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Abstract. Recently the first author studied multi-gradings for gen-
eralised cluster categories, these being 2-Calabi–Yau triangulated cat-
egories with a choice of cluster-tilting object. The grading on the
category corresponds to a grading on the cluster algebra without co-
efficients categorified by the cluster category and hence knowledge of
one of these structures can help us study the other.

In this work, we extend the above to certain Frobenius categories that
categorify cluster algebras with coefficients. We interpret the grading
K-theoretically and prove similar results to the triangulated case, in
particular obtaining that degrees are additive on exact sequences.

We show that the categories of Buan, Iyama, Reiten and Scott, some
of which were used by Geiß, Leclerc and Schröer to categorify cells in
partial flag varieties, and those of Jensen, King and Su, categorifying
Grassmannians, are examples of graded Frobenius cluster categories.
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1 Introduction

Gradings for cluster algebras have been introduced in various ways by a number
of authors and for a number of purposes. The evolution of the notion started
with the foundational work of Fomin and Zelevinsky [9], who consider Zn-
gradings where n is precisely the rank of the cluster algebra. Shortly afterwards,
in the course of considering Poisson structures compatible with cluster algebras,
Gekhtman, Shapiro and Vainshtein [14] gave a definition of a toric action on a
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cluster algebra, which dualises to that of a Zm-grading, where m can now be
arbitrary.
In [16] the first author examined the natural starting case of finite type

cluster algebras without coefficients. A complete classification of the integer
multi-gradings that occur was given and it was observed that the gradings so
obtained were all balanced, that is, there exist bijections between the set of
variables of degree d and those of degree −d.

This phenomenon was explained by means of graded generalised cluster
categories, where—following [8]—by generalised cluster category we mean a
2-Calabi–Yau triangulated category C with a basic cluster-tilting object T . The
definition made in [16] associates an integer vector (the multi-degree) to an ob-
ject in the category in such a way that the vectors are additive on distinguished
triangles and transform naturally under mutation. This is done via the key fact
that every object in a generalised cluster category has a well-defined associated
integer vector-valued datum called the index with respect to T ; in order to sat-
isfy the aforementioned two properties, degrees are necessarily linear functions
of the index.

The categorical approach has the advantage that it encapsulates the global
cluster combinatorics, or more accurately the set of indices does. Another con-
sequence is an explanation for the observed balanced gradings in finite type:
the auto-equivalence of the cluster category given by the shift functor induces
an automorphism of the set of cluster variables that reverses signs of degrees.
Hence any cluster algebra admitting a (triangulated) cluster categorification
necessarily has all its gradings being balanced (providing the set of reachable
rigid indecomposable objects, which is in bijection with the set of cluster vari-
ables, is closed under the shift functor). This is the case for finite type or, more
generally, acyclic cluster algebras having no coefficients.
Our main goal is to provide a version of the above in the Frobenius, i.e. exact

category, setting, similarly to the triangulated one. A Frobenius category is
exact with enough projective objects and enough injective objects, and these
classes of objects coincide. From work of Fu and Keller [10] and the second
author [30], we have a definition of a Frobenius cluster category and objects in
such a category also have indices.
From this we may proceed along similar lines to [16] to define gradings and

degrees, except that we elect to work (a) over an arbitrary abelian group A and
(b) in a more basis-free way by working K-theoretically and with the associated
Euler form. We prove the foundational properties of gradings for Frobenius
cluster categories: that degrees are compatible with taking the cluster charac-
ter, that they are additive on exact sequences and that they are compatible
with mutation.

Furthermore, we prove an analogue of a result of Palu [29] in which we show
that the space of gradings for a graded Frobenius cluster category E is closely
related to the Grothendieck group, namely that the former is isomorphic to
HomZ(K0(E),A). This enables one to show that some categorical datum is a
grading by seeing that it respects exact sequences, and conversely that from the
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cluster algebra categorified by E we may deduce information about K0(E). We
exhibit this on examples, notably the categories of Buan, Iyama, Reiten and
Scott [5] corresponding to Weyl group elements, also studied by Geiß, Leclerc
and Schröer [11] in the context of categorifying cells in partial flag varieties.
The homogeneous coordinate rings of Grassmannians are an example of par-

ticular importance in this area. They admit a graded cluster algebra structure
but beyond the small number of cases when this structure is of finite type, little
is known about the cluster variables. A first step towards a better understand-
ing is to describe how the degrees of the cluster variables are distributed: are
the degrees unbounded? does every natural number occur as a degree? are
there finitely many or infinitely many variables in each occurring degree? By
using the Frobenius cluster categorification of Jensen, King and Su [19] and
the grading framework here, we can hope to begin to examine these questions.
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2 Preliminaries

The construction of a cluster algebra of geometric type from an initial seed
(x,B), due to Fomin and Zelevinsky [9], is now well-known. Here x =
(x1, . . . , xn) is a transcendence base for a certain field of fractions of a polyno-
mial ring, called a cluster, and B is an n× r integer matrix whose uppermost
r× r submatrix (the principal part of B) is skew-symmetrisable. If the princi-
pal part of B is skew-symmetric, then B is often replaced by the (ice) quiver
Q = Q(B) it defines in the natural way.
We refer the reader who is unfamiliar with this construction to the survey

of Keller [22] and the books of Marsh [27] and of Gekhtman, Shapiro and
Vainshtein [15] for an introduction to the topic and summaries of the main
related results in this area.
We set some notation for later use. For each index 1 6 k 6 r, set

b+k = −ek +
∑

bik>0

bikei and

b−k = −ek −
∑

bik<0

bikei,

where the vector ei ∈ Z
n (n being the number of rows of B) is the ith standard

basis vector. Note that the kth column of B may be recovered as Bk = b+k −b−k .
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Then for 1 6 k 6 r, the exchange relation for mutation of the seed (x,B) in
the direction k is given by

x′k = xb
+

k + xb
−

k ,

where for a = (a1, . . . , an) we set

xa =

n
∏

i=1

xai

i .

If (x,B) is a seed, we call the elements of x cluster variables. The variables
x1, . . . , xr are called mutable, and xr+1, . . . , xn (which appear in the cluster of
every seed related to (x,B) by mutations) are called frozen. Note that while
some authors do not consider frozen variables to be cluster variables, it will be
convenient for us to do so. We will sometimes also refer to the indices 1, . . . , r
and r + 1, . . . , n as mutable and frozen respectively.
Throughout, for simplicity, we will assume that all algebras and categories

are defined over C. All modules are left modules. For a Noetherian algebra A,
we denote the abelian category of finitely generated A-modules by modA. If
B is a matrix, we denote its transpose by Bt.

2.1 Graded seeds, cluster algebras and cluster categories

Let A be an abelian group. The natural definition for an A-graded seed is as
follows.

Definition 2.1. A multi-graded seed is a triple (x,B,G) such that

(a) (x = (x1, . . . , xn), B) is a seed, and

(b) G ∈ A
n, thought of as a column vector, satisfies BtG = 0.

The matrix multiplication in (b) makes sense since A is a Z-module. This is
most transparent when A = Zm, so that G is an n×m integer matrix.

From now on, unless we particularly wish to emphasise A, we will drop it
from the notation and simply use the term “graded”.
The above data defines deg

G
(xi) = Gi ∈ A (the ith component of G) and

this can be extended to rational expressions in the generators xi in the obvious
way. Condition (b) ensures that for each 1 6 k 6 r, we have b+k · G = b−k ·G,
making sense of these dot products via the Z-module structure of A, so every
exchange relation is homogeneous, and

G′
k := deg(x′k) = b+k ·G−Gk = b−k ·G−Gk.

Thus we can also mutate our grading, and repeated mutation propagates a
grading on an initial seed to every cluster variable and to the associated cluster
algebra. Hence we obtain the following well-known result, given in various
forms in the literature.
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Proposition 2.2. The cluster algebra A(x,B,G) associated to an initial
graded seed (x,B,G) is an A-graded algebra. Every cluster variable of
A(x,B,G) is homogeneous with respect to this grading.

We refer the reader to [16] for a more detailed discussion of the above and fur-
ther results regarding the existence of gradings, relationships between gradings
and a study of Z-gradings for cluster algebras of finite type with no coefficients.

2.2 Graded triangulated cluster categories

Our interest here is in generalising the categorical parts of [16], which refer
to models of cluster algebras without frozen variables given by 2-Calabi–Yau
triangulated categories, and explain how to interpret the data of a grading
on the cluster algebra at this categorical level. Our main goal is to provide
a similar theory for stably 2-Calabi–Yau Frobenius categories, which may be
used to model cluster algebras that do have frozen variables.
In order to motivate what will follow for the Frobenius setting, we give the

key definitions and statements from the triangulated case, without proofs as
these may be found in [16].

Definition 2.3 ([8]). Let C be a triangulated 2-Calabi–Yau category with
suspension functor Σ and let T ∈ C be a basic cluster-tilting object. We will
call the pair (C, T ) a generalised cluster category.

Write T = T1 ⊕ · · · ⊕ Tr. Setting Λ = EndC(T )
op, the functor1

F = C(T,−) : C → modΛ induces an equivalence C/add(ΣT ) → modΛ. We
may also define an exchange matrix associated to T by

(BT )ij = dimExt1Λ(Si, Sj)− dimExt1Λ(Sj , Si).

Here the Si = FTi/ radFTi, i = 1, . . . , r are the simple Λ-modules. Thus, if the
Gabriel quiver of the algebra Λ has no loops or 2-cycles, BT is its corresponding
skew-symmetric matrix.
For each X ∈ C there exists a distinguished triangle

r
⊕

i=1

T
m(i,X)
i →

r
⊕

i=1

T
p(i,X)
i → X → Σ

(

r
⊕

i=1

T
m(i,X)
i

)

Define the index of X with respect to T , denoted indT (X), to be the integer
vector with indT (X)i = p(i,X)−m(i,X). By [28, §2.1], indT (X) is well-defined
and we have a cluster character

CT
? : Obj(C) → C[x±1

1 , . . . , x±1
r ]

X 7→ xindT (X)
∑

e

χ(Gre(FΣX))xBT ·e

1This functor is replaced by E = FΣ in [8], [16]; we use F here, as in [10], for greater
compatibility with the Frobenius case.
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Here Gre(FΣX) is the quiver Grassmannian of Λ-submodules of FΣX of di-
mension vector e and χ is the topological Euler characteristic. We use the same
monomial notation xa as previously.
We recall that for any cluster-tilting object U of C, and any indecomposable

summand Uk of U , there are non-split exchange triangles

U∗
k →M → Uk → ΣU∗

k and Uk →M ′ → U∗
k → ΣUk

with M,M ′ ∈ add(U), that glue together to form an Auslander–Reiten 4-angle

Uk →M ′ →M → Uk

in C [18, Definition 3.8]. If the quiver of EndC(U)
op

has no loops or 2-cycles
incident with the vertex corresponding to Uk, then M,M ′ ∈ add(U/Uk) and
U∗ = (U/Uk) ⊕ U∗

k is again cluster-tilting. In the generality of our setting,
these results are all due to Iyama and Yoshino [18].
The natural definition of a graded generalised cluster category is then the

following.

Definition 2.4 ([16, Definition 5.2]). Let (C, T ) be a generalised cluster cate-
gory and let G ∈ Ar such that BTG = 0. We call the tuple (C, T,G) a graded
generalised cluster category.

Note that, in this context, BT is square and skew-symmetric, so we may
suppress taking the transpose in the equation BTG = 0.

Definition 2.5 ([16, Definition 5.3]). Let (C, T,G) be a graded generalised
cluster category. For any X ∈ C, we define deg

G
(X) = indT (X) ·G.

The main results about graded generalised cluster categories are summarised
in the following Proposition, the most significant of these being (ii). The proofs
in [16] are given for A = Zm, but remain valid in the more general setting.

Proposition 2.6 ([16, §5]). Let (C, T,G) be a graded generalised cluster cate-
gory.

(i) Let C[x±1
1 , . . . , x±1

r ] be A-graded by deg
G
(xi) = Gi (the ith component of

G). Then for all X ∈ C, the cluster character CT
X ∈ C[x±1

1 , . . . , x±1
r ] is

homogeneous of degree deg
G
(X).

(ii) For any distinguished triangle X → Y → Z → ΣX of C, we have

deg
G
(Y ) = deg

G
(X) + deg

G
(Z).

(iii) The degree deg
G

is compatible with mutation in the sense that for every
cluster-tilting object U of C with indecomposable summand Uk we have

deg
G
(U∗

k ) = deg
G
(M)− deg

G
(Uk) = deg

G
(M ′)− deg

G
(Uk),

where U∗
k , M andM ′ are as in the above description of exchange triangles

in C.
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(iv) The space of gradings for a generalised cluster category (C, T ) may be
identified with HomZ(K0(C),A), where K0(C) is the Grothendieck group
of C as a triangulated category.2

(v) For each X ∈ C, deg
G
(ΣX) = −deg

G
(X). That is, for each d ∈ A, the

shift automorphism Σ on C induces a bijection between the objects of C
of degree d and those of degree −d.

Part (iii) of the preceding proposition shows how to mutate the data of G
when mutating the cluster-tilting object T , to obtain a new grading vector
compatible with the exchange matrix of the new cluster-tilting object, defining
the same grading on the cluster algebra.
However, we may obtain an even stronger conclusion from part (iv), since

this provides a “base-point free” definition of a grading, depending only on
the category C and not on the cluster-tilting object T . Read differently, this
shows that if (C, T,G) is a graded generalised cluster category, then for any
cluster-tilting object T ′ ∈ C, there is a unique G′ ∈ Ar such that (C, T ′, G′) is
a graded generalised cluster category and deg

G
(X) = deg

G′
(X) for all X ∈ C.

We will explain this in more detail below in the case of Frobenius categories.
If H is the category of coherent sheaves on a weighted projective line with

all weights odd, then the Grothendieck group of the cluster category C of H is
a non-zero quotient of Z2 ⊕Z2 [3, Theorem 1.3]. (If one only imposes relations
coming from triangles obtained by projecting triangles of the derived category
of H to C, then one obtains exactly Z2 ⊕Z2 [3, Proposition 3.7(ii)], but C may
have more triangles than these.) By part (iv) of the preceding proposition,
this cluster category C admits no Z-gradings, but does admit Z2-gradings. In
fact [3, Proposition 3.10(ii)], any such grading is a linear combination of the
functions giving the degree and rank of a sheaf modulo 2.
Part (v) of Proposition 2.6 shows that for cluster algebras admitting a cat-

egorification by a generalised cluster category (C, T ) such that the mutation
class of T is closed under the shift functor Σ, all gradings must be balanced,
meaning that for any d ∈ A, the cluster variables of degree d are in bijection
with those of degree −d.
If Q admits a nondegenerate Jacobi-finite potential W , then the correspond-

ing cluster algebra is categorified by the Amiot cluster category CQ,W , which
has a cluster-tilting object T whose endomorphism algebra is the Jacobian al-
gebra of (Q,W ) [1]. If Q admits a maximal green sequence, then it provides
a sequence of mutations from T to ΣT in CQ,W , so the mutation class of T is
closed under Σ [23, Proposition 5.17]. It follows that all gradings of the cluster
algebra associated to Q are balanced. All of these assumptions hold, for ex-
ample, when Q is a finite acyclic quiver (so W = 0); for the statement about
maximal green sequences, see Brüstle, Dupont and Pérotin [4, Lemma 2.20].

2This statement corrects [16, Proposition 5.5] for the case A = Z, which replaces
HomZ(K0(C), Z) by K0(C) itself. The proof given in [16] proves the statement given here
for an arbitrary abelian group essentially without modification. An example of C for which
K0(C) and HomZ(K0(C),Z) are non-isomorphic is provided by [3, Thm. 1.3].
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Conversely, we can use gradings to show that certain cluster algebras cannot
admit a categorification as above. For example, the Markov cluster algebra, all
of whose exchange matrices are given by

B =





0 2 −2
−2 0 2
2 −2 0





or its negative, admits the grading (1, 1, 1). This is an integer grading under
which all cluster variables have strictly positive degrees, so it is not balanced.
While the Markov quiver associated to B has a non-degenerate potential for
which the resulting (completed) Jacobian algebra is finite dimensional, and
thus has an associated Amiot cluster category C, this category has exactly two
mutation classes of cluster-tilting objects. (One can also realise this Jacobian
algebra as that coming from a tagged triangulation of the once-punctured torus;
such triangulations can include tagged arcs or not, but it is not possible to
mutate a triangulation without tagged arcs into one with tagged arcs, giving
another explanation for the existence of these two mutation classes.) The shift
functor on C takes rigid indecomposable objects appearing as summands in one
mutation class (which correspond to cluster variables) to rigid indecomposables
from the other class (which do not), allowing the existence of a non-balanced
grading on the cluster algebra.
It has been shown by Ladkani that many of these properties hold more

generally for quivers arising from triangulations of punctured surfaces [26].

3 Graded Frobenius cluster categories

In this section, we provide the main technical underpinnings for the Frobenius
version of the above theory, in which we consider exact categories rather than
triangulated ones. Background on exact categories, and homological algebra in
them, can be found in Bühler’s survey [7].
An exact category E is called a Frobenius category if it has enough projective

objects and enough injective objects, and these two classes of objects coincide.
A typical example of such a category is the category of finite dimensional
modules over a finite dimensional self-injective algebra. More generally, if B is
a Noetherian algebra with finite left and right injective dimension as a module
over itself (otherwise known as an Iwanaga–Gorenstein algebra), the category

GP(B) = {X ∈ modB : ExtiB(X,B) = 0, i > 0},

is Frobenius [6]. (Here GP(B) is equipped with the exact structure in which
the exact sequences are precisely those that are exact when considered in the
abelian category modB.) The initials “GP” are chosen for “Gorenstein pro-
jective”.
Given a Frobenius category E , its stable category E is formed by taking the

quotient of E by the ideal of morphisms factoring through a projective-injective
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object. By a famous result of Happel [17, Theorem 2.6], E is a triangulated
category with shift functor Ω−1, where Ω−1X is defined by the existence of an
exact sequence

0 → X → Q→ Ω−1X → 0

in which Q is injective. The distinguished triangles of E are isomorphic to those
of the form

X → Y → Z → Ω−1X

where

0 → X → Y → Z → 0

is a short exact sequence in E .

Definition 3.1. A Frobenius category E is stably 2-Calabi–Yau if the stable
category E is Hom-finite and there is a functorial duality

DExt1E(X,Y ) = Ext1E(Y,X)

for all X,Y ∈ E .

Remark 3.2. The above definition is somewhat slick—it is equivalent to re-
quiring that E is 2-Calabi–Yau as a triangulated category (that is, that E is
Hom-finite and Ω−2 is a Serre functor), as one might expect.

Let E be a stably 2-Calabi–Yau Frobenius category. If U is cluster-tilting in
E , then it is also cluster-tilting in the 2-Calabi–Yau triangulated category E , and
a summand Uk of U is indecomposable in E if and only if it is indecomposable
and non-projective in E . Thus for any cluster-tilting object U of E and for any
non-projective indecomposable summand Uk of U , we can lift the exchange
triangles involving Uk from E to E , and obtain exchange sequences

0 → U∗
k →M → Uk → 0 and 0 → Uk →M ′ → U∗

k → 0

with M,M ′ ∈ add (U). If the quiver of EndE(U)
op

has no loops or 2-cycles
incident with the vertex corresponding to Uk, then U

′
k = U/Uk ⊕ U∗

k is again
cluster-tilting, just as in the triangulated case.

Fu and Keller [10] give the following definition of a cluster character on a
stably 2-Calabi–Yau Frobenius category.

Definition 3.3 ([10, Definition 3.1]). Let E be a stably 2-Calabi–Yau Frobe-
nius category, and let R be a commutative ring. A cluster character on E is a
map ϕ on the set of objects of E , taking values in R, such that

(i) if M ∼=M ′ then ϕM = ϕM ′ ,

(ii) ϕM⊕N = ϕMϕN , and
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(iii) if dimExt1E(M,N) = 1 (equivalently, dimExt1E(N,M) = 1), and

0 →M → X → N → 0,

0 → N → Y →M → 0

are non-split sequences, then

ϕMϕN = ϕX + ϕY .

Let E be a stably 2-Calabi–Yau Frobenius category, and assume there exists a
cluster-tilting object T ∈ E . Assume without loss of generality that T is basic,
and let T =

⊕n
i=1 Ti be a decomposition of T into pairwise non-isomorphic

indecomposable summands. We number the summands so that Ti is projective
if and only if r < i 6 n. Let Λ = EndE(T )

op
, and Λ = EndE(T )

op
= Λ/ΛeΛ,

where e is the idempotent given by projection onto the maximal projective-
injective summand

⊕n
i=r+1 Ti of T .

We assume that Λ is Noetherian, as with this assumption the forms dis-
cussed below will be well-defined. The examples that concern us later will have
Noetherian Λ, but we acknowledge that this assumption is somewhat unsatis-
factory, given that it is often difficult to establish.
Fu and Keller [10] show that such a T determines a cluster character on

E , as we now explain; while the results of [10] are stated in the case that E
is Hom-finite, the assumption that Λ is Noetherian is sufficient providing one
is careful to appropriately distinguish between the two Grothendieck groups
K0(modΛ) and K0(fd Λ) of finitely generated and finite dimensional Λ-modules
respectively.
We write

F = HomE(T,−) : E → modΛ,

E = Ext1E(T,−) : E → modΛ.

Note that E may also be expressed as HomE(T,Ω
−1(−)), meaning it takes

values in modΛ. For M ∈ modΛ and N ∈ fdΛ, we write

<M,N >1 = dimHomΛ(M,N)− dimExt1Λ(M,N),

<M,N >3 = dimHomΛ(M,N)− dimExt1Λ(M,N)

+ dimExt2Λ(M,N)− dimExt3Λ(M,N).

The algebra Λ = EndE(T )
op

is finite dimensional since E is Hom-finite, so
modΛ ⊆ fd Λ. Fu and Keller show [10, Proposition 3.2] that if M ∈ modΛ,
then <M,N >3 depends only on the dimension vector (dimHomΛ(Pi,M))ni=1,
where the Pi = FTi are a complete set of indecomposable projective Λ-modules.
Thus if v ∈ Zr, we define

<v,N >3 := <M,N >3
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for any M ∈ modΛ with dimension vector v.
Let R = C[x±1

1 , . . . , x±1
n ] be the ring of Laurent polynomials in x1, . . . , xn.

Define a map X → CT
X on objects of E , taking values in R, via the formula

CT
X =

n
∏

i=1

x<FX,Si>1

i

∑

v∈Zr

χ(Grv(EX))
n
∏

i=1

x−<v,Si>3

i .

Here, as before, Grv(EX) denotes the projective variety of submodules of
EX with dimension vector v, and χ(Grv(EX)) denotes its Euler characteristic.
The modules Si = FTi/ radFTi are the simple tops of the projective modules
Pi. By [10, Theorem 3.3], the map X 7→ CT

X is a cluster character, with the
property that CT

Ti
= xi.

The cluster-tilting object T also determines an index for each object X ∈ E .
To see that this quantity is well-defined we will use the following lemma, the
proof of which is included for the convenience of the reader.

Lemma 3.4. Let E be an exact category, and let M,T ∈ E.

(i) If there exists an admissible epimorphism T ′ → M for T ′ ∈ addT , then
any right addT -approximation of M is an admissible epimorphism.

(ii) If there exists an admissible monomorphism M → T ′ for T ′ ∈ addT , then
any left addT -approximation of M is an admissible monomorphism.

Proof. We prove only (i), as (ii) is dual. Pick an admissible epimorphism
π : T ′ → M with T ′ ∈ addT and a right addT -approximation f : R → M .
Consider the pullback square

X T ′

R M

g

π′ π

f

As f is a right addT -approximation, there is a map h : T ′ → R such that the
square

T ′ T ′

R M

1

h π

f

commutes, and so by the universal property of pullbacks, there is g′ : T ′ → X
such that gg′ = 1. Thus g is a split epimorphism, fitting into an exact sequence

0 K X T ′ 0.i g

It then follows, again by the universal property of pushouts, that π′i is a kernel
of f . Since fπ′ = πg is the composition of two admissible epimorphisms, f is
itself an admissible epimorphism by the obscure axiom [21, A.1], [7, (Dual of)
Proposition 2.16].
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Given an object X ∈ E , we may pick a minimal right addT -approximation
RX → X , where RX is determined up to isomorphism by X and the existence
of such a morphism. Let P → X be a projective cover of X , which exists since
E has enough projectives; this is an admissible epimorphism by definition, and
P ∈ addT since T is cluster-tilting. Thus by Lemma 3.4, the approximation
RX → X is an admissible epimorphism, and so there is an exact sequence

0 → KX → RX → X → 0

in E . Since T is cluster-tilting, KX ∈ addT , and we define the index of X as
indT (X) = [RX ]− [KX] ∈ K0(addT ). It is crucial here that indT (X) is defined
in K0(addT ), rather than in K0(E) where it would simply be equal to [X ].
We also associate to T the exchange matrix BT given by the first r columns of

the antisymmetrisation of the incidence matrix of the quiver of Λ. By definition,
BT has entries

(BT )ij = dimExt1Λ(Si, Sj)− dimExt1Λ(Sj , Si)

for 1 6 i 6 n and 1 6 j 6 r.

Definition 3.5 (cf. [30, Definition 3.3]). A Frobenius category E is a Frobe-
nius cluster category if it is Krull–Schmidt, stably 2-Calabi–Yau and satisfies
gldim(EndE(T )

op
) 6 3 for all cluster-tilting objects T ∈ E , of which there is at

least one.

Note that a Frobenius cluster category E need not be Hom-finite, but the
stable category E must be, since this is part of the definition of 2-Calabi–Yau.
Let E be a Frobenius cluster category. Let T =

⊕n
i=1 Ti ∈ E be a ba-

sic cluster-tilting object, where each Ti is indecomposable and is projective-
injective if and only if i > r, let Λ = EndE(T )

op
be its endomorphism algebra,

and let Λ = EndE(T )
op be its stable endomorphism algebra. We continue to

write F = HomE(T,−) : E → modΛ and E = Ext1E(T,−) : E → modΛ. Since
E is Hom-finite, Λ is a finite dimensional algebra.
The Krull–Schmidt property for E is equivalent to E being idempotent com-

plete and having the property that the endomorphism algebra A of any of its
objects is a semiperfect ring [25, Corollary 4.4], meaning there are a complete
set {ei : i ∈ I} of pairwise orthogonal idempotents of A such that eiAei is local
for each i ∈ I. For many representation-theoretic purposes, semiperfect K-
algebras behave in much the same way as finite dimensional ones; for example,
if A is semiperfect then the quotient A/ radA is semi-simple, and its idempo-
tents lift to A. For more background on semiperfect rings, see, for example,
Anderson and Fuller [2, Chapter 27].
For us, a key property of a semiperfect ring A is that the A-modules

Aei/ radAei (respectively, their projective covers Aei) form a complete set of
finite dimensional simple A-modules (respectively indecomposable projective
A-modules) up to isomorphism [2, Proposition 27.10]. As we will require this
later, we include being Krull–Schmidt in our definition of a Frobenius cluster
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category, noting that other work in this area—notably the original definition
in [30]—requires only idempotent completeness.
Since Λ is Noetherian and gldimΛ 6 3, the Euler form

<M,N >e =
∑

i>0

(−1)i dimExtiΛ(M,N)

is well-defined as a map K0(modΛ) × K0(fd Λ) → Z, and coincides with the
form <−,−>3 introduced earlier.

Remark 3.6. By a result of Keller and Reiten [24, §4] (see also [30, Theo-
rem 3.4]), modΛ has enough 3-Calabi–Yau symmetry for us to deduce that
dimExtkΛ(Si, Sj) = dimExt3−k

Λ (Sj , Si) when 1 6 j 6 r. It follows that

(−BT )ij = <Si, Sj>3 = <Si, Sj>,

so the matrix of <−,−>, when restricted to the span of the simple modules in
the first entry and the span of the first r simple modules in the second entry,
is given by −BT .

One can show by taking projective resolutions that the classes [Pi] of
indecomposable projective Λ-modules span K0(modΛ). Moreover, since
<Pi, Sj>e = δij , any x ∈ K0(modΛ) has a unique expression

x =

n
∑

i=1

<x, Si>e[Pi]

as a linear combination of the [Pi], and so these classes in fact freely generate
K0(modΛ).
Recall from the definition of the index that if X ∈ E , there is an exact

sequence
0 → KX → RX → X → 0

in which KX and RX lie in addT . Since E vanishes on addT , the functor F
takes the above sequence to a projective resolution

0 → FKX → FRX → FX → 0

of FX in modΛ. Thus FX has projective dimension at most 1, and so
< FX,− >1 = < FX,− >e. We can therefore rewrite the cluster character
of X as

CT
X =

n
∏

i=1

x<FX,Si>e

i

∑

v∈Zr

χ(Grv(EX))

n
∏

i=1

x−<v,Si>e

i .

We now proceed to defining gradings for Frobenius cluster categories. We
can follow the same approach as in the triangulated case, using the index.
However, by [10], we have the following expansion of the index in terms of the
classes of the indecomposable summands of T :

indT (X) =
n
∑

i=1

<FX,Si>e[Ti] ∈ K0(addT ).
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Since Ext1Λ(T, T ) = 0, there are no non-split exact sequences in addT ,
and so K0(addT ) is freely generated by the [Ti]. For the same reason,
the functor F is exact when restricted to addT , and so induces a map
F∗ : K0(addT ) → K0(modΛ), which takes [Ti] to [Pi], and so is an iso-
morphism. Applying this isomorphism to the above formula, we obtain
F∗(indT (X)) =

∑

<FX,Si>e[Pi] = [FX ].
From this we see that if we wish to work concretely with matrix and vector

entries, the index can be computed explicitly. For the general theory, however,
the equivalent K-theoretic expression is cleaner and so we shall phrase our
definition of grading in those terms, the above observation showing us that this
is equivalent to the approach in [16].
We will define our A-gradings to be certain elements of K0(fd Λ) ⊗Z A. To

state a suitable compatibility condition, it will be necessary to extend the Euler
form to an Z-bilinear form K0(modΛ)× (K0(fdΛ)⊗Z A) → A. In the by now
familiar way, we do this using the Z-module structure on A, and, abusing
notation, define

<x,
∑

yi ⊗ ai>e =
∑

<x, yi>eai.

It is straightforward to check that this form is well-defined and Z-linear in each
variable.
Thus we arrive at the following definition of a graded Frobenius cluster cat-

egory, exactly analogous to Definitions 2.4 and 2.5 in the triangulated case.

Definition 3.7. Let E be a Frobenius cluster category and T a cluster-
tilting object of E such that Λ = EndE(T )

op is Noetherian. We say that
G ∈ K0(fd Λ)⊗Z A is a grading for E if <M,G>e = 0 for all M ∈ modΛ. We
call (E , T,G) a graded Frobenius cluster category.

Definition 3.8. Let (E , T,G) be a graded Frobenius cluster category. Define
deg

G
: E → A by deg

G
(X) = <FX,G>e.

We record some straightforward consequences of the above definitions.

Remark 3.9.

(i) When considering Z-gradings, we may use the natural isomorphism
K0(fdΛ) ⊗Z Z

∼
→ K0(fd Λ) to think of a grading as an element of the

Grothendieck group itself. Similarly, we can think of Zm-gradings as
elements of K0(fdΛ)

m.

(ii) Using the basis of simples for K0(fdΛ), we can write G =
∑n

i=1[Si]⊗Gi

for some unique Gi ∈ A. Writing G ∈ An for the column vector with
entries Gi, the grading condition is equivalent to requiring Bt

TG = 0, by
Remark 3.6 and the assumption that Λ is finite dimensional.

(iii) Let Gi be as in (ii). Since FTi = Pi and < Pi, Sj >e = δij , we may
compute

deg
G
(Ti) = <FTi, G>e = Gi,

as expected.
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The K-theoretic phrasing of the above definition leads us to the following
observation.

Lemma 3.10. Let E be Hom-finite, let T ∈ E be a cluster-tilting object with
endomorphism algebra Λ and let V ∈ E be projective-injective. Write F =
HomE(T,−). Then [FV ] ∈ K0(fdΛ) is a Z-grading for E, and deg

[FV ]
(X) =

dimHomE(X,V ).

Proof. Letting M ∈ modΛ, we need to check that < M,FV >e = 0. By
the internal Calabi–Yau property of modΛ (see Remark 3.6), we may instead
check that <FV,M >e = 0. Firstly, ExtiΛ(FV,M) = 0 for i > 0 since FV is
projective.
Recall from above that there is an idempotent e ∈ Λ, given by projecting

onto a maximal projective summand of T , such that Λ = Λ/ΛeΛ. Using this,
FV ∈ addΛe by the definition of e, and HomΛ(Λe,M) = eM = 0 since
M is a Λ-module. Hence HomΛ(FV,M) = 0 also, so that < FV,M >e =
<M,FV >e = 0 as required.
By definition, deg

[FV ]
(X) = dimHomΛ(FX,FV ) for X ∈ E . Since T is

cluster-tilting, we have the short exact sequence

0 → KX → RX → X → 0,

with KX , RX ∈ addT , used to define the index. Applying HomE(−, V ), we
obtain the exact sequence

0 → HomE(X,V ) → HomE(RX , V ) → HomE(KX , V ).

Alternatively, we can apply HomΛ(F−, FV ) to obtain the exact sequence

0 → HomΛ(FX,FV ) → HomΛ(FRX , FV ) → HomΛ(FKX , FV ).

Since F restricts to an equivalence on addT , and V ∈ addT since it is
projective-injective, the right-hand maps in these two exact sequences are iso-
morphic, yielding an isomorphism HomE(X,V ) ∼= HomΛ(FX,FV ) of their
kernels, from which the result follows.

This gives us a family of Z-gradings canonically associated to any Hom-finite
Frobenius cluster category; note that in fact we only need FV = HomE(T, V ) ∈
fd Λ, so for some specific Hom-infinite E and specific V and T the result may
still hold.
We will give some more examples of gradings later but first give the main

results regarding graded Frobenius cluster categories, analogous to those in
Proposition 2.6 for the triangulated case. We treat the straightforward parts
first.
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Proposition 3.11. Let (E , T,G) be a graded Frobenius cluster category.

(i) Let C[x±1
1 , . . . , x±1

n ] be graded by deg
G
(xj) = Gi, where Gi is defined

as in Remark 3.9(ii). Then for all X ∈ E, the cluster character
CT

X ∈ C[x±1
1 , . . . , x±1

n ] is homogeneous of degree deg
G
(X).

(ii) For any exact sequence 0 → X → Y → Z → 0 in E, we have

deg
G
(Y ) = deg

G
(X) + deg

G
(Z).

(iii) The degree deg
G

is compatible with mutation in the sense that for every
cluster-tilting object U of E with indecomposable summand Uk we have

deg
G
(U∗

k ) = deg
G
(M)− deg

G
(Uk) = deg

G
(M ′)− deg

G
(Uk),

where U∗
k , M and M ′ are as in the above description of exchange se-

quences in E. It follows that deg
G
(M) = deg

G
(M ′), which is the cate-

gorical version of the claim that all exchange relations in a graded cluster
algebra are homogeneous.

Proof.

(i) As usual, for v ∈ Zn we write xv =
∏n

i=1 x
vi
i . Then if deg

G
(xi) = Gi, we

have

deg
G
(xv) =

n
∑

i=1

viGi = <

n
∑

i=1

vi[Pi], G>e.

Each term of CT
X may be written in the form form λxv, where

vi = <FX,Si>e −<M,Si>e

for some M ∈ modΛ, and λ is a constant. It follows that

n
∑

i=1

vi[Pi] = [FX ]− [M ],

so the degree of xv is

<FX,G>e −<M,G>e = <FX,G>e = deg
G
(X),

since <M,G>e = 0 by the definition of a grading. In particular, this is
independent of M , so CT

X is homogeneous of degree deg
G
(X).

(ii) Applying F to the exact sequence 0 → X → Y → Z → 0 and truncating
gives an exact sequence

0 → FX → FY → FZ →M → 0
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for some M ⊆ EX . In particular, M ∈ modΛ. In K0(modΛ), we have

[FX ] + [FZ] = [FY ] + [M ],

so applying <−, G>e gives

deg
G
(X) + deg

G
(Z) = deg

G
(Y ) +<M,G>e = deg

G
(Y )

since M ∈ modΛ.

(iii) This follows directly from (ii) applied to the exchange sequences

0 → U∗
k →M → Uk → 0 and 0 → Uk →M ′ → U∗

k → 0.

Since the shift functor on E does not typically lift to an automorphism of
E , and projective-injective objects of E may have non-zero degrees, we have
no natural analogue of Proposition 2.6(v) in the Frobenius setting. It remains
to give an analogue of part (iv), concerning the relationship between gradings
and the Grothendieck group of a graded Frobenius cluster category. The first
part of the following theorem is directly analogous to [29, Theorem 10] for the
triangulated case.

Theorem 3.12. Let E be a Frobenius cluster category with a cluster-tilting
object T such that Λ = EndE(T )

op
is Noetherian.

(i) The Grothendieck group K0(E), as an exact category, is isomorphic to the
quotient of K0(addE T ) by the relations [Xk]− [Yk], for 1 6 k 6 r, where

0 → U∗
k → Yk → Uk → 0 and 0 → Uk → Xk → U∗

k → 0

are the exchange sequences associated to the summand Uk of T .

(ii) The space of A-gradings of E, defined above as a subspace of K0(fdΛ)⊗ZA,
is isomorphic to HomZ(K0(E),A), via the map G 7→ deg

G
.

Proof. Let Hb(addE T ) denote the bounded homotopy category of complexes
with terms in addE T , and let Hb

E-ac(addE T ) denote the full subcategory of E-
acyclic complexes. By work of Palu [29, Lemma 2], there is an exact sequence

0 Hb
E-ac(addE T ) Hb(addE T ) Db(E) 0,

of triangulated categories, to which we may apply the right exact functor K0

to obtain

K0(H
b
E-ac(addE T )) K0(H

b(addE T )) K0(D
b(E)) 0.

By Palu again [29, Proof of Lemma 9], there is a natural isomorphism
K0(H

b
E-ac(addE T ))

∼
→ K0(modΛ). Moreover, since T is cluster-tilting, there
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are no non-split exact sequences in addE T , and so K0(addE T ) is freely gener-
ated by the indecomposable summands of T . Thus taking the alternating sum
of terms gives an isomorphism K0(H

b(addE T ))
∼
→ K0(addE T ) [31].

These isomorphisms induce a commutative diagram

K0(H
b
E-ac(addE T )) K0(H

b(addE T )) K0(D
b(E)) 0

K0(modΛ) K0(addE T ) K0(E) 0
ϕ

with exact rows. Since the two leftmost vertical maps are isomorphisms, the in-
duced map K0(D

b(E)) → K0(E), which is again given by taking the alternating
sum of terms, is also an isomorphism.
We claim that the map ϕ in the above diagram is given by composing the

map from K0(modΛ) to K0(modΛ) induced by the inclusion of categories with
the inverse of the isomorphism F∗ : K0(addE T )

∼
→ K0(modΛ). Since Λ is finite

dimensional, the Grothendieck group K0(modΛ) is spanned by the classes of
the simple Λ-modules Sk for 1 6 k 6 r, so it suffices to check that ϕ acts on
these classes as claimed. Let

0 → U∗
k → Yk → Uk → 0 and 0 → Uk → Xk → U∗

k → 0

be the exchange sequences associated to the summand Uk of T . Then there is
an exact sequence

0 → FUk → FXk → FYk → FUk → Sk → 0.

From this we see that [Sk] = [FXk] − [FYk] = F∗([Xk] − [Yk]) in K0(modΛ),
and so we want to show that ϕ[Sk] = [Xk] − [Yk]. On the other hand, [Sk] is
the image of the class of the E-acyclic complex

· · · → 0 → Uk → Xk → Yk → Uk → 0 → · · ·

under Palu’s isomorphism K0(H
b
E-ac(addE T ))

∼
→ K0(modΛ) (cf. [29, Proof of

Theorem 10]), and the image ϕ[Sk] of this complex in K0(addE T ) is [Xk]− [Yk],
as we wanted. This yields (i).
Now applying HomZ(−,A) to the exact sequence

K0(modΛ) K0(addE T ) K0(E) 0
ϕ

shows that HomZ(K0(E),A) is isomorphic to the kernel of ϕt = HomZ(ϕ,A),
which we will show coincides with the space of gradings. Indeed, we may
identify K0(addE T ) with K0(modΛ) via F∗, and then use the Euler form to
identify K0(fd Λ)⊗Z A with HomZ(K0(modΛ),A), the map

x 7→ <−, x>e
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being an isomorphism as usual. Under this identification, we have ϕtG =
<−, G>e|K0(modΛ), and so G ∈ kerϕt if and only if it is a grading. The claim
that the isomorphism is given explicitly by G 7→ deg

G
= <F (−), G>e can be

seen by diagram chasing, and hence (ii) is proved.

The significance of this theorem is that, as in the triangulated case, it pro-
vides a basis-free method to identify gradings on Frobenius cluster categories
and the cluster algebras they categorify. In the latter context, basis-free essen-
tially means free of the choice of a particular cluster.

Specifically, as explained in more detail below, to establish that some categor-
ical datum gives a grading, one only needs to check that that it respects exact
sequences. This is potentially significantly easier than checking the vanishing
of the product Bt

TG where BT is given in terms of dimensions of Ext-spaces
over the endomorphism algebra Λ of some cluster-tilting object T .

On the other hand, given some knowledge of the cluster algebra being
categorified—in particular, knowing a seed—one can use the above theorem
to deduce information about the Grothendieck group of the Frobenius cluster
category.

As promised in Section 2, we can use Theorem 3.12 to see how the grading in
a graded Frobenius cluster category is independent of the cluster-tilting object.
Precisely, let (E , T,G) be a graded Frobenius cluster category, and let deg

G
be

the corresponding function on K0(E). Let T ′ =
⊕n

i=1 T
′
i be another cluster-

tilting object, with Λ′ = EndE(T
′)op, and denote the simple Λ′-modules by S′

i

for 1 6 i 6 n. Using the inverse of the isomorphism of Theorem 3.12, we see
that if G′ in K0(fd Λ

′) is given by

G′ =

n
∑

i=1

deg
G
(T ′

i )[S
′
i],

then (E , T ′, G′) is a graded Frobenius cluster category with deg
G

= deg
G′
, as

one should expect. Note that this statement holds even if, as can happen, there
is no sequence of mutations from T to T ′.

As was remarked about the triangulated case in [16], these observations
highlight how the categorification of a cluster algebra is able to see global
properties, whereas the algebraic combinatorial mutation process is local.

The following example shows the theorem in action, although again we need
the additional assumption of Hom-finiteness of E .

Lemma 3.13. Assume that E is Hom-finite and let P be a projective-injective
object. Then dimHomE(P,−) and dimHomE(−, P ) define Z-gradings for E.

Proof. Since P is projective and injective, both HomE(P,−) and HomE(−, P )
are exact functors, and so in each case taking the dimension yields a function in
HomZ(K0(E),Z). Then the result follows immediately from Theorem 3.12.
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In sufficiently nice cases, applying this result with a complete set of inde-
composable projectives will yield that the dimension vector of a module is a
(multi-)grading.
However, we remark that some care may be needed regarding which algebra

we measure “dimension vector” over. If E ⊂ modΠ for some algebra Π (as
in most examples), then we may consider the Π-dimension vector of X ∈ E ,
defined in the usual way. On the other hand, any Hom-finite Frobenius cluster
category E is equivalent to GP(B) ⊂ modB for B the opposite endomorphism
algebra of a basic projective generator P =

⊕n
i=1 Pi of E , by [20, Theorem 2.7].

Re-interpreting all of the objects of E as B-modules, the projective-injectives
will now be precisely the projective B-modules, and (dimHomE(Pi, X)) is the
B-dimension vector of X (tautologically, since the equivalence E → GP(B)
takes X to HomE(P,X)). Note that B may not be the same as the algebra Π
from which E originated, and the B-dimension vector of a module may differ
from the Π-dimension vector.
Given a complete set of projectives, it is natural to ask whether the associated

grading might be standard, as defined in [16]; we briefly recall this definition
and some related facts.

Definition 3.14. Let (x,B) be a seed. We call a multi-grading G whose
columns are a basis for the kernel of B a standard multi-grading, and call
(x,B,G) a standard graded seed.

It is straightforward to see, from rank considerations, that mutation preserves
the property of being standard. Moreover, as shown in [16], if (x,B,G) is a
standard graded seed and H is any grading for (x,B), then there exists an
integer matrixM =M(G,H) such that for any cluster variable y in A(x,B,H)
we have

deg
H
(y) = deg

G
(y)M,

where on the right-hand side we regard y as a cluster variable of A(x,B,G) in
the obvious way.
That is, to describe the degree of a cluster variable of a graded cluster algebra

A(x,B,H), it suffices to know its degree with respect to some standard grading
G and the matrix M = M(G,H) transforming G to H . In particular, to
understand the distribution of the degrees of cluster variables, it suffices to
know this for standard gradings.
Since the statement applies in the particular case when G and H are both

standard, we see that from one choice of basis for the kernel of B, we obtain
complete information. For if we chose a second basis, the change of basis matrix
tells us how to transform the degrees. Hence up to a change of basis, there is
essentially only one standard grading for each seed.
Then, depending on the particular Frobenius cluster category at hand, if

we have knowledge of the rank of the exchange matrix, we may be able to
examine categorical data such as the number of projective-injective modules or
dimension vectors and hence try to find a basis for the space of gradings.
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For example, for a basic cluster-tilting object T in E a Hom-finite Frobenius
cluster category, we have n − r projective-injective summands in T : if the
exchange matrix BT has full rank, a basis for the space of gradings has size
n− r so that, via Lemma 3.10, a canonical standard grading is given by the set
{[FTi] | i > r}, which is linearly independent since it is a subset of the basis of
projectives for K0(fd Λ) = K0(modΛ).
From knowledge of this standard grading, we then obtain any other grading

by means of some linear transformation. In the next section, we do this for two
important examples.

4 Examples of graded Frobenius cluster categories

4.1 Frobenius cluster categories for partial flag varieties

Let g be the Kac–Moody algebra associated to a symmetric generalised Cartan
matrix. Let ∆ be the associated Dynkin graph and pick an orientation ~∆. Let
Q be the quiver obtained from ~∆ by adding an arrow α∗ : j → i for each arrow
α : i→ j of ~∆. Then the preprojective algebra of ∆ is

Π = CQ/
∑

α∈~∆

[α, α∗],

which is, up to isomorphism, independent of the choice of orientation ~∆.
For each w ∈ W , the Weyl group of g, Buan, Iyama, Reiten and Scott [5]

have introduced a category Cw; the following version of its construction follows
[12], and is dual to the original.
Assume w has finite length and set l(w) = n; we do this for consistency with

the notation used above but note that other authors (notably [12], [13]) use r
and their n is our n− r.
Set Îi to be the indecomposable injective Π-module with socle Si, the one-

dimensional simple module supported at the vertex i of Q.
Given a module W in modΠ, we define

• soc(l)(W ) :=
∑

U6W
U∼=Sl

U and

• soc(l1,l2,...,ls)(W ) :=Ws where the chain of submodules

0 =W0 ⊆W1 ⊆ · · · ⊆Ws ⊆W

is such that Wp/Wp−1
∼= soc(lp)(W/Wp−1).

Let i = (in, . . . , i1) be a reduced expression for w. Then for 1 6 k 6 n, we
define Vi,s := soc(ik,is−1,...,i1)(Îis). Set Vi =

⊕n
k=1 Vi,k and let I be the subset

of {1, . . . , n} such that the modules Vi,i for i ∈ I are Cw-projective-injective.
Set Ii =

⊕

i∈I Vi,i and n− r = |I|. Note that this is also the number of distinct
simple reflections appearing in i.
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Define
Ci = Fac(Vi) ⊆ nil Π.

That is, Ci is the full subcategory of modΠ consisting of quotient modules of
direct sums of finitely many copies of Vi.
Then Ci and Ii are independent of the choice of reduced expression i (although

Vi is not), so that we may write Cw := Ci and Iw := Ii. It is shown in [5] that Cw
is a stably 2-Calabi–Yau Frobenius category. Moreover Cw has cluster-tilting
objects: Vi is one such. Indeed, cluster-tilting objects are maximal rigid, and
vice versa. The indecomposable Cw-projective-injective modules are precisely
the indecomposable summands of Iw, and Cw = Fac(Iw).
Furthermore, it is also shown in [12, Proposition 2.19] that the global di-

mension condition of Definition 3.5 also holds, leaving only the Krull–Schmidt
condition. By [25, Corollary 4.4], we should check that the endomorphism al-
gebras of objects of Cw are semiperfect, and that this category is idempotent
complete. The first of these properties holds since Cw is Hom-finite. The second
follows from the fact that Cw is a full subcategory of the idempotent complete
category mod(Π/Ann Iw), and that if M is an object of Fac(Iw), then so are
all direct summands of M .
We conclude that Cw is a Frobenius cluster category, in the sense of Defini-

tion 3.5.
Let Λ = EndCw

(Vi)
op

and F = HomCw
(Vi,−). Then, as above, the modules

Pk := FVi,k for 1 6 k 6 n are the indecomposable projective Λ-modules and
the tops of these, Sk, are the simple Λ-modules. Recall that the exchange
matrix obtained from the quiver of Λ, which we shall call Bi, has entries

(Bi)ij = dimExt1Λ(Si, Sj)− dimExt1Λ(Sj , Si)

for 1 6 i 6 n and j /∈ I, so that the r columns of Bi correspond to to the
mutable summands Vi,j , j /∈ I, of Vi.
Let Li be the n× n matrix with entries

(Li)jk = dimHomΠ(Vi,j , Vi,k)− dimHomΠ(Vi,k, Vi,j).

By [13, Proposition 10.1] we have

n
∑

l=1

(Bi)lk(Li)lj = 2δjk,

and hence the matrix Bi has maximal rank, namely r.
It follows that there exists some standard integer multi-grading Gi =

(G1, . . . , Gn−r) ∈ K0(modΛ)n−r for Cw and (Cw, Vi, Gi) is a graded Frobe-
nius cluster category. As discussed above, such a standard grading can be used
to construct all other gradings, so our goal is to identify one.
We have additional structure on Cw that we may make use of. Namely, Cw is

Hom-finite and we may apply Lemma 3.10 with respect to the Cw-projective-
injective modules Vi,i that are the indecomposable summands of Ii.
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The resulting grading [FVi,i], i ∈ I, is standard, since its n− r components
are a subset of the basis of projectives for K0(modΛ), and so in particular are
linearly independent. By Theorem 3.12, the existence of this standard grading
implies that the Grothendieck group K0(Cw) has rank n− r.
We wish to understand this standard grading more explicitly. Note that

the objects of Cw are Π-modules and we may consider dimension vectors with
respect to the Π-projective modules.
Then we notice that in fact the grading by ([FVi,i])i∈I is equal to the Π-

dimension vector grading in the case at hand. This is because, by Lemma 3.10,
the degree of X with respect to [FVi,i] is dimHomΠ(X,Vi,i), and each Vi,i is
both a submodule and a minimal right Cw-approximation of an indecomposable
injective Îi for Π, so HomΠ(X,Vi,i) = HomΠ(X, Îi), the dimensions of the latter
giving the Π-dimension vector of X .
In [12, Corollary 9.2], Geiß, Leclerc and Schröer have shown that

dimΠVi,k = ωik − si1si2 · · · sik(ωik)

for all 1 6 k 6 n, where the ωj are the fundamental weights for g and the sj
the Coxeter generators for W . This enables us to construct the above grading
purely combinatorially.

Example 4.1. We consider the following seed associated to g of type A5 with

i = (3, 2, 1, 4, 3, 2, 5, 4, 3),

as given in [13, Example 12.11]. The modules Vk := Vi,k, in terms of the usual
representation illustrating their composition factors as Π-modules, are

V1 = 3 V2 = 3
4 V3 =

3
4
5

V4 = 3
2 V5 =

3
2 4
3

V6 =
3

2 4
3 5
4

V7 =
3

2
1

V8 =
3

2 4
1 3
2

V9 =
3

2 4
1 3 5
2 4
3
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The exchange quiver for this seed is

V1 V2 V3

V4 V5 V6

V7 V8 V9

It is straightforward to see that Π-dimension vectors yield a grading: for
example, looking at the vertex corresponding to V1, the sums of the dimension
vectors of incoming and outgoing arrows are [0, 1, 2, 1, 0] and [0, 1, 1, 0, 0] +
[0, 0, 1, 1, 0] respectively.

4.2 Grassmannian cluster categories

Let Π be the preprojective algebra of type An−1, with vertices numbered se-
quentially, and let Qk be the injective module at the kth vertex. In [11], Geiß,
Leclerc and Schröer show that the category Sub Qk of submodules of direct
sums of copies of Qk “almost” categorifies the cluster algebra structure on the
homogeneous coordinate ring of the Grassmannian of k-planes in Cn, but is
missing a single indecomposable projective object corresponding to one of the
frozen variables of this cluster algebra. The category SubQk is in fact dual to
one of the categories Cw introduced in the previous section, for ∆ = An−1 and
w a particular Weyl group element depending on k, so it is a Frobenius cluster
category in the same way.
Jensen, King and Su [19] complete the categorification via the category

CM(A) of maximal Cohen–Macaulay modules for a Gorenstein order A (de-
pending on k and n) over Z = C[[t]]. One description of A is as follows. Let
∆ be the graph (of affine type Ãn−1) with vertex set given by the cyclic group
Zn, and edges between vertices i and i + 1 for all i. Let Π be the completion
of the preprojective algebra on ∆ with respect to the arrow ideal. Write x for
the sum of “clockwise” arrows i→ i+1, and y for the sum of “anti-clockwise”
arrows i→ i− 1. Then we have

A = Π/〈xk − yn−k〉.

In this description, Z may be identified with the centre C[[xy]] of A.
Jensen, King and Su also show [19, Theorem 4.5] that there is an exact func-

tor π : CM(A) → Sub Qk, corresponding to the quotient by the ideal generated
by Pn, and that for any N ∈ Sub Qk, there is a unique (up to isomorphism)

Documenta Mathematica 23 (2018) 49–76



Graded Frobenius Cluster Categories 73

minimal M in CM(A) with πM ∼= N and M having no summand isomorphic
to Pn. Such an M satisfies rk(M) = dim soc πM , where rk(M) is the rank of
each vertex component of M , thought of as a Z-module.
We now show that CM(A) is again a Frobenius cluster category. Properties of

the algebra A mean that an A-module is maximal Cohen–Macaulay if and only
if it is free and finitely generated as a Z-module. Since Z is a principal ideal
domain, and hence Noetherian, any submodule of a free and finitely generated
Z-module is also free and finitely generated, and so CM(A) is closed under
subobjects. In particular, CM(A) is closed under kernels of epimorphisms.
Moreover [19, Corollary 3.7], A ∈ CM(A), and so Ω(modA) ⊆ CM(A).
As a Z-module, any object M ∈ CM(A) is isomorphic to Zk for some k, so

we have that EndZ(M)
op ∼= Zk2

is a finitely generated Z-module. Since Z is
Noetherian, the algebra EndA(M)

op
⊆ EndZ(M)

op
is also finitely generated

as a Z-module. Thus EndA(M)op is Noetherian, as it is finitely generated
as a module over the commutative Noetherian ring Z. We may now apply
[30, Proposition 3.6] to see that any cluster-tilting object T ∈ CM(A) satisfies
gldimEndA(T )

op
6 3. Moreover [19, Corollary 4.6], CM(A) = SubQk, so

CM(A) is 2-Calabi–Yau, and CM(A) is a Frobenius cluster category.
Unlike Sub Qk and the Cw, the category CM(A) is not Hom-finite. However,

as already observed, the endomorphism algebras of its objects are Noetherian,
so we may apply our general theory to this example.
In their study of the category CM(A), Jensen, King and Su show the follow-

ing. Let

Z
n(k) = {x ∈ Z

n | k divides
∑

i xi}

with basis α1, . . . , αn−1, β[n], where the αj = ej+1 − ej are the negative sim-
ple roots for GLn(C) and β[n] = e1 + · · · + ek is the highest weight for the

representation
∧k

(Cn).
Then by [19, §8] we have that K0(CM(A)) ∼= K0(A) ∼= Zn(k); let

G : K0(CM(A)) → Zn(k) denote the composition of these isomorphisms. The
GLn(C)-weight of the cluster character of M ∈ CM(A) (called ψ̃M in [19]) is
given by the coefficients in an expression for G[M ] ∈ Z

n(k) in terms of the
basis of Zn(k) given above [19, Proposition 9.3], and thus this weight defines a
group homomorphism K0(CM(A)) → Zn.
Said in the language of this paper, CM(A) is a graded Frobenius cluster

category with respect to GLn(C)-weight, this giving a standard integer multi-
grading.
Let δ : Zn(k) → Z be the (linear) function δ(x) = 1

k

∑

i xi. By the linearity
of gradings, composing G with δ yields a Z-grading on CM(A) also. Explicitly,
δ(x) is the β[n]-coefficient of x in our chosen basis, and is also equal to the
dimension of the socle of πM , which is equal to rk(M), which is equal to the
degree of the cluster character of M ∈ CM(A) as a homogeneous polynomial
in the Plücker coordinates of the Grassmannian.
It is well known that the cluster structure on the Grassmannian is graded

with respect to either the GLn(C)-weight (also called the content of a minor,
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and, by extension, of a product of minors) or the natural grading associated
to the Plücker embedding. The results of [19] show that these gradings are
indeed naturally reflected in the categorification of that cluster structure. This
opens the possibility of attacking some questions on, for example, the number of
cluster variables of a given degree by examining rigid indecomposable modules
in CM(A) of the corresponding rank, say. We hope to return to this application
in the future.

Of course, one can also argue directly that rk(M) yields a grading on CM(A),
considering it as a function on K0(CM(A)). Note that the socle dimension of
πM is not a grading on Sub Qk, but rather it is the datum within Sub Qk that
specifies how one should lift πM to M (see [19, §2] for an illustration of this).
As described in the previous section, Sub Qk (in its guise as one of the Cw)
does admit gradings, such as the grading describing the degree of the cluster
character of πM ∈ Sub Qk (called ψπM in [19]) with respect to the standard
matrix generators.
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