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Abstract. Given a holomorphic principal bundle Q −→ X , the
universal space of holomorphic connections is a torsor C1(Q) for
adQ⊗ T ∗X such that the pullback of Q to C1(Q) has a tautological
holomorphic connection. When X = G/P , where P is a parabolic
subgroup of a complex simple group G, and Q is the frame bundle
of an ample line bundle, we show that C1(Q) may be identified with
G/L, where L ⊂ P is a Levi factor. We use this identification to con-
struct the twistor space associated to a natural hyper-Kähler metric
on T ∗(G/P ), recovering Biquard’s description of this twistor space,
but employing only finite-dimensional, Lie-theoretic means.
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1 Introduction

Let X be a complex manifold, G a complex Lie group and Q a holomorphic
principal G-bundle over X . As is well-known, holomorphic connections on Q
may be identified with holomorphic splittings of the Atiyah sequence canoni-
cally associated to Q:

0 −→ adQ −→ AtQ −→ ΘX −→ 0;

here, ΘX is the holomorphic tangent bundle to X and AtQ is the Atiyah
bundle [At, § 2]. It is possible that while there is no such splitting overX , upon
pullback via some holomorphic mapping f : Y −→ X , where Y is another
complex manifold, this sequence does split. In fact, a tautological construction
yields such a Y for any Q, which can be briefly described as follows. Tensoring
the Atiyah exact sequence with the holomorphic cotangent bundle ΩX = Θ∗

X

we get

0 −→ adQ⊗ ΩX −→ AtQ⊗ ΩX
s−→ ΘX ⊗ ΩX = End(ΘX) −→ 0 .

The inverse image C1(Q) := s−1(IdΘX
) ⊂ AtQ⊗ΩX −→ X is the universal

space of holomorphic connections in the sense that for any open subset U ⊂ X ,
the holomorphic sections of the fiber bundle C1(Q)|U over U are precisely the
holomorphic connections on Q|U . The details of this construction as well as
other related results are found in Sections 2 and 3. In fact, since it presents
no further complication and some statements prove to be useful later, we work
with λ-connections for λ ∈ C.
In Section 4, we consider the case where X is a (complex) homogeneous space.
In this case, the sequences of vector bundles above all have descriptions as those
associated to canonical sequences of representations for the groups involved. Of
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course, the universal pullback connection space also has such a simple descrip-
tion, which we give. Emphasis is on the case where P is a parabolic subgroup
of complex simple affine algebraic group G, so that X = G/P is a projective
rational homogeneous space. Let Q be a holomorphic C×-bundle over G/P
associated to a strictly anti-dominant character of P , so that the associated
line bundle is (very) ample. If L ⊂ P is a Levi factor, then the main result of
Section 4 shows that the above fiber bundle C1(Q) −→ G/P may be identi-
fied with the canonical projection G/L −→ G/P . In particular, G/L may be
viewed as a complexification of G/P .
We recall that a hyper-Kähler manifold is a C∞ manifold M equipped with

• integrable almost complex structures, I, J and K satisfying the quater-
nionic relation IJK = −Id, and

• a Riemannian metric g which is Kähler with respect to each of I, J and
K.

To a hyper-Kähler manifold there is an associated twistor space, which is a
holomorphic fiber bundle

Z −→ P
1 = S2 = {(a, b, c) ∈ R

3 | a2 + b2 + c2 = 1}

such that the fiber over (a, b, c) ∈ S2 is Y equipped with the integrable almost
complex structure aI + bJ + cK. Thus, any fiber over P1 may be identified
with the original C∞ manifold. Furthermore, it is a fundamental theorem that
from such a fiber bundle over P1, if one also has a compatible real structure
and fiber-wise holomorphic symplectic form, one can recover the hyper-Kähler
metric on the fibers [HKLR, Theorem 3.3].
Hyper-Kähler metrics on coadjoint orbits for semi-simple algebraic groups were
first constructed by Kronheimer [Kr] in the case of regular semi-simple orbits;
this was generalized to arbitrary orbits by Biquard [Bi1]. Furthermore, Biquard
also gave a description of the twistor space in these cases, in which the general
fiber is (isomorphic to) the coadjoint orbit and the special fibers (which one
usually pictures over 0,∞ ∈ P1) are the cotangent bundles to a (partial) flag
variety [Bi1, Bi2]. The technical method employed in this series of papers
is the use of Nahm’s equations, the hyper-Kähler metric thus arising as an
infinite-dimensional hyper-Kähler quotient.
Of course, given a semi-simple element in a semi-simple complex Lie algebra,
its (co)adjoint stabilizer is a reductive subgroup of G of full rank, hence may be
understood as a Levi factor L of some parabolic subgroup P of G; therefore the
coadjoint orbit is isomorphic to G/L. Using the constructions of Section 4, in
Section 5, we are able to recover the construction of the twistor space given by
Biquard, thereby obtaining the existence of a hyper-Kähler metric on T ∗(G/P )
or, equivalently, G/L—via the fundamental theorem mentioned above—using
only the means of Lie theory.
The method we use to obtain the existence of the hyper-Kähler metric on
T ∗(G/P )—namely, by constructing the twistor space directly—resembles that
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of Feix, who showed that, for a Kähler manifold X , some neighbourhood of the
zero section in T ∗X always admits a hyper-Kähler metric [Fe, Theorem A] (the
same result was obtained by Kaledin, but by different methods [Ka, Theorem
1.1]). In the cases we consider, we find that the hyper-Kähler metric in fact
exists on the entirety of the cotangent bundle, which does not necessarily hold
in general (cf. [Fe, Theorem B]).
There exist some hyper-Kähler moduli spaces, prominent among them the char-
acter variety for a compact Riemann surface, which have elementary finite-
dimensional constructions, but for which there is no known finite-dimensional
description or construction of the metric. (For the example of the character
variety just mentioned, the construction is as an affine geometric invariant the-
ory quotient, yet the hyper-Kähler metric is by an infinite-dimensional hyper-
Kähler quotient, via a dimensional reduction of the Yang–Mills equations [Hi,
§ 6].) The result here may be regarded as a step towards a finite-dimensional
understanding of these metrics.

2 Principal bundles, connections and pullbacks

LetX be a connected complex manifold; its holomorphic tangent and cotangent
bundles will be denoted by ΘX and ΩX , respectively. We will write T ∗X :=
Tot(ΩX) for the total space of ΩX . Let G be a complex Lie group; its Lie
algebra will be denoted by g. Let π : P −→ X be a holomorphic principal
G-bundle over X with G acting on the right of P . The holomorphic tangent
bundle of the total space of P will be denoted by ΘP . The adjoint vector bundle
adP = P ×G g is the one associated to P for the adjoint action of G on g. The
pullback π∗ adP is the trivial vector bundleOg

P = P×g −→ P , which, in turn,
is identified with ker(dπ) by the action of G on P , where dπ : ΘP −→ π∗ΘX
is the differential of the projection π. Let

AtP := ΘP /G = (π∗ΘP )
G ⊂ π∗ΘP

be the Atiyah bundle and

0 −→ adP −→ AtP −→ ΘX −→ 0 (2.1)

the Atiyah exact sequence for P , which is the quotient by G of the exact
sequence

0 −→ π∗ adP = ker(dπ)
ι−→ π∗ AtP = ΘP

dπ−→ π∗ΘX −→ 0 (2.2)

on P . To describe AtP in terms of local trivializations, fix a holomorphically
trivializing open cover {Xα} of X , so that there exist G-equivariant holomor-
phic maps

ϕα : Pα := P |Xα

∼−→ Xα ×G

over the identity map of Xα. Let gαβ : Xαβ := Xα ∩ Xβ −→ G be the
corresponding transition functions satisfying

ϕα ◦ ϕ−1
β (x, g) =

(
x, gαβ(x)a

)
.
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Then one has induced isomorphisms φα : AtPα
∼−→ Θα ⊕ Og

α, where Θα :=
ΘXα

= ΘX |Xα
and Og

α := OXα
⊗C g, for which

φα ◦ φ−1
β (v, ξ) =

(
v, Adgαβ

ξ + dgαβg
−1
αβ (v)

)
. (2.3)

Let λ ∈ C. We recall that a holomorphic λ-connection on P is an OX -linear
homomorphism s : AtP −→ adP whose composition with the inclusion of
(2.1)

adP −→ AtP
s−→ adP

is simply multiplication by the scalar λ on adP ; in the case λ = 1 this s is
a holomorphic splitting of (2.1), and so a holomorphic connection on P in the
usual sense. A 0-connection is a homomorphism ΘX −→ adP . Note that a
λ-connection may equivalently be described as a G-equivariant homomorphism
s̃ : ΘP −→ Og

P such that s̃ ◦ ι = λ · IdadP , where ι is the homomorphism in
(2.2). Such a homomorphism s̃ defines a G-equivariant g-valued holomorphic
1-form on P (the group G has the adjoint action on g); it is called the 1-form
of the λ-connection. The kernel of a connection 1-form ΘP −→ Og

P is called
the horizontal distribution of the connection.
Suppose Y is another complex manifold and f : Y −→ X a holomorphic map.
We may pull back the Atiyah sequence (2.1) along f to get an exact sequence
on Y . Also, we may pull back P along f to get a principal G-bundle f∗P on
Y , which has its own Atiyah sequence; one then has a morphism between these
exact sequences

0 // ad f∗P // At f∗P //

β

��

ΘY //

df

��

0

0 // f∗ adP // f∗ AtP // f∗ΘX // 0.

(2.4)

The above homomorphism β is constructed as follows: consider the Cartesian
diagram

f∗P
F //

Π

��

P

π

��
Y

f
// X

associated to the above pair (P, f). This produces a commutative diagram on
the total space f∗P

0 // Of∗P ⊗ g // Θf∗P
//

dF

��

Π∗ΘY //

Π∗df

��

0

0 // Of∗P ⊗ g // F ∗ΘP // Π∗f∗ΘX = F ∗π∗ΘX // 0.

(2.5)
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Since the differential dF in (2.5) is G-equivariant, the diagram in (2.5) descends
to a commutative diagram of homomorphisms on Y . This descended diagram
is the one in (2.4). Therefore, the diagram in (2.5) is the pullback, by the
map Π, of the diagram in (2.4). Note that if f is a submersion, meaning df is
surjective, then β is surjective as well. If

s : AtP −→ adP

is a λ-connection on P , then (f∗s) ◦ β : At f∗P −→ ad f∗P is a λ-connection
on f∗P . In other words, a λ-connection on P pulls back to a λ-connection on
f∗P .

Definition 2.6. Let X , Y , P and f : Y −→ X be as above, and let D be a
holomorphic λ-connection on the pulled back principal bundle f∗P given by a
splitting s : At f∗P −→ ad f∗P . We say that D is trivial on the fibers of f if
there is a homomorphism

s′ : f∗ AtP −→ f∗ adP

such that s = s′ ◦ β, where β is the homomorphism in (2.4).

It should be clarified that the above condition does not mean that D is the
pullback of a λ-connection on P . More precisely, s′ need not be the pullback
of a splitting of the Atiyah exact sequence for P .
Lemma 2.7 is straightforward to prove, so we omit its proof.

Lemma 2.7. The following are equivalent.

(a) D is trivial on the fibers of f .

(b) The connection 1-form associated to D, which is a section of Ωf∗P ⊗ g,
is a section of the sub-sheaf (dF )∗(F ∗ΩP )⊗ g of Ωf∗P ⊗ g, where (dF )∗

is the dual of the homomorphism dF in (2.5).

(c) The horizontal distribution for D contains the relative tangent bundle
ker(dF ) ⊂ Tf∗P for F .

(d) For any open cover {Xα} of X with holomorphic trivializations of P |Xα
,

if
Dα ∈ Γ(f−1(Xα), ΩY ⊗ g)

are the connection 1-forms on f−1(Xα) associated to the corresponding
trivializations of f∗P over {(f−1(Xα)}, then

Dα ∈ Γ(f−1(Xα), (df)
∗(f∗ΩX)⊗ g) , (2.8)

where (df)∗ : f∗ΩX −→ ΩY is the dual of the differential of f .

(e) There exists a P trivializing open cover {Xα} of X as above such that
(2.8) holds.
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3 The universal pullback λ-connection

Let X be as before.

3.1 Construction of universal λ-connection

The following can be seen by taking Čech or Dolbeault representatives for
cohomology.

Lemma 3.1. Let

0 −→ U −→ V
σ−→ W −→ 0 (3.2)

be a short exact sequence of holomorphic vector bundles over X. Let s ∈
H0(X, W ) and Vs := σ−1(s(X)). Then Vs −→ X is an affine bundle for U .
Furthermore, such bundles are classified by H1(X, U): if α ∈ H1(X, U⊗W∨)
is the extension class of (3.2), then Vs corresponds to 〈α, s〉 ∈ H1(X, U),
where 〈 , 〉 : H1(X, U⊗W∨)⊗H0(X, W ) −→ H1(X, U) is the homomorphism
induced by the evaluation homomorphism (U ⊗W∨)⊗W −→ U .

Again, let P be a holomorphic principal G-bundle over X . Apply Lemma 3.1
to the Atiyah sequence (2.1) tensored by ΩX ; the last term will be ΘX ⊗ΩX =
EndΩX , which has a sub-bundle OX →֒ EndΩX defined by

f 7−→ f · IdΩX
.

We letW := WP be its preimage under the surjection AtP⊗ΩX −→ EndΩX .
Hence we get a diagram

0 // adP ⊗ ΩX // AtP ⊗ ΩX
σ // EndΩX // 0

0 // adP ⊗ ΩX // WP
σ //?�

OO

OX
//?�

OO

0.

(3.3)

Now set

Z◦ = Z◦
P := Tot(WP ) . (3.4)

Although the restriction of σ to WP is also denoted by σ, this should not cause
any confusion.
Using the expressions in (2.3), there exist isomorphisms

φ̂α : (AtP ⊗ Ω)|Xα

∼−→ (Ωα ⊗ g)⊕ EndΩα,

where Ωα := ΩX |Xα
, such that

φ̂α ◦ φ̂−1
β (ξ, γ) =

(
Adgαβ

ξ + γ(dgαβg
−1
αβ ), γ

)
;
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where γ ∈ EndΩX is applied to the ΩX -factor of dgαβg
−1
αβ . Similarly, one has

isomorphisms for W :

φ̃α : W |Xα

∼−→ (Ωα ⊗ g)⊕O , (3.5)

φ̃α ◦ φ̃−1
β (ξ, λ) =

(
Adgαβ

ξ + λ · dgαβg−1
αβ , λ

)
.

Let q : Z◦ −→ X be the projection (see (3.4)), and set Z◦
α := q−1(Xα). One

also has a projection π◦ = λ : Z◦ −→ C given by the composition

Z◦ = Tot(WP )
σ−→ Tot(OX) = X × C −→ C .

(The reason for the notation π◦ = λ should be made clear through our usage
here and later in Section 5.) For each α, write qα : Tot(Ωα ⊗ g) −→ Xα for
the projection. We also obtain projection maps

Tot
(
(Ωα ⊗ g)⊕O

) ∼= Tot(Ωα ⊗ g)× C −→ Tot(Ωα ⊗ g) .

Combining these with the isomorphisms induced by (3.5), we get a diagram

Z◦
α

q
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

φ̃α // Tot ((Ωα ⊗ g)⊕O)

��

// Tot(Ωα ⊗ g)

qα
uu❧❧❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

Xα

(3.6)

In (3.6), the composition across the top will be denoted by ρα. Let q̃ :
Tot(ΩX ⊗ g) −→ X be the natural projection from the total space of ΩX ⊗ g.
There is a tautological section

a ∈ Γ(Tot(ΩX ⊗ g), q̃∗(ΩX ⊗ g)) ,

which one may of course restrict to each q̃−1(Xα) = Tot(Ωα ⊗ g). Then set

Aα := ρ∗αa ∈ Γ(Z◦
α, q

∗Ωα ⊗ g) ⊆ Γ(Z◦
α, ΩZ◦

α
⊗ g) . (3.7)

These satisfy

Aα = gαβAβg
−1
αβ − λdgαβ · g−1

αβ , (3.8)

where gαβ of course means q∗gαβ and λ : Z◦
α −→ C is the projection described

above.
For λ ∈ C, consider the constant section λ ∈ H0(X, OX) (this may be iden-
tified with λ · IdΩX

∈ H0(X, EndΩX) in the diagram (3.3)). We then set

Cλ(P ) := (π◦)−1(λ) ⊂ Z◦ , (3.9)
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where the right hand side uses the notation of Lemma 3.1. If P is understood
from the context, we will shorten this to Cλ, and if λ = 1 we shorten it further
still to C. The natural projection

q : Cλ −→ X , (3.10)

which is a surjective submersion, makes Cλ an affine bundle overX with bundle
of translations adP ⊗ΩX ; in the case λ = 0, one has simply C0 = Tot(adP ⊗
ΩX). The space Cλ(P ) is the base of the universal pullback λ-connection on P
for the following reason.

Proposition 3.11. Fix λ ∈ C. The space q : Cλ(P ) −→ X is an affine
bundle over X with adP ⊗ ΩX as its bundle of translations. The pulled back
bundle q∗P under the map in (3.10) admits a canonical λ-connection ∇ which
is trivial on the fibers of q. Furthermore, it has the universal property that if
f : Y −→ X is any smooth morphism such that f∗P admits a λ-connection D
trivial on the fibers of f , then there exists a unique morphism ψ : Y −→ Cλ
such that

Y
ψ //

f   ❆
❆❆

❆❆
❆❆

❆ Cλ

q

��
X

commutes and (f∗P, D) ∼= ψ∗(q∗P, ∇).

Proof. The first statement is Lemma 3.1.
As for Z◦, we write Cλ,α := q−1(Xα) ∩ Cλ. Since Cλ = (π◦)−1(λ), the

isomorphisms φ̃α in (3.6) restrict to isomorphisms Cλ,α −→ Tot(Ωα ⊗ g) ×
{λ} = Tot(Ωα ⊗ g), which we also denote by ρα.
The local 1-forms for the λ-connection are of course the Aα defined in (3.7)
restricted to Cλ,α; the fact that they yield a well-defined λ-connection comes
from (3.8), noting that now λ is a fixed constant. The fact that the resulting
∇ is trivial on the fibers can be seen from (3.7) and from Lemma 2.7.
Suppose now that f : Y −→ X is smooth and there is a λ-connection D on
f∗P trivial on the fibers. If Yα := f−1(Xα), then D has λ-connection 1-forms
Dα ∈ Γ(Yα, f

∗ΩX ⊗ g). We then use the following.

Lemma 3.12. Let p : E −→ X be a vector bundle and σ ∈ H0(TotE, p∗E)
the tautological section. If f : Y −→ X is any morphism and s ∈
H0(Y, f∗E), then there exists a unique morphism τ : Y −→ TotE such
that

TotE

p

��
Y

f
//

τ

<<①①①①①①①①①
X
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commutes and s = τ∗(σ).

Applying this, we get morphisms τα : Yα −→ Tot(Ωα ⊗ g) and hence

ψα := ρ−1
α ◦ τα : Yα −→ Cλ,α

such that

Yα
ψα //

f ""❉
❉❉

❉❉
❉❉

❉
Cλ,α

q

��
X

commutes. Using the fact that the Dα and Aα both transform as λ-connection
1-forms, one then sees that ψα = ψβ on Yα∩Yβ and this defines ψ : Y −→ Cλ.
The uniqueness is clear from the uniqueness statement in Lemma 3.12.

Of course, since Z◦ is the total space of a vector bundle, there is a scalar
multiplication map

C× Z◦ −→ Z◦ ,

for which

π◦(µ · z) = µπ◦(z)

for all µ ∈ C, z ∈ Z◦, simply because π◦ is defined as a vector bundle map,
hence linear, followed by the projection to the fiber of OX . Of course, the map
restricts to a C× group action

C
× × Z◦ −→ Z◦ .

If we set Z× := (π◦)−1(C×) then Z× is a C×-invariant open subset of Z◦ and
the action on Z× is free. In fact, one has an isomorphism

Z× ∼−→ C × C
× ,

where C = (π◦)−1(1), given by

z 7−→
(
π◦(z)−1 · z, π◦(z)

)
(3.13)

with inverse

(y, λ) 7−→ λ · y .

In particular, for any λ1, λ2 ∈ C×, one has

Cλ1
∼= Cλ2

.

The commutativity of the diagram (3.15) below is clear from the maps just
described.
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Lemma 3.14. One has an isomorphism

γ : Z× ∼−→ C × C
× ,

which makes the diagram

Z×

π◦

$$❍
❍❍

❍❍
❍❍

❍❍

γ // C × C×

p
C×

��
C×

(3.15)

commute, where pC× is the projection onto the C× factor.

3.2 Further remarks in the case of C
×-bundles

Let P be a holomorphic principal C×-bundle on X . In this case, adP = OX

and hence the lower sequence of (3.3) simplifies to

0 −→ ΩX −→WP −→ OX −→ 0. (3.16)

As before, Z◦ := Tot(WP ) and we have a map π◦ : Z◦ −→ C yielding an
exact sequence

0 −→ (π◦)∗ΩC −→ ΩZ◦ −→ ΩZ◦/C −→ 0, (3.17)

with ΩZ◦/C the sheaf of differentials relative to π◦.
The local 1-forms on Z◦

α defined in (3.7) are now scalar 1-forms and by (3.8)
they transform as

Aα = Aβ − λ · dgαβg−1
αβ ; (3.18)

since C× is abelian, the conjugation action is trivial. Under the epimorphism
in (3.17), we may consider the Aα as relative 1-forms. If dC denotes the relative
exterior differential (thus treating functions pulled back from C under π◦ as
“constant”), then applying it to both sides of (3.18), and noting that

dC

(
λ · dgαβg−1

αβ

)
= λ · dgαβg−1

αβ ∧ dgαβg−1
αβ = 0

because dgαβg
−1
αβ is a scalar valued 1-form, we obtain a well-defined relative

2-form
ω◦ ∈ H0(Z◦, Ω2

Z◦/C)

such that

ω◦|Z◦

α
= dCAα . (3.19)

In the case that λ = 0, so that C0 = T ∗X , the equation (3.18) shows that
the Aα already patch together to give a well-defined 1-form θ on T ∗X . In fact,
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from their definition (3.7) one sees that θ is the tautological 1-form on T ∗X .
Hence ω◦|T∗X = dθ is the standard (holomorphic) symplectic form on T ∗X .
Furthermore, since the Aα are locally defined from the tautological sections of
T ∗Xα, we see that ω

◦ restricted to any fiber is a holomorphic symplectic form.
Restricting to any fiber Cλ, we see that

(dCAα)|Cλ,α
= d(Aα|Cλ

) .

In particular, for λ = 1, the Aα|C give the universal connection, and so d(Aα|C)
is the (holomorphic) curvature of the universal pullback connection.
The foregoing justifies the following proposition.

Proposition 3.20. In the case G = C×, there exists a holomorphic relative
2-form

ω◦ ∈ H0(Z◦, Ω2
Z◦/C)

which restricts to a holomorphic symplectic form on each fiber Cλ and is the
standard holomorphic symplectic form on C0 = T ∗X and is the curvature of
the (1-)connection they define on C1.

The following will be used later.

Lemma 3.21. Consider the isomorphism γ : Z× −→ C × C× of Lemma 3.14
in the case P is a C

×-bundle. Then if p : C × C
× −→ C is the projection,

and ω◦
1 := ω◦|C, then

ω◦ = γ∗(λ · p∗ω◦
1) = λ · γ∗p∗ω◦

1 . (3.22)

Proof. By definition (3.7), (3.19), ω◦ is locally defined as the exterior derivative
of the tautological 1-form on the cotangent bundle. Also by definition (3.13),
γ is defined by multiplying (the fiber component) by λ−1 to move an arbitrary
element of Z× into C. Thus, the factor of λ in (3.22) is there to cancel this
out.

4 Atiyah sequences for principal bundles

The goal in this section is to show that when X is a homogeneous space, many
of the vector bundle constructions in the previous section arise from bundles
naturally associated to representations of the relevant groups. We begin with
some results holding for general homogeneous spaces and in the latter part of
the section, we will specialize to the case of (partial) flag varieties.

4.1 Description of the universal λ-connection space

Let G be a complex connected algebraic group with Lie algebra g, and let

H ≤ G
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be a closed connected subgroup of G with Lie algebra h; we will employ the
notation “≤” to denote a subgroup. Set X := G/H . The quotient map
G −→ X is a holomorphic principal H-bundle; we will often write GH when
G is considered as this principal H-bundle.

Lemma 4.1. The Atiyah sequence for GH is the short exact sequence of vector
bundles on X associated to the short exact sequence of H-representations

0 −→ h −→ g
q−→ g/h −→ 0 . (4.2)

In particular, ΘX = GH ×H (g/h). More generally, suppose M is another
algebraic group and τ : H −→ M is a holomorphic homomorphism. Let
Gτ := GH ×τ M −→ X be the principal M -bundle obtained by extending the
structure group of GH using τ . Then the Atiyah sequence of Gτ is associated
to the sequence of H-representations

0 −→ m −→ (g⊕m)/h −→ g/h −→ 0 . (4.3)

Here m is an H-representation via H
τ−→ M

Ad−−→ GL(m), the inclusion h →֒
g⊕m is

ξ 7−→ (ξ, −dτ(ξ)) , (4.4)

and the inclusion of m in (g ⊕ m)/h is given by the natural inclusion of m in
g⊕m followed by the quotient by h.

Proof. We identify ΘG = G × g via (g, ξ) 7−→ dLgξ ∈ TgG, where Lg :
G −→ G is left multiplication by g ∈ G. Then it is straightforward to check
that the trivial sub-bundle G× h →֒ G× g on G is precisely the kernel of the
differential dπX : ΘG −→ π∗ΘX for the projection πX : G −→ X . This
inclusion corresponds precisely to the inclusion of H-representations h →֒ g.
Hence the sequence of (trivial) vector bundles

0 −→ ΘG/X −→ ΘG −→ π∗ΘX −→ 0

on GH corresponds precisely to the sequence (4.2) of H-representations, but
at the same time is the sequence (2.2) for GH . The Atiyah sequence for GH
is precisely the quotient of the former by H , which is the same as the exact
sequence of vector bundles associated to (4.2).
For the more general statement, consider the actions of H and M on G ×M
defined by

(a, b) · h =
(
ah, τ(h)−1b

)
(a, b) ·m = (a, bm) , (4.5)

where h ∈ H , m ∈ M and (a, b) ∈ G×M .
It is easy to see that these commute, so we may consider G×M as a principal
(H ×M)-bundle over X . Furthermore, Gτ = (G×M)/H , by definition.
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In the above, the isomorphism GH ×H g/h
∼−→ ΘX written explicitly is

[g, ξ] 7−→ dπ(dLgξ) ,

where ξ denotes the class ξ + h, and [g, ξ] the class of (g, ξ) ∈ GH × g/h
in GH ×H g/h. We have T(a,b)(G ×M) = dLag ⊕ dRbm; here we use right
invariance in the m-factor since in (4.5) we are multiplying on the left; Rb :
M −→ M is right multiplication by b ∈ M . So as above, since G ×M is a
principal H-bundle over Gτ ,

(G×M)×H
(
(g⊕m)/h

) ∼−→ ΘGτ

via

[a, b, (ξ, η)] 7−→ dρ(dLaξ, dRbη) , (4.6)

where ρ : G ×M −→ Gτ is the quotient by H . Again, the Atiyah sequence
arises from the inclusion of the vertical tangent bundle of Gτ into the full
tangent bundle. Lifting this to G × M , this comes from the map of trivial
bundles

(G×M)×m −→ (G×M)×
(
(g⊕m)/h

)
(a, b, η) 7−→

(
a, b, (0,Adbη)

)
.

(The Adb arises because we use dRb for the m-factor.) Since this commutes
with the H-action, it descends to the quotient Gτ×m −→ ΘGτ = (G×M)×H(
(g⊕m)/h

)

([a, b], η) 7−→
[
a, b, (0,Adbη)

]

using the isomorphism (4.6).
By definition, AtGτ = ΘGτ/M and we have an isomorphism ΘGτ /M −→
GH ×H

(
(g⊕m)/h

)

[
a, b, (ξ, η)

]
7−→

[
a, (ξ,Adbη)

]

with inverse
[
a, (ξ, η)

]
7−→

[
a, e, (ξ, η)

]
.

Now, adGτ = (Gτ × m)/M = GH ×H m, and the map adGτ −→ AtGτ

under the above isomorphism is

[a, η] 7−→
[
a, (0, η)

]
,

which is clearly associated to the map of H-representations

m 7−→ (g⊕m)/h.
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Let G, H , τ : H −→ M be as above and let P := GH(M). We may now give
a description of the base of the universal pullback λ-connection of P in terms
of the representations of H . We simply parallel the construction of (3.3) by
tensoring (4.3) with (g/h)∨ to obtain the top row of

0 // Hom(g/h, m) // Hom
(
g/h, (g⊕m)/h

) σ◦− // End g/h // 0

0 // Hom(g/h, m) // w
σ◦− //?�

OO

C //?�

OO

0,

(4.7)

where σ : (g⊕m)/h −→ g/h is the projection; in the bottom row, w is defined
as the H-sub-representation

w :=
{
ν ∈ Hom

(
g/h, (g⊕m)/h

)
| σ ◦ ν ∈ C · Idg/h

}

of Hom
(
g/h, (g⊕m)/h

)
. Therefore, in our case, the vector bundle WP in (3.3)

is the vector bundle GH ×H w over G/H associated to w. For λ ∈ C, we also
define the subset

aλ :=
{
ν ∈ Hom

(
g/h, (g⊕m)/h

)
| σ ◦ ν = Idg/h

}
(4.8)

of w. This is an affine H-space modelled on the H-module Hom(g/h,m) invari-
ant under the H-action on Hom

(
g/h, (g ⊕ m)/h

)
. The following is clear from

the construction just given and the definition (3.9).

Proposition 4.9. In the situation where X = G/H and P = GH(M), the
base of universal pullback λ-connection is

Cλ(P ) = G×H aλ .

For simplicity of notation, we will assume λ = 1, and therefore describe the
universal pullback connection for P = GH(M). We set a := a1. One will
observe that this “factor” of a is precisely what is required to split the appro-
priate sequence to obtain a connection trivial on the fibers. We may think of
G × a as the total space of an H-bundle over G ×H a. Recall that the Atiyah
sequence for GH(M) over G/H was given by (4.3). Pulling this back to G×H a,
we get the sequence

0 −→ (G× a)×H m −→ (G× a)×H (g⊕m)/h −→ (G× a)×H g/h −→ 0 ,

which in our situation is precisely the lower sequence of (2.4) (for us, f is the
projection G×H a −→ G/H). This has a tautological splitting t : (G× a)×H
g/h −→ (G× a)×H (g⊕m)/h, coming from the factor of a given by

[g, ν, ξ + h] 7−→ [g, ν, ν(ξ + h)] . (4.10)

The fact that this gives a splitting comes from the definition of a in (4.8). Then
it is clear from Definition 2.6 that this yields a connection trivial on the fibers
of G×H a −→ G/H .
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4.2 Pullbacks of homogeneous spaces

Let G, H , τ : H −→ M and P := GH(M) be as above and suppose now
that K ≤ H is a closed subgroup; as before, “≤” denotes a subgroup. We
let Y := G/K, so that there is a smooth (i.e., submersive) map f : Y =
G/K −→ X = G/H .

Lemma 4.11. The pulled back principal H-bundle f∗GH may be canonically
identified with the principal H-bundle GK(H) := GK ×K H on Y obtained by
extending the structure group of the principal K-bundle GK using the inclusion
of K in H.

Proof. We note that the principal H-bundle GK(H) is the quotient of G×H
where two elements (g1, h1), (g2, h2) ∈ G ×H are identified if there is some
k ∈ K such that g2 = g1k and h2 = k−1h1. The principal H-bundle f∗GH is
the subset of (G/K)×G consisting of all (g′K, g) such that g′H = gH . Define
the map

Φ : G×H −→ (G/K)×G, (g, h) 7−→ (gK, gh).

Clearly, Φ(G×H) is contained in the above subset f∗GH ⊂ (G/K)×G. For
any k ∈ K,

Φ(gk, k−1h) = (gk, gkk−1h) = (gk, gh) = Φ(g, h) ,

that is, Φ is K-invariant. Hence Φ descends to a map of total spaces

Φ̂ : GK(H) −→ f∗GH

which intertwines the H-actions on GK(H) and f∗GH . Consequently, Φ̂ is an
isomorphism of principal H-bundles.

Corollary 4.12. The composition K ≤ H
τ−→ M allows us to form the

associated principal M -bundle GK(M) over Y . Then one has a canonical iden-
tification

f∗ (GH(M)) = GK(M) .

In particular, if v is an H-representation, and hence a K-representation, and
if V := GH ×H v is the associated vector bundle on X, then

f∗V ∼= GK ×K v ,

with the right side being the vector bundle over Y associated to v as a K-
representation.

With this, taking the principal M -bundle GH(M) over X , and using Lemma
4.1 and Corollary 4.12, it is not hard to see that the diagram (2.4) is that
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of vector bundles over Y = G/K associated to the following diagram of K-
representations

0 // m // (g⊕m)/k //

����

g/k //

����

0

0 // m // (g⊕m)/h σ
// g/h // 0.

(4.13)

Now, suppose that the bottom row of (4.13) splits as a sequence of K-modules,
i.e., there is a K-equivariant ϕ : g/h −→ (g ⊕ m)/h such that σ ◦ ϕ =
Idg/h. This in turn yields a splitting of the bottom row of (2.4) and hence
a connection on GK(M) ∼= f∗(GH(M)) which is trivial on the fibers of f .
Applying Proposition 3.11, we get the following.

Proposition 4.14. If the bottom row of (4.13) splits as a sequence of K-
modules, then there is a canonical morphism

Y = G/K −→ C (GH(M)) = G×H a .

Using the description of Proposition 4.9, the map G/K −→ G×H a is explicitly
described by

gK 7−→ [g, ϕ] . (4.15)

(One may note that ϕ being K-equivariant means k · ϕ = ϕ for all k ∈ K and
hence the right hand side is independent of the choice of coset representative.)

Proof. It is relatively straightforward to check that this map has the property
that the pullback of (4.10) yields the splitting ϕ, and so it must be this map
by the uniqueness in Proposition 3.11.

Corollary 4.16. Assume that G is a connected complex affine algebraic group,
H ≤ G a closed subgroup of G and K ≤ H a reductive subgroup. Then for
any morphism of affine algebraic groups τ : H −→ M , there is a canonical
morphism

G/K −→ C (GH(M)) .

Proof. Since K is reductive, any short exact sequence of K-modules splits.
Hence it follows from Proposition 4.14.

4.3 Universal connection for bundles on flag varieties

Let G be a complex simple simply connected group, and let P ≤ G be a
parabolic subgroup of G. Let χ : P −→ C

× be a character. The unipotent
radical of P will be denoted by U . Let L ≤ P be a Levi subgroup, meaning
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the composition L →֒ P −→ P/U is an isomorphism. We have the Levi fac-
torization P = U⋊L. Since U admits no non-trivial characters, the characters
of P and L are identified.

The Lie algebras of P , U and L will be denoted by p, u and l respectively. We
have p = u ⊕ l (this is a direct sum of vector spaces, not Lie algebras, since
in general l normalizes, but does not centralize, u). The homomorphism of Lie
algebras dχ : p −→ C vanishes on [l, l]+u; note that this sum is in fact direct.

Let ΦG be the root system for g with respect to which P is a standard parabolic
(i.e., with respect to a maximal torus T of a Borel subgroup B ≤ G and with
P ≥ B). Then this comes with a choice of positive roots Φ+

G. We assume that
L is chosen so that ΦL is a sub-root system of ΦG. Then if we take Ψ ⊆ Φ+

G

to be the subset of roots whose root spaces appear in u, we have

ΦG = ΦL ⊔Ψ ⊔Ψ− ,

where Ψ− := −Ψ. We will let u− be the sum of the root spaces for α ∈ Ψ−;
then we have a decomposition

g = u− ⊕ l⊕ u+ ,

where u+ := u, and we will often use the subscript + when we speak about
both u = u+ and u−. Observe then that p− := l+ u− is also a sub-algebra of
g and its corresponding subgroup P− is the opposite parabolic to P .

We wish to consider the situation of the preceding subsections in the case
H = P and M = C×, τ = χ : P −→ C× a character of P . In this case, the
spaces w and a have the explicit descriptions

w =
{
ν ∈ Hom

(
g/p, (g⊕ C)/p

)
| σ ◦ ν ∈ C · Idg/p

}

a =
{
ν ∈ Hom

(
g/p, (g⊕ C)/p

)
| σ ◦ ν = Idg/p

}
⊆ w

where σ is the natural projection in (4.13), and (4.7) becomes

0 // Hom(g/p, C) // Hom
(
g/p, (g⊕ C)/p

) σ◦− // End g/p // 0

0 // Hom(g/p, C) // w
σ◦− //?�

OO

C //?�

OO

0.

(4.17)

Furthermore, Proposition 4.9 then tells us that the base of the universal con-
nection for GP (C

×) = GP ×χ C× is

G×P a.

On the other hand, we may consider the pullback of GP (C
×) to G/L via the
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projection G/L −→ G/P . In our situation, (4.13) becomes

0 // C // (g⊕ C)/l //

����

g/l //

����

0

0 // C // (g⊕ C)/p σ
// g/p // 0,

(4.18)

with the associated diagram of vector bundles over G/L being (2.4). As L is
reductive, Corollary 4.16 gives a canonical morphism

G/L −→ CP (C
×) = G×P a . (4.19)

Proposition 4.20. In the case that the character χ : P −→ C× is anti-
dominant (see the definition below), the morphism (4.19) is an isomorphism.
Hence G/L may be identified with the base of the universal pullback connection
for GP (C

×), with the pullback connection arising from the L-splitting of the
bottom row of (4.18).

Proposition 4.20 will be proved towards the end of this section.

Remark 4.21. Although Proposition 4.20 says that the base space of universal
connection is independent of χ, the curvature of the universal connection, which
is a symplectic form on G/L, depends on χ.

Definition 4.22. We say that a character χ ∈ X•(T ) is strictly anti-dominant
for P if it is anti-dominant in the sense that

〈χ, α∨〉 ≤ 0

for all α ∈ Φ+
G with the inequality being strict for all α ∈ Ψ. Of course, one

only requires these inequalities to hold for simple roots in the respective sets.

To prove Proposition 4.20, we first make more explicit the splitting of the
bottom sequence in (4.18) which gives rise to the morphism (4.19), and then
look at the action of U on this splitting and on a. The simplest way to describe
the L-splitting of (4.18) is by the map r : (g⊕ C)/p −→ C:

(ξ, c) + p 7−→ dχ(ξl) + c , (4.23)

where we write ξ = ξ+ + ξl + ξ− with ξ± ∈ u±, ξ
l ∈ l. It is clear that this

L-equivariant, as the L-action on C on both sides is the adjoint action which
must be trivial. Of course, the induced splitting of the top row of (4.18), which
yields the Atiyah sequence of the pullback bundle, has the same expression:

(ξ, c) + l 7−→ dχ(ξl) + c . (4.24)

We would like to view the splitting as a map ν0 : g/p −→ (g ⊕ C)/p, so as
to view it as an element of a. To do this, we choose a basis as follows. For
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α ∈ Ψ−, choose a root vector fα in the corresponding root space gα. Then
{fα}α∈Ψ− is a basis for g/p ∼= u− (the bar indicates residue modulo p). One
can then verify that

ν0 : g/p −→ (g⊕ C)/p fα 7−→ (fα, 0) . (4.25)

gives the other realization of splitting (4.23); of course, ν0 ∈ a.

Lemma 4.26.

(a) The element ν0 in (4.25) satisfies ℓ · ν0 = ν0 for every ℓ ∈ L, i.e., for all
f ∈ g/p,

ν0(ℓ · f) = ℓ · ν0(f) .

(b) Assuming that χ is strictly anti-dominant for P , given ν ∈ a, there exists
a unique u ∈ U such that u · ν0 = ν.

Proof. The statement of (a) holds simply because (4.23) is L-equivariant and
hence ν0 arises from that map.
For the proof of (b) we need to introduce some further notation. For α ∈ Φ+

G,
choose root vectors eα ∈ gα, fα ∈ g−α: we will set hα := [eα, fα]. Then,
upon scaling one of eα or fα, (eα, hα, fα) would form an sl2-triple, but as it
is, this need not necessarily be the case. What is important is that with the
assumption on χ,

wα := dχ(hα) 6= 0. (4.27)

For i ∈ Z, we set

gi :=
∑

htα=i

gα, i 6= 0 g0 := t ,

where of course, if α ∈ Φ−
G, then htα = −ht(−α). We will denote by m the

height of the highest (positive) root. Our argument will be by induction on the
heights of the roots.
Let

E :=
∑

α∈Ψ

cαeα ∈ u

with cα ∈ C. Let u := expE; recall that exp : u −→ U is an isomorphism.
We let

Ei :=
∑

htα=i

cαeα

be the gi-component of E, so that

E =

m∑

i=1

Ei .
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Fix α ∈ Ψ of height r. Then we have an expression

Adu−1fα = Adexp(−E)fα = fα − [E, fα] +
1

2!
[E, [E, fα]]− · · ·

which we may write as

Adu−1fα = fα +

m∑

i=−(r−1)

Fuα,i ,

where Fuα,i ∈ gi is the gi-component of Adu−1 . For example,

Fuα,−(r−1) = −[E1, fα] fuα,−(r−2) = −[E2, fα] +
1

2
[E1, [E1, fα]].

In fact, it is not hard to see that

Fuα,0 = −[Er, fα] + ζα(fα, E1, . . . , Er−1) (4.28)

for some t-valued function ζα of fα, E1, . . . , Er−1.
Given an arbitrary ν : g/p −→ (g⊕C)/p such that σ ◦ ν = Idg/p, we wish to
show that we can choose E (i.e., the cα) uniquely so that

u · ν0 = ν .

In terms of the basis {fα}α∈Ψ of g/p, ν takes the form

ν(fα) = (fα, zα)

for some zα ∈ C.
Now, since U ≤ kerχ and gα ⊆ [l, l] for all α ∈ ΦL, one finds that dχ vanishes
on gα for α ∈ ΦL ∪Ψ and hence we obtain the relation in (g⊕ C)/p

(ζ, 0) =
(
ζ,−dχ(ζ)

)
= (0, 0) ,

for ζ ∈ gα, α ∈ Φ+
G, which we will use repeatedly in what follows.

We observe that, modulo p,

Adu−1fα = fα +

−1∑

i=−(r−1)

F
u

α,i
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so

(u · ν0)(fα) = Aduν0
(
Adu−1fα

)
= Aduν0


fα +

−1∑

i=−(r−1)

F
u

α,i




= Adu


fα +

−1∑

i=−(r−1)

Fuα,i


 =

(
Adu

(
Adu−1fα −

m∑

i=0

Fuα,i

)
, 0

)

=

(
fα − expadE

(
m∑

i=0

Fuα,i

)
, 0

)
.

Now, we observe that

expadE

(
m∑

i=1

Fuα,i

)
∈
⊕

α∈Φ+

G

gα

so this simplifies to

(
fα − expadE F

u
α,0, 0

)
=

(
fα − Fuα,0 − [E,Fuα,0]−

1

2!
[E, [E,Fuα,0]]− · · · , 0

)

=
(
fα − Fuα,0, 0

)
= (fα + [Er , fα]− ζα(fα, E1, . . . , Er−1), 0) ,

using (4.28) at the end. Now, if htβ = r = htα, but β 6= α, then β − α 6∈ ΦG,
so [eβ , fα] = 0 and therefore

[Er , fα] =
∑

htβ=r

cβ [eβ, fα] = cαhα .

Thus,

(u · ν0)(fα) = (fα + cαhα − ζα(fα, E1, . . . , Er−1), 0)

In the case that htα = 1, i.e., α is a simple root in Ψ, ζα = 0 and

(u · ν0)(fα) = (fα + cαhα, 0) = (fα, cαdχ(hα)) = (fα, cαwα)

and using (4.27), we can uniquely solve the equation wαcα = zα for cα.
By induction on htα = r, we may assume that all cβ are determined for
htβ < r, and hence e1, . . . , er−1 are determined. Then

(u · ν0)(fα) = (fα, wαcα + dχ(ζα(fα, E1, . . . , Er−1)))

and again we can solve

wαcα + dχ(ζα(fα, E1, . . . , Er−1)) = zα

uniquely for cα.
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Remark 4.29. In the proof of Lemma 4.26(b), we took an arbitrary element
ν with the property that

ν(fα) = (fα, zα) .

We may rewrite ν = ν0 + ϕ with ϕ ∈ (g/p)∨ such that

ϕ(fα) = zα .

In Section 5.3, it will be necessary for us to understand what happens when
we multiply ϕ by a scalar µ. At the beginning of the induction, we needed to
solve the equation wαcα = zα for cα. Replacing ϕ by µϕ means replacing zα
with µzα and hence our new solution would be µcα instead of cα.
Inductively, one wanted to solve the equation

wαcα + dχ
(
ζα(fα, E1, . . . , Er−1)

)
= zα,

where α is a root of height r. Replacing ϕ by µϕ, since the expressions preceding
(4.28) involve commutators of root vectors for roots of height < r, one sees
that

dχ(ζα(fα, E1, . . . , Er−1))

will be a non-constant polynomial in µ, with coefficients depending on the cβ
previously found. But then, the equation above shows that the same will be
true for cα.

Proof of Proposition 4.20. The morphism G/L −→ G ×P a is given in (4.15)
as

gL 7−→ [g, ν0] . (4.30)

The inverse G×P a −→ G/L is given by

[g, ν] 7−→ guL ,

where u ∈ U is (the unique) such that u · ν0 = ν (this is the statement of
Lemma 4.26(b)). It is straightforward to check that this is indeed well-defined
and gives the inverse.

We now record a computational result that will be used in the construction of
the twistor lines in Section 5.3.

Lemma 4.31. The action of the Lie algebra u on ν0 is given by

eα · ν0 = sαeα

for some non-zero constants sα ∈ C×.
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Proof. Observe that

(eα · ν0)(fβ) = eα · ν0(fβ)− ν0([eα, fβ]) = ([eα, fβ ], 0)− ν0([eα, fβ ]) . (4.32)

We consider cases. If α = β, [eα, fα] = hα ∈ t and so then the second term
vanishes and the first is

(hα, 0) =
(
0, dχ(hα)

)
= dχ(hα)f

∗

α(fα).

If β − α ∈ Φ+
G, then [eα, fβ] = Nαβfβ−α for some constant Nαβ , so the two

terms in (4.32) cancel each other out. Finally, if β−α 6∈ Φ+
G, then [eα, fβ] = 0,

so both terms in (4.32) are zero.

5 Twistor spaces

5.1 Real structures on complexifications of (partial) flag vari-
eties

We will use the notation set at the beginning of Section 4.3. The real structure
for our twistor space will come from a compact real form on the Lie algebra of
G, so therefore we will record some notation and facts that we will need. Let
dτG : g −→ g be a compact real form of g; this will integrate to a conjugate
linear involution τG : G −→ G, which is a morphism of the underlying real
algebraic groups, with the property that

K := {x ∈ G | τG(x) = x}

is a maximal compact subgroup of G; we will write k for the Lie algebra of K.
Since any two compact real forms are related by a conjugation, and the same
is true of maximal tori, we may in fact take the compact real form dτG to be
compatible with the root system in the sense that

dτG(gα) = g−α

for all α ∈ ΦG (see, e.g., [He, Chapter III, proof of Theorem 6.3]). Therefore,
for positive roots α ∈ Φ+

G, we may choose root vectors

eα ∈ gα fα ∈ g−α

so that

dτG(eα) = fα dτG(fα) = eα.

Of course, we will have chosen the parabolic subgroup P ≤ G to be a standard
parabolic for this root system, and we choose a Levi subgroup L ≤ P whose
Lie algebra l is a sum of root spaces. Then l will be dτG-invariant and hence L
is τG-invariant.
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Let F := P ∩ K. Since unipotent groups have no non-trivial compact sub-
groups, U ∩K = {e}, and so F ≤ L and hence

F = L ∩K. (5.1)

In fact, F will be a maximal compact subgroup of L and one has

X = G/P = K/F .

Furthermore, for any P -variety T , we have an identification

G×P T ∼= K ×F T . (5.2)

We will make use of some further properties of τG later in Section 5.3 that
we record here for convenience. One is that it commutes with the exponential
map: for ξ ∈ g, one has

τG
(
exp(ξ)

)
= exp

(
dτG(ξ)

)
. (5.3)

This follows simply because τG is a homomorphism of the underlying real Lie
groups. The second fact is the following: if χ : L −→ C× is a character, then
dχ : l −→ C satisfies

dχ
(
dτG(ξ)

)
= −dχ(ξ) . (5.4)

This can be justified as follows. Since K ≤ G is compact, χ(K) must be a
compact subgroup of C×, so χ(K) ≤ S1. As the Lie algebra of S1 is

√
−1R ⊆

C, if we write g = k ⊕
√
−1k, then dχ(k) ⊆

√
−1R; since dχ is C–linear, we

have dχ(
√
−1k) ⊆ R. Now, if ξ = A+

√
−1B ∈ g, with A, B ∈ k, we have

−dχ(A+
√
−1B) = −

(
dχ(A) +

√
−1dχ(B)

)
= dχ(A) −

√
−1dχ(B)

= dχ(A−
√
−1B) = dχ ◦ dτG(A+

√
−1B) .

Using the notation of Section 3.1, and in view of Proposition 4.20, let C :=
G/L.

Proposition 5.5. One has an inclusion ι : X →֒ C as a totally real sub-
manifold. The real structure τG descends to one τC : C −→ C for which
X = ι(X) = CτC is the set of the fixed points of τC .

Proof. From (5.1), the inclusion K →֒ G induces an injective map ι : X −→
C. Since K is compact, the image is closed and the fact that it is a totally real
immersion can be checked infinitesimally at the level of Lie algebras.
The real structure τC : C −→ C is induced from τG : G −→ G, namely,
τC(gL) := τG(g)L. It is well-defined precisely because τG is a group homo-
morphism and L is τG-invariant.
Since τG fixes K point-wise, it follows immediately that τC fixes ι(X) point-
wise. Note that τG acts on g/k as multiplication by −1. This implies that
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ι(X) is a connected component of the fixed point locus CτC . For g ∈ G, if
g = k exp(

√
−1v) is the Cartan decomposition, where k ∈ K and v ∈ k, then

τG(g) = k exp(−
√
−1v). Therefore, if τG(g) = gℓ, where ℓ ∈ L, then

ℓ = exp(−2
√
−1v) . (5.6)

Since the Cartan decomposition of L is the restriction of the Cartan decompo-
sition of G to L, from (5.6) it follows that v ∈ l, and hence exp(

√
−1v) ∈ L.

From this it follows that CτC ⊂ ι(X). Hence we have CτC = ι(X).

Remark 5.7. C is a good complexification of X in the sense of [To, p. 69].

5.2 Generalities for construction of twistor spaces

There are some general remarks in [Si, § 4] which indicate how to construct a
twistor space for a hyper-Kähler metric.
Suppose we are given a complex manifold Z◦ with a surjective submersion
π◦ : Z◦ −→ C; we set Z× := (π◦)−1(C×). Suppose further that we are given
an anti-holomorphic involution τ◦ : Z× −→ Z× such that

Z× τ◦

//

π◦

��

Z×

π◦

��
C×

σ◦

// C×

(5.8)

commutes, where σ◦ : C× −→ C× is

σ◦(λ) = −λ−1
.

Let Z◦
i := Z◦ × {i} for i = 0, 1 and set Z := (Z◦

0

∐
Z

◦

1)/ ∼, where
[z, i] ∼ [τ◦(z), 1 − i] for z ∈ Z×

i . Verification of the following statements
is a straightforward exercise.

Lemma 5.9.

(a) Z is Hausdorff and hence a complex manifold. There is a surjective sub-
mersion π : Z −→ P1 and an anti-holomorphic involution τ : Z −→ Z
such that

Z
τ //

π
��

Z

π
��

P1
σ

// P1

(5.10)

commutes, where σ : P1 −→ P1 is the antipodal map.
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(b) Suppose further that we are given a section η◦ : C −→ Z◦ of π◦, i.e.,
π◦ ◦ η◦ = IdC, and such that

Z× τ◦

// Z×

C×

η◦

OO

σ◦

// C×

η◦

OO

commutes. Then there is a well-defined section η : P1 −→ Z such that

Z
τ // Z

P1

η

OO

σ
// P1

η

OO

(5.11)

commutes.

5.3 Twistor spaces for cotangent bundles of homogeneous spaces

We take up again the notation of Section 4.3 and let X be the homogeneous
space G/P . We choose a strictly anti-dominant character χ of P , for which
there is an associated C

×-bundle, which puts us in the situation of Section
3.2. (Note that this is also equivalent to choosing a (very) ample line bundle
on X , and thus fixing a Kähler structure on X .) The extension (3.16) is
given by the sequence of vector bundles associated to the lower sequence of
P -representations in (4.17). Furthermore, the total space Z◦ = Tot(WP ) (see
(3.16)) has the description

Z◦ = GP ×P w . (5.12)

Theorem 5.13. In this situation, Z◦ gives one patch of the twistor space for
a hyper-Kähler metric on T ∗X (or equivalently, on the universal connection
space for the frame bundle of the ample line bundle chosen, which may be
identified with G/L by Proposition 4.20). Furthermore, it is clear from the
above description that Z◦ is algebraic.

Remark 5.14. It is known that if X is a Kähler manifold, then there is a
neighbourhood of the zero section in T ∗X on which there exists a hyper-Kähler
metric [Fe, Theorem A], [Ka, Theorem 1.1]. In our situation, where X = G/P
as above, the above states that the hyper-Kähler metric in fact exists on the
entirety of the cotangent bundle, which does not necessarily hold in general
(cf. [Fe, Theorem B]).

We note that the proof of Theorem 5.13 involves applying the fundamental
theorem [HKLR, Theorem 3.3] characterizing twistor spaces for hyper-Kähler
metrics. We state it here so that, in terms of proof, what is required of us is
clear.
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Theorem 5.15. Let Z be a complex manifold of dimension 2n+ 1 with a map
π : Z −→ P1 making it into a holomorphic fiber bundle. We further assume
that

(a) Z admits a real structure τ : Z −→ Z inducing the antipodal map on
P1;

(b) π admits a family of holomorphic sections sβ : P1 −→ Z, often referred
to as twistor lines, each with normal bundle OP1(1)⊕2n;

(c) there exists relative symplectic form ω ∈ Γ(Z,Ω2
Z/P1) ⊗ π∗OP1(2), which

is compatible with τ in the sense that τ∗ω = ω.

Then Z is in fact the twistor space for a hyper-Kähler metric on any of the
fibers of π.

The rest of Section 5.3 will be spent exhibiting these properties and therefore
providing a proof of Theorem 5.13.

5.3.1 Twistor space and the real structure

Of course, we want to apply the construction in Section 5.2 to build the twistor
space. We use the description of Z◦ as in (5.12). Explicitly, one has the
submersion π◦ : Z◦ −→ C given by

Z◦ = GP ×P w −→ GP ×P C −→ C

To construct a holomorphic submersion π : Z −→ P1 using the results of
Section 5.2, we need to construct an anti-holomorphic involution τ◦ : Z× −→
Z×. For this, we use the isomorphism γ : Z× ∼−→ C ×C× of Lemma 3.14 and
the existence of a real structure τC on

C := (π◦)−1(1) ∼= G/L .

Recall that the isomorphism is given in Proposition 4.20 and the the real struc-
ture by Proposition 5.5. Precisely, we set

τ◦ := γ−1 ◦ (τC × σ◦) ◦ γ . (5.16)

The fact that (5.8) commutes then comes from the fact that (3.15) does. This
together with Lemma 5.9 yields the space Z together with the real structure
over the antipodal map on P

1.

5.3.2 Relative holomorphic symplectic form

Proposition 3.20 gives us a form ω◦ ∈ Γ(Z◦,Ω2
Z◦/C). As Z is constructed from

glueing Z◦ to Z
◦
via τ◦, we would like to see that ω◦ ∈ Γ(Z

◦
,Ω2

Z
◦

/C
) patches

with ω◦ to give a well-defined section of Ω2
Z/P1 ⊗ OP1(2). Recall that we had
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written ω◦
1 ∈ Γ(C,Ω2

C) for the restriction of ω◦ to C in Lemma 3.21; suppose
for the moment that

τ∗Cω
◦
1 = −ω◦

1 . (5.17)

We had written p : C × C× −→ C for the projection. In the following, we
will use Lemma 3.21 which states that

ω◦ = γ∗(λp∗ω◦
1)

as well as the definition (5.16) of τ◦ and (5.17):

(τ◦)∗ω◦ = (γ−1 ◦ (τC × σ◦) ◦ γ)∗γ∗(λp∗ω◦
1) = γ∗(τC × σ◦)∗(λp∗ω◦

1)

= γ∗(λ−1p∗ω◦
1) = λ−2ω◦ ,

noting that in the second to last equality, there are cancelling minus signs, one
from (5.17) and the other from the fact that (σ◦)∗λ = −λ−1. Since λ−2 is the
transition function for O(2), it follows that ω◦ and ω◦ patch together to give
a well-defined ω ∈ Γ(Z,Ω2

Z/P1 ⊗O(2)). Furthermore, the definition of the real

structure τ : Z −→ Z is given in the patches by the identity map Z◦ −→ Z
◦
,

and so it is tautological from our definition that

τ∗ω = ω ,

which is the compatibility condition with respect to τ .

Proof of (5.17). We proceed as follows. By Proposition 3.20, the form ω◦
1 is

the curvature form of the canonical connection, obtained via Proposition 3.11
on the pullback Q of the C×-bundle on G/P to G/L (via the natural projection
G/L −→ G/P ). Note that by Corollary 4.12, we know that Q is the C×-bundle
G×L,χ C

× over G/L associated to the character χ : L −→ C
×.

We will compute the connection 1-form θ of this connection (since Q is a C×-
bundle, this is a scalar 1-form) associated to a section of Q over a certain Zariski
open set A ⊆ G/L. We then show that

τ∗Cθ = −θ (5.18)

on A ∩ τC(A). This implies (5.17) holds on A ∩ τC(A): as there one has

τ∗Cω
◦
1 = τ∗C∂θ = τ∗Cdθ = dτ∗Cθ = −dθ = −∂θ = −∂θ = −ω◦

1 .

Thus, the difference τ∗Cω
◦
1−ω◦

1 is a global section of a locally free sheaf which is
supported on a proper Zariski closed subset, hence it must vanish everywhere.
It remains to us to specify A, the section of Q over A, compute θ and prove
(5.18). However, we first record the description of the tangent bundle ΘQ of Q
given by Lemma 4.1 as

ΘQ =
(
(G× C

×)× (g⊕ C)/l
)
/L . (5.19)

Documenta Mathematica 23 (2018) 77–115



106 I. Biswas and M. L. Wong

We will also recall that the connection on Q is the splitting of its Atiyah
sequence, which arises from the L-splitting of the top sequence of (4.18). Then
using (4.24), the connection 1-form θ′ : ΘQ −→ C can be explicitly written

[x, a, (ξ, c) + l] 7−→ dχ(ξl) + c , (5.20)

where ξl is the l-component of ξ under the decomposition g = u+ ⊕ l⊕ u−.
The open set A ⊆ G/L will be the preimage of the open cell U−P ⊆ G/P in
the Bruhat decomposition of G/P , under the projection G/L −→ G/P ; since
P = U+L, we see that A := U−U+L ⊆ G/L is open. We will work with the
section s : A −→ Q of Q over A given by

(u, v) 7−→ [uv, 1] ∈ G×L,χ C
× .

We will take θ as the connection 1-form over A for the connection described
above with respect to the section s, i.e., θ = s∗θ′. In order to compute θ, we
will specify coordinates on A. Fix an ordering of the roots in Ψ. Then we take
coordinates xα on U−, yα on U+, α ∈ Ψ as follows. One may write

U− =
∏

α∈Ψ

exp(xαfα) U+ =
∏

α∈Ψ

exp(yαeα)

and with this, the coordinate tangent vector ∂xα
is given by

d

dǫ

∣∣∣∣
ǫ=0



∏

β<α

exp(xβfβ)


 exp

(
(xα + ǫ)fα

)


∏

β>α

exp(xβfβ)


 .

We will write the product as uα(ǫ). A similar expression holds for ∂yα .
Now, since the expression in (5.19) uses left-invariance to identify tangent vec-
tors with elements in the Lie algebra, we take

Xα :=
d

dǫ

∣∣∣∣
ǫ=0

(uv)−1uα(ǫ)v;

note that Xα will depend on u, v. We have uα(ǫ)v = uv exp(ǫXα) and so

ds(∂xα
) =

d

dǫ

∣∣∣∣
ǫ=0

[uv exp(ǫXα), 1] = [uv, 1, (Xα, 0) + l]

with the latter the class modulo L in the realization (5.19). Then under (5.20),
the value of θ can now be computed as

θ(∂xα
) = dχ(X l

α) .

If we do a similar calculation for ∂yα , then
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Yα :=
d

dǫ

∣∣∣∣
ǫ=0

(uv)−1uvα(ǫ) =
d

dǫ

∣∣∣∣
ǫ=0

v−1vα(ǫ) ∈ u+,

since v, vα(ǫ) ∈ U+, hence Yα = Y +
α and from (5.20) it follows that

θ(∂yα) = 0.

Therefore, we obtain

θ =
∑

α∈Ψ

dχ(X l
α)dxα . (5.21)

One may remark that the coordinates xα, yα are “close” to being Darboux co-
ordinates, so that the 1-form should take a form similar to that of the canonical
1-form on the cotangent bundle; this accords with the description in Section
3.2.
Now we will prove (5.18). Since θ is a holomorphic 1-form, and τC is anti-
holomorphic, it follows that the pullback τ∗Cθ is anti-holomorphic and therefore
is of the form

τ∗Cθ =
∑

aαdxα + bαdyα ,

for some functions aα, bα. Now,

ds ◦ dτC(∂yα) = [τG(uv), 1, (dτG(Yα), 0) ,+l]

and so

τ∗Cθ(∂yα) = dχ
(
dτG(Yα)

l
)

but since dτG(Yα) ∈ u−, this vanishes, hence all bα = 0. Similarly,

τ∗Cθ(∂xα
) = dχ

(
dτG(Xα)

l
)
= dχ

(
dτG(X

l
α)
)
= −dχ(X l

α),

with the second equality coming from the fact that dτG preserves l and the
third from (5.4). Comparing with (5.21), we see that (5.18) is proved.

5.3.3 Construction of the twistor lines

The twistor lines, that is the sections sβ : P1 −→ Z, are described as follows.
Observe that the map ν0 : g/p −→ (g ⊕ C)/p defined in (4.25) defines an
L-splitting (but not a P -splitting!) of the lower sequence of P -representations
in (4.17): such a splitting is given by C −→ w simply taking

1 7−→ ν0 .
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The fact that this gives a morphism of L-modules is given by Lemma (4.26)(a),
which says that L acts trivially on ν0.
We begin, of course, by defining the twistor lines, and then the next task will be
to compute their normal bundles. Since the underlying hyper-Kähler manifold
is T ∗X , for each point β := [g, ϕ] ∈ G×P (g/p)∨ = T ∗X , we wish to construct
a (real) section sβ : P1 −→ Z. We note that by (5.2), we may assume that
g = k ∈ K. Of course, we will use the standard charts U0, U1 on P1, say with
λ a coordinate on U0 and µ = λ−1 a coordinate on U1. We consider the section
over U0 given by

λ 7−→ [k, λν0 + ϕ] ∈ Z◦ . (5.22)

We wish to see that this extends to a holomorphic section sβ . Since Z is

constructed by glueing Z◦ to Z
◦
via τ◦, defined in (5.16), we would like to look

at the image of (5.22) under τ◦ and verify that it extends to a holomorphic
section over all of P1. Recall that Proposition 4.20 gave us isomorphisms

C ∼= G/L ∼= G×P a ,

with the second map given by (4.30)

gL 7−→ [g, ν0] .

From Proposition 5.5(b), the real structure τC under the identification C =
G/L, is

τC(gL) = τG(g)L .

Therefore, identifying C = G ×P a, we can describe the real structure τC as
follows: given [g, ν] ∈ C, we take u ∈ U to be the unique element so that
ν = u · ν0 (Lemma 4.26(b)) and then

τC([g, ν]) = τC([g, u · ν0]) = τC([gu, ·ν0]) = [τ(g)τ(u), ν0] .

Using this, under τ◦, (5.22) maps to

[k, λν0 + ϕ]
γ7−→ ([k, ν0 + µϕ], λ) = ([k, u(µ, ϕ) · ν0], λ) = ([ku(µ, ϕ), ν0], λ)

τC×σ◦

7−→
(
[kτG

(
u(µ, ϕ)

)
, ν0],−µ

) γ−1

7−→
[
kτG

(
u(µ, ϕ)

)
, −µν0

]
.
(5.23)

Here we have taken u = u(µ, ϕ) ∈ U so that

u(µ, ϕ) · ν0 = ν0 + µϕ .

As in the proof of Lemma 4.26(b), we may write

u(µ, ϕ) = exp
(
E(µ, ϕ)

)
E =

m∑

j=1

Ej(µ, ϕ) Ej =
∑

htα=j

cα(µ, ϕ)eα. (5.24)
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By Remark 4.29, the cα(µ, ϕ) are non-constant polynomials in µ. Then using
(5.3), we have

τG
(
u(µ, ϕ)

)
= exp

(
F (µ, ϕ)

)

where F (µ, ϕ) = dτG(E(µ, ϕ)); explicitly,

F :=

m∑

j=1

Fj(µ, ϕ) Fj :=
∑

htα=j

cα(µ, ϕ)fα (5.25)

and these are polynomial functions in µ. Rewriting (5.23), we find

τ◦
(
[k, λν0 + ϕ]

)
=
[
k exp

(
F (µ, ϕ)

)
,−µν0

]
,

and recalling that we are using the conjugate complex structure on Z
◦
, then

the right side is a holomorphic section over U1. Thus, we have a well-defined

sβ : P1 −→ Z . (5.26)

5.3.4 Computation of normal bundles to twistor lines

We now wish to show that the normal bundles to the sections sβ in (5.26)
are isomorphic to OP1(1)2n, where n := dimG/P = |Ψ|. We first begin by
describing the tangent spaces at points of Z◦ which is itself a quotient of G×w.
Let (g, ν) ∈ G×w be a representative of [g, ν] ∈ G×P w = Z◦. The tangent
space can be identified

T(g,ν)(G×w) = TgG⊕ Tνw = g⊕w

using left translation in the g-factor in the last equality. Therefore, we have
the description of the tangent space

T[g,ν]Z
◦ = T[g,ν](G×P w) = (g⊕w)/p,

where we include dρ : p →֒ g ⊕ w (say, if we let ρ denote the action of P on
G×w) via the infinitesimal action:

ξ 7−→ (ξ, ξ · ν) .
It is not hard to see that

g⊕w = (u− ⊕ 0)⊕ dρ(p)⊕
(
0⊕ (u+ ⊕ ν0)

)

where we identify u+ = (g/p)∨ via the Killing form.
Therefore, for any point [g, ν] ∈ Z◦, the tangent space T[g,ν]Z

◦ is spanned by
the images of u− ⊕ 0 and 0⊕ (u+ ⊕ ν0). Taking up the notation of (the end of)
Section 4.3, one can take a frame of T[g,ν]Z

◦ by

fα([g, ν]) :=
d

dǫ

∣∣∣∣
ǫ=0

[g exp(ǫfα), ν], α ∈ Ψ ν0([g, ν]) :=
d

dǫ

∣∣∣∣
ǫ=0

[g, ν + ǫν0]

eα([g, ν]) :=
d

dǫ

∣∣∣∣
ǫ=0

[g, ν + ǫeα], α ∈ Ψ (5.27)
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To prove that the normal bundles to the twistor lines are of the appropriate
form, we will use induction arguments similar to those of the proof of Lemma
4.26. Let us choose a “decreasing” ordering of the roots α ∈ Ψ, such that α1

is the highest root and htαi > htαj implies i < j. We will shorten

ei := eαi
fi := fαi

and let ei, fi be the corresponding vector fields as in (5.27).
We recall that the normal bundleNsβ corresponding to a section sβ : P1 −→ Z
is defined by the exact sequence

0 −→ ΘP1 −→ ΘZ |P1 −→ Nsβ −→ 0 ,

where by restriction, we mean the pullback along sβ . From the expression of
the section in (5.22), and the vector fields defined in (5.27), it is clear that, in
these local expressions, the inclusion ΘP1 →֒ ΘZ |P1 is given by the inclusion of
the vector field ν0. Therefore, Nsβ is spanned by the eα|P1 , fα|P1 .
We now want to fix frames for Nsβ over each of U0 and U1 and compute the
transition function. Over U0, we will fix the frame p1, . . . ,p2n by

pi(λ) := ei(λ), 1 ≤ i ≤ n pn+i(λ) := fn+1−i(λ), 1 ≤ i ≤ n;

over U1, we reverse the order, setting q1, . . . ,q2n to be

qi(µ) := fi(µ), 1 ≤ i ≤ n qn+i(µ) := en+1−i(µ), 1 ≤ i ≤ n.

We want to apply the following to the above frames to achieve our desired
conclusion.

Lemma 5.28. Let U0, U1 be the standard open covering of P1 with µ a coordinate
on U1. Let M be a rank m vector bundle over P

1 with frames s1, . . . , sm on U0

and t1, . . . , tm over U1. Suppose that the transition function (i.e., the matrix
whose columns are the coordinate vectors of the si with respect to the tj) with
respect to these frames is of the form




x1µ g12(µ) g13(µ) · · · g1,m−1(µ) g1m(µ)
0 x2µ g23(µ) · · · g2,m−1(µ) g2m(µ)
0 0 x3µ · · · g3,m−1(µ) g3m(µ)
...

...
...

. . .
...

...
0 0 0 · · · xm−1µ gm−1,m(µ)
0 0 0 · · · 0 xmµ




where the xi are non-zero constants and the gij(µ) ∈ µC[µ]. Then M ∼=
OP1(1)m.

We therefore compute the change of frame matrix.
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Fix i ∈ [1, n] and suppose htαi = j (the reader should keep in mind here that
i is the index for the root, while j and ℓ will be indices for the height of αi and
other roots). Then

pi(λ) = ei([k, λν0 + ϕ])

:=
d

dǫ

∣∣∣∣
ǫ=0

[k, λν0 + ϕ+ ǫei]
γ7−→ d

dǫ

∣∣∣∣
ǫ=0

([k, ν0 + µ(ϕ+ ǫei)], λ) .

To continue, we need to find u(µ, ϕ, ǫ) as in (5.24) so that

u(µ, ϕ, ǫ) · ν0 = ν0 + µ(ϕ+ ǫei).

Such will be of the form

u(µ, ϕ, ǫ) = exp
(
E(µ, ϕ, ǫ)

)
.

But if htαi = j, then following the induction procedure in the proof of Lemma
4.26, since f

∗

i = tiei for some non-zero ti ∈ C×, we see that we will get

Eℓ(µ, ϕ, ǫ) = Eℓ(µ, ϕ), ℓ < j Ej(µ, ϕ, ǫ) = Ej(µ, ϕ) + ǫµtiei

and Eℓ(µ, ϕ, ǫ) depends on ǫ for ℓ > j. Thus,

pi(λ)
γ7−→ d

dǫ

∣∣∣∣
ǫ=0

([
k, exp

(
E(µ, ϕ, ǫ)

)
· ν0
]
, λ
)

=
d

dǫ

∣∣∣∣
ǫ=0

([
k exp

(
E(µ, ϕ, ǫ)

)
, ν0
]
, λ
)

τC×σ◦

7−→ d

dǫ

∣∣∣∣
ǫ=0

([
k exp

(
F (µ, ϕ, ǫ)

)
, ν0
]
,−µ

)

γ−1

7−→ d

dǫ

∣∣∣∣
ǫ=0

[
k exp

(
F (µ, ϕ, ǫ)

)
,−µν0

]
.

Here,

F (µ, ϕ, ǫ) =

m∑

ℓ=1

Fℓ(µ, ϕ, ǫ)

with

Fℓ(µ, ϕ, ǫ) = Fℓ(µ, ϕ), 1 ≤ ℓ < j Fj(µ, ϕ, ǫ) = Fj(µ, ϕ) + ǫµtifi

Fℓ(µ, ϕ, ǫ) = Fℓ(µ, ϕ) + ǫµF̃ℓ, j < ℓ ≤ m

where the Fℓ(µ, ϕ) are as in (5.25) and the F̃ℓ ∈ gℓ are sums of root vectors of

weight ℓ. The factor of µ preceding F̃ℓ follows from the same reasoning as in
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Remark 4.29. It follows that

pi(λ)
τ0

7−→ d

dǫ

∣∣∣∣
ǫ=0


k exp

(
F (µ, ϕ)

)
exp


ǫµ


tifi +

∑

ℓ>j

F̃ℓ




 ,−µν0




= µ


tiqi(µ) +

∑

j<i

tj(µ)qj(µ)


 .

for some functions tj(µ). This shows that the first n sections of the frame give
upper triangular transition functions.
Now, we also have

pn+i(λ) = fn+1−i([k, λν0 + ϕ]) :=
d

dǫ

∣∣∣∣
ǫ=0

[k exp(ǫfn+1−i), λν0 + ϕ]

γ7−→ d

dǫ

∣∣∣∣
ǫ=0

([k exp(ǫfn+1−i), ν0 + µϕ], λ)

=
d

dǫ

∣∣∣∣
ǫ=0

([k exp(ǫfn+1−i), u(µ, ϕ) · ν0], λ)

=
d

dǫ

∣∣∣∣
ǫ=0

([k exp(ǫfn+1−i)u(µ, ϕ), ν0], λ)

τC×σ◦

7−→ d

dǫ

∣∣∣∣
ǫ=0

([k exp(ǫen+1−i)τG(u), ν0],−µ)

=
d

dǫ

∣∣∣∣
ǫ=0

(
[kτG(u) exp(ǫAdτG(u)−1en+1−i), ν0],−µ

)
.

Since τG(u) ∈ U−, we will get

AdτG(u)−1en+1−i = en+1−i +
∑

j>n+1−i

ẽj + h̃+
∑

j

f̃j ,

with ẽj ∈ gαj
, h̃ ∈ l and f̃j ∈ g−αj

with αj ∈ Ψ. Since exp(ǫh̃) ∈ L and L
stabilizes ν0, the above can be written

pn+i(λ) 7−→

d

dǫ

∣∣∣∣
ǫ=0




kτG(u) exp

(
ǫ
∑

f̃j

)
, exp


ǫ


en+1−i +

∑

j>n+1−i

ẽj




 · ν0


 ,−µ




7−→

d

dǫ

∣∣∣∣
ǫ=0


kτG(u) exp

(
ǫ
∑

f̃j

)
,−µν0 − ǫµ


sn+1−ien+1−i +

∑

j>n+1−i

s̃j ẽj




 ,
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using Lemma 4.31, where sn+1−i = sαn+1−i
and the s̃j are some constants

depending on the other sβ . This last is

−sn+1−iµen+1−i([kτG(u),−µν0])− µ
∑

j>n+1−i

t̃jej([kτG(u),−µν0])+

But this is of the form

−siµqn+i(µ) + µ
∑

j<n+i

tj(µ)qj(µ) ,

for some functions tj(µ). We can therefore apply the lemma above to conclude
that the normal bundles are indeed OP1(1)⊕2n.

5.4 Application: Purity of Hodge structures of G/L

We rely on the following statement found at [HLR, Appendix B, Theorem B.1].

Theorem 5.29. Let X be a smooth complex algebraic variety and f : X −→ C

a smooth algebraic morphism, i.e., a surjective submersion. Suppose that X
admits a C×-action and that f is equivariant with respect to a positive power
of the standard C×-action on C. We further assume that the fixed point set
XC

×

is complete and that for all x ∈ X, limλ→0 λ · x exists. Then the mixed
Hodge structures on all of the fibers are in fact pure and all isomorphic.

Corollary 5.30. The Hodge structure on the quotient G/L is pure.

Remark 5.31. This is a consequence of the more general statement [HLR,
Proposition 2.2.6]. We observe that the construction of Section 4.3 gives an
algebraic family over C whose fiber over 0 is the cotangent bundle of a partial
flag variety for a reductive group G and whose generic fiber is a coadjoint orbit
for G. Of interest would be to generalize this question in the following way.
Let R be a truncated polynomial ring, say R = C[t]/(tm) for some m ∈ N.
Then G ⊗C R is a group over R and we may consider the Weil restriction GR
back to C: this is an algebraic group over C with GR(C) = G(R). Coadjoint
orbits for this group GR are the building blocks for certain moduli spaces of
meromorphic connections (with irregular singularities) over the projective line.
It is conjectured that these moduli spaces have pure cohomology [HWW]; a
result similar to Corollary 5.30 would perhaps be a step towards a proof.
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