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1 Introduction

Let G ⊂ GLn(C) be a finite complex reflection group and denote by A(G)
the union of all the reflecting hyperplerplanes of G, i.e. the hyperplanes in Cn

fixed by some g ∈ G, g 6= Id. For a general reference on complex reflection
groups, see [18] and [23]. Since A(G) is a central hyperplane arrangement, it
has a defining equation f = 0 in Cn, where f is a homogeneous polynomial of
some degree d. One can associate to this setting the Milnor fiber F (G) of the
arrangement A(G). This is a smooth hypersurface in Cn, defined by f = 1,
and it is endowed with a monodromy morphism h : F (G) → F (G), given by
h(x1, ..., xn) = exp(2πi/d)·(x1, ..., xn), see [1, 2, 3, 4, 8, 10, 11, 17, 21, 26, 27, 29]

1Partially supported by Institut Universitaire de France
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2 A. Dimca and G. Sticlaru

for related results and to get a feeling of the problems in this very active area.
The study of the induced monodromy operator

h1(G) : H1(F (G),C) → H1(F (G),C)

is the object of the papers [22] and [9], while in the special case of real reflection
groups G, there are some additional results on the higher degree monodromy
operators

hj(G) : Hj(F (G),C) → Hj(F (G),C)

where j > 1, see [26, 27, 11]. In general, not only these monodromy operators
are not known, but even the Betti numbers bj(F (G)) are known only in a
limited number of cases.
The complex reflection groups have been classified by Shephard and Todd, see
[28], who showed that there is an infinite series G(m, p, n) of such groups, plus
34 exceptional cases. The exceptional complex reflection groups in this classi-
fication are usually denoted by Gj , with 4 ≤ j ≤ 37. Consider the following
polynomial of degree 60 in S = C[x, y, z, t]

f = xyzt(x4 − y4)(x4 − z4)(x4 − t4)(y4 − z4)(y4 − t4)(z4 − t4)· (1)

((x− y)2 − (z+ t)2)((x− y)2 − (z− t)2)((x+ y)2 − (z+ t)2)((x+ y)2− (z− t)2)·

((x− y)2 +(z+ t)2)((x− y)2 +(z− t)2)((x+ y)2 +(z+ t)2)((x+ y)2+(z− t)2)·

((x− z)2+(y+ t)2)((x− z)2+(y− t)2)((x+ z)2+(y+ t)2)((x+ z)2+(y− t)2)·

((x− t)2 +(y+ z)2)((x− t)2 +(y− z)2)((x+ t)2 +(y+ z)2)((x+ t)2 +(y− z)2).

Then the reflection hyperplane arrangement A(G31) consists of 60 hyperplanes
in C4 and is given by f = 0, see [16]. In this note we prove the following result.

Theorem 1.1 The monodromy operator

h1 : H1(F (G31),C) → H1(F (G31),C)

for the exceptional complex reflection group G31 is the identity. In particular,
the first Betti number b1(F (G31)) is 59.

The description of the monodromy operator h1 for all the other complex re-
flection groups is given in [9], using a method which cannot be applied to the
exceptional group G = G31 as explained in [9, Remark 6.2]. The proof for the
case G = G31 involves a completely different approach, and this explains why
it is written down here as a separate note. Indeed, this proof is close in spirit to
our paper [14], with computer aided computations playing a key role at several
stages. Moreover, the rank of the group G31 being n = 4, we have to deal with
higher dimensional singularities and hence with a more complicated spectral
sequence than in [14], where the case of plane curves corresponding to n = 3 is
discussed, see also Remark 3.1 (i).
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Monodromy of the exceptional arrangement of type G31 3

In the second section we recall a spectral sequence approach for the computa-
tion of the monodromy of the Milnor fibers of homogeneous polynomials with
arbitrary singularities introduced in [6], and developed in [7, Chapter 6], [14],
with several key additions in the joint work of Morihiko Saito and the first au-
thor, see [13]. For simplicity, we describe the results only in the case n = 4, the
only case needed in the sequel. However, the approach presented here is very
general, and can be applied at least to all free hyperplane arrangements to get
valuable information on their first Milnor cohomology. On the other hand, the
success of our method is based on the special properties enjoyed by the mixed
Hodge structure on the first cohomology group H1(F (G),Q), see the proof of
Theorem 2.1, and hence this simple approach does not give complete results
on the higher cohomology groups Hj(F (G),Q), where j > 1.
In the third section we recall basic facts on the exceptional complex reflection
group G31, in particular the construction of the basic invariants going back to
Maschke [20] and the construction of a basis of Jacobian syzygies as described
by Orlik and Terao in [23, Appendix B, pp. 280-281 and p. 285].
In the fourth section we describe the algorithm used to determine the mon-
odromy operator h1 : H1(F (G31),C) → H1(F (G31),C). For this we need a
careful study of the second cohomology group of the Koszul complex of the
partial derivatives fx, fy, fz and ft of the polynomial f of degree 60 given in 1.
At several points, this study is done by using the software SINGULAR [5]. To
get an idea why computations via SINGULAR are necessary, let us remark that
each of the sequences of three homogeneous polynomials in S which are shown
to be regular sequences in Proposition 4.1 consists of polynomials of degrees
28, 12 and 16 respectively, and having 136, 24 and respectively 45 monomials
occurring with non zero (and, in fact, quite complicated rational) coefficients.
And the final step in the proof is Lemma 4.8 where a homogeneous system
of 19600 linear equations in 1424 indeterminates is shown to admit only the
trivial solution. The corresponding codes are available at
http://math.unice.fr/~dimca/singular.html.
We would like to thank the referee for his useful suggestions.

2 A spectral sequence for the Milnor monodromy

Let S = C[x, y, z, t] and let f ∈ S be a homogeneous polynomial of degree d
without multiple factors. Consider the global Milnor fiber F of the polynomial
f defined by f(x, y, z, t) = 1 in C4, with monodromy action h : F → F ,

h(x, y, z, t) = exp(2πi/d) · (x, y, z, t).

Let Ωj denote the graded S-module of (polynomial) differential j-forms on C4,
for 0 ≤ j ≤ 4. The complex K∗

f = (Ω∗, df∧) is nothing else but the Koszul
complex in S of the partial derivatives fx, fy, fz and ft of the polynomial
f . The general theory says that there is a spectral sequence E∗(f), whose
first term E1(f) is computable in terms of the homogeneous components of
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4 A. Dimca and G. Sticlaru

the cohomology of the Koszul complex K∗
f and whose limit E∞(f) gives us the

action of monodromy operator on the graded pieces ofH∗(F,C) with respect to
a certain pole order filtration P , see for details [6], [7, Chapter 6], [13, 24, 25].
More precisely, for any integer k ∈ [1, d], there is a spectral sequence

Es,t
1 (f)k = Hs+t+1(K∗

f )td+k, (2)

converging to
Es,t

∞ (f)k = GrsPH
s+t(F,C)λ, (3)

where λ = exp(−2πik/d) and Hs+t(F,C)λ denotes the associated eigenspace of
the monodromy operator. Moreover, the differential d1 in this spectral sequence
is induced by the exterior differentiation of forms, i.e. d1 : [ω] 7→ [d(ω)]. We
have the following.

Theorem 2.1 Let D : f = 0 be a reduced degree d surface in P3, and let

λ = exp(−2πik/d) 6= 1,

with k ∈ (0, d) an integer. Then H1(F,C)λ = 0 if and only if

E1,0
2 (f)k = E1,0

2 (f)k′ = 0,

where k′ = d− k.

Proof. Note that on the cohomology group H1(F,C)6=1, which is by defini-
tion the direct sum of eigenspaces of h1 corresponding to eigenvalues 6= 1, one
has P 2 = 0, F 1 ⊂ P 1 and F 0 = P 0 = H1(F,C)6=1, where F

1 denotes the Hodge
filtration, see [13]. Let now λ be an eigenvalue of the monodromy operator.
The fact that H1(F,C)6=1 is a pure Hodge structure of weight 1, see [3], [12],
implies that either H1,0(F,C)λ 6= 0 or H0,1(F,C)λ 6= 0. In the first case we get
Gr1PH

1(F,C)λ 6= 0, while in the second case we get H1,0(F,C)λ 6= 0 and hence
Gr1PH

1(F,C)λ 6= 0. The result follows now from the fact that H1(K∗
f ) = 0

since f is a reduced polynomial. Indeed, it is known that the smallest j with
Hj(K∗

f ) 6= 0 is precisely the codimension of the singular locus Dsing of D in

P3, see [15, Theorems A.2.38 and A.2.48]. This implies that Es,t
1 (f)k = 0 for

s+ t = 0, and hence
E1,0

2 (f)k = E1,0
∞ (f)k

for any k ∈ (0, d). This ends the proof of this result.

To check the condition E1,0
2 (f)k = 0 in practice, we proceed as follows. Con-

sider a 2-form
ω =

∑

1≤i<j≤4

aijdxi ∧ dxj ∈ Ω2, (4)

where aij ∈ Sk−2 and we use the convention x = x1, y = x2, z = x3, t = x4.
We have the following two obvious results.

Documenta Mathematica 23 (2018) 1–14



Monodromy of the exceptional arrangement of type G31 5

Lemma 2.2 A differential 2-form ω ∈ Ω2 given by the equation (4) satisfies
df ∧ ω = 0 if and only if the following four equations in S hold.

(R1) a34fy − a24fz + a23ft = 0

(R2) a34fx − a14fz + a13ft = 0

(R3) a24fx − a14fy + a12ft = 0

(R4) a23fx − a13fy + a12fz = 0

Lemma 2.3 A differential 2-form ω ∈ Ω2 given by the equation (4) satisfies
dω = 0 if and only if the following four equations in S hold.

(E1) a23t − a24z + a34y = 0.

(E2) a13t − a14z + a34x
= 0.

(E3) a12t
− a14y + a24x = 0.

(E4) a12z − a13y + a23x = 0.

3 On the exceptional complex reflection group G31

The exceptional complex reflection group G31 has order 46080, and rank 4,
hence it acts naturally on C4. Its basic invariants f1, f2, f3 and f4, of degree
8, 12, 20 and 24 respectively, can be constructed as follows, see [20]. Let

a = x4+y4+z4+t4, b = x2y2+z2t2, c = x2z2+y2t2, d = x2t2+y2z2, e = xyzt.
(5)

We define

A1 = a+ 6(−b− c− d), A2 = a+ 6(−b+ c+ d), A3 = a+ 6(b− c+ d), (6)

A4 = a+ 6(b+ c− d), A5 = −2a− 24e, A6 = −2a+ 24e.

Let si be the i-th symmetric function in the variables Ai, such that

∏

i=1,6

(u+Ai) =
∑

j=0,6

sju
6−j ,

in the polynomial ring S[u], with s0 = 1. Define the following homogeneous
polynomials in S

F8 = −
1

6
s2, F12 = −

1

4
s3, F20 =

1

12
s5, (7)

and note that s4 = 9F 2
8 . Define new polynomials as in [23], p. 285, by the

following

f1 = F8, f2 = F12, f3 = F20, f4 =
1

265531392
Hess(f1), (8)
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6 A. Dimca and G. Sticlaru

where Hess(f1) is the determinant of the Hessian matrix H(f1) of f1.
Moreover, as any reflection hyperplane arrangement, A(G31) is a free arrange-
ment, see [23, Theorem 6.60], [30]. This means that the graded S-module of
Jacobian syzygies for f , namely

AR(f) = {r = (r1, r2, r3, r4) ∈ S4 : r1fx + r2fy + r3fz + r4ft = 0},

which is the same as the S-module of derivations killing f , is free of rank 3.
A basis for this module can be computed starting from the basic invariants
f1, f2, f3, f4 as follows, see [23, Theorem 6.53 and Appendix B, pp. 280-281
and p. 285]. Let A(f1) be the adjoint of the Hessian matrix H(f1), namely a
matrix such that

A(f1)H(f1) = H(f1)A(f1) = Hess(f1)I4,

with I4 the unit matrix of order 4. This matrix is, up to the factor Hess(f1),
the inverse matrix of H(f1). Let J(f) be the 4 × 4 matrix having on the j-th
column the first order partial derivatives of fj with respect to x, y, z and t.
Define a new 4× 4 matrix C, as described in [23, Appendix B, p. 284] for the
last six exceptional groups. For the group G31, the matrix C has the first, the
third and the fourth rows the same as the unit matrix I4, and the second row
is given by

0, f4, −
1

5
f1,−

1

1620
f2, (9)

see [23, Appendix B, p. 285]. Then we set B = A(f1)J(f)C and it follows
from [23, Theorem 6.53] that the first column in B is a multiple of the Euler
derivation. Let b11 be the entry of this matrix B situated on the first row
and the first column, set g = b11/x and let D = g−1B, a new matrix with
entries in the polynomial ring S. The first column D[1] in the matrix D, which
is a normalized version of B, is now given by x, y, z, t, and the corresponding
derivation of the polynomial ring S, denoted again by D[1], is precisely the
Euler derivation. In particular, one has D[1]f = 60f . Note that the other
columns D[j] of the matrix D, for j = 2, 3, 4, satisfy similar relations D[j]f =
gjf for some homogeneous polynomials gj ∈ S, for j = 2, 3, 4. Define a new
matrix E, whose columns E[j] are given by the following relations.

E[j] = D[j]−
gj
60

D[1], (10)

for j = 1, 2, 3, 4, where we set g1 = 0. It follows that E[j]f = 0 for j = 2, 3, 4,
hence we have obtained 3 syzygies for f . Moreover, a direct computation using
Singular shows that

detE = −486f (11)

and hence, in view of Saito’s Criterion [23, Theorem 4.19], f is free with ex-
ponents 1, 13, 17, 29. In other words, the columns E[j] for j = 2, 3, 4 give a
basis for the free S-module AR(f). Note that degE[2] = 29, degE[3] = 13 and
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Monodromy of the exceptional arrangement of type G31 7

degE[4] = 17. The set of these degrees, to which we must add 1, the degree
of the Euler derivation, correspond to the coexponents of G31 as listed in [23,
Table B.1., p. 287]. The entries of the matix E are too complicated to display
here, see Remark 4.2.
Finally we discuss the monodromy operator

h1 : H1(F (G31),C) → H1(F (G31),C).

To compute this operator, we can take a general hyperplane section V (G31) :
g = 0 of the projective surface D : f = 0. Indeed, the first Milnor monodromy
for g and f coincide, see [7, Theorem 4.1.24]. Table C.12 in [23] shows that
the corresponding curve V (G31) in P2 has degree d = 60, 360 double points,
320 triple points and 30 points of multiplicity 6, corresponding to the isotropy
group G(4, 2, 2). It follows that h1 can have only eigenvalues of order 1, 2, 3
and 6, since any eigenvalue of h1 has to be a root of at least one of the local
Alexander polynomials associated to the singularities of V (G31), see [19], [7,
Corollary 6.3.29]. The eigenvalues of order 2 and 3 are excluded by the results
in [22]. To prove Theorem 1.1, it remains to exclude the eigenvalues of order

6, and to do this, we apply Theorem 2.1, for d = 60 and k = 10 or k = 50.
Note that for k = 10 we have E1,0

1 (f)10 = H2(K∗
f )10 = 0. Indeed, by the above

computations one has AR(f)8 = 0 as all the generating syzygies E[j] have
degree ≥ 13, and then Lemma 2.2 implies that H2(K∗

f )10 = 0. Therefore it

remains to show that E1,0
2 (f)50 = 0, and this is done in the next section.

Remark 3.1 (i) In principle one can try to compute h1 by applying the ap-
proach described in [14] to the curve V (G31) : g = 0 defined above. However,
this curve is no longer free, and it seems to us better from the computational
point of view to work with the free surface D, having non isolated singulari-
ties, than to work with the non free curve V (G31) with isolated singularities.
This is due to the existence of the nice procedure to compute a basis for AR(f)
described above.
(ii) A computation of h1 using the curve V (G31) : g = 0 defined above can
be found in [1]. The main techniques there are some subtle vanishing results
for the cohomology of perverse sheaves on affine varieties, coupled again with
computer aided computation via Singular needed to show that some surfaces are
affine.
(iii) One can avoid using the results in [22] and exclude the eigenvalues of or-
der 2 and 3 by the same approach as we use in the case of eigenvalues of order
6. These computations correspond to k ∈ {20, 30, 40}. The cases k ∈ {20, 30}
are trivial, since by an obvious modification of Theorem 4.7 below, one has
H2(K∗

f )k = 0 in such situations. The case k = 40 can be settled by fol-
lowing the algorithm described below: with the notation of Theorem 4.7 we
have in this case degA′

1 = 8 and A′
2 = A′

3 = 0, i.e. much simpler computa-
tions give the result. The corresponding Singular code g31cubic is available at
http: // math.unice.fr/ ~ dimca/singular.html .
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4 The algorithm

In this section we assume that the coefficients aij of the differential 2-form
ω ∈ Ω2 given by the equation (4) are homogeneous polynomials in S of degree
48, which corresponds to degω = 50.
We denote the columns of the matrix E above as follows: E[2] =
(m1, n1, p1, q1), E[3] = (m2, n2, p2, q2), E[4] = (m3, n3, p3, q3). All the poly-
nomials mi are divisible by x (since fy, fz and ft are clearly divisible by x and
fx is not) and we set mi = xm′

i for i = 1, 2, 3. Similarly one has ni = yn′
i,

pi = zp′i and qi = tq′i for i = 1, 2, 3.

Proposition 4.1 Each of the four sequences (m′
1,m

′
2,m

′
3), (n′

1, n
′
2, n

′
3),

(p′1, p
′
2, p

′
3) and (q′1, q

′
2, q

′
3) is a regular sequence in S.

Proof. To show that (m′
1,m

′
2,m

′
3) is a regular sequence, it is enough to

check that the dimension of the corresponding zero set in C4 is the expected
one, i.e.

dimV (m′
1,m

′
2,m

′
3) = 1.

And this can be checked by Singular.

Remark 4.2 The four sequences (m′
1,m

′
2,m

′
3), (n′

1, n
′
2, n

′
3), (p′1, p

′
2, p

′
3) and

(q′1, q
′
2, q

′
3) of polynomials in S are listed in the print out of a Singular code

here.
http: // math.unice.fr/ ~ dimca/singular.html

Note that the relation R1 in Lemma 2.2 is a syzygy in AR(f) having the first
component zero. Hence there are polynomials P,Q,R in S such that

R1 = PE[2] +QE[3] +RE[4]

and Pm1 +Qm2 +Rm3 = 0. By dividing the last relation by x, we get

Pm′
1 +Qm′

2 +Rm′
3 = 0. (12)

By Proposition 4.1, it follows that (P,Q,R) must be an S-linear combination of
Koszul relations for the regular sequence (m′

1,m
′
2,m

′
3). Consider the following

syzygies in AR(f).

T1 = m′
2E[4]−m′

3E[3], T2 = m′
1E[4]−m′

3E[2], T3 = m′
1E[3]−m′

2E[2]. (13)

More precisely, one has

T1 = (0, y(m′
2n

′
3 −m′

3n
′
2), z(m

′
2p

′
3 −m′

3p
′
2), t(m

′
2q

′
3 −m′

3q
′
2))

and similar formulas for T2 and T3. One has deg T1 = 29, deg T2 = 45, degT3 =
41. It follows that there are homogeneous polynomials A1, A2, A3 in S with
degA1 = 19, degA2 = 3, degA3 = 7 such that

R1 = A1T1 +A2T2 +A3T3. (14)
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Monodromy of the exceptional arrangement of type G31 9

To express R2 as a combination of simpler syzygies, we have to consider for the
same reason as above the syzygies in AR(f) given by

U1 = n′
2E[4]− n′

3E[3], U2 = n′
1E[4]− n′

3E[2], U3 = n′
1E[3]− n′

2E[2]. (15)

More precisely, one has

U1 = (−x(m′
2n

′
3 −m′

3n
′
2), 0, z(n

′
2p

′
3 − n′

3p
′
2), t(n

′
2q

′
3 − n′

3q
′
2))

and similar formulas for U2 and U3. One has degU1 = 29, degU2 = 45,
degU3 = 41. It follows that there are homogeneous polynomials B1, B2, B3

with degAj = degBj , such that

R2 = B1U1 +B2U2 +B3U3. (16)

However, the coefficient of fy in the relation R1 coincides with the coefficient
of fx in the relation R2, hence we have

yA1(m
′
2n

′
3 −m′

3n
′
2) + yA2(m

′
1n

′
3 −m′

3n
′
1) + yA3(m

′
1n

′
2 −m′

2n
′
1) =

= −xB1(m
′
2n

′
3 −m′

3n
′
2)− xB2(m

′
1n

′
3 −m′

3n
′
1)− xB3(m

′
1n

′
2 −m′

2n
′
1).

In other words,

(yA1 + xB1)(m
′
2n

′
3 −m′

3n
′
2) + (yA2 + xB2)(m

′
1n

′
3 −m′

3n
′
1)+ (17)

+(yA3 + xB3)(m
′
1n

′
2 −m′

2n
′
1) = 0,

i.e. a syzygy for the 2-minors MNij in the 2 × 3 matrix MN having the first
row (m′

1,m
′
2,m

′
3) and the second row (n′

1, n
′
2, n

′
3).

Remark 4.3 The relation (R1) implies that a34 is divisible by g = xy(x4−y4),
since both fz and ft are divisible by g, but not fx or fy as they have no multiple
factors. A direct computation by Singular shows that all the minors MNij are
also divisible by g0 = x4 − y4. Therefore, when we want to determine a34 as
an S-linear combination of MNij, we can simplify by g0.

By the above remark, we can consider new polynomials MN ′
ij = (m′

in
′
j −

m′
jn

′
i)/g0 for 1 ≤ i < j ≤ 3 and hence the equation (17) can be written as

(yA1 + xB1)MN ′
23 + (yA2 + xB2)MN ′

13 + (yA3 + xB3)MN ′
12 = 0. (18)

Lemma 4.4 The minimal degree syzygy r1MN ′
23+ r2MN ′

13+ r3MN ′
12 = 0 has

multidegree (deg r1, deg r2, deg r3) = (24, 8, 12).

Proof. Direct computation by Singular.
It follows that yA1+xB1 = yA2+xB2 = yA3+xB3 = 0, in other words, there
are homogeneous polynomials A′

1, A
′
2, A

′
3 such that Ai = xA′

i and Bi = −yA′
i
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for i = 1, 2, 3. Consider now the third syzygy R3, having the third coordinate
trivial. We define new syzygies in AR(f) by

V1 = p′2E[4]− p′3E[3], V2 = p′1E[4]− p′3E[2], V3 = p′1E[3]− p′2E[2]. (19)

More precisely, one has

V1 = (−x(m′
2p

′
3 −m′

3p
′
2),−y(n′

2p
′
3 − n′

3p
′
2), 0, t(p

′
2q

′
3 − p′3q

′
2))

and similar formulas for V2 and V3. One has deg V1 = 29, deg V2 = 45, deg V3 =
41. It follows that there are homogeneous polynomials C1, C2, C3 with degAj =
degCj , such that

R3 = C1V1 + C2V2 + C3V3. (20)

However, the coefficient of fz in R1 coincides with the opposite of the coefficient
of fx in R3, hence we have

zA1(m
′
2p

′
3 −m′

3p
′
2) + zA2(m

′
1p

′
3 −m′

3p
′
1) + zA3(m

′
1p

′
2 −m′

2p
′
1) =

xC1(m
′
2p

′
3 −m′

3p
′
2) + xC2(m

′
1p

′
3 −m′

3p
′
1) + xC3(m

′
1p

′
2 −m′

2p
′
1).

In other words,

(zA1 − xC1)(m
′
2p

′
3 −m′

3p
′
2) + (zA2 − xC2)(m

′
1p

′
3 −m′

3p
′
1)+ (21)

+(zA3 − xC3)(m
′
1p

′
2 −m′

2p
′
1) = 0,

i.e. a syzygy for the 2-minors MPij in the matrix MP having the first row
(m′

1,m
′
2,m

′
3) and the second row (p′1, p

′
2, p

′
3).

Lemma 4.5 1. The minors (MP23,MP13,MP12) are all divisible by x4−z4.

2. Set MP ′
ij = MPij/(x

4 − z4). Then the minimal degree syzygy involving
(MP ′

23,MP ′
13,MP ′

12) has multidegree (24, 8, 12).

Proof. Direct computation by Singular.
It follows as above that one has Ci = zA′

i for i = 1, 2, 3. Consider now the last
syzygy R4, having the fourth coordinate trivial. We define the syzygies

W1 = q′2E[4]− q′3E[3], W2 = q′1E[4]− q′3E[2], W3 = q′1E[3]− q′2E[2]. (22)

More precisely, one has

W1 = (−x(m′
2q

′
3 −m′

3q
′
2),−y(n′

2q
′
3 − n′

3q
′
2),−z(p′2q

′
3 − p′3q

′
2), 0)

and similar formulas for W2 and W3. One has degW1 = 29, degW2 = 45,
degW3 = 41. It follows that there are homogeneous polynomials D1, D2, D3

with degAj = degDj , such that

R4 = D1W1 +D2W2 +D3W3. (23)
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Moreover, the coefficient of ft in R1 coincides with the coefficient of fx in R3,
hence we have

tA1(m
′
2q

′
3 −m′

3q
′
2) + tA2(m

′
1q

′
3 −m′

3q
′
1) + tA3(m

′
1q

′
2 −m′

2q
′
1) =

−xD1(m
′
2q

′
3 −m′

3q
′
2)− xD2(m

′
1q

′
3 −m′

3q
′
1)− xD3(m

′
1q

′
2 −m′

2q
′
1).

In other words,

(tA1 + xD1)(m
′
2q

′
3 −m′

3q
′
2) + (tA2 + xD2)(m

′
1q

′
3 −m′

3q
′
1)+ (24)

+(tA3 + xD3)(m
′
1q

′
2 −m′

2q
′
1) = 0,

i.e. a syzygy for the 2-minors MQij in the matrix MQ having the first row
(m′

1,m
′
2,m

′
3) and the second row (q′1, q

′
2, q

′
3).

Lemma 4.6 1. The minors (MQ23,MQ13,MQ12) are all divisible by the
polynomial x4 − t4.

2. Set MQ′
ij = MQij/(x

4 − t4). Then the minimal degree syzygy involving
(MQ′

23,MQ′
13,MQ′

12) has multidegree (24, 8, 12).

Proof. Direct computation by Singular.
It follows as above that one has Di = −tA′

i for i = 1, 2, 3. This proves the
following result.

Theorem 4.7 A differential 2-form ω of degree 50 given by the equation (4)
satisfies df ∧ω = 0 if and only if there are homogeneous polynomials A′

1 ∈ S18,
A′

2 ∈ S2 and A′
3 ∈ S6 such that

R1 = x(A′
1T1 +A′

2T2 +A′
3T3), R2 = −y(A′

1U1 +A′
2U2 +A′

3U3),

R3 = z(A′
1V1 +A′

2V2 +A′
3V3), R4 = −t(A′

1W1 +A′
2W2 +A′

3W3).

Proof. One should check that any aij which occurs in two distinct relations
Rk and Rk′ gets the same values by this construction. As an illustration, let’s
check this for a12. In the syzygy R3, the polynomial a12 occurs on the last
coordinate, hence its value is

zA′
1[t(p

′
2q

′
3 − p′3q

′
2)] + zA′

2[t(p
′
1q

′
3 − p′3q

′
1)] + zA′

3[−t(p′2q
′
1 − p′1q

′
2)].

In the syzygy R4, the polynomial a12 occurs on the third coordinate, hence its
value is

−tA′
1[−z(p′2q

′
3 − p′3q

′
2)]− tA′

2[−z(p′1q
′
3 − p′3q

′
1)]− tA′

3[z(p
′
2q

′
1 − p′1q

′
2)],

hence exactly the same value as above. This proves our claim.
The above formulas show that we have the equalities

i) a12 = zt(A′
1PQ′

23 +A′
2PQ′

13 +A′
3PQ′

12),
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ii) a23 = xt(A′
1MQ′

23 +A′
2MQ′

13 +A′
3MQ′

12),

iii) a13 = −yt(A′
1NQ′

23 +A′
2NQ′

13 +A′
3NQ′

12).

The polynomials A′
i are unique, since the minimal degree syzygy involving say

(PQ′
23, PQ′

13, PQ′
12) has multidegree (24, 8, 12) by Lemma 4.6. It follows that

dimH2(K∗
f )50 = dimS18 + dimS2 + dimS6 = 1330 + 10 + 84 = 1424.

A differential form ω ∈ H2(K∗
f )50 will survive to give an element in E1,0

2 (f)50
if and only if it satisfies the equations (Ei) for i = 1, 2, 3, 4 in Lemma 2.3. Any
such equation (Ei) is in fact a system of 19600 = dimS47 linear equations in
the 1424 indeterminates given by the coefficients of the polynomials A′

1, A
′
2

and A′
3. Our proof is completed by the following result.

Lemma 4.8 The system of linear equations corresponding to the equation (E4)
in Lemma 2.3 has only the trivial solution. In particular one has E1,0

2 (f)50 = 0.

Proof. Direct, rather lengthy, computation by Singular. The corresponding
code g31 is available at http://math.unice.fr/~dimca/singular.html
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