Theorem 2.20.

The next results use the following lemma.

Lemma 4.4. Suppose R is a complete intersection ring and either M or N is
maximal Cohen-Macaualay. If Tor≫0(M,N) = 0, then Tor>0(M,N) = 0.

Proof. If not, then for every n ∈ N, there exists a cosyzygyM ′ of M such that
Torn(M

′, N) 6= 0 and Tor≫0(M
′, N) = 0. But this contradicts the fact that

complete intersections are AB; see [17, Corollary 3.4].

We may also use Theorem 3.1 to construct modules with linear cohomological
supports.

Corollary 4.5. Assume that k is algebraically closed and R is complete. Set
pi = (0, . . . , 1, . . . , 0) ∈ Pc−1

k be the point that is one in the ith position and
zeros elsewhere. Let L be the affine span of p1, . . . , pn. Set

Xi =
Ωd−1

Q/(fi)
k

(Ωd−1
Q/(fi)

k)(f1, . . . , f̂i, . . . , fc)
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where d = dimQ. Then X1 ⊗ · · · ⊗Xn is maximal Cohen-Macaulay and L =
V ∗(X1 ⊗ · · · ⊗Xn).

Note that by Proposition 2.2, after changing coordinate any linear space of
Pc−1
k is of the form of

L = V ∗(X1 ⊗ · · · ⊗Xn).

Proof. By Theorem 2.8, V ∗(Xi) = {pi}. We work by induction on n. When
n = 1, we are done. So assume the statement is true for n − 1. Let L′ be the
affine span of p1, . . . , pn−1. The induction hypothesis implies that V ∗(Xn−1) =
L′. Since Xn is maximal Cohen-Macaulay , Tor>0(X1⊗· · ·⊗Xn−1, Xn) = 0 by
Lemma 4.4. Then X1⊗ · · ·⊗Xn is maximal Cohen-Macaulay and by Theorem
3.1, we have

V ∗(X1 ⊗ · · · ⊗Xn) = Join(V ∗(X1 ⊗ · · · ⊗Xn−1), V
∗(Xn)) = Join(L′, pn) = L

proving the claim.

The main result of this paper also prevents certain tor modules from vanishing.

Corollary 4.6. SupposeM1, . . . ,Mc+1 are nonfree maximal Cohen-Macaulay
modules. Then for some i ∈ {1, . . . , c},

Torn(M1 ⊗ · · · ⊗Mi,Mi+1) 6= 0

for infinitely many n.

Proof. Proceeding by contradiction, suppose that

Tor≫0(M1 ⊗ · · · ⊗Mi,Mi+1) = 0

for each 1 ≤ i ≤ c. Inducting on i, we will show two statements: first that

V ∗(M1 ⊗ · · · ⊗Mi) = Join(V ∗(M1), . . . , V
∗(Mi))

for each i in {1, . . . , c}, and second that V ∗(M1 ⊗ . . . ⊗Mi) contains a linear
space of dimension i− 1. When i = 1, the statement is trivial. So suppose the
statement is true for i. Since R is a complete intersection and eachMi+1 is max-
imal Cohen-Macaulay, Lemma 4.4 implies that Tor>0(M1⊗· · ·⊗Mi,Mi+1) = 0.
By Theorem 3.1, it follows that

V ∗(M1 ⊗ · · · ⊗Mi ⊗Mi+1) = Join((V ∗(M1), . . . , V
∗(Mi)), V

∗(Mi+1))

= Join(V ∗(M1), . . . , V
∗(Mi+1))

Furthermore, let L be the dimension i linear space in V ∗(M1 ⊗ · · · ⊗ Mi)
guaranteed by the induction hypothesis. Take x ∈ V ∗(Mi+1) which exists
since Mi+1 is not free. Now x is not in L and so

Join(L, x) ⊆ V ∗(M1 ⊗ · · · ⊗Mi+1).

But Join(L, x) is a linear space of dimension i+ 1, proving the claim.
Now the contradiction is clear, for there is a c-dimensional linear space con-
tained in V ∗(M1 ⊗ · · · ⊗Mc+1) which is a closed subset of Pc−1.
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We now prove our second main result, Theorem 1.1 (2), which is the analogue
of Theorem 3.1 for Ext.

Theorem 4.7. Suppose R is a complete intersection ring and M,N ∈ mod(R).
If Ext>0(M,N) = 0, then V ∗(Hom(M,N)) = Join(V ∗(M), V ∗(N)).

Proof. Since Ext>0(M,N) = 0, [2, Lemma 2.5] implies that M is maximal
Cohen-Macaulay. By [16, Proposition 3.6], we have the following exact sequence

Tor2(TrM,N) → Hom(M,R)⊗N → Hom(M,N) → Tor1(TrM,N) → 0

where TrM is the Auslander-Bridger transpose of M . However, since R is
Gorenstein, TrM is an inverse syzygy of M , i.e. there exists an exact sequence

0 →M → F → G→ TrM → 0

with F,G free. So Tor≫0(TrM,N) = 0. Since TrM is again Cohen-Macaulay,
it follows from Lemma 4.4 that Tor>0(TrM,N) = 0. Therefore, the above
short exact sequence gives us the isomorphism M∗ ⊗N ∼= Hom(M,N).
Since V ∗(M) = V ∗(M∗), we know that Tor≫0(M

∗, N) = 0. Since M is max-
imal Cohen-Macaulay, Lemma 4.4 implies Tor>0(M

∗, N) = 0. Therefore, by
Theorem 3.1 we have

V ∗(Hom(M,N)) = V ∗(M∗ ⊗N)

= Join(V ∗(M∗), V ∗(N)) = Join(V ∗(M), V ∗(N))

This result provides an elementary proof of the following result.

Corollary 4.8. If Ext>0(M,N) = 0, then cxHom(M,N) = cxM + cxN .

Proof. It follows from the previous theorem, Theorem 2.26, and Proposition
2.13 that

cxHom(M,N) = dimJoin(V ∗(M), V ∗(N)) + 1

= dimV ∗(M) + dimV ∗(N) + 2 = cxM + cxN

5 Questions and examples

What happens to Theorem 3.1 if we remove the assumption that all the Tor
modules vanish? The following two examples show that in general neither
containment holds.
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Example 5.1. Let k be a field and set R = k[x, y]/(xy). Now the modules
M = R/(x+ y) and N = R/(x− y) have finite projective dimension. However,
we have

Join(V ∗(M), V ∗(N)) = ∅ + V ∗(M ⊗N) = P0
k̃

showing that V ∗(M ⊗N) is not always contained in Join(V ∗(M), V ∗(N), even
if Tor≫0(M,N) = 0.

Example 5.2. Set R = Q[a, b, c]/(a2 − b2, b3 − c3) and

M =coker

[

8ab
2
c
2
+ 4abc

3
+ 6b

2
c
3
+ 8ac

4
+ 6bc

4
+ c

5
3ab+ 4b

2
+ 7ac+ 7bc+ 4c

2

4ab
2
c
2
+ 6abc

3
+ 9b

2
c
3
+ ac

4
+ 9bc

4
+ 4c

5
4ab+ 5b

2
+ 3ac+ 5bc+ 5c

2

]

N =
R

(8ab2c+ 8b2c2 + 6ac3 + 5bc3 + c4, 3ab+ 2b2 + 3ac+ 2bc+ 9c2)
.

An easy computation in Macaulay2 shows that

cxM = 0 cxN = 2 cxM ⊗N = 1.

This shows that Join(V ∗(M), V ∗(N)) = V ∗(N) * V ∗(M ⊗N).

We now give an example where none of the modules involved have finite pro-
jective dimension.

Example 5.3. Set R = Q[a, b, c, d]/(a2 − b2, b2 − c2, d2) and define the ideal

I =

(

3

5
a+

8

7
b+

5

2
c, 2a+

1

2
b+ 3c, d

)

.

A simple computation in Macaulay2 shows that

V ∗(I) = V (3740x1 + 477x2)

V ∗(I ⊗ I) = V (0) = P2
Q̃

Where Q̃[x1, x2, x3] is the ring of cohomological operators over the algebraic
closure of Q. Since V ∗(I) is linear, we have

Join(V ∗(I), V ∗(I)) = V ∗(I) + V ∗(I ⊗ I).

Example 5.4. Let R = Q[a, b, c]/(a2, b2, c2) and I = (b) and J = (ab). An
easy computation yields V ∗(R/I) = V (x1, x3) and V ∗(R/J) = V (x1) where
Q̃[x1, x2, x3] is the ring of cohomological operators over the algebraic closure
of Q. Now because V ∗(R/J) is a linear space containing V ∗(R/I), we have

Join(V ∗(R/I), V ∗(R/J)) = V ∗(R/J) *

* V ∗(R/J ⊗R/I) = V ∗(R/(I + J)) = V ∗(I).
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The authors wondered if there was a relation between the asymptotic behaviour
of V ∗(Tori(M,N)) and Join(V ∗(M), V ∗(N)). Investigations using Macaulay2
compelled them to ask the following questions.

Question 1. Does
n
⋃

i=0

V ∗(Tori(M,N))

stabilize as n tends to infinity?

Question 2. For any modules M and N , do we have the following?

Join(V ∗(M), V ∗(N)) ⊆
∞
⋃

i=0

V ∗(Tori(M,N))

It seems that these statements cannot be made any stronger. For instance,
Example 5.3 shows that we cannot hope to replace the containment in Question
2 with equality. Similarly, the following example shows that V ∗(Tori(M,N))
need not stabelize.

Example 5.5. Let k be a field and set R = k[x, y]/(xy). It is easy to show that
Torodd(R/(x), R/(y)) = 0 and Toreven(R/(x), R/(y)) ∼= k. The projective
dimension of the former is obviously finite, and the projective dimension of the
latter is infinite. Thus V ∗(Tori(R/(x), R/(y))) cannot stabilize.

For closed sets U, V ∈ Pn
k , it is known that dimJoin(U, V ) ≤ dimU + dimV +

1. It is not known when precisely this equality is strict. This question is
particularly interesting when U = V and has been the subject of much research.
As the following shows, Question 1 and Question 2 are actually related to this
topic.

Proposition 5.6. Suppose Question 1 and Question 2 have positive answers.
Then for any modules M and N over a complete intersection ring,

dim Join(V ∗(M), V ∗(N)) ≤ max
i∈N

cxTori(M,N)− 1.

Proof. The result is obvious after recalling that dimV ∗(Tori(M,N)) =
cxTori(M,N)− 1.

The rest of this paper will discuss special cases where we know Question 1 and
2 to be true. First, we note that Question 1 has a positive answer when R is a
hypersurface, because over such rings Tori(M,N) is eventually periodic.

Proposition 5.7. Questions 1 and 2 have positive answers when
Tor≫0(M,N) = 0.
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Proof. The first question is trivially true in this case. We prove that the second
question is true using induction on the smallest n such that Tor>n(M,N) = 0.
When n = 0, the the statement follows from Theorem 3.1. So suppose n > 0.
Then we have Tor>n−1(ΩM,N) = 0 and so by induction, we have

Join(V ∗(M), V ∗(N)) = Join(V ∗(ΩM), V ∗(N))

⊆
∞
⋃

i=0

V ∗(Tori(ΩM,N))

=

∞
⋃

i=2

V ∗(Tori(M,N)) ∪ V ∗(ΩM ⊗N).

Note that M is not free and so ΩM is not zero. The short exact sequence

0 → ΩM → Rm →M → 0

yields
0 → Tor1(M,N) → ΩM ⊗N → Nm →M ⊗N → 0.

It follows that V ∗(ΩM ⊗ N) ⊆ V ∗(N) ∪ V ∗(M ⊗ N) ∪ V ∗(Tor1(M,N)) and
hence

Join(V ∗(M), V ∗(N)) ⊆
∞
⋃

i=0

V ∗(Tori(M,N)) ∪ V ∗(N).

Similarly, we have

Join(V ∗(M), V ∗(N)) ⊆
∞
⋃

i=0

V ∗(Tori(M,N)) ∪ V ∗(M)

but since V ∗(M) ∩ V ∗(N) = ∅, this shows the desired result.

It is interesting that the corresponding statement in Question 1 holds for Ext.
We thank Mark Walker for bringing the following argument to our attention.

Proposition 5.8. Let (R,m, k) be a local complete intersection of codimension
c and M and N finitely generated R modules. Fix m ∈ N. There exists a ν ∈ N
such that for any n ≥ ν

V ∗(Extn(N,M)) ∪ V ∗(Extn+2m(N,M)) ∪ · · · ∪ V ∗( Extn+2mc(N,M))

=

∞
⋃

i=ν

V ∗(Exti(M,N)).

In particular, there exists an l ∈ N such that

∞
⋃

i=0

V ∗(Exti(M,N)) =
l
⋃

i=0

V ∗(Exti(M,N)).
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When m = 1, the first statement shows that the union of c terms of the
sequences V ∗(Ext2i(M,N)) and V ∗(Ext2i+1(M,N)) stabilises.

Proof. Let S = R[χ1, . . . , χc] be the ring of cohomological operators. Recall
that Ext(M,N) is a graded S-module and that each χi has degree 2. Take any
m ∈ N, and let

K• = K•(χ
m
1 , . . . , χ

m
c ; Ext(M,N))

be the Koszul complex of powers of the cohomological operators on the S-
module Ext(M,N). Note that this is a complex of graded S-modules. There-
fore, in degree n, we get a complex of R-modules

0 → Extn+(c+1)m(M,N) →Extn+(c)m(M,N)
a1

→ Extn+(c−1)m(M,N)
a2

→ · · · → Extn+m(M,N)
ac−1

→ Extn(M,N) → 0

where ai =
(

c
i

)

.
Since Ext(M,N) is finitely generated over R[χ1, . . . , χn], we know that the
homology of K• is annihilated by some power of the ideal (χ1, . . . , χc), and
thus is concentrated in low degrees. In particular, the complex K• is exact in
all degrees larger than some constant ν ∈ N. Since the differentials of K• have
degree 2m, this means that for any n ≥ ν, the above complex is exact.
We can conclude two statements:

V ∗(Extn+(c+1)m(M,N)) ⊆
c
⋃

i=0

V ∗(Extn+im(M,N))

V ∗(Extn(M,N)) ⊆
c+1
⋃

i=1

V ∗(Extn+im(M,N)).

Working inductively, and shifting n, we can use these two statements to prove
the first claim. The second claim follows by taking l = ν + n+ (c+ 1)m.

The idea of taking the Koszul complex over the ring of cohomological operators
originates in [7]

Remark 5.9. The same argument works in a more general situation. Let R
be Noetherian ring which is not necessarily commutative or local. Suppose a
Noetherian graded commutative ring S concentrated in non-negative degrees
acts on D(R) (see [8] for the relevant definitions and examples). Suppose fur-
ther that for complexesM,N , Ext(M,N) is finitely generated as an S module.
Letting x1, . . . , xc be a generating set of ideal S>0 ⊆ S, the Koszul complex

K•(x
m
1 , . . . , x

m
c ; Ext(M,N))

yields a similar conclusion regarding the objects suppS Ext(Exti(M,N), L)
where L is an object in D(R).
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Under certain conditions, we prove a dual version of Proposition 5.8.

Corollary 5.10. Let (R,m, k) be a local complete intersection of codimension
c and M and N finitely generated R-modules. Fix m ∈ N. If Tori(M,N)
eventually has finite length, then there exists a ν ∈ N such that for any n ≥ ν

V ∗(Torn(N,M)) ∪ V ∗(Torn+2m(N,M)) ∪ · · · ∪ V ∗( Torn+2mc(N,M))

=

∞
⋃

i=ν

V ∗(Tori(M,N)).

In particular, there exists an l ∈ N such that

∞
⋃

i=0

V ∗(Tori(M,N)) =
l
⋃

i=0

V ∗(Tori(M,N)).

This gives an affirmative answer to Question 1 in the isolated singularity case.

Proof. By replacingM and N with high enough syzygies, we may assume that
M and N are maximal Cohen-Macaulay. We claim two things. First, we claim
that Exti(M,N∗) also eventually has finite length where N∗ = Hom(N,R).
Second, we claim that eventually

Extd(Exti(M,N∗), R) ∼= Tori+d(M,N).

By [6, Theorem 5.6], it follows that eventually

V ∗(Exti(M,N∗)) = V ∗(Extd(Exti(M,N∗), R)),

and the corollary is now clear.

To prove the first claim, note that Tor
Rp

i (Mp, Np) ∼= Tori(M,N)p eventually
vanishes for every p ∈ specR\m. Since Rp is also complete intersection, [17,
Theorem 2.1, Proposition 4.3] and implies that ExtiRp

(Mp, N
∗
p ) vanishes for all

i > dimRp. Therefore, Ext
i(M,N∗) is eventually finite length.

Now we prove the second claim. Let F• and G• be resolutions of M and N
respectively, and let I• be an injective resolution of R. We have the following
quasi-isomorphism

F• ⊗G•
∼= Hom(Hom(F• ⊗G•, R), R) ≃ Hom(Hom(F•,Hom(G•, R)), I•)

≃ Hom(Hom(F•, N
∗), I•)

where the second to last quasi-isomorphism is because R is Gorenstein and N
is maximal Cohen-Macaulay. Letting

E0
i,j = Hom(Hom(Fi, N

∗), I−j)

we get a spectral sequence converging to Tori−j(M,N). Note that since I• is
a bounded complex, the sequence does indeed converge. Furthermore, we have

E2
i,j = Ext−j(Exti(M,N∗), R).
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However, since eventually Exti(M,N∗) has finite length, for i ≫ 0, E2
i,j = 0

for all j 6= −d. Furthermore, since E0
i,j = 0 for all j not in [−d, 0], it follows

that eventually

Tori+d(M,N) = E2
i,−d = Extd(Exti(M,N∗), R).
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