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Abstract. We prove homological stability for both general linear
groups of modules over a ring with finite stable rank and unitary
groups of quadratic modules over a ring with finite unitary stable
rank. In particular, we do not assume the modules and quadratic
modules to be well-behaved in any sense: for example, the quadratic
form may be singular. This extends results by van der Kallen and
Mirzaii–van der Kallen respectively. Combining these results with
the machinery introduced by Galatius–Randal-Williams to prove ho-
mological stability for moduli spaces of simply-connected manifolds of
dimension 2n ≥ 6, we get an extension of their result to the case of
virtually polycyclic fundamental groups.
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1. Introduction and Statement of Results

We say that the sequence X1
f1
−→ X2

f2
−→ X3

f3
−→ · · · of topological spaces sat-

isfies homological stability if the induced maps (fk)∗ : Hk(Xn) −→ Hk(Xn+1)
are isomorphisms for k < An+ B for some constants A and B. In most cases
where homological stability is known it is extremely hard to compute any par-
ticular Hk(Xn). However, there are several techniques to compute the stable
homology groups Hk(X∞) and homological stability can therefore be used to
give many potentially new homology groups.
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1.1. General Linear Groups. In [19], van der Kallen proves homological
stability for the group GLn(R) of R-module automorphisms of Rn. For the
special case where R is a PID, Charney [4] had earlier shown homological sta-
bility. In the first part of this paper we consider the analogous homological
stability problem for groups of automorphisms of general R-modules M ; we
write GL(M) for these groups. In order to phrase our stability range we define
the rank of an R-module M , rk(M), to be the biggest number n so that Rn

is a direct summand of M . The stability range then says that the rank of
M has to be big compared to the so-called stable rank of R, sr(R). In par-
ticular, the stable rank of R needs to be finite which holds for example for
Dedekind domains and more generally algebras that are finite as a module over
a commutative Noetherian ring of finite Krull dimension.

Theorem A. The map

Hk(GL(M);Z) → Hk(GL(M ⊕ R);Z),

induced by the inclusion GL(M) →֒ GL(M ⊕ R), is an epimorphism for k ≤
rk(M)−sr(R)

2 and an isomorphism for k ≤ rk(M)−sr(R)−1
2 .

For the commutator subgroup GL(M)′ the map

Hk(GL(M)′;Z) → Hk(GL(M ⊕R)′;Z)

is an epimorphism for k ≤ rk(M)−sr(R)−1
3 and an isomorphism for k ≤

rk(M)−sr(R)−3
3 .

We emphasise thatM is allowed to be any module over R. For example over the
integers,M could be Z/100Z⊕Z100. We also get statements for polynomial and
abelian coefficients. The full statement of our theorem is given in Theorem 2.9.
This part of the paper can be seen as a warm up for the heart of the algebraic
part of this paper, which is homological stability for the automorphism groups
of quadratic modules.

1.2. Unitary Groups. A quadratic module is a tuple (M,λ, µ) consisting of
an R-module M , a sesquilinear form λ : M ×M → R, and a function µ on M
into a quotient of R, where λ measures how far µ is from being linear. The
precise definition is given in Section 3.1. The basic example of a quadratic
module is the hyperbolic module H , which is given by

(

R2 with basis e, f ;

(

0 1
ε 0

)

;µ determined by µ(e) = µ(f) = 0

)

.

For a quadratic module M we write U(M) for its unitary group, i.e. the group
of all automorphisms that fix the quadratic structure on M . Mirzaii–van der
Kallen [15] have shown homological stability for the unitary groups U(Hn) and
our Theorem B below extends this to general quadratic modules.
We write g(M) for the Witt index ofM as a quadratic module, which is defined
to be the maximal number n so that Hn is a direct summand of M . In our
stability range we use the notion of unitary stable rank of R, usr(R), which
is at least as big as the stable rank and also requires a certain transitivity
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condition on unimodular vectors of fixed length. Analogously to Theorem A
the Witt index of M has to be big in relation to the unitary stable rank of R.
In particular, usr(R) needs to be finite which is the case for both examples
given above of rings with finite stable rank.

Theorem B. The map

Hk(U(M);Z) → Hk(U(M ⊕H);Z)

is an epimorphism for k ≤ g(M)−usr(R)−1
2 and an isomorphism for k <

g(M)−usr(R)−2
2 .

For the commutator subgroup U(M)′ the map

Hk(U(M)′;Z) → Hk(U(M ⊕H)′;Z)

is an epimorphism for k ≤ g(M)−usr(R)−1
2 and an isomorphism for k <

g(M)−usr(R)−3
2 .

We again emphasise that M can be an arbitrary quadratic module – in par-
ticular, it can be singular. As in the case for general linear groups, we get
an analogous statement for abelian and polynomial coefficients. The full state-
ment is given in Theorem 3.25.
To show homological stability for both the automorphism groups of modules
and quadratic modules we use the machinery developed in Randal-Williams–
Wahl [18]. The actual homological stability results are straightforward ap-
plications of that paper assuming that a certain semisimplicial set is highly
connected. Showing that this assumption is indeed satisfied is the main goal
in Chapters 2 and 3.

1.3. Moduli Spaces of Manifolds. Our theorem in the unitary case can
also be used to extend the homological stability result for moduli spaces
of simply-connected manifolds of dimension 2n ≥ 6 by Galatius–Randal-
Williams [9] to certain non-simply-connected manifolds.
For a compact connected smooth 2n-dimensional manifold W we write
Diff∂(W ) for the topological group of all diffeomorphisms of W that restrict
to the identity near the boundary, and call its classifying space BDiff∂(W ) the
moduli space of manifolds of type W . As in the algebraic settings described
previously there is a notion of rank: Define the genus of W as

g(W ) :=

= sup{g ∈ N | there are g disjoint embedding of Sn × S
n \ int(D2n) into W}.

Let S denote the manifold ([0, 1]× ∂W )# (Sn × Sn). We get an inclusion

Diff∂(W ) −֒−→ Diff∂(W ∪∂W S)

by extending diffeomorphisms by the identity on S. This gluing map then has
an induced map on classifying spaces which we denote by s. Galatius–Randal-
Williams have shown that for simply-connected manifolds of dimension 2n ≥ 6
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the induced map

s∗ : Hk(BDiff∂(W )) −→ Hk(BDiff∂(W ∪∂W S))

is an epimorphism for k ≤ g(W )−1
2 and an isomorphism for k ≤ g(W )−3

2 . The
following extends this result to certain non-simply-connected manifolds.

Theorem C. Let W be a compact connected manifold of dimension 2n ≥ 6.
Then the map

s∗ : Hk(BDiff∂(W )) −→ Hk(BDiff∂(W ∪∂W S))

is an epimorphism for k ≤ g(W )−usr(Z[π1(W )])
2 and an isomorphism for k ≤

g(W )−usr(Z[π1(W )])−2
2 .

For a virtually polycyclic fundamental group, e.g. a finitely generated abelian
group, the unitary stable rank of its group ring is known to be finite by
Crowley-Sixt [6]. Combining Theorem C with [8, Cor. 1.9] yields a compu-
tation of Hk(BDiff∂(W )) in the stable range.

Acknowledgements. These results will form part of my Cambridge PhD
thesis. I am grateful to my supervisor Oscar Randal-Williams for many in-
teresting and inspiring conversations and much helpful advice. I would like to
thank the anonymous referee for pointing out a gap in an earlier version of this
paper and their valuable input towards solving this. I was partially supported
by the “Studienstiftung des deutschen Volkes” and by the EPSRC.

2. Homological Stability for General Linear Groups

This chapter treats the case of automorphism groups of modules. For the case
of modules of the form Rn for some ring R there are several results available
already, e.g. results by Charney [4] for R a Dedekind domain and by van der
Kallen [19] for R with finite stable rank.
We consider the case of general modules over a ring with finite stable rank.
The approach we use to show homological stability is what has become the
standard strategy of proving results in this area. It has been introduced by
Quillen [17] and afterwards used in various contexts by Charney [4], Dwyer [7],
Maazen [13], van der Kallen [19], Vogtmann [23], and Wagoner [24]. For us
it is convenient to use the formulation in Randal-Williams–Wahl [18]. This
mainly involves showing the high connectivity of a certain semisimplicial set.
We start by generalising a complex introduced by van der Kallen and show
its high connectivity. Even though this complex is not exactly the one needed
for the machinery of Randal-Williams–Wahl, it is good enough to deduce the
high connectivity of that semisimplicial set. We can then immediately extract
a homological stability result for various coefficients systems.
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2.1. The Complex and its Connectivity. Following [19], for a set V we
define O(V ) to be the poset of ordered sequences of distinct elements in V
of length at least one. The partial ordering on O(V ) is given by refine-
ment, i.e. we write (w1, . . . , wm) ≤ (v1, . . . , vn) if there is a strictly increas-
ing map φ : {1, . . . ,m} → {1, . . . , n} such that wi = vφ(i). We say that
F ⊆ O(V ) satisfies the chain condition if for every element (v1, . . . , vn) ∈ F
and every (w1, . . . , wm) ≤ (v1, . . . , vn) we also have (w1, . . . , wm) ∈ F . For
v = (v1, . . . , vn) ∈ F , we write Fv for the set of all sequences (w1, . . . , wm) ∈ F
such that (w1, . . . , wm, v1, . . . , vn) ∈ F . Note that if F satisfies the chain con-
dition and v, w ∈ F then (Fv)w = Fvw . We write F≤k for the subset of F
containing all sequences of length ≤ k.
We write GL(M) for the group of automorphisms of general R-modules M .
A sequence (v1, . . . , vn) of elements in M is called unimodular if there are
R-module homomorphisms

f1, . . . , fn : R→ M and φ1, . . . , φn : M → R

such that fi(1) = vi and φj ◦ fi = δi,j · 1R. An element v ∈ M is called
unimodular if it is unimodular as a sequence in M of length 1. The condition
φj ◦ fi = δi,j · 1R holds if and only if the matrix (φj ◦ fi(1))i,j is the identity

matrix. In fact, for a sequence to be unimodular it is enough to find φ̃1, . . . , φ̃n

so that the matrix
(

φ̃j ◦ fi(1)
)

i,j
is invertible.

Lemma 2.1. Given a sequence (v1, . . . , vn) in M and R-module homomor-
phisms

f1, . . . , fn : R →M and φ̃1, . . . , φ̃n : M → R

so that fi(1) = vi and the matrix
(

φ̃j ◦ fi(1)
)

i,j
is invertible. Then (v1, . . . , vn)

is already unimodular.

Proof. Let A−1 denote the inverse of the matrix
(

φ̃j ◦ fi(1)
)

i,j
. We define

R-module homomorphisms φj : M → R as follows:

φ1 ⊕ · · · ⊕ φn : M
φ̃1⊕···⊕φ̃n
−−−−−−−→ Rn

·A−1

−−−→ Rn,

where φj(m) is the j-th entry of the vector φ1 ⊕ · · · ⊕ φn(m). By construction
we have φj(vi) = δi,j and therefore the sequence (v1, . . . , vn) is unimodular. �

Let R∞ denote the free R-module with basis e1, e2, . . . and let M∞ denote the
R-module M ⊕R∞. Then we write U(M) for the subposet of O(M) consisting
of unimodular sequences in M . Note that for (v1, . . . , vn) ∈ M it is the same
to say the sequence is unimodular in M or it is unimodular in M ⊕R∞.

Definition 2.2. A ring R satisfies the stable range condition (Sn) if for every
unimodular vector (r1, . . . , rn+1) ∈ Rn+1 there are t1, . . . , tn ∈ R such that the
vector (r1 + t1rn+1, . . . , rn + tnrn+1) ∈ Rn is unimodular. If n is the smallest
such number we say R has stable rank n, sr(R) = n and it has sr(R) = ∞ if
such an n does not exist.
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Note that the stable range in the sense of Bass [3], (SRn), is the same as our
stable range condition (Sn−1). The absolute stable rank of a ring R, asr(R),
as defined by Magurn–van der Kallen–Vaserstein in [14] is an upper bound for
the stable rank, i.e. sr(R) ≤ asr(R) ([14, Lemma 1.2]). In the following we give
some of the well-known examples of rings and their stable ranks.

Examples 2.3.

(1) A commutative Noetherian ring R of finite Krull dimension d satisfies
sr(R) ≤ d+1. In particular, if R is a Dedekind domain then sr(R) ≤ 2
([10, 4.1.11]) and for a field k, the polynomial ring K = k[t1, . . . , tn]
satisfies sr(K) ≤ n+ 1 ([21, Thm. 8]).

(2) More generally, any R-algebra A that is finitely generated as an R-
module satisfies sr(A) ≤ d+ 1, for R again a commutative Noetherian
ring of finite Krull dimension d. [14, Thm. 3.1] or [10, 4.1.15]

(3) Recall that a ring R is called semi-local if R/J(R) is a left Artinian
ring, for J(R) the Jacobson radical of R. A semi-local ring satisfies
sr(R) = 1. [10, 4.1.17]

(4) Recall that a group G is called virtually polycyclic if there is a sequence
of normal subgroups

G = G0 ⊲ G1 ⊲ . . . ⊲ Gn−1 ⊲ Gn = 0

such that each quotient Gi/Gi+1 is cyclic or finite. Its Hirsch num-
ber h(G) is the number of infinite cyclic factors. For a virtually poly-
cyclic group G we have sr(Z[G]) ≤ h(G) + 2. [6, Thm. 7.3]

For an R-module M we define the rank of M as

rk(M) := sup{n ∈ N | there is an R-module M ′ such that M ∼= Rn ⊕M ′}.

Using this notion we can phrase the following theorem. Here and in the follow-
ing, we use the convention that the condition of a space to be n-connected for
n ≤ −2 (and so in particular for n = −∞) is vacuous.

Theorem 2.4.

(1) O(M) ∩ U(M∞) is (rk(M)− sr(R)− 1)-connected,
(2) O(M) ∩ U(M∞)(v1,...,vk) is (rk(M) − sr(R) − k − 1)-connected for

(v1, . . . , vk) ∈ U(M∞).

In [19, Thm. 2.6 (i), (ii)] van der Kallen has proven this theorem for the special
case of modules of the formRn. Our proof of Theorem 2.4 adapts the techniques
and ideas that he has used. Note that the integer sdim used in [19] satisfies
sr(R) = sdim − 1. Just as in van der Kallen’s proof, we use the following
technical lemma several times in the proof of Theorem 2.4.

Lemma 2.5. Let F ⊆ U(M∞) satisfy the chain condition. Let X ⊆ M∞ be
a subset.

(1) Assume that the poset O(X) ∩ F is d-connected and that, for all se-
quences (v1, . . . , vm) in F \O(X), the poset O(X)∩F(v1,...,vm) is (d−m)-
connected. Then F is d-connected.
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(2) Assume that for all sequences (v1, . . . , vm) in F \ O(X), the poset
O(X)∩F(v1,...,vm) is (d−m+1)-connected. Assume further that there
is a sequence (y0) of length 1 in F with O(X) ∩ F ⊆ F(y0). Then F is
(d+ 1)-connected.

Outline of the proof. The proof of [19, Lemma 2.13] also works in this set-
ting, where we use the obvious modification of [19, Lemma 2.12] to allow
F ⊆ U(M∞) so that it fits into our framework. �

We are not the first ones that have the idea of showing homological stability for
automorphism groups of modules more general than Rn: In [19, Rmk. 2.7 (2)]
van der Kallen has suggested a possible generalisation of his results using the
notion of “big” modules as defined in [22].

Proof of Theorem 2.4. Analogous to the proof of [19, Thm. 2.6] we will also
show the following statements.

(a) O(M ∪ (M + e1)) ∩ U(M∞) is (rk(M)− sr(R))-connected,
(b) O (M ∪ (M + e1))∩U(M∞)(v1,...,vk) is (rk(M)− sr(R)− k)-connected

for (v1, . . . , vk) ∈ U(M∞).

Recall that e1 denotes the first standard basis element ofR∞ inM∞ =M⊕R∞.
The proof is by induction on g = rk(M). Note that statements (1), (2), and
(b) all hold for g < sr(R) so we can assume g ≥ sr(R). Statement (a) holds for
g < sr(R) − 1 so we can assume g ≥ sr(R) − 1 when proving this statement.
The structure of the proof is as follows. We start by proving (b) which enables
us to deduce (2). We will then prove statements (1) and (a) simultaneously by
applying statement (2).
We may suppose M = Rg ⊕ M ′ for an R-module M ′, since the posets in
statements (1), (2), (a), and (b) only depend on the isomorphism class of M .
We write x1, . . . , xg for the standard basis of Rg.
Proof of (b). For Y := M ∪ (M + e1) we write F := O(Y ) ∩ U(M∞)(v1,...,vk).

Let d := g − sr(R)− k, so we have to show that F is d-connected.
In the case g = sr(R) we only have to consider k = 1. Then we have to
show that F is non-empty. The strategy for this part is as follows: We define
a map f ∈ GL(M∞) so that Y is fixed under f as a set and the projection
of f(v1) onto Rg, f(v1)|Rg , is unimodular. Then the sequence (f(v1)|Rg , e1)
is unimodular in M∞. We will show that, therefore, the sequence (f(v1), e1)
is also unimodular in M∞ and so is the sequence (v1, f

−1(e1)). Since e1 ∈ Y
and the automorphism f fixes Y setwise we get f−1(e1) ∈ Y and thus F is
non-empty as it contains f−1(e1).
We start by writing

v1 =

g
∑

i=1

xiri + p+ a,
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where ri ∈ R, p ∈ M ′, and a ∈ R∞. Since v1 is unimodular there is an R-
module homomorphism φ : M∞ → R satisfying φ(v1) = 1. In particular,

1 = φ(v1) =

g
∑

i=1

φ(xi)ri + φ(p+ a),

which shows that (r1, . . . , rg, φ(p + a)) ∈ Rg+1 is unimodular. As g = sr(R)
there are t1, . . . , tg ∈ R such that the sequence

(r1 + t1φ(p+ a), . . . , rg + tgφ(p+ a))

is unimodular. Now consider the map

M∞ = Rg ⊕M ′ ⊕R∞ f
−→ M∞ = Rg ⊕M ′ ⊕R∞

(a1, . . . , ag, q, b) 7−→ (a1 + t1φ(q + b), . . . , ag + tgφ(q + b), q, b),

which is invertible. The map f satisfies f(Y ) = Y and the projection of
f(v1) onto Rg is unimodular. Thus, by definition there are homomorphisms
f1 : R → M∞ and φ1 : M

∞ → R so that f1(1) = f(v1)|Rg and φ1 ◦ f1 = 1R.
Note that we can assume that φ1 is zero away from Rg as otherwise we can
restrict to Rg before we apply φ1. This shows that the sequence (f(v1)|Rg , e1) is
unimodular by choosing φ2 : M

∞ → R to be the projection onto the coefficient
of e1. For the sequence (f(v1), e1) we change f1 to map 1 to f(v1) but keeping

all other homomorphisms the same then the matrix
(

φ̃j ◦ fi(1)
)

i,j
is an upper

triangular matrix with 1’s on the diagonal. In particular, it is invertible, so the
sequence (f(v1), e1) is unimodular by Lemma 2.1. Since f is an automorphism
ofM∞ the sequence (v1, f

−1(e1)) is also unimodular. By construction we have
f(Y ) = Y and so in particular f−1(e1) ∈ Y . Hence, F is non-empty as it
contains f−1(e1).
Now consider the case g > sr(R). As in the case above there is an f ∈ GL(M∞)
such that f(Y ) = Y and f(v1)|Rg is unimodular. The group GLg(R) acts
transitively on the set of unimodular elements in Rg (by [20, Thm. 2.3 (c)]).
This only holds in the case g > sr(R) so the case g = sr(R) had to be proven
separately. Hence, there exists a map ψ ∈ GLg(R) ≤ GL(M∞) such that
ψ(f(v1)|Rg ) = xg. By applying ψ ◦ f , considered as an automorphism of M∞,
to M∞, without loss of generality we can assume that the projection of v1
to Rg is xg. We define

X := {v ∈ Y | the xg-coordinate of v vanishes}

= (Rg−1 ⊕M ′) ∪ (Rg−1 ⊕M ′ + e1).

We now check that the assumptions of Lemma 2.5 (1) are satisfied. Notice that

U(M∞)(v1,...,vk) = U(M∞)(v1,v′2,...,v′k),

for v′i = vi + v1 · ri for ri ∈ R, as the span of v1, v
′
2, . . . , v

′
k is the same as that

of v1, v2, . . . , vn. As the projection of v1 to Rg is xg, we may choose the ri so
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that the xg-coordinate of each v′i vanishes.

O(X) ∩ F = O(X) ∩ O(Y ) ∩ U(M∞)(v1,...,vk)

= O((Rg−1 ⊕M ′) ∪ (Rg−1 ⊕M ′ + e1)) ∩ U(M∞)(v′
2
,...,v′

k
).

Therefore, by the induction hypothesis, O(X)∩F is d-connected. Analogously,
for (w1, . . . , wl) ∈ F \ O(X) we get

O(X) ∩ F(w1,...,wl)

= O(X) ∩ O(Y ) ∩ U(M∞)(v1,...,vk,w1,...,wl)

= O((Rg−1 ⊕M ′ ∪ (Rg−1 ⊕M ′ + e1))) ∩ U(M∞)(v′
2
,...,v′

k
,w′

1
,...,w′

l
),

which is (d − l)-connected by the induction hypothesis. Therefore,
Lemma 2.5 (1) shows that F is d-connected.
Proof of (2). Let us write

X :=
(

Rg−1 ⊕M ′
)

∪
(

(Rg−1 + xg)⊕M ′
)

.

Then we have

O(X) ∩
(

O(M) ∩ U(M∞)(v1,...,vk)
)

= O
(

(Rg−1 ⊕M ′) ∪
(

(Rg−1 + xg)⊕M ′
)

)

∩ U(M∞)(v1,...,vk),

which is (d− k − 1)-connected by (b) after a change of coordinates.
Similarly, for (w1, . . . , wl) ∈ O(M) ∩ U(M∞)(v1,...,vk) \ O(X) we have

O(X) ∩
(

O(M) ∩ U(M∞)(v1,...,vk)
)

(w1,...,wl)

= O(X) ∩
(

O(M) ∩ U(M∞)(v1,...,vk,w1,...,wl)

)

,

which is (d− k − l− 1)-connected by the above. Hence, by Lemma 2.5 (1) the
claim follows.
Proof of (1) and (a). Recall that we now only assume g ≥ sr(R) − 1. By in-

duction let us assume that statement (a) holds for Rg−1 ⊕M ′ and we want to
deduce it forM = Rg⊕M ′. Before we finish the induction for (a) we will show
that this already implies statement (1) for M = Rg ⊕M ′. For this consider X
to be as in the proof of (2) and d := g − sr(R). Then

O(X) ∩ (O(M) ∩ U(M∞))

= O
(

(Rg−1 ⊕M ′) ∪
(

(Rg−1 + xg)⊕M ′
)

)

∩ U(M∞)

is (d − 1)-connected by (a) after a change of coordinates. The remaining as-
sumption of Lemma 2.5 (1), i.e. that O(X) ∩ (O(M) ∩ U(M∞))(v1,...,vm) is

(d − m − 1)-connected, we have already shown in the proof of (2). Thus,
O(M) ∩ U(M∞) is (g − sr(R)− 1)-connected which proves statement (1).
To prove (a) we will apply Lemma 2.5 (2) for X =M and y0 = e1. Consider

(v1, . . . , vk) ∈ O(M ∪ (M + e1)) ∩ U(M∞) \ O(X).
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Without loss of generality we may suppose that v1 /∈ X as otherwise we can
permute the vi. By definition of X the coefficient of the e1-coordinate of v1 is
therefore 1. Analogous to the proof of (b) we have

O(X) ∩ O(M ∪ (M + e1)) ∩ U(M∞)(v1,...,vk)
∼= O(M) ∩ U(M∞)(v′

2
,...,v′

k
),

where v′i := vi+v1ri is chosen so that the e1-coordinate of v
′
i is 0 for all i. This

is (d− k)-connected by (1) for k = 1 and by (2) for k ≥ 2. By construction we
have

O(X) ∩ O(M ∪ (M + e1)) ∩ U(M∞) ⊆ (O(M ∪ (M + e1)) ∩ U(M∞))(e1)

and thus we can apply Lemma 2.5 (2) to show that O(M ∪ (M +e1))∩U(M∞)
is (g − sr(R))-connected which proves (a).
When showing statement (a) for M = Rg ⊕M ′ we only used statement (1) for
M = Rg ⊕M ′ which follows from (a) for Rg−1 ⊕M ′ so this is indeed a valid
induction to show both statements (1) and (a). �

The following propositions are consequences of the path-connectedness of
O(M) ∩ U(M∞) and therefore, by Theorem 2.4, hold in particular for R-
modules M such that rk(M) ≥ sr(R) + 1. The statements and proofs are
[9, Prop. 3.3] and [9, Prop. 3.4] respectively for the case of general R-modules.

Proposition 2.6 (Transitivity). If φ0, φ1 : R → M are split injective mor-
phisms of R-modules and the poset O(M) ∩ U(M∞) is path-connected, then
there is an automorphism f of M such that φ1 = f ◦ φ0.

Proof. Note that an R-module map R → M is defined by where it sends the
unit 1 of the ring R. Suppose first that (φ1(1), φ2(1)) is in O(M) ∩ U(M∞).
This implies

M ∼= φ1(R)⊕ φ2(R)⊕M ′

for some R-module M ′ and that there is an automorphism of M which inter-
changes the φi(R) and fixesM ′. Consider the equivalence relation between mor-
phisms f : R →M of differing by an automorphism of M . We have just shown
that two morphisms corresponding to two adjacent vertices in O(M)∩U(M∞)
are equivalent. But the poset is path connected by assumption, and hence, all
vertices are equivalent. �

Proposition 2.7 (Cancellation). Let M and N be R-modules with M ⊕R ∼=
N ⊕R. If the poset O(M ⊕ R) ∩ U(M∞) is path-connected, then there is also
an isomorphism M ∼= N .

Proof. As in the proof of Proposition 2.6 we can assume that the isomorphism
φ : M⊕R→ N⊕R satisfies φ|R = idR. Thus, by considering quotient modules
we get

M ∼=
M ⊕R

R
∼=
φ(M ⊕R)

φ(R)
=
N ⊕R

R
∼= N. �
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2.2. Homological Stability. We now prove homological stability of gen-
eral linear groups over modules (Theorem 2.9), which induces in particular
Theorem A, using the machinery of Randal-Williams–Wahl [18]. We write
(fR-Mod,⊕, 0) for the groupoid of finitely generated free right R-modules and
their isomorphisms. In order to apply the main homological stability theo-
rems in [18] we need to show that the corresponding category UfR-Mod :=
〈fR-Mod, fR-Mod〉 defined in [18, Sec. 1.1] satisfies the required axioms, i.e.
it is locally homogeneous and satisfies the connectivity axiom LH3. Note that
local homogeneity at (M,R) for an R-module M satisfying rk(M) ≥ sr(R)
follows from [18, Prop. 1.6] and [18, Thm. 1.8 (a), (b)]. The following lemma
verifies the axiom LH3 from the connectivity of the complex considered in
Theorem 2.4.

Lemma 2.8. The semisimplicial set Wn(M,R)• as defined in [18, Def. 2.1] is
⌊

n+rk(M)−sr(R)−2
2

⌋

-connected.

The proof adapts the ideas of the proof of [18, Lemma 5.9]. Here, we just
comment on the changes that have to be made to the proof of [18, Lemma 5.9]
in order to prove the above lemma.

Outline of the proof. We define X(M)• to be the semisimplicial set with p-
simplices the split injective R-module homomorphisms f : Rp+1 → M , and
with i-th face map given by precomposing with the inclusion Ri ⊕ 0⊕Rp−i →
Rp+1. We write U(M) for the simplicial complex with vertices the R-module
homomorphisms v : R → M which are split injections (without a choice of
splitting), and where a tuple (v0, . . . , vp) spans a p-simplex if and only if the
sum v0 ⊕ . . .⊕ vp : R

p+1 →M is a split injection.
Note that the poset of simplices of X(M)• is equal to the poset O(M)∩U(M∞)
and that, given a p-simplex σ = 〈v0, . . . , vp〉 ∈ U(M), the poset of simplices of
the complex (LinkU(M)(σ))

ord
• equals the posetO(M)∩U(M∞)(v0,...,vp). Hence,

by applying Theorem 2.4 and arguing as in the proof of [18, Lemma 5.9] we
get that U(M ⊕Rn) is weakly Cohen–Macaulay (as defined in [9, Sec. 2.1]) of
dimension n+ rk(M)− sr(R).
As in the proof of [18, Lemma 5.9] we want to show that the assumptions
of [11, Thm. 3.6] are satisfied. The complex Sn(M,R) is a join complex over
U(M ⊕ Rn) by the same reasoning as in the proof in [18]. In order to show
that π(LinkSn(M,R)(σ)) is weakly Cohen–Macaulay of dimension n+ rk(M)−
sr(R)−p−2 for each p-simplex σ ∈ Sn(M,R) we apply Proposition 2.7 instead
of [18, Prop. 5.8] in the proof of [18, Lemma 5.9]. This shows that the remaining
assumptions of [11, Thm. 3.6] are satisfied. Applying this and [18, Thm. 2.10]
then yields the claim. �

Applying Theorems [18, Thm. 3.1], [18, Thm. 3.4] and [18, Thm. 4.20] to
(UfR-Mod,⊕, 0) yields the following theorem which directly implies Theo-
rem A.
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Theorem 2.9. Let F : UfR-Mod → Z-Mod be a coefficient system of degree r
at 0 in the sense of [18, Def. 4.10]. Then for s = rk(M)− sr(R) the map

Hk(GL(M);F (M)) → Hk(GL(M ⊕R);F (M ⊕R))

is

(1) an epimorphism for k ≤ s
2 and an isomorphism for k ≤ s−1

2 , if F is
constant,

(2) an epimorphism for k ≤ s−r
2 and an isomorphism for k ≤ s−2−r

2 , if F
is split polynomial in the sense of [18],

(3) an epimorphism for k ≤ s
2 − r and an isomorphism for k ≤ s−2

2 − r.

For the commutator subgroup GL(M)′ we get that the map

Hk(GL(M)′;F (M)) → Hk(GL(M ⊕R)′;F (M ⊕R))

is

(4) an epimorphism for k ≤ s−1
3 and an isomorphism for k ≤ s−3

3 , if F is
constant,

(5) an epimorphism for k ≤ s−1−2r
3 and an isomorphism for k ≤ s−4−2r

3 ,
if F is split polynomial in the sense of [18],

(6) an epimorphism for k ≤ s−1
3 − r and an isomorphism for k ≤ s−4

3 − r.

3. Homological Stability for Unitary Groups

The aim of this chapter is to prove the analogue of Theorem 2.9 for the case
of unitary groups of quadratic modules. This again uses the formulation of the
standard strategy to prove homological stability by Randal-Williams–Wahl [18].
In this setting we consider the complex of hyperbolic unimodular sequences in
a quadratic module M . For the special case where M is a hyperbolic module
this has been considered in [15] but the general case requires new ideas. We
prove its high connectivity and deduce the assumptions for the machinery of
Randal-Williams–Wahl.

3.1. The Complex and its Connectivity. Following [1] and [2] let R be
a ring with an anti-involution : R → R, i.e. r = r and rs = s r. Fix a unit ε ∈
R which is a central element of R and satisfies ε = ε−1. Consider a subgroup Λ
of (R,+) satisfying

Λmin := {r − εr | r ∈ R} ⊆ Λ ⊆ {r ∈ R | εr = −r} =: Λmax

and rΛr ⊆ Λ for all r ∈ R. An (ε,Λ)-quadratic module is a triple (M,λ, µ),
where M is a right R-module, λ : M ×M → R is a sesquilinear form (i.e. λ is
R-antilinear in the first variable and R-linear in the second), and µ : M → R/Λ
is a function, satisfying

(1) λ(x, y) = ελ(y, x),
(2) µ(x · a) = aµ(x)a for a ∈ R,
(3) µ(x+ y)− µ(x)− µ(y) = λ(x, y) mod Λ.
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The direct sum of two quadratic modules (M1, λ1, µ1) and (M2, λ2, µ2) is given
by the quadratic module (M1 ⊕M2, λ1 ⊕ λ2, µ1 ⊕ µ2), where

(λ1 ⊕ λ2)((m1,m2), (m
′
1,m

′
2)) := λ1(m1,m

′
1) + λ2(m2,m

′
2),

(µ1 ⊕ µ2)(m1,m2) := µ1(m1) + µ2(m2),

for mi,m
′
i ∈Mi. The unitary group is defined as

U(M) := {A ∈ GL(M) | λ(Ax,Ay) = λ(x, y), µ(Ax) = µ(x) for all x, y ∈M}.

The hyperbolic module H over R is the (ε,Λ)-quadratic module given by
(

R2 with basis e, f ;

(

0 1
ε 0

)

;µ(e) = µ(f) = 0

)

.

We write Hg for the direct sum of g copies of the hyperbolic module H .
Examples of unitary groups for the quadratic module Hg with various choices
of (R, ε,Λ) can be found in [15, Ex. 6.1].

Definition 3.1. A ring R satisfies the transitivity condition (Tn) if the group
EUε(Hn,Λ), which is the subgroup of U(Hn) consisting of elementary matrices
as defined in [15, Ch. 6], acts transitively on the set

Cεr (R,Λ) := {x ∈ Hn | x is unimodular, µ(x) = r mod Λ}

for every r ∈ R. The ring R has unitary stable range (USn) if it satisfies the
stable range condition (Sn), as defined in Definition 2.2, as well as the transi-
tivity condition (Tn+1). We say that R has unitary stable rank n, usr(R) = n,
if n is the least number such that (USn) holds and usr(R) = ∞ if such an n
does not exist.

The transitivity condition (Tn), and hence, the unitary stable range (USn) are
conditions on the triple (R, ε,Λ) and not just on R. However, to make our
notation consistent with the literature we write usr(R) as introduced above
which drops both ε and Λ.
As remarked in [15, Rmk. 6.4] we have usr(R) ≤ asr(R) + 1 for the absolute
stable rank of Magurn–van der Kallen–Vaserstein [14]. In the special case where
the involution on R is the identity map (which implies that R is commutative),
we have usr(R) ≤ asr(R). We now give some well-known examples of rings and
their unitary stable rank.

Examples 3.2. The following examples work for any anti-involution on R and
every choice of ε and Λ.

(1) Let R be a commutative Noetherian ring of finite Krull dimension d.
Then anyR-algebraA that is finitely generated as an R-module satisfies
usr(A) ≤ d+ 2. [14, Thm. 3.1]

(2) A semi-local ring satisfies usr(R) ≤ 2. [14, Thm. 2.4]
(3) For a virtually polycyclic group G we have usr(Z[G]) ≤ h(G)+3, where

h(G) is the Hirsch length as defined in Example 2.3 (4). [6, Thm. 7.3]
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A sequence (v1, . . . , vk) of elements in the quadratic module (M,λ, µ) is called
unimodular if the sequence is unimodular inM considered as an R-module (see
Section 2.1). We say that the sequence is λ-unimodular if there are elements
w1, . . . , wk in M such that λ(wi, vj) = δi,j , where δi,j denotes the Kronecker
delta. We write U(M) and U(M,λ) for the subposet of unimodular and λ-
unimodular sequences in M respectively.
Note that every λ-unimodular sequence is in particular unimodular. The fol-
lowing lemma shows that there are cases where the converse is also true.

Lemma 3.3. Let the sequence (v1, ..., vk) be unimodular in M . If there is a sub-
module N ⊆ M containing the vi such that λ|N is non-singular, then the se-
quence (v1, ..., vk) is λ-unimodular in N .

Proof. Let (v1, . . . , vk) be a unimodular sequence in M . This means that there
are maps f1, . . . , fk : R → M with fi(1) = vi and maps φ1, . . . , φk : M → R
with φj ◦ fi = δi,j ·1R. Note that this implies that φj(vi) = δi,j . Now, λ being
non-singular on N means that the map

N −→ N∗

v 7−→ λ(−, v)

is an isomorphism. Hence, there arew′
1, . . . , w

′
k ∈ N such that λ(−, w′

i) = φi(−)
on N . Defining wi := w′

iε then yields

λ(wi, vj) = λ(w′
iε, vj) = ελ(vj , w′

i)ε = εεφi(vj) = δi,j . �

We call a subset S of a quadratic module (M,λ, µ) isotropic if µ(x) = 0 and
λ(x, y) = 0 for all x, y ∈ S. Let IU(M) denote the set of λ-unimodular
sequences (x1, . . . , xk) in M such that x1, . . . , xk span an isotropic direct sum-
mand of M . We write HU(M) for the set of sequences ((x1, y1), . . . , (xk, yk))
such that (x1, . . . , xk), (y1, . . . , yk) ∈ IU(M), and λ(xi, yj) = δi,j . This
can also be thought of as the set of quadratic module maps Hk → M .
We call IU(M) the poset of isotropic λ-unimodular sequences and HU(M)
the poset of hyperbolic λ-unimodular sequences. We say that the sequence
x = ((x1, y1), . . . , (xk, yk)) ∈ HU(M) is of length |x| = k.
Let MU(M) be the set of sequences ((x1, y1), . . . , (xk, yk)) ∈ O(M ×M) sat-
isfying

(1) (x1, . . . , xk) ∈ IU(M),
(2) for each i we have either yi = 0 or λ(xj , yi) = δj,i,
(3) the span 〈y1, . . . , yk〉 is isotropic.

We identify the poset IU(M) withMU(M)∩O(M×{0}) and the posetHU(M)
with MU(M) ∩ O(M × (M \ {0})).
In order to phrase the main theorem of this section we introduce the following
notion: For an (ε,Λ)-quadratic module (M,λ, µ) define the Witt index as

g(M) := sup{g ∈ N | there is a quadratic module P such that M ∼= P ⊕Hg}.

Theorem 3.4. The poset HU(M) is
⌊

g(M)−usr(R)−3
2

⌋

-connected and for every

x ∈ HU(M) the poset HU(M)x is
⌊

g(M)−usr(R)−|x|−3
2

⌋

-connected.
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For the special case where the quadratic module M is a direct sum of hyper-
bolic modules Hn, Theorem 3.4 has been proven by Mirzaii–van der Kallen
in [15, Thm. 7.4]. Galatius–Randal-Williams have treated the case of general
quadratic modules over the integers.
In order to prove Theorem 3.4 we need the following lemma which extends
[15, Lemma 6.6] to the case of general quadratic modules. Note, however, that
the proof is not an extension of the proof of [15, Lemma 6.6] but rather uses
techniques of Vaserstein [21]. A similar statement has been given by Petrov
in [16, Prop. 6]. However, Petrov considers hyperbolic modules which are
defined over rings with a pseudoinvolution and only allows ε = −1. He also
states his connectivity range using a different rank, called the Λ-stable rank,
which we shall not discuss.

Lemma 3.5. Let P ⊕ Hg be a quadratic module. If g ≥ usr(R) + k and
(v1, . . . , vk) ∈ U(P ⊕ Hg, λ) then there is an automorphism φ ∈ U(P ⊕ Hg)
such that φ(v1, . . . , vk) ⊆ P ⊕ Hk and the projection of φ(v1, . . . , vk) to the
hyperbolic Hk is λ-unimodular.

The following section contains the necessary foundations as well as the proof
of Lemma 3.5.

3.2. Proof of Lemma 3.5. Following [21] an (n + k)× k-matrix A is called
unimodular if it has a left inverse. Note that the matrix A is unimodular if and
only if the matrix CA is unimodular for any invertible matrix C ∈ GLn+k(R).
A ring R is said to satisfy the condition (Skn) if for every unimodular (n+k)×k-
matrix A, there exists an element r ∈ Rn+k−1 such that

(

1n+k−1 r⊤

0 1

)

· A =

(

B
u

)

,

where the matrix B is unimodular and u is the last row of A.
Note that condition (S1n) is the same as condition (Sn). Furthermore, Vaserstein
shows in [21, Thm. 3 ′] shows that the condition (Skn) is equivalent to the
condition (Sn).

3.2.1. n×k-Blocks. Given a quadratic R-moduleM we define an n×k-block A
for M to be an n×k-matrix (ri,j)i,j with entries in R together with k anti-linear

maps f1, . . . , fk : M → R. We will write this data as

A =











r1,1 . . . r1,k
...

...
rn,1 . . . rn,k
f1 . . . fk











.
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Note that with this notation an n× k-block has in fact n+1 rows. We refer to
the row of maps (f1, . . . , fk) as the last row of A. Given an (n+ 1)× (n+ 1)-
matrix of the form











s1,1 . . . s1,n m1

...
...

...
sn,1 . . . sn,n m2g

0 . . . 0 s











,

where s, si,j ∈ R, mi ∈M , we can act with it from the left on an n×k-block A
by matrix multiplication, where we define

mi · fj := fj(mi) and s · fj := fj(− · s).

We can act from the right on the block A with a k×k-matrix with entries in R
again by matrix multiplication, where we define fj ·r to send an elementm ∈M
to fj(m) · r for r ∈ R.

Definition 3.6. We say that an n× k-block A is unimodular if there is a k×
(n+ 1)-matrix AL of the form







r′1,1 . . . r′1,n m′
1

...
...

...
r′k,1 . . . r′k,n m′

k







with r′i,j ∈ R and m′
i ∈M , such that AL ·A = 1k, where the multiplication is

again given by matrix multiplication, with m′
i · fj as defined above.

Note that the n× k-block A is unimodular if and only if any of the following
blocks is unimodular:















1 0
0

A
...
0
f















,

(

1n v⊤

0 1

)

· A,

(

C 0
0 1

)

· A, or A ·

(

1 v
0 1n

)

,

for a vector v ∈ Rn and a matrix C ∈ GLn(R).

Definition 3.7. An n×k-block A forM is matrix reducible if there is a vector
m ∈Mn such that

(

1n m⊤

0 1

)

·A =

(

B
u

)

,

where the n× k-matrix B is unimodular and u is the last row of the block A.

Proposition 3.8. If k + sr(R) ≤ n + 1 then every unimodular n × k-block A
is matrix reducible.

Matrix reducibility is preserved under certain operations as the following propo-
sition shows (cf. proof of [21, Thm. 3 ′]).
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Proposition 3.9. Let A be an n× k-block for M . Then A is matrix reducible
if and only if the block obtained from A by doing any of the following moves is
matrix reducible.

(1) Multiply on the left by a matrix of the form
(

1n v⊤

0 1

)

,

for an element v ∈Mn.
(2) Multiply on the left by a matrix of the form

(

C 0
0 1

)

,

for a matrix C ∈ GLn(R).
(3) Multiply on the right by a matrix D ∈ GLk(R).

Proof. Note that each of the above moves may be inverted by a move of the
same type. It is therefore enough to show that if A is matrix reducible then so
is the block obtained from A by doing one of the above moves. Let m ∈ Mn

be the sequence showing that the block A is matrix reducible, i.e. we have
(

1n m⊤

0 1

)

·A =

(

B
u

)

,

where the n× k-matrix B is unimodular.
Statement (1) follows from the fact that multiplying two of these matrices with
last column (v1, 1) and (v2, 1) respectively yields another matrix of this form
whose last column is given by (v1 + v2, 1).
To show (2) we can write

(

C 0

0 1

)

·A =

[(

C 0

0 1

)

·

(

1n m⊤

0 1

)

·

(

C−1 0

0 1

)]

·

[(

C 0

0 1

)

·

(

B

u

)]

,

where the product of the first three matrices is
(

1n Cm⊤

0 1

)

and the product of the last two matrices is

(

CB
u

)

. Note that multiplying

a unimodular matrix by an invertible matrix on either side yields again a uni-
modular matrix. Thus, −Cm⊤ is the corresponding sequence for the block

(

C 0
0 1

)

· A.

For (3) note that multiplying the matrix

(

B
u

)

on the right by D yields a ma-

trix

(

BD
u′

)

. As noted in part (2), the matrix BD is also unimodular so m is

also the sequence to show that the block AD is matrix reducible. �
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Proof of Proposition 3.8. Let us write the unimodular n× k-block as

A =











r1,1 . . . r1,k
...

...
rn,1 . . . rn,k
f1 . . . fk











.

The proof is by induction on k.
Let k = 1. Since the block A is unimodular, there is a left inverse AL :=
((r′1)

⊤, . . . , (r′n)
⊤, (m′)⊤) of A for vectors r′i ∈ Rk and m′ ∈ Mk. Hence, the

sequence (r1,1, . . . , rn,1, f1(m
′
1)) ∈ Rn+1 is unimodular by construction and

since n+ 1 > sr(R) there are v1, . . . , vn ∈ R such that the sequence

(r1,1 + v1f1(m
′
1), . . . , rn,1 + vnf1(m

′
1))

is unimodular. Defining mi := m′ · vi then yields the base case.
Let us assume that the statement is true for k − 1 and consider the case k >
1. Since A is a unimodular block, in particular the first column (r1, f1)

⊤ is
unimodular having a left inverse (r′1,1, . . . , r

′
1,n,m

′
1) which is the first row of the

left inverse AL of A. Hence, the sequence (r1,1, . . . , rn,1, f1(m
′
1)) is unimodular.

By assumption we have n+1 > sr(R), so there is a vector v := (v1, . . . , vn) ∈ Rn

such that the sequence

r′1 := r1,1 + v1f1(m
′
1), . . . , rn,1 + vnf1(m

′
1) ∈ Rn

is unimodular. Thus, there is an C ∈ GLn(R) such that Cr′1 = (1, 0, . . . , 0).
Consider the block

A1 :=

(

C 0
0 1

)

·

(

1n (m′
1v1, . . . ,m

′
1vn)

⊤

0 1

)

· A.

Then A1 is of the form














1 u′

0

A′
...
0
f1















for an (n− 1)× (k− 1)-block A′ for M . Now, by Proposition 3.9 the block A is
matrix reducible if and only if the block A1 is matrix reducible. Proposition 3.9
also implies that this is equivalent to the block

A2 := A1 ·

(

1 −u′

0 1n

)

=















1 0
0

A′′
...
0
f1















being matrix reducible. Therefore, it is enough to show that the block A2 is
matrix reducible. Since the block A is unimodular, so is A2 as remarked above.
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This implies that the block A′′ is unimodular as well. Hence, by the induction
hypothesis there is a vector m ∈Mn−1 such that

(

1 −u′

0 1n

)

· A′′ =

(

B̃
ũ

)

,

where the matrix B̃ is unimodular and ũ is the last row of A′′. Thus,








1 0 0

0 1n−1 m⊤

0 0 1









· A2 =





1 0

∗ B̃
∗ ũ



 ,

where the matrix

(

1 0

∗ B̃

)

is unimodular since B̃ is unimodular. �

The next proposition is an extension of [21, Thm. 1].

Proposition 3.10. Let k + sr(R) = n+ 1 and l > 0 then for any unimodular
(n+ l)× k-block A there is a vector m ∈Mn such that













1n 0 m⊤

0 1l 0

0 0 1













· A =

(

B
u

)

,

where the (n+l)×k-matrix B is unimodular and u is the last row of the block A.

Proof. Since A is a unimodular (n + l) × k-block by Proposition 3.8 there is
an element m̃ ∈Mn+l such that

(

1n+l m̃⊤

0 1

)

· A =

(

B1

u1

)

,

where the (n + l) × k-matrix B1 is unimodular and u1 = u is the last row of
the block A. Since l > 0 and n+ l− k ≥ sr(R) we can now apply the condition
(Skn+l−k) to the unimodular matrix B1 to get an element v ∈ Rn+l−1 such that

(

1n+l−1 v⊤

0 1

)

·B1 =

(

B2

u2

)

,

where the (n+ l− 1)× k-matrix B2 is unimodular and u2 is the last row of the
matrix B1. Together we get









1n+l−1 v⊤ 0

0 1 0
0 0 1









·

(

1n+l m̃⊤

0 1

)

· A =





B2

u2
u1



 .
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Notice that the product of the first two matrices can be written in the form








1n+l−1 ∗ ∗

0 1 ∗
0 0 1









,

where the last column has entries in the module M and the rest of the matrix
has entries in the ring R. Iterating this yields a matrix

C :=



















1n ∗ ∗

0

1 ∗ ∗

∗0
. . . ∗

0 0 1
0 0 1



















and C ·A is a matrix of the form

(

B′

B′′

)

, where B′ is an n×k-matrix and B′′ is

an (l + 1)× k-block. The matrix B′ is unimodular by construction. Note that
row operations involving only the rows of B′′ do not change the matrix B′.
Hence, we can change the above matrix C to be of the form

C′ :=













1n ∗ ∗

0 1l 0

0 0 1













.

Again, C′ · A is a matrix of the form

(

B′

B̃′′

)

, where B′ is the same matrix as

above and, hence, unimodular. Instead of dividing this matrix into the first n
and the last l+1 rows, let us now divide it into the first n+ l and the last row,

written as

(

B′′′

u

)

, where u is by construction the last row of the matrix A.

Since the matrix B′ is unimodular, so is the matrix B′′′. Row operations on B′′′

correspond to multiplying B′′′ on the left by invertible matrices which keeps
the matrix unimodular. Hence, we can perform row operations on C′ using all
but the last row to get a matrix of the form













1n 0 m⊤

0 1l 0

0 0 1













.

This finishes the proof. �

We immediately get the following corollary.

Documenta Mathematica 23 (2018) 1729–1774



Homological Stability of automorphism . . . 1749

Corollary 3.11. Let k + sr(R) = n + 1 and l > 0 then for any unimodular
(n+ l)×k-block A there is a vector m ∈Mn and an n× l-matrix Q with entries
in R such that













1n Q m⊤

0 1l 0

0 0 1













· A =





B1

B2

u



 ,

where the n× k-matrix B1 is unimodular and

(

B2

u

)

are the last l + 1 rows of

the block A.

Proof. The matrix C′ constructed in the proof of Proposition 3.10 is the re-
quired matrix. �

3.2.2. Orthogonal Transvections. Following [14, Ch. 7] let e and u be elements
in the quadratic module (M,λ, µ) satisfying µ(e) = 0 and λ(e, u) = 0. For
x ∈ µ(u) we define an automorphism τ(e, u, x) of the quadratic module M by

τ(e, u, x)(v) = v + uλ(e, v)− eελ(u, v)− eεxλ(e, v).

As noted in [14] this is an element of the unitary group U(M). If e is λ-
unimodular, the map τ(e, u, x) is called an orthogonal transvection.
The following is the last ingredient in order to prove Lemma 3.5.

Proposition 3.12. ([18, Prop. 5.12]) Let M be a quadratic module and M ⊕
H ∼= Hg+1. If g ≥ usr(R) then M ∼= Hg.

Proof of Lemma 3.5. In the following we adapt the ideas of Step 1 in the proof
of [14, Thm. 8.1]. Let (v1, . . . , vk) be a λ-unimodular sequence in the quadratic
module P ⊕Hg with g ≥ usr(R) + k. Recall that we want to show that there
is an automorphism φ ∈ U(P ⊕Hg) such that φ(v1, . . . , vk) ⊆ P ⊕Hk and the
projection of φ(v1, . . . , vk) to the hyperbolic Hk is λ-unimodular. Denoting the
basis of Hg by e1, f1, . . . , eg, fg we can write

vi = pi +

g
∑

l=1

elA
i
l +

g
∑

l=1

flB
i
l for pi ∈ P and Ail , B

i
l ∈ R.

As the sequence (v1, . . . , vk) is λ-unimodular, there are

wi = qi +

g
∑

l=1

ela
i
l +

g
∑

l=1

flb
i
l for qi ∈ P and ail , b

i
l ∈ R
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satisfying

δi,j = λ(wi, vj) = (qi, a
i
1, b

i
1, . . . , b

i
g)











λ|P 0 0 · · ·
0 0 1

· · ·
0 ε 0
...

...
. . .

























pj
Aj1
Bj1
...
Bjg















= λ(qi, pj) +

g
∑

l=1

ailB
j
l + ε

g
∑

l=1

bilA
j
l

Note that a sequence (v1 . . . , vk) is λ-unimodular if and only if its associated
block

A(v1,...,vk) :=















A1
1 . . . Ak1

B1
1 . . . Bk1
...

...
B1
g . . . Bkg

λ(−, p1) . . . λ(−, pk)















is unimodular. Since g−k+1 > sr(R) by Proposition 3.10 there are p̃1, . . . , p̃g ∈
P such that



















12g

p̃1
0
...
p̃g
0

0 1



















· A(v1,...,vk) =

(

B
u

)

,

where the matrix B is unimodular. Strictly speaking this is not of the form
of Proposition 3.10 but we can reorder the basis of the matrix part to get the
above statement. Now, for yi ∈ µ(p̃i) consider the following composition of
transvections

φ̃ := τ(eg ,−p̃gε, yg) ◦ . . . ◦ τ(e1,−p̃1ε, y1).

Then by induction we have

φ̃(vi) = vi +

g
∑

j=1

(

−p̃jεB
i
j + ejλ(p̃j , pi)−

(

ejε

j−1
∑

l=1

λ(p̃j , p̃l)B
i
l

)

− ejyjεB
i
j

)

,

where we have used the identity εε = 1 several times.
Next, we show that the projection of φ̃(v1, . . . , vk) to Hg is λ-unimodular.
For this we explain how the the block Aφ̃(v1,...,vk) is obtained from the block

A(v1,...,vk) and show that the matrix part of the block Aφ̃(v1,...,vk) is unimod-

ular. Adding
∑g

j=1 −p̃jεB
i
j to vi for each i corresponds to changing only the

last row of the block A(v1,...,vk) and so doesn’t affect its matrix part. Adding
∑g

j=1 ejλ(p̃j , pi) to vi for 1 ≤ i ≤ k corresponds to the following multiplication
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on the level of blocks:


















12g

p̃1
0
...
p̃g
0

0 1



















· A(v1,...,vk).

As we have seen above this is

(

B
u

)

with B a unimodular matrix. Adding the

terms
g
∑

j=1

−ejε

j−1
∑

l=1

λ(p̃j , p̃l)B
i
l and

g
∑

j=1

−ejyjεB
i
j

corresponds to multiplying the block A(v1,...,vk) from the left by matrices of the
forms

(

C1 0
0 1

)

and

(

C2 0
0 1

)

respectively, where C1 is a lower triangular matrix with 1’s on the diagonal and
C2 is an upper triangular matrix with 1’s on the diagonal. In particular, both
C1 and C2 are invertible. Note that all of the three above steps only change
the coefficient of the ei, by adding on multiples of the coefficients of the fi and
the last row. Therefore, applying φ̃ to (v1, . . . , vk) corresponds to multiplying
A(v1,...,vk) from the left by the product of the above matrices:

(

C2 0
0 1

)

·

(

C1 0
0 1

)

·



















12g

p̃1
0
...
p̃g
0

0 1



















· A(v1,...,vk) =

(

C2C1B
u

)

.

Since B is unimodular so is C2C1B. This corresponds to the projection of
φ̃(v1, . . . , vk) to H

g which is therefore also unimodular.

Now applying [15, Lemma 6.6] yields a hyperbolic basis {ẽ1, f̃1, . . . , ẽg, f̃g}
of Hg such that

φ̃(v1)|Hg , . . . , φ̃(vk)|Hg ∈ 〈ẽ1, f̃1, . . . , ẽk, f̃k〉 =: U.

Note that this does not need to be the standard basis of Hg, hence, we need to
find an automorphism ψ ofHg that sends the above basis ẽ1, f̃1, . . . , ẽg, f̃g to the

standard basis inHg. Then φ := (1P⊕ψ)◦φ̃will be the required automorphism.
Let V denote an orthogonal complement of U in Hg, i.e. U ⊕ V ∼= Hg. We
have g − k ≥ usr(R) and hence Proposition 3.12 implies V ∼= Hg−k. Let
ψ denote the automorphism of Hg which sends U to the first k copies of H
in Hg and V to the last g − k copies. Using the above definition of φ we
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then have φ(v1, . . . , vk) ⊆ P ⊕Hk and the projection of φ(v1, . . . , vk) to H
k is

unimodular. �

We get the following version of [14, Thm. 8.1], but phrased in terms of the
unitary stable rank instead of the absolute stable rank.

Corollary 3.13. Let r ∈ R and (M,λ, µ) be a quadratic module satisfying
g(M) ≥ usr(R)+1. Then U(M) acts transitively on the set of all λ-unimodular
elements v in M satisfying µ(v) = r + Λ.

Proof. For g = g(M) there is a quadratic module P such that M ∼= P ⊕Hg.
We write e1, f1, . . . , eg, fg for the basis of Hg. We show that we can map
a λ-unimodular element v with µ(v) = r + Λ to e1 + rf1.
By Lemma 3.5 there is an automorphism φ ∈ U(P⊕Hg) such that φ(v) ⊆ P⊕H
and the projection of φ(v) to the hyperbolic H is unimodular. Hence, by the
transitivity condition (Tg) we can map the projection of φ(v) (considered in
Hg) to e1 + b′f1 having the same length as the projection of φ(v). Thus, we
have mapped v to the element p+ e1 + f1b

′ for some element p ∈ P . Applying
the orthogonal transvection τ(f1ε,−p, x) for some x ∈ µ(p) maps p+ e1 + f1b

′

to e1 + f1b, with b = b′ + λ(p, p)− x. We have

r + Λ = µ(v) = µ(e1 + f1b) = b+ Λ

and

τ(f1ε, 0, b− r)(e1 + f1b) = e1 + f1r. �

By Lemma 3.3 this is a generalisation of [9, Prop. 3.3] which treats the special
case of quadratic modules over the integers. Note that our bound is slightly
better than the bound given in the special case.
Adapting the proof of [14, Cor. 8.3], using Corollary 3.13 instead of [14,
Thm. 8.1] yields the following improvement to Proposition 3.12. Note that
Step 6 of [14, Thm. 8.1] still works in our setting.

Corollary 3.14. Let M and N be quadratic modules and M ⊕H ∼= N ⊕H.
If g(M) ≥ usr(R) then M ∼= N .

In contrast to Proposition 3.12, both M and N can be general quadratic mod-
ules and, in particular, both can be non-hyperbolic modules. As in the previous
corollary, this bound is slightly better than the bound given in [9, Prop. 3.4]
which only treats the case R = Z.

3.3. Proof of Theorem 3.4. For the proof of Theorem 3.4 we follow a strat-
egy similar to the proof of [15, Thm. 7.4]. As we have seen in Lemma 3.3, in
the hyperbolic case every unimodular sequence is already λ-unimodular. In the
case of general quadratic modules, however, a unimodular sequence of length 1,
(v1), need not be λ-unimodular and more generally, (v1, . . . , vk, u1, . . . , ul) is
not necessarily λ-unimodular, even if the individual sequences (v1, . . . , vk) and
(u1, . . . , ul) are λ-unimodular. The following lemma, however, shows that in
certain circumstances this implication is still valid.
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Lemma 3.15. Let (v1, . . . , vk) ∈ U(M,λ) be a λ-unimodular sequence in M and
let w1, . . . , wk ∈M be such that λ(wi, vj) = δi,j.

(1) We haveM = 〈v1, . . . , vk〉⊕〈w1, . . . , wk〉
⊥ as a direct sum of R-modules

(i.e. the summands are not necessarily orthogonal with respect to λ).
(2) If (u1, . . . , ul) ∈ U(M,λ) is a λ-unimodular sequence with λ(wi, uj) = 0

for all i, j then the sequence (v1, . . . , vk, u1, . . . , ul) is λ-unimodular.
(3) Let ui = xi + yi for xi ∈ 〈v1, . . . , vk〉 and yi ∈ 〈w1, . . . , wk〉

⊥.
Then (v1, . . . , vk, u1, . . . , ul) is λ-unimodular if and only if
(v1, . . . , vk, y1, . . . , yl) is λ-unimodular.

Proof. For (1) consider the map

k
⊕

i=1

λ(wi,−) : M −→ Rk

which sends vi to the i-th basis vector in Rk. The vi define a splitting, and
hence

M = 〈v1, . . . , vk〉 ⊕Ker

(

k
⊕

i=1

λ(wi,−)

)

= 〈v1, . . . , vk〉 ⊕ 〈w1, . . . , wk〉
⊥.

For (2) let z1, . . . , zl ∈ M such that λ(zi, uj) = δi,j . Replacing zi by

zi −
∑k
n=1 wnλ(zi, vn) shows that the sequence (v1, . . . , vk, u1, . . . , ul) is λ-

unimodular since we have

λ(wi, vj) = δi,j λ

(

zi −

k
∑

n=1

wnλ(zi, vn), vj

)

= λ(zi, vj)− λ(zi, vj) = 0

λ(wi, uj) = 0 λ

(

zi −

k
∑

n=1

wnλ(zi, vn), uj

)

= λ(zi, uj) = δi,j .

To prove (3) we first assume that the sequence (v1, . . . , vk, y1, . . . , yl) is λ-
unimodular. Hence, there are w′

1, . . . , w
′
k, z1, . . . , zl ∈M such that

λ(w′
i, vj) = δi,j λ(zi, vj) = 0

λ(w′
i, yj) = 0 λ(zi, yj) = δi,j .

Note that since yi ∈ 〈w1, . . . , wk〉
⊥ we could choose w′

i to be wi for all i.
Since we have xj ∈ 〈v1, . . . , vk〉 and λ(zi, vj) = 0 for all i, j we have λ(zi, uj) =

λ(zi, yj) = δi,j . Replacing w
′
i by w

′
i−
∑l

n=1 znλ(w
′
i, un) shows that the sequence

(v1, . . . , vk, u1, . . . , ul) is λ-unimodular:

λ

(

w′
i −

l
∑

n=1

znλ(w′
i, un), vj

)

= λ(w′
i, vj) = δi,j λ(zi, vj) = 0

λ

(

w′
i −

l
∑

n=1

znλ(w′
i, un), uj

)

= λ(w′
i, uj)− λ(w′

i, uj) = 0 λ(zi, uj) = δi,j .
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Now, assuming that the sequence (v1, . . . , vk, u1, . . . , ul) is λ-unimodular we
have elements w′

1, . . . , w
′
k, z1, . . . , zl ∈M satisfying

λ(w′
i, vj) = δi,j λ(zi, vj) = 0

λ(w′
i, uj) = 0 λ(zi, uj) = δi,j .

As above we have λ(zi, yj) = λ(zi, uj) = δi,j . Replacing w′
i by w′

i −
∑l

n=1 znλ(w
′
i, yn) yields

λ

(

w′
i −

l
∑

n=1

znλ(w′
i, yn), vj

)

= λ(w′
i, vj) = δi,j λ(zi, vj) = 0

λ

(

w′
i −

l
∑

n=1

znλ(w′
i, yn), yj

)

= λ(w′
i, yj)− λ(w′

i, yj) = 0 λ(zi, yj) = δi,j ,

which shows that the sequence (v1, . . . , vk, y1, . . . , yl) is λ-unimodular. �

To prove Theorem 3.4 we need an analogue of Theorem 2.4 for the complex of
λ-unimodular sequences in a quadratic module. For this we use the following
notation. Let S ⊆ M be a subset of a quadratic module M . We write I(S, µ)
for the set of all elements v ∈ S satisfying µ(v) = 0.

Theorem 3.16. LetM = P⊕Hg and N be quadratic modules withM⊕H ⊆ N .

(1) O (I(P ⊕ 〈e1, . . . , eg〉, µ)) ∩ U(N, λ) is (g − usr(R)− 1)-connected,
(2) O (I(P ⊕ 〈e1, . . . , eg〉, µ)) ∩ U(N, λ)(v1,...,vk) is (g − usr(R) − k − 1)-

connected for every sequence (v1, . . . , vk) ∈ U(N, λ).

This is the natural generalisation of Theorem 2.4 to the case of quadratic
modules. (Only considering N ’s of the form M ⊕H∞ is not sufficient for our
proof of Lemma 3.20, see Remark 3.21.) We can write N as Q⊕Hg(M)⊕Hn for
some n ≥ 1, where Hg(M) is the hyperbolic part of M and Q is some quadratic
module. With this notation we have P ⊆ Q⊕Hn−1, where Hn−1 denotes the
last n− 1 copies of H in Hn ⊆ N . In particular, P is not necessarily contained
in Q.
The proof is an adaptation of the proof of Theorem 2.4 for which we use the
following results.

Proposition 3.17. Let N be a quadratic module with Hk ⊆ N for k ≥ usr(R).
For a λ-unimodular element v ∈ N there is an automorphism φ ∈ U(N) such
that the projection of φ(v) to Hk ⊆ N is λ-unimodular and the automorphism φ
fixes (Hk)⊥ ⊕ 〈e1, . . . , ek〉 as a set.

Note that in comparison with Lemma 3.5 the bound for k in the above propo-
sition is slightly lower than in the lemma. Hence, we get a weaker conclusion
here, having to restrict to more copies of the hyperbolic module H to get λ-
unimodularity, and we cannot guarantee that the image of v under φ lands
outside certain copies of H .

Documenta Mathematica 23 (2018) 1729–1774



Homological Stability of automorphism . . . 1755

Proof. We adapt the ideas of the first part of the proof of Lemma 3.5. We can
write N = Q⊕Hk for some quadratic module Q. Then

v = p+

k
∑

i=1

eiAi + fiBi for p ∈ Q and Ai, Bi ∈ R.

As v is λ-unimodular, there is

w = q +

k
∑

i=1

eiai + fibi for q ∈ Q and ai, bi ∈ R

satisfying

1 = λ(w, v) = (q, a1, b1, . . . , bk)











λ|Q 0 0 · · ·
0 0 1

· · ·
0 ε 0
...

...
. . .

























p
A1

B1

...
Bk















= λ(q, p) +

k
∑

i=1

aiBi + εbiAi.

Hence, using the notation from the proof of Lemma 3.5, the 2k× 1-block for Q
associated to v

Av =















A1

B1

...
Bk

λ(−, p)















is unimodular. Since k ≥ usr(R) by Proposition 3.10 there are p1, . . . , pk ∈ Q
such that for m = (p1, 0, . . . , pk, 0) we get

(

12k m⊤

0 1

)















A1

B1

...
Bk

λ(−, p)















=

(

b
u

)

,

where the vector b ∈ Hk is unimodular. As in the proof of Lemma 3.5 this
application of Proposition 3.10 involves reordering the basis of the matrix part.
Following the proof of Lemma 3.5, for yi ∈ µ(pi) we consider the following
composition of transvections

φ := τ(eg ,−pgε, yg) ◦ . . . ◦ τ(e1,−p1ε, y1).

Then by induction we have

φ(v) = v +

g
∑

j=1

(

−pjεBj + ejλ(pj , p)−

(

ejε

j−1
∑

l=1

λ(pj , pl)Bl

)

− ejyjεBj

)

.
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By construction the automorphism φ fixes (Hk)⊥ ⊕ 〈e1, . . . , eg〉 as a set. �

Lemma 3.18. Let N be a quadratic module with Hk ⊆ N for some k and v ∈ N
so that the projection of v to Hk−1 ⊕ 0 ⊆ Hk ⊆ N is λ-unimodular. There are
w ∈ 〈ek, fk〉, u ∈ Hk−1, and x ∈ µ(u) such that λ(w, τ(ek , u, x)(v)) = 1 and
for every subset S ⊆ (Hk)⊥ the transvection τ(ek, u, x) fixes S⊕〈e1, . . . , ek〉 as
a set.

Saying that the automorphism φ fixes S ⊕ 〈e1, . . . , ek〉 as a set for every S ⊆
(Hk)⊥ is the same as saying that it is the identity on the associated graded for
the filtration 0 ≤ 〈e1, . . . , ek〉 ≤ (Hk)⊥ ⊕ 〈e1, . . . , ek〉 but we prefer the above
formulation as this is of the form we use later on.

Proof. Since the projection of v to Hk−1 is λ-unimodular there is an element

z ∈ Hk−1 such that λ(z, v) = 1. For u := z(λ(fk, v)− 1)ε and any x ∈ µ(u)
we have

τ(ek, u, x)(v) = v + uλ(ek, v)− ekελ(u, v)− ekεxλ(ek, v)

= v + uλ(ek, v) + ek(1− λ(fk, v)− εxλ(ek, v)).

Since u is contained in Hk−1 the second summand does not affect the coeffi-
cients of ek and fk. The third summand changes the coefficient of ek to be
1− εxλ(ek, v) and leaves all other coefficients fixed. Defining w := ekxε+ fkε
we get

λ(w, τ(ek, u, x)(v)) = λ(ekxε+ fkε, ek(1− εxλ(ek, v)) + fkλ(ek, v))

= λ(ekxε, λ(ek, v)fk) + λ(fkε, (1− εxλ(ek, v))ek)

= εxλ(ek, v) + 1− εxλ(ek, v)

= 1.

Thus, choosing u, x, and w as above shows the claim since the constructed
transvection fixes S ⊕ 〈e1, . . . , ek〉 as a set for every subset S ⊆ (Hk)⊥. �

Proof of Theorem 3.16. Analogous to the proof of Theorem 2.4 we will also
show the following statements:

(a) O
(

I
(

P⊕(〈e1, . . . , eg〉∪〈e1, . . . , eg〉+eg+1), µ
)

)

∩U(N, λ) is (g−usr(R))-

connected,

(b) O
(

I
(

P ⊕ (〈e1, . . . , eg〉 ∪ 〈e1, . . . , eg〉 + eg+1), µ
)

)

∩ U(N, λ)(v1,...,vk) is

(g − usr(R)− k)-connected for all (v1, . . . , vk) in U(N, λ).

Here, we write N = Q⊕Hg⊕H for some quadratic module Q and (eg+1, fg+1)
for the basis of the last copy of the hyperbolic H in N .
The proof is by induction on g. Note that statements (1), (2), and (b) all hold
for g < usr(R) so we can assume g ≥ usr(R). Statement (a) holds for g <
usr(R)− 1 so we can assume g ≥ usr(R)− 1 when proving this statement. The
structure of the proof is the same as in the proof of Theorem 2.4: We start by
proving (b) which enables us to deduce (2). We will then prove statements (1)
and (a) simultaneously by applying statement (2).
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In the following we write Eg = 〈e1, . . . , eg〉.
Proof of (b). For Y := P ⊕ (Eg ∪ (Eg + eg+1)) we write F := O(I(Y, µ)) ∩

U(N, λ)(v1,...,vk). Let d := g − usr(R) − k, so we have to show that F is d-
connected.
For g = usr(R) the only case to consider is k = 1, where we have to show that
F is non-empty. By Proposition 3.17 there is an automorphism φ ∈ U(N) such
that the projection of φ(v1) to H

g ⊆ N is λ-unimodular and φ fixes Y as a set.
Then the sequence (φ(v1)|Hg , eg+1) is λ-unimodular in N . In particular, there
is an element w1 ∈ Hg such that λ(w1, φ(v1)|Hg

) = 1 and λ(w1, eg+1) = 0. Now
Lemma 3.15 (2) applied to u1 = eg+1 shows that the sequence (φ(v1), eg+1) is
λ-unimodular. Hence, the sequence (v1, φ

−1(eg+1)) is also λ-unimodular. By
construction we have φ−1(eg+1) ∈ Y and thus, F is non-empty as it contains
the element φ−1(eg+1).
Now consider the case g > usr(R). By Proposition 3.17 there is an automor-
phism φ of N such that the projection of φ(v1) to Hg−1 is λ-unimodular.
Using Lemma 3.18 we get u ∈ Hg−1, x ∈ µ(u), and w1 ∈ 〈eg, fg〉 such
that λ(w1, τ(eg, u, x)(φ(v1))) = 1. By construction, both φ and τ(eg, u, x) fix
P ⊕ (Eg ∪ (Eg + eg+1)) as a set. Hence, the automorphism ψ := τ(eg, u, x) ◦ φ
defines an isomorphism

F = O(I(Y, µ)) ∩ U(N, λ)(v1,...,vk)

∼=

��

O(I(Y, µ)) ∩ U(N, λ)(ψ(v1),...,ψ(vk)) = ψ(F )

Writing ui := ψ(vi) we have λ(w1, u1) = 1 with w1 ∈ 〈eg, fg〉. This argument
only works if g > usr(R) so we had to treat the case g = usr(R) separately.
We want to use Lemma 2.5 (1) to show that ψ(F ), and hence F , is d-connected.
We define

X := I({v ∈ Y | v|〈eg ,fg〉 = 0}, µ) = I(P ⊕ (Eg−1 ∪ (Eg−1 + eg+1)), µ)

and u′i := ui − u1λ(w1, ui) for i > 1, forcing λ(w1, u
′
i) = 0. We have

O(X) ∩ ψ(F ) = O(X) ∩ U(N, λ)(u1,...,uk)

= O(I(P ⊕ (Eg−1 ∪ (Eg−1 + eg+1)), µ)) ∩ U(N,λ)(u1,u
′

2
,...,u

′

k
)

= O(I(P ⊕ (Eg−1 ∪ (Eg−1 + eg+1)), µ)) ∩ U(N,λ)(u′

2
,...,u

′

k
),

where the second equality holds as the span of u1, u
′
2, . . . , u

′
k is the same as

the span of u1, u2, . . . , uk and the third equality can be seen as follows: The
inclusion ⊆ of the second line into the third is obvious. For the other inclusion,
⊇, let (x1, . . . , xl) ∈ O(I(P ⊕ (Eg−1 ∪ (Eg−1 + eg+1)), µ)) ∩ U(N, λ)(u′

2
,...,u′

k
).

We have λ(w1, xi) = 0 since w1 ∈ 〈eg, fg〉 and λ(w1, u
′
i) = 0 by construction of

the u′i. Thus, by Lemma 3.15 (2) the sequence (x1, . . . , xl, u1, u
′
2, . . . , u

′
k) is λ-

unimodular. In particular, the sequence (x1, . . . , xl) is an element of O(I(P ⊕
(Eg−1 ∪ (Eg−1 + eg+1)), µ)) ∩ U(N, λ)(u1,u

′

2
,...,u′

k
).
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Thus, by the induction hypothesis O(X) ∩ ψ(F ) is d-connected. Analogously,
for (w1, . . . , wl) ∈ ψ(F ) \ O(X) we get

O(X) ∩ ψ(F )(w1,...,wl)

= O(X) ∩ U(N, λ)(u1,...,uk,w1,...,wl)

= O(I(P ⊕ (Eg−1 ∪ (Eg−1 + eg+1)), µ)) ∩ U(N, λ)(u′

2
,...,u′

k
,w′

1
,...,w′

l
),

which is (d − l)-connected by the induction hypothesis. Therefore,
Lemma 2.5 (1) shows that ψ(F ) is d-connected. Since F and ψ(F ) are
isomorphic, F is therefore also d-connected.
Proof of (2). Let us write

X := I (P ⊕ (Eg−1 ∪ (Eg−1 + eg)), µ) .

Then we have

O(X) ∩
(

O(I(P ⊕ Eg, µ)) ∩ U(N, λ)(v1,...,vk)
)

= O (I(P ⊕ (Eg−1 ∪ (Eg−1 + eg)), µ)) ∩ U(N, λ)(v1,...,vk),

which is (d− 1)-connected by (b).
Similarly, for (w1, . . . , wl) ∈ O(I(P ⊕Eg, µ))∩U(N, λ)(v1 ,...,vk) \O(X) we have

O(X) ∩
(

O(I(P ⊕ Eg, µ) ∩ U(N, λ)(v1,...,vk)
)

(w1,...,wl)

= O(X) ∩ U(N, λ)(v1,...,vk,w1,...,wl),

which is (d− l−1)-connected by the above. Hence, by Lemma 2.5 (1) the claim
follows.
Proof of (1) and (a). Note that we now only assume g ≥ usr(R)− 1. By induc-

tion let us assume that statement (a) holds for P ⊕ (Eg−1 ∪ (Eg−1 + eg)) and
we want to show it for P ⊕ (Eg ∪ (Eg + eg+1)). Before we finish the induction
for (a) we will show that this already implies statement (1) for P ⊕ Eg. For
this let X be as in the proof of (2) and d := g − usr(R). Then

O(X) ∩ (O(I(P ⊕ Eg, µ)) ∩ U(N, λ))

= O(I(P ⊕ (Eg−1 ∪ (Eg−1 + eg)), µ)) ∩ U(N, λ)

is (d− 1)-connected by (a). The complex

O(X) ∩ (O(I(P ⊕ Eg, µ)) ∩ U(N, λ))(v1,...,vm)

is (d −m − 1)-connected as we have already shown in the proof of (2). Thus,
O(I(P ⊕ Eg, µ)) ∩ U(N, λ) is (g − usr(R) − 1)-connected by Lemma 2.5 (1)
which proves statement (1).
To prove (a) we will apply Lemma 2.5 (2) for X = I(P ⊕Eg, µ) and y0 = eg+1.
Consider

(v1, . . . , vk) ∈ O(I(P ⊕ (Eg ∪ (Eg + eg+1)), µ)) ∩ U(N, λ) \ O(X).

Without loss of generality we may suppose that v1 /∈ X as otherwise we can
permute the vi. By definition of X the coefficient of the eg+1-coordinate of v1
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is therefore 1. Using Lemma 3.15 (2) as in part (b) above we have

O(X) ∩O(I(P ⊕ (Eg ∪ (Eg + eg+1)), µ)) ∩ U(N, λ)(v1,...,vk)

= O(X) ∩ U(N, λ)(v′
2
,...,v′

k
),

where v′i := vi − v1λ(fg+1, vi) is chosen so that the coefficient of the eg+1-
coordinate of v′i is 0 for all i > 1. This is (d − k)-connected by (1) for k = 1
and by (2) for k ≥ 2. By construction we have

O(X) ∩ O(I(P ⊕ (Eg ∪ (Eg + eg+1)), µ)) ∩ U(N, λ)

⊆ (O(I(P ⊕ (Eg ∪ (Eg + eg+1)), µ)) ∩ U(N, λ))(eg+1)

and thus, Lemma 2.5 (2) implies that O(I(P ⊕(Eg∪(Eg+eg+1)), µ))∩U(N, λ)
is (g − usr(R))-connected which proves (a).
Note that when showing statement (a) for P ⊕ (Eg ∪ (Eg + eg+1)) we only used
statement (1) for P ⊕Eg which follows from (a) for P ⊕ (Eg−1 ∪ (Eg−1 + eg))
so this is indeed a valid induction to show both statements (1) and (a). �

In the following we write U(M,λ, µ) := O(I(M,µ)) ∩ U(M,λ).

Corollary 3.19. Let M and N be quadratic modules with M ⊕H ⊆ N .

(1) O(M) ∩ U(N, λ, µ) is (g(M)− usr(R)− 1)-connected,
(2) O(M) ∩ U(N, λ, µ)v is (g(M) − usr(R) − |v| − 1)-connected for every

v ∈ U(N, λ, µ),
(3) O(M) ∩ U(N, λ, µ) ∩ U(N, λ)v is (g(M) − usr(R) − |v| − 1)-connected

for every v ∈ U(N, λ).

For the special case where the quadratic moduleM is a direct sum of hyperbolic
modules Hn, Corollary 3.19 has been proven by Mirzaii–van der Kallen in [15,
Lemma 6.8]

Proof. We write g = g(M) and M = P ⊕Hg.
For (1) let W := I(P ⊕ 〈e1, . . . , eg〉, µ) and F := O(M) ∩ U(N, λ, µ). Then we
have

O(W ) ∩ F = O(W ) ∩ U(N, λ) and O(W ) ∩ Fu = O(W ) ∩ U(N, λ)u,

for every u ∈ U(M,λ, µ). Thus, by Theorem 3.16 the poset O(W ) ∩ F is
(g− usr(R)− 1)-connected and O(W )∩Fu is (g− usr(R)− |u| − 1)-connected.
Now, by Lemma 2.5 (1) the poset F is (g − usr(R)− 1)-connected.
To show (3) we choose W as above and F as the complex O(M)∩U(N, λ, µ)∩
U(N, λ)v . As before, using Lemma 2.5 (1) yields the claim. Note that state-
ment (2) is a special case of statement (3). �

Lemma 3.20. For an element (v1, . . . , vk) ∈ U(M,λ, µ) the poset
O(〈v1, . . . , vk〉

⊥) ∩ U(M,λ, µ)(v1,...,vk) is (g(M) − usr(R) − k − 1)-connected,
where ⊥ denotes the orthogonal complement with respect to λ.

For the special case where M is a sum of hyperbolic modules Hn this has been
done by Mirzaii-van der Kallen in [15, Lemma 6.9].

Documenta Mathematica 23 (2018) 1729–1774



1760 Nina Friedrich

Proof. Let g = g(M) and M = P ⊕ Hg. By Lemma 3.5 we can assume
without loss of generality that v1, . . . , vk ∈ P ⊕Hk and the projection to the
hyperbolic Hk is λ-unimodular. In particular, there are w1, . . . , wk ∈ Hk such
that λ(wi, vj) = δi,j . Defining

W := I(〈v1, . . . , vk, w1, . . . , wk〉
⊥, µ)

and F := O(〈v1, . . . , vk〉
⊥) ∩ U(M,λ, µ)(v1,...,vk)

we have

O(W ) ∩ F = O(W ) ∩ U(M,λ, µ)(v1,...,vk) = O(W ) ∩ U(M,λ, µ),

where the second equality holds by Lemma 3.15 (2) as W ⊆ 〈w1, . . . , wk〉
⊥. By

construction we have Hg−k ⊆ W . Hence, O(W ) ∩ F is (g − k − usr(R) − 1)-
connected by Lemma 3.19 (1). By Lemma 3.15 (1) we can write M =
〈v1, . . . , vk〉 ⊕ 〈w1, . . . , wk〉

⊥, where we mean a direct sum of R-modules. Con-
sider (u1, . . . , ul) ∈ F \ O(W ). We can write ui = xi + yi for xi ∈ 〈v1, . . . , vk〉
and yi ∈ 〈w1, . . . , wk〉

⊥. Note that (y1, . . . , yl) is in U(M,λ) but not necessarily
in U(M,λ, µ). Using Lemma 3.15 (2) and (3) we have

O(W ) ∩ F(u1,...,ul) = O(W ) ∩ U(M,λ, µ) ∩ U(M,λ)(y1,...,yl)

which is (g − k − usr(R) − l − 1)-connected by Lemma 3.19 (3). Using
Lemma 2.5 (1) now finishes the proof. �

Remark 3.21.

(1) We could apply Corollary 3.19 (2) directly to O(〈v1, . . . , vk〉
⊥) ∩

U(M,λ, µ)(v1,...,vk) using that Hg(M)−k ⊆ 〈v1, . . . , vk〉
⊥. However,

this would only imply that the complex is (g(M) − usr(R) − 2k − 1)-
connected.

(2) In the proof of Lemma 3.20 we cannot assume that the yi’s lie in
〈v1, . . . , vk, w1, . . . , wk〉

⊥ ⊕ H∞. Hence, we need Theorem 3.16 in the
generality it is stated.

Let V be a set and F ⊆ O(V ). For a non-empty set S we define the poset
F 〈S〉 as

F 〈S〉 := {((v1, s1), . . . , (vk, sk)) ∈ O(V × S) | (v1, . . . , vk) ∈ F}.

Lemma 3.22. Let g(M) ≥ usr(R) + k. For ((v1, w1), . . . , (vk, wk)) ∈ HU(M)
we define V := 〈v1, . . . , vk〉, W := 〈w1, . . . , wk〉, and Y := V ⊥ ∩W⊥. Then

(1) IU(M)(v1,...,vk)
∼= IU(Y )〈V 〉,

(2) HU(M) ∩MU(M)((v1,0),...,(vk,0))
∼= HU(X)〈V × V 〉,

(3) HU(M)((v1,w1),...,(vk,wk))
∼= HU(Y ).

For the case of hyperbolic modules this has been done in [15, Lemma 7.2].

Proof. We follow the proofs of [5, Lemma 3.4] and [5, Thm. 3.2].
For (1) note that IU(M)(v1,...,vk) ⊆ O(V ⊥). Let (u1, . . . , ul) ∈ O(V ⊥). We

have V ⊥ = V ⊕ Y by Lemma 3.15 (1) and therefore ui = xi + yi for some
xi ∈ V and yi ∈ Y . By Lemma 3.15 (3) the sequence (u1, . . . , ul, v1, . . . , vk) is
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λ-unimodular if and only if the sequence (y1, . . . , yl, v1, . . . , vk) is λ-unimodular,
which holds if and only if the sequence (y1, . . . , yl) is λ-unimodular by
Lemma 3.15 (2). Furthermore, we have µ(ui) = µ(yi) and λ(ui, uj) = λ(yi, yj)
since (v1, . . . , vk) ∈ IU(M). Therefore, 〈u1, . . . , ul, v1, . . . , vk〉 is isotropic if
and only if 〈u1, . . . , ul〉 is isotropic and we get an isomorphism

IU(M)(v1,...,vk) −→ IU(Y )〈V 〉

(u1, . . . , ul) 7−→ ((y1, x1), . . . , (yl, xl)).

A similar argument to the above forHU(M)∩MU(M)((v1,0),...,(vk,0)) ⊆ O(V ⊥×

V ⊥) shows (2). Statement (3) holds by construction of Y . �

The proof of [15, Thm. 7.4] uses the connectivity of the poset of isotropic
λ-unimodular sequences in the hyperbolic module Hn, IU(Hn), given in [15,
Thm. 7.3]. The following result is the analogous statement for general quadratic
modules.

Theorem 3.23. The poset IU(M) is
⌊

g(M)−usr(R)−2
2

⌋

-connected and for every

x ∈ IU(M) the poset IU(M)x is
⌊

g(M)−usr(R)−|x|−2
2

⌋

-connected.

Outline of the proof. The proof is analogous to the proof of [15, Thm. 7.3],
where we use Lemma 3.5 instead of [15, Lemma 6.6], Lemma 3.20 instead
of [15, Lemma 6.9], and Lemma 3.22 instead of [15, Lemma 7.2]. Note that [15,
Lemma 7.1] can easily be seen to hold in case of general quadratic modules. �

Outline of the proof of Theorem 3.4. The proof is analogous to the proof of [15,
Thm. 7.4]. The only changes that need to be made are the modifications
described in the proof of Theorem 3.23 as well as using Theorem 3.23 instead
of [15, Thm. 7.3]. �

3.4. Homological Stability. We now show homological stability for uni-
tary groups over quadratic modules (Theorem 3.25). This induces in particu-
lar Theorem B. As in the previous chapter we use the machinery of Randal-
Williams–Wahl [18]. Let (R, ε,Λ)-Quad be the groupoid of quadratic mod-
ules over (R, ε,Λ) and their isomorphisms. We write f(R, ε,Λ)-Quad for the
full subcategory on those quadratic modules which are finitely generated as
R-modules. Since this is a braided monoidal category it has an associated
pre-braided category Uf(R, ε,Λ)-Quad.
By Corollary 3.14 and [18, Thm. 1.8 (a)] the category Uf(R, ε,Λ)-Quad is
locally homogeneous at (M,H) for g(M) ≥ usr(R) + 1. Axiom LH3 is verified
by the following Lemma which for the special case of hyperbolic modules is
shown in [18, Lemma 5.13].

Lemma 3.24. Let M be a quadratic module with g(M) ≥ usr(R)+ 1. Then the

semisimplicial set Wn(M,H)• is
⌊

n+g(M)−usr(R)−3
2

⌋

-connected.

Proof. As in the proof of [18, Lemma 5.13], the poset of simplices of the
semisimplicial set Wn(M,H)• is equal to the poset HU(M ⊕ Hn) considered
in Section 3.1. Hence, they have homeomorphic geometric realisations. The
claim now follows from Theorem 3.4. �
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Applying Theorems [18, Thm. 3.1], [18, Thm. 3.4] and [18, Thm. 4.20] to the
quadratic module (Uf(R, ε,Λ)-Quad,⊕, 0) yields the following theorem which
directly implies Theorem B.

Theorem 3.25. Let F : Uf(R, ε,Λ)-Quad → Z-Mod be a coefficient system of
degree r at 0 in the sense of [18, Def,. 4.10]. Then for s = g(M)− usr(R) the
map

Hk(U(M);F (M)) → Hk(U(M ⊕H);F (M ⊕H))

is

(1) an epimorphism for k ≤ s−1
2 and an isomorphism for k ≤ s−2

2 , if F is
constant,

(2) an epimorphism for k ≤ s−r−1
2 and an isomorphism for k ≤ s−r−3

2 , if
F is split polynomial in the sense of [18],

(3) an epimorphism for k ≤ s−1
2 − r and an isomorphism for k ≤ s−3

2 − r.

For the commutator subgroup U(M)′ we get that the map

Hk(U(M)′;F (M)) → Hk(U(M ⊕H)′;F (M ⊕H))

is

(4) an epimorphism for k ≤ s−1
3 and an isomorphism for k ≤ s−3

3 , if F is
constant,

(5) an epimorphism for k ≤ s−2r−1
3 and an isomorphism for k ≤ s−2r−4

3 ,
if F is split polynomial in the sense of [18],

(6) an epimorphism for k ≤ s−1
3 − r and an isomorphism for k ≤ s−4

3 − r.

4. Homological Stability for Moduli Spaces of High Dimensional

Manifolds

Let P be a closed (2n−1)-dimensional manifold, and letW andM be compact
connected 2n-dimensional manifolds with identified boundaries ∂W = P =
∂M . In this chapter we follow Galatius–Randal-Williams [9]. All statements
and definitions are contained in the previous version, however, we use the
numbering of what we understand will be the final version. We say that M
and W are stably diffeomorphic relative to P if there is a diffeomorphism

W#Wg
∼=M#Wh

relative to P , for some g, h ≥ 0, where Wg := #g(S
n × Sn) for g ≥ 0. Let

Mst(W ) denote the set of 2n-dimensional submanifolds M ⊂ (−∞, 0] × R∞

such that

(1) M ∩ ({0}×R∞) = {0}×P and M contains (−ε, 0]×P for some ε > 0,
(2) the boundary of M is precisely {0} × P , and
(3) M is stably diffeomorphic to W relative to P .

We use the topology on Mst(W ) as described in [9, Ch. 6]. We write M(W )
for the model of the classifying space BDiff∂(W ) defined in [9], which as a set
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is the subset of Mst(W ) given by those submanifolds that are diffeomorphic
to W relative to P . With this notion we have

Mst(W ) =
⊔

[T ]

M(T ),

where the union is taken over the set of compact manifolds T with bound-
ary ∂T = P , which are stably diffeomorphic to W relative to P , one in each
diffeomorphism class relative to P . The stabilisation map is the same as con-
sidered in [9] and is given as follows: We choose a submanifold S ⊂ [−1, 0]×R∞

with collared boundary ∂S = {−1, 0} × P = S ∩ ({−1, 0} × R∞), such that S
is diffeomorphic relative to its boundary to ([−1, 0]×P )#W1. If P is not path
connected, we also choose in which path component to perform the connected
sum. Gluing S then induces the self-map

s = − ∪ S : Mst(W ) −→ Mst(W )

M 7−→ (M − e1) ∪ S,

that is, translation by one unit in the first coordinate direction followed by
union of submanifolds of (−∞, 0] × R∞. Note that by construction we have
M ∪P S ∼= M#W1 relative to P , and hence M ∪P S is stably diffeomorphic
to W if and only if M is.
As in the previous chapters, we have a notion of genus: Writing Wg,1 :=
Wg \ int(D

2n) the genus of a compact connected 2n-dimensional manifold W is

g(W ) := sup{g ∈ N | there is an embedding Wg,1 →֒W}

and the stable genus of W is

g(W ) := sup
k≥0

{g(W#Wk)− k | k ∈ N}.

Note that since the map k 7→ g(W#Wk) − k is non-decreasing and bounded

above by bn(W )
2 , where bn(W ) is the n-th Betti number of W , the above supre-

mum is finite. The following theorem shows homological stability for the graded
spaces (in the sense of [9, Def. 6.6])Mst(W )g ⊂ Mst(W ), which are those man-
ifolds M ∈ Mst(W ) satisfying g(M) = g. Note that by definition of the stable
genus, the map s defined above restricts to a map s : Mst(W )g → Mst(W )g+1.
For the case of simply-connected compact manifolds Galatius–Randal-Williams
have shown homological stability for the spaces M(W )g in [9, Thm. 6.3].

Theorem 4.1. Let 2n ≥ 6 and W be a compact connected manifold. Then the
map

s∗ : Hk(M
st(W )g) −→ Hk(M

st(W )g+1)

is an epimorphism for k ≤ g−usr(Z[π1(W )])
2 and an isomorphism for k ≤

g−usr(Z[π1(W )])−2
2 .

This in particular implies that for any manifold W with boundary P , the
restriction

s : M(W ) −→ M(W ∪P S)
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induces an epimorphism on homology in degrees satisfying k ≤
g(W )−usr(Z[π1(W )])

2 and an isomorphism in degrees satisfying k ≤
g(W )−usr(Z[π1(W )])−2

2 . Since g(W ) ≤ g(W ) this implies Theorem C.
Using Example 3.2 (3) we get a special case of Theorem 4.1.

Corollary 4.2. Let 2n ≥ 6 and W be a compact connected manifold whose
fundamental group is virtually polycyclic of Hirsch length h. Then the map

s∗ : Hk(M
st(W )g) −→ Hk(M

st(W )g+1)

is an epimorphism for k ≤ g−h−3
2 and an isomorphism for k ≤ g−h−5

2 .

This theorem applies in particular to all compact connected manifolds with
finitely generated abelian fundamental group, and hence, in particular for finite
fundamental groups.
Another consequence of the above theorem is the following cancellation result
which in the case of simply-connected manifolds has been done in [9, Cor. 6.4].
The statement is closely related to [6, Thm. 1.1].

Corollary 4.3. Let 2n ≥ 6 and P be a (2n−1)-dimensional manifold. Let W
and W ′ be compact connected manifolds with boundary P such that W#Wg

∼=
W ′#Wg relative to P for some g ≥ 0. If g(W ) ≥ usr(Z[π1(W )]) + 2, then
W ∼=W ′ relative to P .

Proof. Analogous to the proof of [9, Cor. 6.4], where we apply Theorem 4.1
instead of [9, Thm. 6.3]. �

The proof of Theorem 4.1 is analogous to that of [9, Thm. 6.3] which treats
the case of simply-connected manifolds. The idea is to consider the group of
immersions of (Sn×Sn)\int(D2n) into a manifold. Equipping this with a bilinear
form that counts intersections and a function that counts self-intersections we
get a quadratic module. The precise construction is the content of the following
section. The high connectivity shown in the previous chapter then implies
a connectivity statement for a complex of geometric data associated to the
manifold. This is the crucial result in order to show homological stability
which we do in Section 4.2.

4.1. Associating a Quadratic Module to a Manifold. In order to relate
the objects in this chapter to the algebraic objects considered in Section 3.1
we want to associate to each compact connected 2n-dimensional manifold W
a quadratic module (Itn

n (W ), λ, µ) with form parameter ((−1)n,Λmin). This
will be a Z[π1(W, ∗)]-module given by a version of the group of immersed n-
spheres in W with trivial normal bundle, with pairing given by the intersection
form, and quadratic form given by counting self-intersections, both considered
over the group ring Z[π1(W, ∗)]. For the rest of this chapter we drop the
basepoint ∗ from the notation and just write π1(W ).
To make this construction precise we fix a framing bSn×Dn ∈ Fr(Sn × Dn) at
the basepoint in S

n × D
n as defined in [9, Ch. 5]. We can now generalise [9,

Def. 5.2], following the construction in the proof of [25, Thm. 5.2].
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Definition 4.4. Let 2n ≥ 6 and W be a compact connected 2n-dimensional
manifold, equipped with a framed basepoint, i.e. a point bW ∈ Fr(W ), and
an orientation compatible with bW .

(1) We consider the ring Z[π1(W )] with involution given by g :=
w1(g)g

−1 ∈ Z[π1(W )], where w1(g) is the first Stiefel–Whitney class
of g. Recall that the first Stiefel–Whitney class can be viewed as the
homomorphism π1(W ) → Z

× = {−1, 1} which sends a loop to 1 if and
only if it is orientation preserving.

Let Ifr
n (W ) be the set of regular homotopy classes of immersions

i : Sn × Dn # W equipped with a path in Fr(W ) from Di(bSn×Dn) to
bW . We write In(W ) for the set of regular homotopy classes of im-
mersions Sn # W equipped with a path in W from a fixed basepoint
in Sn to the basepoint ∗ in W . We define Itn

n (W ) to be the image of
the map Ifr

n (W ) → In(W ) which is given by forgetting the framing.
Since an immersion S

n
#W is frameable if and only if it has a trivial

normal bundle, the set Itn
n (W ) is given by regular homotopy classes of

immersions with a trivial normal bundle.
Using Smale-Hirsch immersion theory we can identify In(W ) with

the n-th homotopy group of n-frames in W . This induces an (abelian)
group structure on In(W ). The π1(W )-action is given by concatenating
a loop in W with the path corresponding to an element in In(W ) as
described in [25, Thm. 5.2]. Now, Itn

n (W ) is a Z[π1(W )]-submodule of
In(W ).

(2) Let a, b ∈ Itn
n (W ) be two immersed spheres, which we may suppose

meet in general position, i.e. transversely in a finite set of points. For
a point p in a let γa(p) denote a path from the basepoint ∗ to p in a.
Since 2n ≥ 6 such a path is canonical up to homotopy. For p ∈ a∩ b we
define γ(a,b)(p) to be the concatenation of γa(p) followed by the inverse
of γb(p).

Let us fix an orientation of W at the basepoint ∗ and transport the
orientation to p along a. Then ε(a,b)(p) is defined to be the sign of
the intersection of a and b with respect to this orientation at p. Given
these notions we define a map

λ : Itn
n (W )× Itn

n (W ) −→ Z[π1(W )]

(a, b) 7−→
∑

p∈a∩b

ε(a,b)(p)γ(a,b)(p).

(3) Let a ∈ Itn
n (W ) be an immersed sphere in general position and let

p ∈ Sn × {0} be a point in a. We write γ(p) for the path from the
basepoint ∗ to p in the universal cover of the image of a in W .

At a self-intersection point of a two branches of a cross. By choosing
an order of these branches we can define ε(p, q) as above. Recall that
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Figure 1. Definition of γ(p, q).

Λmin = {γ − εγ | γ ∈ Z[π1(W )]}. We define a map

µ : Itn
n (W ) −→ Z[π1(W )]/Λmin

a 7−→
∑

{p,q}⊂S
n

ia(p)=ia(q)
p6=q

ε(p, q)γ(p, q),

where ia is an immersion of Sn corresponding to a and γ(p, q) is the
loop in a based at the basepoint ∗ given by the concatenation of a(γ(p))
and the inverse of a(γ(q)), see Figure 1. The definition of Λmin guar-
antees that the order of the points p, q is not relevant, i.e. we have
ε(p, q)γ(p, q) ≡ ε(q, p)γ(q, p) mod Λmin.

Remarks 4.5.

(1) The (abelian) group structure on Itn
n (W ) is given by forming the con-

nected sum along the path as described in [25, Ch. 5].
(2) The proof of [25, Thm. 5.2 (i)] shows that both maps λ and µ are

well-defined.
(3) We show that we can always change a by an isotopy so that every point

in a ∩ b yields a summand in λ(a, b), i.e. so that no two intersection
points give summands that cancel. The idea is to pair up intersection
points that give the same element in Z[π1(W )] but with opposite signs,
and to use the Whitney trick to kill these intersection points. Figure 2
shows a sector of a and b in W with two intersection points p and q.
Both paths γ(a,b)(p) and γ(a,b)(q) correspond to g in π1(W ) and the
points p and q have opposite signs. If this is the case the loop e is
contractible. Hence, we can fill in a 2-disc and use the Whitney trick
in order to move a away from b in the sector shown in the picture.

The subsequent lemma generalises [9, Lemma 5.3]. The proof is analogous to
the proof of [9, Lemma 5.3], again using [25, Thm. 5.2].
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Figure 2. Using the Whitney trick.

Lemma 4.6. The triple (Itn
n (W ), λ, µ) is a ((−1)n,Λmin)-quadratic module.

4.2. Proof of Theorem 4.1. We denote by H the manifold we obtain from
W1,1 by gluing [−1, 0]× D2n−1 onto ∂W1,1 along an oriented embedding

{−1} × D
2n−1 −→ ∂W1,1.

We choose this embedding once and for all. After smoothing corners, H is
diffeomorphic to W1,1 but contains a standard embedding of [−1, 0]× D2n−1.
By an embedding of H into a manifold W we mean an embedding that maps
{0} × D2n−1 into ∂W and the rest of H into the interior of W . We define
the embeddings e and f of Sn into H as the inclusion Sn →֒ Sn × Dn given
by x 7→ (x, 0) followed by the maps [9, (5.2)] and [9, (5.3)] respectively (see
Figure 3). The embedding e together with a path in H from the basepoint
of e(Sn) to the basepoint (0, 0) in [−1, 0] × D2n−1 ⊆ H defines an element
e ∈ Itn

n (H). Since H is simply-connected the choice of path is unique up to
isotopy. Analogously, we get an element f ∈ Itn

n (H). Hence, an embedding φ
of H into W yields a hyperbolic pair φ∗(e), φ∗(f) in Itn

n (W ). As described
in [9, Ch. 5] this can be extended to a map

Kδ(W ) −→ HU(Itn
n (W )),

where Kδ(W ) denotes the simplicial complex as defined in [9, Def. 5.1] and
HU(Itn

n (W )) is the simplicial complex defined in Section 3.1. We use this map
to deduce the connectivity of |Kδ

•(W )| = |Kδ(W )| from the connectivity of
HU(Itn

n (W )) which we have shown in Section 3.1. This is the content of the
next theorem. For the case of simply-connected manifolds this has been done
in [9, Lemma 5.5], [9, Thm. 5.6], and [9, Cor. 5.10].

Theorem 4.7. Let 2n ≥ 6 and W be a compact connected 2n-dimensional
manifold. Then the following spaces, defined in [9, Ch. 5], are all
⌊

g(W )−usr(Z[π1(W )])−3
2

⌋

-connected:
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Figure 3. Definition of e and f in H .

(1) |Kδ
•(W )|,

(2) |K•(W )|,
(3) |K•(W )|.

For the proof of this theorem we want a modified version of Theorem 3.4 using
the following definition: The stable Witt index of a quadratic module M is

g(M) := sup
k≥0

{g(M ⊕Hk)− k}.

By definition we have g(M) ≤ g(M) and if the stable Witt index is big enough
we in fact have equality, as the following corollary shows.

Lemma 4.8. If g(M) ≥ usr(R) then we have g(M) ≥ g(M).

Proof. For g = g(M) we know thatM⊕Hk ∼= P⊕Hg⊕Hk for some k. If k = 0
we immediately get g(M) ≥ g. If k > 0 we getM ⊕Hk−1 ∼= P ⊕Hg⊕Hk−1 by
Corollary 3.14. Applying this argument inductively then yields g(M) ≥ g. �

Using the above correspondence between the Witt index and the stable Witt
index we can now state Theorem 3.4 in terms of the stable Witt index.

Corollary 4.9. The poset HU(M) is
⌊

g(M)−usr(R)−3
2

⌋

-connected and

HU(M)x is
⌊

g(M)−usr(R)−|x|−3
2

⌋

-connected for every x ∈ HU(M).

Remark 4.10. Analogous to the above we can define the stable rank of an R-
module M as

rk(M) := sup
k≥0

{rk(M ⊕Rk)− k}.

As in the case of the stable Witt index this coincides with the rank of M
if rk(M) ≥ sr(R). This can be shown similarly to the proof of Lemma 4.8
by inductively applying Theorem 2.4 and Proposition 2.7. Using this we get
a version of Theorem 2.4 in terms of the stable rank.

Proof of Theorem 4.7. For |Kδ
•(W )| the proof is analogous to the proof of [9,

Lemma 5.5] and hence we just comment on the changes we have to make in
order to show the above statement. Note that the complex Ka(Itn

n (W ), λ, µ)
as defined in [9, Def. 3.1] is the same as HU(Itn

n (W )).
For g = g(Ifrn (W ), λ, µ) we have g(W ) ≤ g and hence it is sufficient to show

that |Kδ
•(W )| is

⌊

g−usr(Z[π1(W )])−3
2

⌋

-connected.
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For k ≤ g−usr(Z[π1(W )])−3
2 we consider a map f : ∂Ik+1 → |Kδ

•(W )|, which,
as in [9], we may assume is simplicial with respect to some piecewise linear
triangulation ∂Ik+1 ∼= |L|. By Corollary 4.9 and composing with the map
constructed above we get a nullhomotopy f : Ik+1 → |HU(Itn

n (W ))|. We have
to show that this lifts to a nullhomotopy F : Ik+1 → |Kδ

•(W )| of f .
By Corollary 4.9 the complex HU(Itn

n (W )) is locally weakly Cohen–Macaulay

(as defined in [9, Sec. 2.1]) of dimension
⌊

g−usr(Z[π1(W )])
2

⌋

≥ k+1. Hence, there

is a triangulation Ik+1 ∼= |K| extending L which satisfies the same properties
as in [9].
We choose an enumeration of the vertices in K as v1, . . . , vN such that the
vertices in L come before the vertices in K \ L. We inductively pick lifts of
each f(vi) ∈ HU(Itn

n (W )) to a vertex F (vi) ∈ Kδ
•(W ) given by an embedding

ji : H →W satisfying the properties (i) and (ii) in the proof of [9, Lemma 5.5]
which control how the images of every two such embeddings intersect. By
construction, the vertices in L already satisfy the required properties (i) and
(ii), so we can assume that f(v1), . . . , f(vi−1) have already been lifted to maps
j1, . . . , ji−1, satisfying properties (i) and (ii). Then vi ∈ K\L yields a morphism
of quadratic modules f(vi) = h : Hhyp → Itn

n (W ), where Hhyp is the hyperbolic
module defined in Chapter 3, which we want to lift to an embedding ji satisfying
properties (i) and (ii). The element h(e) is represented by an immersion x :
Sn #W with trivial normal bundle satisfying µ(x) = 0 and a path in W from
the basepoint of Sn to the basepoint ∗ ofW . By the Whitney trick (which works
in our case, but we have to use it over the group ring Z[π1(W )] as described in
Remark 4.5 (3)) we can replace x by an embedding j(e) : Sn →֒ W . Similarly,
h(f) yields an embedding j(f) : Sn →֒W , along with another path in W .
Using the Whitney trick again, we can arrange for the embeddings j(e) and j(f)
to intersect transversally in exactly one point. Hence, by picking a trivialisation
of their normal bundles, this induces an embedding W1,1 →֒ W . To extend this
map to an embedding H →֒ W of manifolds, note that both h(e) and h(f)
come with a path to the basepoint. The proof in [9] forgets both paths and
chooses a new one later on (which works sinceW is simply-connected and hence
oriented). Instead, we can keep track of the path coming from h(e). This can
be viewed as an embedding [−1, 0] × {0} →֒ W . This then has a thickening
by definition which gives an embedding H →֒ W . Analogous to the proof
of [9, Lemma 5.5] we can show that the properties (i) and (ii) hold, and hence
conclude the connectivity range.
The proof for the case |K•(W )| is an easy extension of the proof of [9, Thm. 5.6],
where we use Corollary 4.9 instead of [9, Thm. 3.2] and hence get a slightly
weaker connectivity range.
The remaining case follows exactly as in [9, Cor. 5.10]. �

In the above proof, we have lifted the chosen nullhomotopy f : Ik+1 →
|HU(Itn

n (W ))| and do not have to use the “spin flip” argument as in [9]. Apply-
ing the above approach of keeping track of the path of h(e) instead of forgetting
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both paths and choosing some path in the end would also make the “spin flip”
argument in the proof of [9, Lemma 5.5] unnecessary.

Outline of the proof of Theorem 4.1. The proof of Theorem 4.1 is analogous
to the proof of [9, Thm. 6.3]. The assumption of W being simply-connected
is only used in [9, Lemma 6.9] so we just need to show that the map given

in [9, Lemma 6.9] is
⌊

g−usr(Z[π1(W )])−1
2

⌋

-connected for a compact connected
manifold W of dimension 2n ≥ 6 that is not necessarily simply-connected. But
this follows from the proof of [9, Lemma 6.9] by using Theorem 4.7 (3) instead
of [9, Cor. 5.10]. �

Remark 4.11. We can combine the above results with the results from Ku-
pers in [12] for homeomorphisms, PL-homeomorphisms and homeomorphisms
as a discrete group of high-dimensional manifolds. Note that the machinery
in Kupers’ paper does not rely on the manifolds being simply-connected but
rather the input does (i.e. the connectivity of a certain complex uses that the
manifold is simply-connected). Therefore, by using our more general theorem
(Theorem 3.4) as the input, we can replace the assumption of the manifold be-
ing simply-connected by the group ring of the fundamental group having finite
unitary stable rank.

4.3. Tangential Structures and Abelian Coefficient Systems. In
the remaining part of this chapter we extend Theorem 4.1 in two different
ways. One is by considering moduli spaces of manifolds with some additional
structure and the other is by taking homology with coefficients in certain local
coefficient systems. We follow the approach of [9, Ch. 7].
A tangential structure is a map θ : B → BO(2n), where B is a path-connected
space. Let γ2n → BO(2n) denote the universal vector bundle. A θ-structure on
a 2n-dimensional manifold W is a bundle map (fibrewise linear isomorphism)

ℓ̂W : TW → θ∗γ2n, with underlying map ℓW : W → B. We define Mst,θ(W, ℓ̂P )
to be the set of manifolds M ∈ Mst(W ) with ∂M = P equipped with a θ-

structure extending ℓ̂P for a fixed pair (P, ℓ̂P ). As in the previous section we

can also define the subset Mθ(W, ℓ̂P ) ⊆ Mst,θ(Wℓ̂P ) given by pairs (M, ℓ̂M ) ∈

Mst,θ(W, ℓ̂P ) with M ∈ M(W ). Using the topology described in [9, Ch. 7] and
the correspondence

Mst,θ(W, ℓ̂P ) =
⊔

[T ]

Mθ(T, ℓ̂P ),

where the union is taken over the set of compact manifolds T with ∂T = P ,
which are stably diffeomorphic toW , one for each diffeomorphism class relative
to P , turns both sets into spaces.
We say that a θ-structure on Sn ×Dn is standard if it is standard in the sense
of [9, Def. 7.2]. The embeddings e and f defined in Section 4.1 yield embeddings

e1, f1, . . . , eg, fg : S
n −→Wg,1.
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We say that a θ-structure ℓ̂ : TWg,1 → θ∗γ2n on Wg,1 is standard if there is
a trivialisation of the normal bundle of Sn (i.e. a framing on Sn) such that the

structures e∗i ℓ̂ and f
∗

i ℓ̂ on S
n × D

n are standard.

Let ℓ̂S be a θ-structure on the cobordism S ∼= ([−1, 0]×P )#W1 which is stan-
dard when pulled back along the canonical embedding φ′ : W1,1 → S. Writing

ℓ̂P for its restriction to {0}×P ⊂ S, and ℓ̂′P for its restriction to {−1}×P , we
obtain the following map

s = − ∪ (S, ℓ̂S) : M
st,θ(W, ℓ̂′P ) −→ Mst,θ(W, ℓ̂P )(4.1)

(M, ℓ̂M ) 7−→ ((M − e1) ∪ S, ℓ̂M ∪ ℓ̂S).

As in [9] we define the θ-genus for compact connected manifolds with θ-
structure as

gθ(M, ℓ̂M ) = max

{

g ∈ N

∣

∣

∣

∣

there are g disjoint copies of W1,1 in M ,
each with standard θ-structure

}

and the stable θ-genus as

gθ(M, ℓ̂M ) = max{gθ
(

(M, ℓ̂M )♮k(W1,1, ℓ̂W1,1
)
)

− k | k ∈ N},

where the boundary connected sum is formed with k copies of W1,1 each

equipped with a standard θ-structure ℓ̂W1,1
. As in the previous section, we

can use the function gθ to consider Mst,θ(W, ℓ̂P ) as a graded space (in the

sense of [9, Def. 6.6]) Mst,θ(W, ℓ̂P )g. With this notation, the stabilisation
map s defined above then restricts to a map

s : Mst,θ(W, ℓ̂′P )g → Mst,θ(W, ℓ̂P )g+1.

We will now introduce a class of local coefficient systems. Since the spaces
considered here are usually disconnected and do not have a preferred basepoint,
local coefficients can be considered as a functor from the fundamental groupoid
to the category of abelian groups. Note that this is closely related to the
corresponding definitions in [18]. Then an abelian coefficient system is a local
coefficient system which has trivial monodromy along all nullhomologous loops.

Theorem 4.12. Let 2n ≥ 6, W be a compact connected manifold, and L be

a local coefficient system on Mst,θ(W, ℓ̂P ). Considering twisted homology with
coefficients in L we get a map

s∗ : Hk(M
st,θ(W, ℓ̂′P )g; s

∗L) −→ Hk(M
st,θ(W, ℓ̂P )g+1;L).

(1) If L is abelian then s∗ is an epimorphism for k ≤ g−usr(Z[π1(W )])
3 and

an isomorphism for k ≤ g−usr(Z[π1(W )])−3
3 .

(2) If θ is spherical in the sense of [9, Def. 7.4] and L is constant, then

s∗ is an epimorphism for k ≤ g−usr(Z[π1(W )])
2 and an isomorphism for

k ≤ g−usr(Z[π1(W )])−2
2 .
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For the case of simply-connected compact manifolds Galatius–Randal-Williams
have shown in [9, Thm. 7.5] that the above stabilisation map s∗ is an isomor-
phism in a range.

Given a pair (W, ℓ̂W ) ∈ Mθ(W, ℓ̂′P ), we write M
θ(W, ℓ̂W ) ⊂ Mθ(W, ℓ̂′P ) for the

path component containing (W, ℓ̂W ). By Theorem 4.12 the map

s : Mθ(W, ℓ̂W ) −→ Mθ(W ∪P S, ℓ̂W ∪ ℓ̂S)

is an isomorphism on homology with (abelian) coefficients in a range of degrees

depending on gθ(W, ℓ̂W ).
The proof of Theorem 4.12 is analogous to the proof of Theorem 4.1. We

define a quadratic module for a pair (W, ℓ̂W ) ∈ Mθ(W, ℓ̂′P ) as follows: Let

Itn
n (W, ℓ̂W ) ⊆ Itn

n (W ) be the subgroup of those regular homotopy classes of
immersions i : Sn #W (together with a path inW ) that have a trivialisation of

the normal bundle of Sn such that the θ-structure i∗ℓ̂W on Sn×Dn is standard.
The bilinear form λ and the quadratic function µ on Itn

n (W ) restrict to the

subgroup Itn
n (W, ℓ̂W ) and hence define a quadratic module (Itn

n (W, ℓ̂W ), λ, µ).
As in the previous section this gives a map of simplicial complexes

Kδ(W, ℓ̂W ) −→ HU(Itn
n (W, ℓ̂W )),

where the complex Kδ(W, ℓ̂W ) is defined in [9, Def. 7.14].
The following proposition is the analogue of Theorem 4.7 (3). For the case of
simply-connected manifolds this has been shown in [9, Prop. 7.15].

Proposition 4.13. Let 2n ≥ 6, W be a compact connected 2n-dimensional

manifold, and ℓ̂W be a θ-structure on W . Then the space |K•(W, ℓ̂W )| (defined

in [9, Def. 7.14]) is
⌊

g(W,ℓ̂W )−usr(Z[π1(W )])−3
2

⌋

-connected.

Outline of the proof. We have already seen in the previous section that an em-
bedding i : Wg,1 →֒ W yields elements e1, f1, . . . , eg, fg ∈ Itn

n (W ). If there is

a trivialisation of the normal bundle such that the θ-structure i∗ℓ̂W is stan-
dard these elements are also contained in the subgroup Itn

n (W, ℓ̂W ). In par-

ticular, we get g(Itn
n (W, ℓ̂W )) ≥ g(W, ℓ̂W ) and the complex HU(Itn

n (W, ℓ̂W ))
is locally weakly Cohen–Macaulay (as defined in [9, Sec. 2.1]) of dimension
⌊

g(W,ℓ̂W )−usr(Z[π1(W )])
2

⌋

by Corollary 4.9.

We first show that the complex |Kδ(W, ℓ̂W )| is
⌊

g(W,ℓ̂W )−usr(Z[π1(W )])−3
2

⌋

-
connected by arguing as in the proof of Theorem 4.7 (1). There we described
how to get a lift F : Ik+1 → |Kδ(M)| of the map

f : Ik+1 → |HU(Itnn (W, ℓ̂W ))| → |HU(Itn
n (W ))|.

As shown in the proof of [9, Prop. 7.15] we can turn this into a lift Ik+1 →

|Kδ(W, ℓ̂W )|.

The connectivity of |K•(W, ℓ̂W )| now follows as in Theorem 4.7. �

Outline of the proof of Theorem 4.12. This proof is is based on the proof of [9,
Thm. 7.5] and we therefore just describe the changes that we have to make
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to that proof. Note that the simply-connected assumption is only used in [9,
analogue of Lemma 6.9] so we only have to show that the map considered

in that statement is
⌊

gθ(W,ℓ̂W )−usr(Z[π1(W )])−1
2

⌋

-connected for a compact and
connected manifold W of dimension 2n ≥ 6. But this follows analogously to
the proof of [9, analogue of Lemma 6.9] by applying Proposition 4.13 instead
of [9, Prop. 7.15] as in the original proof. This also explains the slightly lower
bound in our case. Throughout this proof we need to replace [9, Thm. 6.3] in
the proof of [9, Thm. 7.5] by Theorem 4.1. �
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[11] Allen Hatcher and Nathalie Wahl. Stabilization for mapping class groups
of 3-manifolds. Duke Math. J., 155:205–269, 2010.

[12] Alexander Kupers. Proving Homological Stability for Homeomorphisms of
Manifolds. arXiv:1510.02456v3, 2016.

[13] H. Maazen. Homology stability for the general linear group. Utrecht PhD
thesis, 1979.

Documenta Mathematica 23 (2018) 1729–1774



1774 Nina Friedrich

[14] B. A. Magurn, W. Van der Kallen, and L. N. Vaserstein. Absolute Stable
Rank and Witt Cancellation for Noncommutative Rings. Invent. math.,
91:525–542, 1988.

[15] Behrooz Mirzaii and Wilberd van der Kallen. Homology Stability for Uni-
tary Groups. Doc. Math., 7:143–166 (electronic), 2002.

[16] Viktor Petrov. Overgroups of Unitary Groups. K-Theory, 29(3):147–174,
2003.

[17] Daniel Quillen. MIT lectures, 1974-75.
[18] Oscar Randal-Williams and Nathalie Wahl. Homological Stability for Au-

tomorphism Groups. Adv. Math., 318:534–626, 2017.
[19] Wilberd van der Kallen. Homology Stability for Linear Groups. Invent.

Math., 60(3):269–295, 1980.
[20] L.N. Vaserstein. On the Stabilization of the General Linear Group over a

Ring. Mat. Sb., Tom 79 (121)(3):405–424, 1969.
[21] L.N. Vaserstein. Stable Rank of Rings and Dimensionality of Topological

Spaces. Funct. Anal. Appl., 5(2):102–110, 1971.
[22] L.N. Vaserstein. Stabilization for Classical Groups over Rings. Mat.

Sbornik, 93 (135)(2), 1974.
[23] Karen Vogtmann. Homological Stability of on,n. Comm. Algebra, 7(1):9–

38, 1979.
[24] J. B. Wagoner. Stability for Homology of the General Linear Group of a

Local Ring. Topology, 15(4):417–423, 1976.
[25] C. T. C. Wall. Surgery on Compact Manifolds. Academic Press, London,

1970. London Mathematical Society Monographs, No. 1.

Nina Friedrich
Centre for Mathematical Sciences
Wilberforce Road
Cambridge CB3 0WB
UK
N.Friedrich@maths.cam.ac.uk

Documenta Mathematica 23 (2018) 1729–1774


