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Abstract. In the case that a module V over a (commutative) su-
pertropical semiring R is free, the R-module Quad(V ) of all quadratic
forms on V is almost never a free module. Nevertheless, Quad(V ) has
two free submodules, the module QL(V ) of quasilinear forms with
base D0 and the module Rig(V ) of rigid forms with base H0, such
that Quad(V ) = QL(V ) + Rig(V ) and QL(V ) ∩ Rig(V ) = {0}.

In this paper we study endomorphisms of Quad(V ) for which each
submodule Rq with q ∈ D0 ∪ H0 is invariant; these basic endomor-
phisms are determined by coefficients in R and do not depend on the
base of V . We aim for a description of all basic endomorphisms of
Quad(V ), or more generally of its submodules spanned by subsets of
D0 ∪H0. But, due to complexity issues, this naive goal is highly non-
trivial for an arbitrary supertropical semiring R. Our main stress is
therefore on results valid under only mild conditions on R, while a
complete solution is provided for the case that R is a tangible super-
semifield.
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1. Introduction

We continue a study of quadratic forms and modules over semirings, begun
in [8] and [10], where now we face a general problem over the so called supertrop-
ical semrings, as explained in §1.3 and §1.7 below. Exhibiting the contribution
of the present paper, our approach is indicated in §1.8. For the reader’s con-
venience we first recall basic terminology and results, mainly from [8] and [10],
but also from other sources.

1.1. Modules over a semiring. A (commutative) semiring R is a set R
equipped with addition and multiplication such that (R,+, 0) and (R, · , 1) are
abelian monoids with natural elements 0 := 0R and 1 := 1R respectively,
and multiplication distributes over addition in the standard way. In other
words, R satisfies all the properties of a commutative ring except the existence
of negation under addition. R is called a semifield if every nonzero element
of R is invertible, i.e., R \ {0} is an abelian group.
A module V over a semiring R (called also a semimodule) is an abelian monoid
(V,+, 0V ) equipped with a scalar multiplication R×V → V , (a, v) 7→ av, such
that all the customary axioms of modules over a ring are satisfied: a1(bv) =
(a1b)v, (a1 + a2)v = a1v + a2v, a1(u + v) = a1u + a1v for all a1, a2, b ∈ R,
u, v ∈ V . We usually write 0 for both 0R and 0V , and 1 for 1R, and often speak
about elements of V as “vectors” and elements of R as “scalars”.

1.2. Quadratic forms on a free module. For any module V over a semir-
ing R, a quadratic form on V is a function q : V → R with

q(ax) = a2q(x)

for any a ∈ R, x ∈ V, together with a symmetric bilinear form b : V × V → R
such that

(1.1) q(x+ y) = q(x) + q(y) + b(x, y)

for any x, y ∈ V. Here “symmetric bilinear” has the obvious meaning, but –
in contrast to the case where R is a ring – b is often not uniquely determined
by q. We call such b a companion of q, or say that b accompanies q.
In this paper we assume throughout that V is a free R-module with base
(εi | i ∈ I), i.e., every vector x ∈ V is a linear combination

(1.2) x =
∑

i∈I

xiεi

with unique family of scalars (xi | i ∈ I) ⊂ R, only finitely many xi 6= 0, called
the coordinates of x.
Then, after choosing a companion b of q, a quadratic form q : V → R can be
written as (for notational convenience we choose a total order on I):

(1.3) q(x) =
∑

i∈I

αix
2
i +

∑

i<j

αijxixj ,

where αi = q(εi) and αij = b(εi, εj), cf. [8, §1].
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Although the case that I is infinite is relevant for applications, we assume in
this and the next introductory subsection that I = {1, . . . , n} is finite, for
simplicity. Then, as customary, the presentation (1.3) of a quadratic from q is
written as a triangular scheme

(1.4) q =




α1 α12 · · · α1n

α2 · · · α2n

. . .
...
αn




using square brackets. A quadratic form may have presentations by different
triangular schemes (cf. [8, §1]). To cope with this difficulty, we use the sign ∼=
(“equivalent”) to indicate such a case.
Note that the entries αi in (1.4) are uniquely determined by q, since αi = q(εi).
If R is embeddable as subsemiring in a ring R′, then also the αij are uniquely
determined by q, since by identifying R ⊂ R′ we have

αij = q(εi + εj)− q(εi)− q(εj).

However, this situation is far apart from the semirings in this paper, the so
called “supertropical semirings”, to be described bellow.

1.3. The problem. Assume that (εi | i ∈ I) is a fixed base of a module V .
We search for families of scalars

(1.5) (µi | 1 ≤ i ≤ n) ∪ (µij | 1 ≤ i < j ≤ n)

with the following property: For any two equivalent triangular schemes



α1 α12 · · · α1n

α2 · · · α2n

. . .
...
αn



∼=




α1 β12 · · · β1n
α2 · · · β2n

. . .
...
αn




also 


µ1α1 µ12α12 · · · µ1nα1n

µ2α2 · · · µ2nα2n

. . .
...

µnαn



∼=




µ1α1 µ12β12 · · · µ1nβ1n
µ2α2 · · · µ2nβ2n

. . .
...

µnαn


 .

Then the multiplication of the entries of a triangular scheme by the scalars µi
and µij yields a well defined map of the set Quad(V ) of all quadratic forms
on V into itself. These maps are the “basic operations” on quadratic forms
appearing in the title of the paper.
Two quadratic forms q1, q2 on V can be added by the rule

(q1 + q2)(x) = q1(x) + q2(x),

and a quadratic form q can be multiplied by a scalar a ∈ R by the rule

(aq)(x) = a · q(x).
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In this way, the set Quad(V ) becomes an R-module.
The above presentation (1.3) of a quadratic form q translates to

(1.6) q =
∑

i∈I

αidi +
∑

i<j

αijhij ,

with di, hij defined by

(1.7) di(x) = x2i , hij(x) = xixj ,

where as before the xi are the coordinates of x, cf (1.2).
We read off from (1.6) that the di and hij generate the R-module Quad(V ),
which gives us a linear algebraic interpretation of the basic operations as certain
endomorphisms of the R-module Quad(V ), as follows. An endomorphism ϕ of
Quad(V ) is called basic (w.r. to a given base (εi | i ∈ I) of V ) if it maps the
submodules Rdi (1 ≤ i ≤ n) and Rhij (1 ≤ i < j ≤ n) to itself, and so

ϕ(di) = µidi, ϕ(hij) = µijhij ,

with scalars µi, µij , called the coefficients of the basic endomorphism ϕ. It
is now immediate that these systems of coefficients are the same families of
scalars as occurring for the basic operations (cf. (1.5)), and so basic operations
are the same objects as basic endomorphisms in a different disguise.
In general the set of basic endomorphisms of Quad(V ) depends on the choice
of the base (εi | i ∈ I) of V . But, when R is a supertropical semiring (to
be discussed below), the framework of the present paper, it happily turns our
that any free module V has only one base up to scalar multiplication by units
[8, Theorem 0.9], a phenomenon for which we use the catch-phrase “V has
unique base”. Actually, this property holds over a much broader class of semir-
ings than the supertropical ones [11, §1].
If V has unique base, then the set of endomorphisms of Quad(V ) is independent
of the choice of the base (εi | i ∈ I) of V (also for infinite I). In fact, if (ε′i | i ∈ I)
is another base, ε′i = uiεi, with units ui of R, then the generators of Quad(V )
associated to this base are

(1.8) d′i = µ−2
i di, hij ; = µ−1

i µ−1
j hij ,

as easily verified. Thus in the presence of the unique base property, the problem
of finding basic endomorphisms of Quad(V ) gains extra momentum.

1.4. Supertropical semirings. A semiring R is called supertropical ([8, Def-
inition 0.3] and [3, §3]) if e := 1 + 1 is an idempotent (i.e., e = 1 + 1 =
1 + 1 + 1 + 1 = e+ e), and the following axioms hold for all a, b ∈ R :

If ea 6= eb, then a+ b ∈ {a, b},(1.9)

If ea = eb, then a+ b = eb.(1.10)

Then the ideal eR of R is a semiring with unit element e, which is bipotent,
i.e., for any u, v ∈ eR the sum u+ v is either u or v. It follows that eR carries a
total ordering, compatible with addition and multiplication, which is given by

u ≤ v ⇔ u+ v = v.
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The addition in a supertropical semiring is determined by the map a 7→ ea and
the total ordering on eR as follows: If a, b ∈ R, then

(1.11) a+ b =






b if ea < eb,

a if ea > eb,

eb if ea = eb.

In particular (taking b = 0 in (1.11) or in (1.10)), for any a ∈ R

(1.12) ea = 0 ⇒ a = 0,

in other terms

(1.12’) a+ a = 0 ⇒ a = 0.

Note also that

(1.13) e + 1 = e,

as follows from (1.11) for a = e and b = 1.
For later use we quote another fact, true in any supertropical semiring R:

(1.14) (a+ b)2 = a2 + b2

for all a, b ∈ R, cf. [8, p.65].
When R is a supertropical semiring, the elements of T (R) := R\(eR) are called
tangible elements, and those of G(R) := (eR) \ {0} are called ghost elements.
The zero of R is regarded both as tangible and ghost. The semiring R itself is
called tangible if R is generated by T (R) as a semiring. Clearly, this happens
iff eT (R) = G(R). If T (R) 6= ∅, then the set

R′ := T (R) ∪ eT (R) ∪ {0}

is the largest subsemiring of R which is tangible supertropical. (We have dis-
carded the “superfluous” ghost elements.) The map

νR : R → eR

is a homomorphisms of semirings, which we call the ghost map of R. When
there is no ambiguity, we write T , G, ν for T (R), G(R), νR. Sometimes we
adhere to the very convenient “ν-notation” for a, b ∈ R: a ≤ν b means that
ea ≤ eb, a ∼=ν b (“ν-equivalent”) means that ea = eb, while a <ν b means that
ea < eb.
We call a supertropical semiring a supersemifield if all nonzero tangible el-
ements are invertible in R and all nonzero ghost elements are invertible in
the bipotent subsemiring eR, whence both T and G are abelian groups under
multiplication.
Supertropical semirings have been previously introduced as a tool to refine
certain aspects of tropical geometry (e.g. [13]), linear algebra [6, 7], starting
with [2], and tropical valuation theory [3]. Up to now supertropical semifields
have been prevalent in applications, but more general supertropical semirings
are definitely needed for any coherent theory (cf. e.g. [3, 4, 5]). The relevance

Documenta Mathematica 22 (2017) 1661–1707



1666 Z. Izhakian and M. Knebusch

of quadratic forms over supertropical semirings to classical quadratic forms
over rings is explained in [8, §9].

1.5. Partial orderings on R, V, and Quad(V ). Assume that V is any mod-
ule over a supertropical semiring R. Then it is known from more general facts
(e.g. [10]), that the binary relation defined by

(1.15) x ≤ y ⇔ ∃z ∈ V : x+ z = y

for any x, y ∈ V is a partial ordering on V . For the reader’s convenience, we
provide a direct argument giving this important fact. Reflexivity (x ≤ x) and
transitivity (x ≤ y, y ≤ z ⇒ x ≤ z) are evident, but antisymmetry is subtler.
Given x, y, z, w such that x + z = y, y + w = x, we need to verify that x = y.
First we get x+ (z+w) = x, then x+ e(z+w) = x. From (1.13) we infer that
ez+ z = ez, and so y = x+ z = x+ ez+ ew+ z = x+ ez+ ew = x, as desired.
The ordering (1.15) is called the minimal ordering of V , since it is the coarsest
(partial) ordering on V compatible with addition, such that 0 ≤ x for all
x ∈ V . In particular we have a minimal ordering on R itself. It is immediate
that scalar multiplication is compatible with both minimal orderings, i.e., for
a, b ∈ R, x, y ∈ V ,

a ≤ b, x ≤ y ⇒ ax ≤ by.

Note also that, if V is free with base (εi | i ∈ I), then
∑

i∈I

xiεi ≤
∑

i∈I

yiεi ⇔ ∀i ∈ I : xi ≤ yi.

In this paper, the sign “≤” is used for both orderings on R and V . These
orderings lead to a “functional ordering” on Quad(V ), again denoted by “≤”,
defined for q1, q2 ∈ Quad(V ) as

q1 ≤ q2 ⇔ ∀x ∈ V : q1(x) ≤ q2(x).

On the other hand, since Quad(V ) is an R-module, it carries a minimal order-
ing, denoted here by “�”. Definition (1.15) now reads as: If q1, q2 are quadratic
forms on V , then

q1 � q2 ⇔ ∃χ ∈ Quad(V ) : q1 + χ = q2.

The functional ordering refines the minimal ordering, q1 � q2 ⇒ q1 ≤ q2. The
interplay between these orderings is the major theme in the second half of [10],
whose results will be very useful below.

1.6. The submodules QL(V ) and Rig(V ) of Quad(V ). A quadratic form q
on a module V over a semring R is called quasilinear if the zero bilinear form
b = 0 is a companion of q, i.e., ( cf. (1.1))

q(x+ y) = q(x) + q(y)

for all x, y ∈ V , and q is called rigid if q has only one companion. It is obvious
that the set QL(V ) of all quasilinear forms on V is an R-submodule of Quad(V ).
Assuming that the R-module V is free with base (εi | i ∈ I) and R is supertrop-
ical, we have the forms di and hij with i, j ∈ I, i < j, cf. (1.7). In consequence
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of property (1.14) of R, every di is quasilinear. On the other hand a quadratic
form q is rigid iff q(εi) = 0 for all i ∈ I [8, Theorem 3.5] 1. This implies that
the set Rig(V ) of all rigid forms on V is a submodule of Quad(V ) and that all
forms hij (i < j) are rigid.
Having this starting point, it is an easy matter to verify that both QL(V ) and
Rig(V ) are free modules with bases

D0 := {di | i ∈ I}, H0 :=
{
hij | i > j

}

respectively [10, Proposition 7.2]. For any κ ∈ QL(V ) and ρ ∈ Rig(V ) we have
(as a special cases of (1.3)) the presentations

(1.16) κ =
∑

i∈I

κ(εi)di.

ρ =
∑

i<j

b(εi, εj)hij =
∑

i<j

ρ(εi + εj)hij ,

where b is the unique companion of ρ [8, §4]. From these presentations it follows
that the functional ordering of Quad(V ) restricts on both QL(V ) and Rig(V )
to the minimal ordering on these free modules [10, Proposition 7.3].
Every q ∈ Quad(V ) has a decomposition

(1.17) q = qQL + ρ

with qQL ∈ QL(V ) and ρ ∈ Rig(V ), as it is now evident from (1.3). Moreover,
for any decomposition (1.17) clearly q(εi) = qQL(εi), and so we infer from
(1.16) that

qQL =
∑

i∈I

q(εi)di,

which proves that qQL is uniquely determined by q. We call qQL the quasilinear
part of q and ρ in (1.17) a rigid complement of qQL in q. Most often ρ is not
unique [8, §6 and §7].
If I is finite and a triangular scheme for q is given (cf. (1.4)), then qQL is
represented by the diagonal part of the scheme, while the upper triangular
part gives a rigid complement of qQL in q. We have

Quad(V ) = QL(V ) + Rig(V ),

QL(V ) ∩ Rig(V ) = {0},

but nevertheless Quad(V ) is not a direct sum of the submodules QL(V ) and
Rig(V ), as soon as Rig(V ) 6= {0}, i.e., |I| > 1. Indeed, then different indices i, j
give us a relation

di + dj = di + dj + hij ,

since, in consequence of (1.14), a2 + b2 = a2 + b2 + ab for any a, b ∈ R.

1More generally, this remains true if the semiring R has the properties (1.12’) and (1.14)
[loc. cit].
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1.7. A refinement of the problem in §1.3 for R supertropical. As
before we assume that the semiring R is supertropical and V is free with base
(εi | i ∈ I). We then have the set of generators B0 = D0∪H0 of Quad(V ) with

D0 := {di | i ∈ I} and H0 :=
{
hij | i < j

}
,

which up to multiplication by scalars does not depend on the choice of the base
(εi | i ∈ I), cf. (1.8). We call a submodule Z of Quad(V ) basic, if Z is generated
by a subset B′

0 of B0, which then is a union D′
0 ∪H′

0 with D′
0 ⊂ D0, H

′
0 ⊂ H0.

In this case necessarily D′
0 = D0 ∩ Z, H

′
0 = H0 ∩ Z and so B′

0 = B0 ∩ Z. For
these intersections we write D0(Z),H0(Z), B0(Z) respectively.
Instead of the basic endomorphisms of Quad(V ) addressed in §1.3, in the
present paper we search, more generally, for endomorphisms of a fixed ba-
sic submodule Z of Quad(V ) that map each submodule Rq, q ∈ B0(Z) into
itself. Such map ϕ is called a basic endomorphism of Z.
Given a fixed base (εi | i ∈ I) of V , we denote by I [2] the set of all 2-element
subsets of I, and write

(1.18) D0(Z) = {di | i ∈ K}, H0(Z) =
{
hij | {i, j} ∈M

}
,

where K ⊂ I, M ⊂ I [2]. Then a basic endomorphisms ϕ of Z is determined by
a family of scalars

(1.19) (µi | i ∈ K) ∪ (µij | {i, j} ∈M),

which we again call the coefficients of ϕ, via the formulas (i ∈ K, {i, j} ∈M)

ϕ(di) = µidi, ϕ(hij) = µijhij .

In the case that I = {1, . . . , n} is finite, we may use triangular schemes to
present quadratic forms. Now the refined problem means that we focus on
quadratic forms which are represented by a scheme as in (1.4), with zero entries
at fixed places (i, j), i ≤ j, namely at (i, i), with i /∈ K and {i, j} /∈M .
The task is to find all systems of scalars (µi)∪(µij) such that any two equivalent
schemes of this type remain equivalent after multiplication of entries by the
scalars µi and µij respectively. So this is indeed a very natural expansion of
the problem described at the beginning of §1.3.
In what follows we call a basic submodule of Quad(V ) simply a basic module.
A basic endomorphisms ϕ of a given basic module is called a basic projector
on Z, if its coefficients are all 1 or 0, and thus ϕ(z) = z or 0 for any z ∈ B0(Z).
Then X = ϕ(Z) is a basic module with X ⊂ Z and ϕ is uniquely determined
by X . We call these submodules X of Z the basic projections of Z.
For example, QL(V ) is a basic projection of Quad(V ) whose associated basic
projector is the endomorphism πQL of Quad(V ) which maps any q ∈ Quad(V )
to its quasilinear part qQL. But Rig(V ) is not a basic projection of Quad(V )
whenever Rig(V ) 6= {0}, i.e., |I| > 1. Indeed, the existence of an endomorphism
of Quad(V ) with ϕ(di) = 0 for all i ∈ I and ϕ(hij) = hij for i 6= j is prevented
by the relations di + dj = di + dj + hij .
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1.8. Paper outline and main results. §3 and §4 are devoted to a study
of basic projectors to obtain a classification of all basic projections of a ba-
sic module Z in combinatorial terms under the mild assumption that eR is
“multiplicatively unbounded”, i.e., for any x, y ∈ G there exists some z ∈ G
such that y < xz (cf. Corollary 3.6 and Theorem 3.12). In particular it turns
out (without the assumption of multiplicatively unboundedness) that any basic
module X ⊂ Z with D0(X) = D0(Z) is a basic projection of Z. The associated
projectors are constructed in §3 for Z = Quad(V ) under the name of partial
quasilinearizations. For any subset Λ of the set I [2] of 2-element subsets of I
we have a basic projector

πΛ,QL : q 7−→ qΛ,QL

on Quad(V ) with πΛ,QL(di) = di for i ∈ I, πΛ,QL(hij) = hij for {i, j} ∈ Λ, and
πΛ,QL(hij) = 0 otherwise. This projector then restricts to a basic projector
on Z for any basic module Z ⊂ Quad(V ). Its image is a basic module X ⊂ Z
with

D0(X) = D0(Z), H0(X) = {hij ∈ H0(Z) | {i, j} ∈ Λ ∩M}

in Notation (1.18).
A basic module Z is a direct sum X⊕Y of basic modules X and Y iff B0(Z) is
a disjoint union of B0(X) and B0(Y ) and both X and Y are basic projections
of Z (Proposition 4.2). Thus it is not surprising that the classification of the
basic projections of Z in §3 in combinatorial terms leads to a description of all
(possibly infinite) direct decompositions of Z, again in a combinatorial way. In
particular we learn in §4 that Z has (up to permutation of summands) only
one decomposition Z =

⊕
α∈A Zα, such that all Zα are indecomposable basic

modules, and these components Zα of Z can be described combinatorially.
In the important special case that for every hij ∈ H0(Z) both di and hij are
in Z, and so are elements of D0(Z), this description can be given in terms of
graphs. We associate to Z a graph Γ(Z) whose sets of vertices and edges are
D0(Z) and H0(Z) respectively, an edge hij connecting the vertices di and dj ,
and we call the module Z graphic. It turns out that the components Zα of Z are
again graphic and the graphs Γ(Zα) are precisely all path components of Γ(Z)
(Theorem 4.18). Starting from this, we also obtain, under a mild restriction of
the supertropical semring R, a description of all components of Z when Z is
not graphic (Corollary 4.19).
In the last three sections §5–§8 we work on more general basic endomorphisms
than basic projectors. The main result in §5 is that, under still mild conditions
on R (in particular if the semiring eR is cancellative), every basic endomor-
phism ϕ of a basic module Z yields a basic projector pϕ on Z by the rule
pϕ(z) = z if ϕ(z) 6= 0 and pϕ(z) = 0 otherwise, for z ∈ B0(Z). Conversely,
given a basic projector π on Z we can describe all basic endomorphisms ϕ of Z
with pϕ = π, called the satellites of π (Theorem 5.17 and Corollary 5.18).
In §6 we develop other ways to obtain new basic endomorphisms from old ones.
Given scalars µ, υ ∈ R, we say that υ is obedient to µ, if υ ≤ν µ and υ is faithful
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to µ in the following sense: for all x, y ∈ R, if µx = µy, then υx = υy. Assume,
for simplicity, that Z is graphic and ϕ is a basic endomorphism of Z with system
of coefficients (µi | i ∈ K) ∪ (µij | {i, j} ∈ M), cf. (1.19). Then it turns out
that every tuple of scalars (µi | i ∈ K) ∪ (υij | {i, j} ∈M), with υij obedient
to µij for all i, j, is again the coeffient system of some basic endomorphism ψ
of Z (Theorem 6.9). We call such a basic endomorphism ψ an H-modification
of ϕ. To give the flavor we point out what this theorem means in the case that
Z = Quad(V ), ϕ = idZ , I = {1, . . . , n}. It says that for any family of scalars
(λij | 1 ≤ i < j ≤ n) with λij ≤ν 1 for all i, j the assignment




α1 α12 · · · α1n

α2 · · · α2n

. . .
...
αn


 7−→




α1 λ12α12 · · · λ1nα1n

α2 · · · λ2nα2n

. . .
...
αn




is a well defined basic operation on Quad(V ). The reason is that every λij is
clearly obedient to 1.
Starting again with the system of coefficients (µi | i ∈ K) ∪ (µij | {i, j} ∈M)
of ϕ we call a basic endomorphism ψ of Z a D-modification of ϕ if for the
coefficients (υi | i ∈ K) ∪ (υij | {i, j} ∈ M) of ψ we have υij = µij for all
{i, j} ∈M and µi ≤ν υi for all i ∈ K. While for H-modifications we obtained a
best possible result, here our knowledge is less complete. We only know that a
tuple (υi)∪ (µij) is the coefficient system of a basic endomorphism ψ if µi ≤ υi
for all i ∈ K (minimal ordering ≤ instead of ν-dominance ≤ν), cf. Theorem 6.9.
In the last section §8 we determine, for a tangible supersemifield, R, all basic
endomorphisms of any basic module Z. If Z is “linked”, i.e., Z is graphic
and Γ(Z) has no isolated vertices (the main case to be studied), it turns out
that the possible coefficient systems (µi | i ∈ K)∪ (µij | {i, j} ∈M), cf. (1.19)
are given by the condition

µ2
ij ≤ν µiµj ,

provided that the ghost map νR : T (R) ։ G(R) is not bijective. Otherwise
there may exist more basic endomorphisms, cf. Theorem 8.5.

2. Partial quasilinearisation

Henceforth, R is a supertropical semiring and V is a free R-module with base
(εi | i ∈ I). Let I [2] denote the set of 2-element subsets of I. We choose a total
ordering of I and often identify I [2] with the set of pairs (i, j) ∈ I × I such
that i < j. If Λ is a subset of I [2], let Λc denote the complement I [2] \ Λ.
We define a quasilinear quadratic form di on V for every i ∈ I by

(2.1) di(x) = x2i

and a rigid quadratic form hij for every i, j ∈ I with i 6= j by

(2.2) hij(x) = xixj .
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Here, as always, the xi are the coordinates of the vector x ∈ V, x =
∑
i∈I xiεi.

We work with the bases (di | i ∈ I) and (hij | (i, j) ∈ I [2]) of the free R-modules
QL(V ) and Rig(V ), respectively.
For any set Λ ⊂ I [2] we introduce the free submodule

Rig(Λ, V ) :=
∑

{i,j}∈Λ

Rhij .

Rig(Λ, V ) is a lower set in the R-module Quad(V ) both in the minimal and
the functional ordering of Quad(V ). Clearly

(2.3) Rig(V ) = Rig(Λ, V )⊕ Rig(Λc, V ).

In other words, for any rigid form ρ on V we have a unique decomposition
ρ = ρ1 + ρ2 with ρ1 ∈ Rig(Λ, V ) and ρ2 ∈ Rig(Λc, V ). We call ρ1 and ρ2 the
Λ-component and Λc-component of ρ, respectively.

Definition 2.1. We call a form q ∈ Quad(V ) Λ-quasilinear, if q is quasilinear
on the submodule Rεi +Rεj for every {i, j} ∈ Λ.

Λ-quasilinearity of q means that for every {i, j} ∈ Λ the set Cij(q) in the
companion table of q (cf. [8, §6]) contains zero. Notice that a priori every
set Cii(q) contains zero, cf. [8, Example 2.4].

Proposition 2.2. q is Λ-quasilinear iff the set Rig(q) of rigid complements
of qQL in q contains some ρ ∈ Rig(Λc, V ).

Proof. This is a consequence of the 1-1-correspondence between the off-diagonal
companions of q and the rigid complements of qQL in q described in [8, Propo-
sition 4.6]. �

Given Λ ⊂ I [2] we intend to associate to any q ∈ Quad(V ) a Λ-quasilinear form
qΛ,QL ∈ Quad(V ) in a somewhat canonical way, generalizing the map q 7→ qQL

from Quad(V ) to QL(V ). The key to do this is provided by the following lemma.

Lemma 2.3. Let Λ ⊂ I [2] and q0 ∈ QL(V ). Further let ρ, ρ′ ∈ Rig(V ) be given,
and let ρ1, ρ

′
1 denote the Λ-components of ρ, ρ′, respectively.

(a) If q0 + ρ ≤ q0 + ρ′, then q0 + ρ1 ≤ q0 + ρ′1.

(b) If q0 + ρ � q0 + ρ′, then q0 + ρ1 � q0 + ρ′1.

To prove the lemma we use part of the following notation, that shall also be
helpful later.

Notation 2.4. Let J be a subset of the index set I.

(a) VJ :=
∑
i∈J

Rεi is a free submodule of V. It comes with a natural R-linear

projection πJ : V → VJ , given by πJ (εi) = εi for i ∈ J, πJ (εi) = 0 for
i ∈ I \ J. We also have the inclusion mapping iJ : VJ →֒ V, with
iJ(εi) = εi for every i ∈ J.
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(b) Any form ϑ ∈ Quad(VJ ) gives us a form

ϑI := ϑ ◦ πJ ∈ Quad(V ).

(c) Given q ∈ Quad(V ), we define

qJ := (q|VJ )
I = q ◦ iJ ◦ πJ ∈ Quad(V ).

Proof of Lemma 2.3. We write q0 =
∑
i∈I

αidi, ρ =
∑
i<j

αijhij , ρ
′ =

∑
i<j

βijhij

with αi, αij , βij ∈ R.

(a): We have
∑

i∈I

αidi +
∑

i<j

αijhij ≤
∑

i∈I

αidi +
∑

i<j

βijhij

From this we get for any i < j in I, (q0 + ρ){i,j} ≤ (q0 + ρ′){i,j}, which reads

(∗) αidi + αjdj + αijhij ≤ αidi + αjdj + βijhij .

Using (∗) for every {i, j} ∈ Λ, we obtain
∑

i∈I

αidi +
∑

{i,j}∈Λ

αijhij ≤
∑

i∈I

αidi +
∑

{i,j}∈Λ

βijhij .

This means that q0 + ρ1 ≤ q0 + ρ′1.

(b): Same argument, employing � instead of ≤ . �

Corollary 2.5. Assume that q ∈ Quad(V ) and ρ, ρ′ ∈ Rig(q). Given Λ ⊂ I [2],
let now ρ2, ρ

′
2 denote the Λc-components of ρ, ρ′. Then qQL + ρ2 = qQL + ρ′2.

Proof. This follows by applying part a) of the lemma to the inequalities
qQL + ρ ≤ qQL + ρ′ and qQL + ρ′ ≤ qQL + ρ, using Λc instead of Λ. (We
could, equally well, use Lemma 2.3.(b).) �

Definition 2.6. Given q ∈ Quad(V ) and Λ ⊂ I [2], we choose a rigid comple-
ment ρ of qQL in q and define

(2.4) qΛ,QL := qQL + ρ2,

with ρ2 the Λc-component of ρ. Evidently, this form is Λ-quasilinear. We
call qΛ,QL the Λ-quasilinearisation of q.

Corollary 2.5 tells us that qΛ,QL does not depend on the choice of the rigid

complement ρ in q. If Λ = I [2], then qΛ,QL = qQL, while if Λ = ∅, then qΛ,QL = q.

Scholium 2.7. Let I = {1, 2, . . . , n}. We describe a given quadratic form
q : V → R by a triangular scheme

q =



α1α12 . . . α1n

. . .
...
αn


 ,

cf. §1.2. The quadratic form qΛ,QL is then given by the triangular scheme,
where every entry αij with {i, j} ∈ Λ is replaced by zero.
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Remark 2.8.

(i) If q1, q2 ∈ Quad(V ), then

(q1 + q2)Λ,QL = (q1)Λ,QL + (q2)Λ,QL.

(ii) If q ∈ Quad(V ) and λ ∈ R, then

(λq)Λ,QL = λ · qΛ,QL.

Let QL(Λ, V ) denote the R-submodule of Quad(V ) consisting of all Λ-
quasilinear forms on V ; in other terms

(2.5) QL(Λ, V ) = QL(V ) + Rig(Λc, V ).

We have a natural map

(2.6) πΛ,QL : Quad(V ) → QL(Λ, V ),

sending q ∈ Quad(V ) to its Λ-quasilinearization qΛ,QL. It is R-linear by Re-
mark 2.8. Since πΛ,QL is additive, it is also plain that πΛ,QL respects the
minimal ordering on Quad(V ), i.e.,

(2.7) q � q′ ⇒ qΛ,QL � q′Λ,QL.

Viewing every map πΛ,QL as an endomorphism of the R-module Quad(V ), we
may state that

πM,QL ◦ πΛ,QL = πM,QL,

if M ⊂ Λ ⊂ I(2). In particular (Λ =M), πΛ,QL ∈ EndR(Quad(V )) is a projec-
tor. It can be characterized in terms of the minimal ordering of Quad(V ) as
follows.

Proposition 2.9. For any q ∈ Quad(V ) the form qΛ,QL is the unique maximal
form κ � q, which is Λ-quasilinear.

Proof. If κ is Λ-quasilinear and κ � q, we conclude by (2.7) that κ =
κΛ,QL � qΛ,QL. �

Problem 2.10. For which supertropical semirings R, sets Λ ⊂ I [2], and qua-
dratic forms q′ on R(I), is it true that q ≤ q′ implies qΛ,QL ≤ q′Λ,QL?

In addition to the cases where we know that q ≤ q′ means the same as q � q′

(cf. [10, Corollaries 9.11 and 9.12 ]), there is one case where we can give an
answer now, for any supertropical semiring R.

Proposition 2.11. Let Λ = {{k, ℓ} | k ∈ J, ℓ ∈ I \ J} for some subset J of I.

(a) If ϑ ∈ Quad(V ), then ϑ is Λ-quasilinear iff ϑ is quasilinear on VJ ×
VI\J .

(b) If ϑ, q ∈ Quad(V ) and ϑ ≤ q, then ϑΛ,QL ≤ qΛ,QL. Moreover, qΛ,QL

is the unique maximal Λ-quasilinear form κ on V (in the functional
ordering of Quad(V )) with κ ≤ q.
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Proof. (a): If ϑ is Λ-quasilinear, ϑ has a companion b with b(εk, εℓ) = 0 for
k ∈ J , ℓ ∈ I \ J . It follows that b(VJ × VI\J ) = 0, and so ϑ is quasilinear on
VJ × VI\J . The converse is trivial.

(b): Let

q =
∑

i∈I

αidi +
∑

i<j

αijhij .

Then, using Notation 2.4, we may write

qΛ,QL =

(
∑

i∈J

αidi +
∑

i<j
i,j∈J

αijhij

)
+

(
∑

i/∈J

αidi +
∑

i<j
i,j /∈J

αijhij

)

= (q | VJ )
I + (q | VI\J)

I

= qJ + qI\J .

We have V = VJ ⊕ VI\J and obtain for any x ∈ VJ , y ∈ VI\J the formula

qΛ,QL(x+ y) = q(x) + q(y).

(N.B. This proves again that q is quasilinear on VJ × VI\J .)
If κ is Λ-quasilinear and κ ≤ q, then κ is quasilinear on VJ × VI\J (as just
proven again), and κ(x) ≤ q(x), κ(y) ≤ q(y) for x ∈ VJ , y ∈ VI\J , and hence

κ(x+ y) = κ(x) + κ(y) ≤ q(x) + q(y) = qΛ,QL(x+ y).

�

3. Basic modules and basic projections

We repeat that in the whole paper V is a free module over a supertropical
semiring R and {εi | i ∈ I} is a base (mostly fixed) of V . Let I [2] denote
the set of all 2-element subsets of I. The R-module Quad(V ) has the set of
generators B0 := D0∪̇H0 with

D0 := {di | i ∈ I} and H0 :=
{
hij | {i, j} ∈ I [2]

}
,

where d(x) = x2i and hij = xixj for x =
∑

i∈I xiεi, as said above. Assume
now that eR is multiplicatively unbounded, i.e., that for any x, y ∈ G there
exists z ∈ G such that y < xz (cf. [10, Definition 6.4]).2 Then, as proved in
[10, §7], the set of generators B0 of Quad(V ) is uniquely determined by the
R-module Quad(V ) up to multiplication by units of R. More precisely, the set
B := R∗B0, consisting of all products λq with λ ∈ R∗, q ∈ B0, coincides with
the set of all “basic elements” of Quad(V ) (cf. [10, Definition 6.1]) and also
with the set of all “primitive” (loc. cit.) indecomposable elements of Quad(V )
[10, Theorem 7.8, Corollary 7.9 ]. Moreover, as has been shown in [10, §8], each
of the sets

D := R∗
D0, H := R∗

H0,

2This property implies that the set R\{0} is closed under multiplication [10, Remark 6.5],
i.e., R has no zero divisors.
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is uniquely determined by the R-module Quad(V ), up to multiplication by
units. It now makes sense to extend the notation B0, D0, H0 as follows, and
to define “basic submodules” of Quad(V ) without referring to a base of R.

Definition 3.1. Choosing sets of representatives D0 and H0 of the orbit sets
D/R∗ and H/R∗, we obtain a set B0 := D0∪̇H0 which obviously generates
the R-module Quad(V ). We call B0 a basic set of generators of Quad(V ). 3

Usually we choose the sets

(3.1) D0 := {di | i ∈ I} and H0 :=
{
hij | {i, j} ∈ I [2]

}

derived from a base {εi | i ∈ I} of the free R-module V , cf. (2.1), (2.2). Then
we call B0 := D0 ∪ H0 a geometric basic set of generators of Quad(V ). 4

Definition 3.2.

(a) We call an R-submodue Z of Quad(V ) basic if Z is spanned by a sub-
set S of B0, i.e., every q ∈ Z has a presentation q =

∑
s∈S αss with

s ∈ S, αs ∈ R, almost all αs = 0.

(b) If this holds, then S is uniquely determined by Z, namely S = Z ∩B0,
as follows immediately from the fact that every s ∈ S is primitive and
indecomposable. We call S a basic set of generators of Z, and also
write Z =

∑
RS (while RS just means the set of all products RS with

λ ∈ R, s ∈ S).

If Z1 and Z2 are basic submodules of Quad(V ), then the modules Z1 +Z2 and
Z1 ∩ Z2 are again basic in Quad(V ). We have

(Z1 + Z2) ∩B0 = (Z1 ∩B0) ∪ (Z2 ∩B0)

and, of course,

(Z1 ∩ Z2) ∩B0 = (Z1 ∩B0) ∩ (Z2 ∩B0),

whence

Z1 ⊂ Z2 ⇔ Z1 ∩B0 ⊂ Z2 ∩B0.

Caution: If S1 ∩ S2 = ∅, Z1 =
∑
RS1, Z2 =

∑
RS2, then Z1 ∩ Z2 = {0}, but

Z1 + Z2 is not necessarily the direct sum of the modules Z1 and Z2.

We already met preeminent basic submodules of Quad(V ). Both QL(V ) and
Rig(V ) are basic in Quad(V ). If Λ is any subset of the set I [2] of two element
subsets of I, then the submodule QL(Λ, V ) consisting of the Λ-quasilinear forms
on V (cf. Definition 2.1) is basic. Also the submodule Rig(Λ, V ) of Rig(V )
(cf. (2.3)) is basic in Quad(V ).
We are ready for the key definitions of this section.

Definition 3.3. Assume that Z is a basic submodule of Quad(V ).

3Recall that the R-module Quad(V ) is not free [10, Proposition 7.10].
4Usually not every basic set of generators of Quad(V ) is geometric. In the present paper

we do not exploit this phenomenon thoroughly.
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(a) We call an endomorphism π of the R-module Z a basic projector on Z
if π maps every q ∈ B0 ∩ Z either to itself or to zero. Clearly, then
π = π2 and both X := π(Z), Y = π−1(0) are basic submodules of
Quad(V ) with Z = X + Y , X ∩ Y = {0}. Indeed X is generated by
the set {q ∈ B0 ∩ Z | π(q) = q}, while Y is generated by {q ∈ B0 ∩
Z | π(q) = 0}.

(b) We call X a basic projection of the R-module Z and Y a basic projec-
tion kernel in Z, and we also call (Z,X) a basic projection pair.

(c) Whenever it is convenient, we identify the basic projector π : Z → Z
with the associated projection map Z ։ X.

(d) Notice that the projector π : Z → Z is uniquely determined both by
the pair (Z,X) and the pair (Z, Y ). We write π = πZ,X . We call
Y = π−1(0) the kernel of the projector π, and usually write Y = ker(π).
If q ∈ X then obviously

π−1(q) = q + ker(π).

(e) For the sake of brevity we often call a basic submodule Z of Quad(V )
simply a “ basic module”, suppressing the reference to the free R-
module V , as long as V is kept fixed.

The primordial example of a basic projection is provided by Z = Quad(V ),
X = QL(V ), Y = Rig(V ). It gives us the quasilinear-rigid decomposi-
tions of any quadratic form q on V treated in [8]. More generally the
Λ-quasilinearizations of q, defined in §2, are provided by Z = Quad(V ),
X = QL(Λ, V ), Y = Rig(Λ, V ), cf. (2.4), (2.5). 5

Remark 3.4. Assume that Z is a basic R-module.

(a) If X is a basic projection of Z, then for any basic module W the inter-
section X ∩W is a basic projection of Z ∩W , and πZ∩W,X∩W is the
restriction of πZ,X to W . In particular, if W ⊂ Z, then

πW,X∩W = πX,Z |W.

(b) If X1, X2 are basic projections of Z, then X1 ∩X2 is also a basic pro-
jection of Z and

πZ,X1∩X2
= πZ,X1

· πZ,X2
= πZ,X2

· πZ,X1
.

(The products are taken in EndR(Z).) If Yi is the kernel of πZ,Xi

(i = 1, 2), then Y1 + Y2 is the kernel of πZ,X1∩X2
.

(c) More generally, if (Xi | i ∈ K) is a family of basic projections of Z,
then X =

⋂
i∈K

Xi is a basic projection of Z. Given q ∈ B0(Z), we have

πZ,X(q) = q if q ∈ Xi for every i ∈ K and πZ,X(q) = 0 otherwise. We
write πZ,X =

∏
i∈K

πZ,Xi
.

5A major reason for our interest in basic projectors is the desire to obtain similar decom-
positions when q is confined to a fixed proper basic submodule Z of Quad(V ).
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(d) If X1, X2 are basic projections of Z with X1 ∩X2 = {0}, then X1+X2

is also a basic projection of Z and

πZ,X1+X2
= πZ,X1

+ πZ,X2
.

(e) If X is a basic projection of Z and U is a basic projection of X, then
U is a basic projection of Z and

πZ,U = πX,U ◦ πZ,X

(where now πZ,X is identified with the associated projection map
Z ։ X).

We strive for a combinatorial description of all basic projection pairs within
the fixed R-module Quad(V ).

Notation 3.5. Given a basic module Z, we set

D0(Z) = D0 ∩ Z, H0(Z) = H0 ∩ Z, B0(Z) = B0 ∩ Z = D0(Z) ∪ H0(Z),

furthermore

∆(Z) := {i ∈ I | di /∈ D0(Z)},

and

Λ(Z) := {{i, j} ∈ I [2] | hij /∈ H0(Z)}.

Thus

B0(Z) = {di | i /∈ ∆(Z)} ∪ {hij | {i, j} /∈ Λ(Z)}.

Notice that if X and Z are basic R-modules then

X ⊂ Z ⇔ ∆(X) ⊃ ∆(Z), Λ(X) ⊃ Λ(Z).

Corollary 3.6. Assume that Z is a basic module and N is a subset of I [2]

containing Λ(Z). Then the basic submodule X of Z with ∆(X) = ∆(Z) and
Λ(X) = N is a basic projection of Z. The associated basic projector πZ,X is
the restriction to Z of the N -partial quasi-linearization πN,QL (cf. (2.6)).

Proof. This follows from Remark 3.4.a, since X = Z∩QL(N, V ) and QL(N, V )
is a basic projection of Quad(V ) with associated projector πN,QL. �

By this corollary we know all basic projections X of Z with ∆(X) = ∆(Z),
i.e., D0(X) = D0(Z).

Lemma 3.7. Assume that X is a basic projection of a basic module Z, and
that Λ(X) = Λ(Z) =: Λ. Let i 6= j be indices such that {i, j} /∈ Λ, i /∈ ∆(Z),
j /∈ ∆(Z). Then i /∈ ∆(X), j /∈ ∆(X).

Proof. Let π = πZ,X . In Z we have the relation (cf. [10, Eq. (7.10)])

di + dj + hij = di + dj .

Now {i, j} /∈ Λ, whence π(hij) = hij . Applying π to the relation we obtain

π(di) + π(dj) + hij = π(di) + π(dj).
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Suppose that di ∈ ∆(X). This means that π(di) = 0 and so

π(dj) + hij = π(dj).

But this is impossible in both cases π(dj) = 0, π(dj) = dj . Thus π(di) 6= 0,
i.e., i /∈ ∆(X). For the same reason j /∈ ∆(X). �

Convention 3.8. Up to the end of this section, we assume that the supertrop-
ical semiring, R, besides multiplicative unboundedness, satisfies the following
condition.

(†) If a, b ∈ R and there exists some c0 ∈ R such
that ac ≤ bc for all c ≥ c0, then a ≤ b.

This condition is a rather mild hypothesis, as the following proposition reveals.
We introduce the set

canc(G) := {c ∈ G | ∀a, b ∈ G : ac = bc⇒ a = b},

consisting of the “cancellative” elements of G.

Proposition 3.9. Assume that the set canc(G) is unbounded in G, and further-
more that T is closed under multiplication and eT is unbounded in G. Then R
has Property (†).

Proof. Let a, b ∈ R and assume that ac ≤ bc for all c ≥ c0 in R, for some c0 ∈ R.
We want to verify that a ≤ b. If a <ν b then a < b, and we are done. Henceforth
assume that a ≥ν b. Then ac ≥ν bc for all c ∈ R, and we conclude that ac ∼=ν bc
for all c ≥ c0. Since canc(G) is unbounded, this implies a ∼=ν b. If a, b ∈ eR
this means that a = b; and if a ∈ T and b ∈ G, then a ∼=ν b implies a < b.
Assume finally that b ∈ T and pick u ∈ T with u ≥ c0, which is possible
since eT is unbounded in G. Now au ≤ bu ∈ T and au ∼=ν bu. This forces
au = bu. Thus au ∈ T . which implies a ∈ T . From a ∼=ν b and a, b ∈ T we
conclude again that a = b. Thus a ≤ b in all cases. �

Theorem 3.10. Let Z be a basic module, Λ := Λ(Z), ∆ := ∆(Z). Assume
that i ∈ I is an index with di ∈ Z.

(a) There exists a basic projector π on Z with ker(π) = Rdi iff the following
condition holds:

CΛ,∆(i): If k ∈ I \ {i} and {i, k} /∈ Λ, then k ∈ ∆.

(b) This projector π, if it exists, is compatible with the functional order-
ing ≤ (restricted to Z), i.e., if q, q′ ∈ Z, q′ ≤ q, then π(q) ≤ π(q′).

Proof. By Lemma 3.7 condition CΛ,∆(i) is necessary for the existence of π.
Assuming now that CΛ,∆(i) holds, we want to show that π exists and respects
the functional ordering on Z. Without loss of generality we may assume that I
is finite, I = {1, . . . , n}, and i = 1, furthermore that h1j ∈ Z for 2 ≤ j ≤ r,
but h1j /∈ Z for r < j ≤ n, with some r ∈ {1, . . . , n}.
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We claim that, given presentations

(∗) q = α1d1 +
∑

1<j≤r

α1jh1j +
∑

1 < k ≤ r

r < ℓ ≤ n

αkℓhkℓ +
∑

i>r

αidi +
∑

i,j>r

αijhij ,

(∗∗) q′ = β1d1 +
∑

1<j≤r

β1jh1j +
∑

1 < k ≤ r

r < ℓ ≤ n

βkℓhkℓ +
∑

i>r

βidi +
∑

i,j>r

βijhij ,

of two forms q, q′ ∈ Z with q ≤ q′, then

(1) α1j ≤ β1j for 1 < j ≤ r;

(2) αkℓ ≤ βkℓ for 1 < k ≤ r, r < ℓ ≤ n;

(3)
∑
i>r

αidi +
∑
i,j>r

αijhij ≤
∑
i>r

βidi +
∑
i,j>r

βijhij .

If this is proven, then first assuming that q = q′, we learn that, if we omit in the
presentation (∗) the summand α1d1, we obtain a quadratic form q̃ ∈ Z which
is independent of the presentation (∗), and thus we have a well defined basic
projection π : q 7→ q̃ with kernel Rd1. (Use the claim for q ≤ q′ and q′ ≤ q.)
Then using the claim in general, we learn that if q ≤ q′, then π(q) ≤ π(q′),
establishing (a) and (b).

Proof of (3): The projector

πJ : q 7→ (q|VJ )
I = qJ

(cf. Notation 2.4) with J = {i | r < i ≤ n} obviously respects the
functional ordering on Quad(V ). Applying πJ to q ≤ q′ we obtain (3).

Proof of (1): Given i with 1 < i ≤ r we insert in (∗) and (∗∗) the vector
ε1 + cεi with c running through R, and obtain from q ≤ q′ that

(∗ ∗ ∗) α1 + cα1i ≤ β1 + cβ1i

for all c ∈ R. Choosing here c = 0 gives α1 ≤ β1. If β1i = 0 then
cα1i ≤ β1 for all c ∈ R. By multiplicative unboundedness of eR, we
have some c0 ∈ eR such that cβ1i >ν β1 for all c ≥ c0 and then obtain
from (∗ ∗ ∗) that cα1i ≤ cβ1i for all c ≥ c0, which by property (†)
implies α1i ≤ β1i. Thus α1i ≤ b1i in both cases.

Proof of (2): Let 1 < k ≤ r, r < ℓ ≤ n. we insert in (∗) and (∗∗) the
vector cεk + εℓ with c running through R, and obtain from q ≤ q′ that

αℓ + cαkℓ ≤ βℓ + cβkℓ

for all c ∈ R. This implies αℓ ≤ βℓ and αkℓ ≤ βkℓ by the same
arguments as before.

�

We are ready to determine all basic projections X of a basic module Z. In
view of Corollary 3.6 it suffices to look for those submodules X of Z where
Λ(X) = Λ(Z), equivalently H0(X) = H0(Z).
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Definition 3.11. We say that two elements di and dj, i 6= j, of D0(Z) are
linked in Z if hij ∈ Z.

Note that the condition CΛ,∆(i) from Theorem 3.10 means that di is not linked
in Z to any dj ∈ Z.

Theorem 3.12. Let X and Z be basic modules with X ⊂ Z and
H0(X) = H0(Z). Then X is a basic projection of Z iff any two elements
di, dj ∈ D0(Z) which are linked in Z are both elements of D0(X). In more
imaginative terms: we obtain all basic projections X of Z with H0(X) = H0(Z)
by discarding from D0(Z) some elements which are not linked in Z to other
elements of D0(Z).

Proof. (⇐): Lemma 3.7 means that, if X is a basic projection of Z, then this
condition holds.

(⇒): Let Λ = Λ(Z), ∆ = ∆(Z), and

E := E(Z) = {i ∈ I | CΛ,∆(i) holds }

= {i ∈ I | di ∈ Z, di is not linked to any di ∈ Z}.

Theorem 3.10 assures that for every i ∈ E there exists a basic projector ϑi
on Z with kernel Rdi. It now follows by Remark 3.4.c that for any subset K
of E the basic projection

(3.2) ϑK =
∏

i∈K

ϑi : Z → Z

has kernel
∑

i∈K Rdi. Thus

D0(ϑK(Z)) = {di ∈ D0(Z) | i /∈ K}

and, of course, H0(ϑK(Z)) = H0(Z). �

Corollary 3.13. Let Z be any basic module. Among the basic projections X
of Z with H0(X) = H0(Z) there is a unique minimal one, Xmin. All basic
submodules X of Z with Xmin ⊂ X are basic projections of Z, of course with
H0(X) = H0(Z).

Theorem 3.14. With the hypotheses of Convention 3.8, let Z be any basic
submodule of Quad(V ). Then any basic projector π of Z with π(q) = q for
all H0(Z) respects the functional ordering on Z:

q ≤ q′ ⇒ π(q) ≤ π(q′).

Proof. Clear from Theorem 3.10.b, since such a projector has the shape ϑK
given in (3.2). �

4. Direct decompositions; linked versus free modules

In this section, as well as in §5 and §6, it will be good to keep the following
simple fact in mind.
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Lemma 4.1. Assume that ϕ : X → Y is a linear map between R-modules X
and Y (with R supertropical as always). Assume that S is a subset of Y which
is convex w.r. to the minimal ordering � (i.e., if s, t ∈ S, y ∈ Y and s � y � t,
then y ∈ S). Then the preimage ϕ−1(S) is convex in X. In particular (take
S = {0}) the kernel ϕ−1(0) of ϕ is a convex submodule of X.

Proof. This is evident, since ϕ is additive and so x � x′ implies ϕ(x) � ϕ(x′).
�

Note that a submodule S of an R-modules X is convex w.r. to the minimal
ordering on X iff S is a lower set in X , since we always have 0 ∈ S.

In the sequel we assume that eR is mutiplicatively unbounded and Z is a “basic
module”, i.e., Z is a basic submodule of Quad(V ) for V a fixed free R-module
with base {εi | i ∈ I}, cf. Definitions 3.2 and 3.3. We want to get insight into
the presentations of Z as a direct sum of submodules (which then are again
basic modules).

We start with two easy facts.

Proposition 4.2. Assume that X and Y are two basic submodules of a basic
module Z with X ∩ Y = {0} and X + Y = Z.

(a) The following are equivalent
(1) Z = X ⊕ Y ;

(2) Both X and Y are basic projections of Z;

(3) Both X and Y are basic projection kernels of Z.

(b) If (1)-(3) hold the both X and Y are convex submodules of Z.

Proof. a): Since the elements of B0(Z) are indecomposable, it follows from
X ∩ Y = {0} and X + Y = Z that B0(Z) is the disjoint union of B0(X) and
B0(Y ). Thus the implication (1) ⇒ (2) is obvious. Furthermore, if X is a basic
projection of Z, then Y is the associated projection kernel, i.e., Y = π−1

Z,X(0).

The same holds for X,Y interchanged. This makes the implications (2) ⇔ (3)
evident.

(2) ⇒ (1): Let z ∈ Z and z = x + y with x ∈ X , y ∈ Y . Then πZ,X(x) = x,
πZ,X(y) = 0, πZ,Y (x) = 0, πZ,Y (y) = y, whence πZ,X(z) = x, πZ,Y (z) = y.
Thus x and y are uniquely determined by z, which proves that Z = X ⊕ Y.

b): Obvious from Lemma 4.1, since X = π−1
Z,Y (0) and Y = π−1

Z,X(0). �

Proposition 4.3. Assume that {Xα | α ∈ A} is a family of convex submodules
of Z with X =

∑
α∈AXα and Xα∩Xβ = 0 for α 6= β. Then each Xα is a basic

submodule of Z, and the basic set of generators B0(Z) is the disjoint union of
the sets B0(Xα).

Proof. Since the elements of B0(Z) are indecomposable, it follows from X =∑
α∈AXα and Xα ∩ Xβ = {0} for α 6= β that every element of B0(Z) is

contained in some Xα, α ∈ A. Let X ′
α denote the R-submodule spanned by
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Xα∩B0(Z). This is the maximal basic module of Z containingXα. SinceB0(Z)
is the union of the sets Xα ∩B0(Z) it is clear that Z =

∑
α∈AX

′
α.

Picking any α ∈ A, we will be done by verifying that Xα = X ′
α. Let x ∈ Xα

and write x =
∑

β∈A x
′
β with x′β ∈ X ′

β (almost all x′β = 0). Clearly x′β � x

for all β and thus x′β ∈ Xα. If β 6= α, then x′β ∈ Xα ∩ Xβ = {0}, and so

x = x′α. �

But if X and Y are convex submodules of the basic module X+Y = Z, where
X ∩ Y = {0}, then it is not necessarily true that Z is the direct sum of X
and Y , as the following key example shows.
As usual, we call an R-module U decomposable if there exist submodules
U1 6= U , U2 6= U such that U = U1 ⊕ U2; otherwise, we call U indecom-
posable.

Example 4.4. Let I = {1, 2} and let Z = Quad(V ) = Rd1+Rd2+Rh12. Then

Rd1 ∩ (Rd2 +Rh12) = {0},

and Rd2 + Rh12 is convex in Z since it is the kernel of a basic projector
π1 : Z → Rd1, namely the composite of πQL : Z → Rd1 + Rd2 and the
basic projector of the free module Rd1 + Rd2 onto Rd2. For the same reason
Rd1 +Rh12 is also convex in Z.
We verify directly that Rd1 is convex in Rd1 + Rh12 and so is convex in Z.
Indeed, if αd1 + βh12 � γd1 with α, β, γ ∈ R, then βh12 � γd1. A fortiori
βh12 ≤ γd1, which means that βx1x2 ≤ γx21 for all x1, x2 ∈ R. In particular for
x1 = 1 we obtain βx2 ≤ γ for all x2 ∈ R, which forces β = 0 by multiplicative
unboundedness.
But Z is not the direct sum of the convex submodules Rd1 and Rd2 +Rh12. In
fact d1 + d2 = d1 + d2 + h12, while d2 6= d1 + h12. (Insert x1ε1 + ε2 with some
x1 >ν 1.) Neither is Z the direct sum of Rd2 and Rd1 + Rh12. We conclude
that Z is indecomposable.

Remark 4.5. Hypothesis (†) in Convention 3.8 is not needed in this example.
If (†) holds in addition to multipicativity unboundedness, then it is immediate
from Theorem 3.10 that Rd2 + Rh12 is free. Also Rd1 + Rh12 is free, and so
all proper basic submodules of Z are free.

Definition 4.6.

(a) We call a basic module Z linked if
(i) for every hij ∈ Z both di and dj are in Z;

(ii) for each di ∈ Z there exists some j 6= i such that hij ∈ Z, and so
di is linked in Z to some dj ∈ Z (cf. Definition 3.11).

(b) We call

Eij := Rdi +Rdj +Rhij (i, j ∈ I, i 6= j)

an elementary linked module. Thus Z is linked iff Z is the sum of all
elementary linked modules contained in Z.
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(c) Given any basic module Z we denote the sum of all Eij ⊂ Z by Zlink,
which is the maximal linked submodule of Z. We call it the linked core
of Z.

Example 4.4 shows that every elementary linked module is indecomposable.
The formation of linked cores behaves well with respect to direct sums.

Proposition 4.7. If (Zα | α ∈ A) is any family of basic R-modules, then
(⊕

α∈A

Zα

)

link

=
⊕

α∈A

(
Zα
)
link

.

This is an immediate consequence of the fact that every elementary linked
module is indecomposable, together with the following easy lemma.

Lemma 4.8. Assume that Z is a basic module and (Xα | α ∈ A) is a family of
submodule such that

Z =
⊕

α∈A

Xα.

Then for any convex submodule W of Z we have

W =
⊕

α∈A′

W ∩Xα

where A′ := {α ∈ A | W ∩Xα 6= 0}. In particular, when W is indecomposable,
W ⊂ Xα for some α ∈ A′.

Proof. We have a family (πα | α ∈ A) of basic projectors πα : Z → Z at
hands with πα(Z) = Xα. It follows that παπβ = πβπα = 0 for α 6= β and∑

α∈A πα = idZ (which means that, given q ∈ Z, almost all values πα(q) are
zero and

∑
α∈A πα(q) = q). Now πα(z) � z for every z ∈ Z, α ∈ A, and thus

πα(W ) ⊂W for every α ∈ A. By restriction we obtain a family of projectors

π′
α = πα|W :W →W, α ∈ A′.

Since π′
απ

′
β = π′

βπ
′
α = 0 for α 6= β and

∑
α∈A′ π′

α = idW , it is immediate that

W =
⊕

α∈A′ π′
α(W ) =

⊕
α∈A′ W ∩Xα.

6
�

Proposition 4.9. Assume that Convention 3.8 is in force. Then Z is free iff
Zlink = 0.

Proof. When Z is free, all its basic submodules are free, and so Z cannot
contain any elementary linked module, whence Zlink = 0. (N.B. In this ar-
gument hypothesis (†) is not needed.) Conversely, if Zlink = 0, we know
by Theorem 3.12 that Z ∩ Rig(V ) is a basic projection of Z with kernel
Z ∩ QL(V ). (All di ∈ D0(Z) may be discarded from the list B0(Z).) But

6In this proof our standard assumption that eR is multiplicatively unbounded is not
needed.
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also Z ∩QL(V ) is a basic projection of Z, namely the image of the restriction
πQL : Quad(V ) ։ QL(V ) to Z. Thus

Z = (Z ∩QL(V ))⊕ (Z ∩Rig(V )).

Since both QL(V ) and Rig(V ) are free, Z is also free. �

Given a basic submodule X of Z, we call the unique basic module Y with
X + Y = Z, X ∩ Y = {0}, the basic complement Y of X in Z.

Theorem 4.10. Assume that Convention 3.8 is in force. Then, the basic com-
plement of Zlink, Y , in Z is free and Z = Zlink ⊕ Y.

Proof. Y does not contain any elementary linked module, and thus is free by
the preceding proposition. We will be done by verifying that both Zlink and Y
are basic projections of Z.
By mapping all the hij ∈ Y to zero we obtain a basic projector Z ։ Z1 with

H0(Z1) = H0(Z) \ H0(Y ) = H0(Zlink), D0(Z1) = D0(Z),

cf. Corollary 3.6. We have Z1 ⊃ Zlink and

D0(Z1) = D0(Y ) ∪̇ D0(Zlink),

but no di ∈ D0(Y ) is linked to any dj ∈ D0(Z1), and thus Theorem 3.10 gives
us a basic projector Z1 ։ Zlink. Composing the two projectors we obtain a
basic projector π1 : Z ։ Zlink.
On the other hand by mapping all hij ∈ H0(Zlink) to zero we obtain a basic
projector Z ։ Z2 with

H0(Z2) = H0(Z) \ H0(Zlink) = H0(Y ), D0(Z2) = D0(Y ) ∪̇ D0(Zlink).

As no di ∈ D0(Zlink) is linked to any dj ∈ D0(Y ), we obtain a basic projector
Z2 ։ Y , again by Theorem 3.10, which together with Z ։ Z2 yields a basic
projector π2 : Z ։ Y. The projectors π1 and π2 together entail Z = Zlink ⊕ Y.

�

We denote the basic complement Y of Zlink in Z by Zfree, and obtain

Z = Zlink ⊕ Zfree.

Corollary 4.11. Suppose Z is a basic module and Convention 3.8 is in force,
then Zfree is the unique maximal basic free submodule of Z which is a direct
summand of Z.

Proof. Let Z = X ⊕ T with X free. Then (cf. Proposition 4.7)

Zlink = Xlink ⊕ Tlink = Tlink,

and T = Tlink ⊕ Tfree. We conclude that

Z = X ⊕ Tlink ⊕ Tfree

and also Z = Zlink ⊕ Zfree = Tlink ⊕ Zfree, whence Zfree = X ⊕ Tfree. �

Definition 4.12. We call any indecomposable direct summand X 6= 0 of a
basic module Z a component of Z.
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We start out to determine the components of a basic R-module Z under Con-
vention 3.8. First an easy preliminary lemma, valid over any supertropical
semiring R.

Lemma 4.13. Assume that
⊕
α∈A

Zα is a direct decomposition of Z, where

each Zα is indecomposable and 6= 0. Then these Zα are precisely all com-
ponents of Z.

Proof. Let X be a basic nonzero submodule of Z. By Lemma 4.8

X =
⊕

α∈A

X ∩ Zα.

IfX is indecomposable thenX = X∩Zα for a unique α ∈ A, whenceX ⊂ Zα. If
Y is the basic complement ofX in Z so that Z = X⊕Y , then Zα = X⊕(Y ∩Zα).
Since Zα is indecomposable, this implies that X = Zα. �

Definition 4.14.

(a) We call a basic module Z graphic if for any hij ∈ H0(Z) both di and dj
are in Z.

(b) When Z is graphic, we define the graph Γ(Z) (simple, undirected, with-
out loops) as follows. Γ(Z) has the sets of vertices and edges

Ver(Γ(Z)) = D0(Z) and Edg(Γ(Z)) = H0(Z).

An edge hij connects the vertices di, dj.
7

(c) A basic module Z has a unique maximal submodule which is graphic,
denoted Zgraph. B0(Zgraph) is obtained from B0(Z) by omitting every
hij ∈ Z with di /∈ Z or dj /∈ Z.

Note that Z is linked iff Z is graphic and Γ(Z) has no isolates vertices. When
Convention 3.8 holds, clearly Z is graphic iff H0(Zfree) is empty.

Remark 4.15. Γ(Quad(V )) is the complete graph over the vertex set
{di | i ∈ I}, and thus may be seen as the graph (I, I [2]). For any subgraph Γ′

of Γ(Quad(V )) there exists a unique graphic module Z with Γ(Z) = Γ′.

Next we describe the components of graphic modules in graph theoretic terms.
As before we tacitly assume that G is multiplicatively unbounded.

Proposition 4.16. Assume that Z is a graphic module and (Xα | α ∈ A) is
a family of submodules of Z. For each α ∈ A let Jα := {i ∈ I | di ∈ Xα}. The
following are equivalent:

(i) Z =
⊕
α∈A

Xα;

(ii) Each Xα is graphic and Γ(Z) is the disjoint union of the graphs Γ(Xα),
for which we write

7It would be more precise to consider D(Z) and H(Z) respectively as sets of vertices and
edges, but the present setting has proved to be more convenient.
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Γ(Z) =
⊔

α∈A

Γ(Xα).

When (i) and (ii) hold, the projection Z ։ Xα is given, for q ∈ Z, by (cf.
Notation 2.4)

(4.1) πα(q) = (q|VJα
)I .

Proof. a) Assume that Z is the direct sum of the Xα. If hij ∈ Xα for some
i, j ∈ I, then the di and dj are elements of Z, since Z is graphic. The ele-
mentary linked submodule Eij of Z is indecomposable (cf. Example 4.4) and
Eij ∩ Xα 6= {0}. By the (essentially trivial) Lemma 4.8 we conclude that
Eij ⊂ Xα. Thus Xα is graphic. It now follows directly from Definition 4.14
that

Γ(Z) =
⊔

α∈A

Γ(Xα).

b) We now assume that Γ(Z) is the disjoint union of the graphs Γ(Xα), α ∈ A.
Firstly this implies that Z =

∑
α∈AXα. For each α ∈ A we define a map

πα : Z → Z by formula (4.1). Let J := {i ∈ I | di ∈ Z}, so that J is the
disjoint union of the sets Jα. Given i ∈ J we have (di|VJα

)I = di for i ∈ Jα
and (di|VJα

)I = 0 otherwise. Given different i, j ∈ J we have a similar story:
(hij |VJα

)I = hij when {i, j} ⊂ Jα and zero otherwise. This proves that πα is a
basic projector on Z with image Xα, and furthermore that παπβ = 0 if α 6= β
and

∑
α∈A πα = idZ . It is now obvious that the sum

∑
α∈AXα is direct with

associated projectors πα. �

Corollary 4.17. A graphic module Z is indecomposable iff the graph Γ(Z) is
connected.

Proof. We argue by contradiction. If Z = X1 ⊕ X2 with X1 6= 0, X2 6= 0,
then by Proposition 4.16 both X1, X2 are graphic and Γ(Z) = Γ(X1) ⊔ Γ(X2);
so Γ(Z) is not connected. Conversely, assume Γ(Z) = Γ1⊔Γ2 and let Xi denote
the graphic submodule of Z with Γ(Xi) = Γi (i = 1, 2). Then Z = X1 ⊕X2 by
Proposition 4.16, and thus Z is decomposable. �

Theorem 4.18. Assume that Z is a graphic module. Let (Γγ | γ ∈ C) denote
the set of components of the graph Γ(Z), arbitrarily indexed, and for every
γ ∈ C let Zγ denote the graphic module with Γ(Zγ) = Γγ. Then

Z =
⊕

γ∈C

Zγ

and the Zγ are precisely all components of the basic module Z.

Proof. We know by Proposition 4.16, that Z is the direct sum of the Zγ and
by Corollary 4.17 that the Zγ are indecomposable. It follows from Lemma 4.8
that the Zγ are all components of Z. �

We emphasize that in our study of the components of a basic module Z up to
now hypothesis (†) has not been needed. But if (†) holds, then we know that
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Z = Zlink ⊕ Zfree. Applying Theorem 4.18 to Zlink, we obtain the following
corollary.

Corollary 4.19. Assume that Convention 3.8 is in force. Let Z be a basic
module, and let (Zγ | γ ∈ C) denote the set of components of Z indexed in
some way. Then

Z =
⊕

γ∈C

Zγ .

Furthermore, Zlink is the direct sum of those components Zγ, which are not
free, while Zfree is the direct sums of all others. They are free of rank one.

5. Basic endomorphisms and their associated projectors

As before R is a supertropical semiring. Let Z be a basic module over R, i.e., a
basic submodule of Quad(V ), for V a fixed free R-module V , cf. Definitions 3.2
and 3.3. While in §3 and §4 we studied basic projectors on Z, we now proceed
to the more general “basic endomorphisms” of Z. We denote the set of endo-
morphisms of Z by EndR(Z) or simply End(Z). This is an R-algebra in the
obvious sense. As before we work with the set of generators B0 = D0 ∪ H0,

D0 := {di | i ∈ I}, H0 :=
{
hij | {i, j} ∈ I [2]

}

of Quad(V ) derived from a fixed base of V , cf. (3.1). By intersection with Z
it gives a “basic set of generators” B0(Z) = D0(Z)∪H0(Z), cf. Notation 3.5.

Definition 5.1. An endomorphism ϕ of Z is called basic, if ϕ(Rq) ⊂ Rq for
every q ∈ B0, whence

ϕ(di) = µidi, ϕ(hij) = µijdij

for all di ∈ Z, hij ∈ Z, with elements µi, µij in R, which we name the coeffi-
cients of ϕ. The set of all basic endomorphisms of Z, denoted by Endb(Z), is
a commutative subalgebra of End(Z).

We remark that for any basic submodule Z ′ of Z, every ϕ ∈ Endb(Z) restricts
to a basic endomorphism ϕ|Z ′ of Z ′. Note also that the basic projectors on Z
are precisely the basic endomorphisms of Z with all coefficients in {0, 1}. They
are idempotents of the R-algebra Endb(Z).

8

Example 5.2. If ρ is an endomorphism of the free R-module V , then for every
quadratic form q : V → R, the composite q ◦ ρ : V → R is again a quadratic
form on V , and so we obtain an endomorphism

ρ∗ : q 7→ q ◦ ρ,

of the R-module Quad(V ). We call these ρ∗ the geometric endomorphisms of
Quad(V ). If ρ itself is “basic”, i.e., ρ(εi) = µiεi for every i ∈ I with some
µi ∈ R, then an easy computation shows that

ρ∗(di) = µ2
i di, ρ∗(hij) = µiµjhij ,

8There exist other idempotents, e.g. ϕ = e idZ .
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whence ρ∗ is a basic endomorphism of Quad(V ). We denote this endomor-
phism by γµ, where µ := (µi | i ∈ I), and call the γµ the geometric basic
endomorphisms of Quad(V ).

These endomorphisms γµ are the “easy” basic endomorphisms of Quad(V ).
Every tuple µ = (µi | i ∈ I) ∈ RI gives such an endomorphism with system of
coefficients

(µ2
i | i ∈ I) ∪ (µiµj | {i, j} ∈ I [2]).

By restriction we obtain for γµ a basic endomorphism γZ,µ := γµ|Z, and then
have the following upshot of Example 5.2.

Proposition 5.3. Let Z be a basic module and set I(Z) := (i ∈ I | di ∈ Z).
Every tuple µ = (µi | i ∈ I(Z)) yields a unique basic endomorphisms γZ,µ of Z
with

γZ,µ(di) = µ2
i di

for all di ∈ Z and

γZ,µ(hij) = µiµjhij

for all hij ∈ Z.

We call the γZ,µ the geometric basic endomorphisms of Z. They form a subset
of Endb(Z), closed under multiplication. Note that this set does not depend
on the choice of the base {εi | i ∈ I} of V .
In particular we have the geometric basic projectors of Z at hands. These
are the endomorphisms γZ,µ with µi ∈ {0, 1} for all i ∈ I(Z), and thus they
correspond uniquely to the subsets J = {i ∈ I(Z) | µi = 1} of I(Z).

Notations 5.4. We denote the basic projection coming from such a set J
by πZ,J . In the most important case, namely Z = Quad(V ), we write πJ
instead of πQuad(V ),J and so

πZ,J = πJ |Z

for J ⊂ I(Z).

Proposition 5.5.

(a) For any J ⊂ I the geometric basic projector πJ on Quad(V ) can be
also described by the formula (q ∈ Quad(V ))

(5.1) πJ(q) = (q|VJ )
I =: qJ ,

cf. Notation 2.4.
More generally, for any J ⊂ I and ϕ ∈ Endb(Quad(V )), q ∈ Quad(V ),
we have the formula

(5.2) (ϕπJ )(q) = (ϕ(q)|VJ )
I = ϕ(q)J .

(b) Given subsets J,K of I, we have πJπK = πJ∩K . If J ∩ K is empty,
then πJ∪K = πJ + πK .
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Proof. (a): (5.1) is the formula (5.2) in the special case that ϕ is the identity
map. In order to verify (5.2) it is suffices to check this formula for every
q ∈ B0 = D0∪H0. Let (µi)∪ (µij) be the family of coefficients of ϕ. If i, j ∈ J ,
i 6= j, then

(ϕπJ )(di) = ϕ(di) = µidi,

(ϕπJ )(hij) = ϕ(hij) = µijhij ,

while

(ϕπJ )(dk) = 0 if k /∈ J,

(ϕπJ )(hkℓ) = 0 if {k, ℓ} 6⊂ J.

(ϕ(q)|VJ )I has exactly the same values for all q ∈ B0.

(b): Obvious by considering the coefficients of the occurring projectors, or
(better) the endomorphisms of V including these geometric endomorphisms of
Quad(V ). �

In the case of |J | ≤ 2 we simplify the notation by writing

(5.3) πi := π{i}, πij := π{i,j}.

These projectors will play a very helpful role later.
All basic endomorphisms of Quad(V ) can be built from basic endomorphisms
of the elementary linked submodules of Quad(V ) (cf. Definition 4.6) as follows.

Lemma 5.6 (Pasting Lemma). Let Z = Quad(V ). Assume that
(ϕij | {i, j} ⊂ I) is a family of basic endomorphisms ϕij ∈ Endb(Eij),
Eij = Rdi +Rdj +Rhij. Assume further that ϕij |Rdi = ϕik|Rdi for any three
distinct i, j, k ∈ I. Then there is a unique ϕ ∈ Endb(Z) with ϕ|Eij = ϕij , for

all {i, j} ∈ I [2].

Proof. We have elements µi, µij in R with

ϕ(di) = µidi, ϕ(hij) = µijhij

for all {i, j} ∈ I [2]. The basic endomorphism ϕ of Z with system of coefficients
(µi)∪ (µij) has the required properties, and clearly is the unique one, provided
that ϕ exists.
For notational convenience we choose a total ordering on I. If q ∈ Quad(V ),
and two presentations of q are given,

q =
∑

i∈I

αidi +
∑

i<j

αijhij =
∑

i∈I

αidi +
∑

i<j

βijhij(A)

(of course with only finitely many scalars αi, αij , βij 6= 0 ), we need to verify
that

∑

i∈I

αiµidi +
∑

i<j

αijµijhij =
∑

i∈I

αiµidi +
∑

i<j

βijµijhij .(B)
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For any pair i < j in I we apply the projector πij to (A), viewed as a map
onto Eij , and then the map ϕij . We obtain

αiµidi + αjµjdj + αijµijhij = αiµidi + αjµjdj + βijµijhij .

Since this holds for all i < j, (B) is now evident.
From B we conclude that there is a well defined map ϕ : Quad(V ) → Quad(V )
sending any q =

∑
i∈I αidi +

∑
i<j αijhij to

∑
i∈I αiµidi +

∑
i<j αijµijhij .

It is obvious that this map ϕ is a basic endomorphism and ϕ(di) = µidi,
ϕ(hij) = µijhij for all i < j. �

Remark 5.7. If I is finite, then

ϕ =
∑

i<j

ϕij ◦ πij ,

with πij the basic projector from (5.3), viewed as a map from Quad(V ) onto Eij ,
since πij |Eij = idEij

, πkℓ|Eij = 0 for {k, ℓ} 6= {i, j}.

Theorem 5.8 (Extension Theorem). Let ϕ be a basic endomorphism of a
graphic module Z ⊂ Quad(V ), and for every di ∈ D0 \ D0(Z) choose a
scalar vi ∈ R. Then there exists a unique ψ ∈ Endb(Quad(V )) such that
ψ|Z = ϕ, ψ(di) = vidi for di /∈ Z, and ψ(hij) = 0 for all hij /∈ Z.

Proof. We choose a family (ψij | i < j) of endomorphisms ψij ∈ Endb(Eij)
as follows. When Eij ⊂ Z we set ψij = ϕ|Eij . When Eij 6⊂ Z, whence
hij /∈ Z, we define ψij : Eij → Eij as ψij(di) = µidi with µi = vi if di /∈ Z,
and ψij(di) = ϕ(di) if di ∈ Z. We define ψij(dj) by the same rule, set-
ting ψij(hij) = 0. This map ψij is the composite of the quasilinear projector
πQL|Eij and an endomorphism of the free module Rdi + Rdj with prescribed
values for di, dj , and thus is well defined. By construction it is clear that for
any three different indices i, j, k we have ψij(di) = ψik(di). Thus the past-
ing Lemma 5.6 applies and yields a basic endomorphism ψ of Quad(V ), which
clearly extends ϕ. �

In particular, we can choose in Theorem 5.8 all vi = 0 to obtain an extension
ψ = ϕ̃ of ϕ to Quad(V ) with ϕ̃(q) = 0 for all q ∈ B0 \B0(Z). We call ϕ̃ the
extension of ϕ by zero.

Convention 5.9. Up to end of §5 we assume, usually without explicitly stating
it, that for R and Z one of the two following conditions holds.

Hypothesis A: G is multiplicatively unbounded and Z is a graphic module.

Hypothesis B : G is multiplicatively unbounded and has property (†), cf.
Convention 3.8. Here Z can be any basic module.

Recall that, since G is assumed to be multiplicatively unbounded, the set R\{0}
is closed under multiplication ([10, Remark 6.5]).
We are ready for a central result of this section.
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Theorem 5.10. Given a basic endomorphism ϕ of Z there exists a unique
basic projector on Z, denoted by pϕ, such that any q ∈ B0(Z) has the image
pϕ(q) = q if ϕ(q) 6= 0 and pϕ(q) = 0 if ϕ(q) = 0.

Proof. a) We assume Hypothesis A. We extend ϕ to a basic endomorphism
ψ of Quad(V ) in some way, which is possible by Theorem 5.8. It suffices to
prove the theorem for ψ instead of ϕ. Restricting pψ to Z we then obtain the
desired pϕ. Thus we furthermore assume that Z = Quad(V ).
We employ the Pasting Lemma 5.6. For any two indices i 6= j in I let
ϕij := ϕ|Eij . We define a basic projector pij on Eij as follows. If ϕ(di) 6= 0,
ϕ(dj) 6= 0, ϕ(hij) 6= 0 we take pij = idEij

. If ϕ(di) 6= 0, ϕ(dj) 6= 0,
but ϕ(hij) = 0 we choose for pij the quasilinear projection πQL|Eij , i.e.,
pij(di) = di, pij(dj) = dj , pij(hij) = 0. If ϕ(di) = ϕ(dj) = 0, whence also
ϕ(hij) = 0, we choose pij = 0.
There remains the case that exactly one of the vectors ϕ(di), ϕ(dj) is not zero,
say ϕ(di) = µidi, µi 6= 0, ϕ(dj) = 0. Let ϕ(hij) = µijhij . Applying ϕ to the
relation

di + dj + hij = di + dj ,

we obtain µidi+µijhij = µidi. Inserting the vector x = vi+cvj for any c ∈ R we
obtain that µi+ cµij = µi for all c ∈ R. Since G is multiplicatively unbounded,
this forces µij = 0, i.e., ϕ(hij) = 0. Now define pij as the composite of
πQL|Eij with the obvious projection from Rdi+Rdj to Rdi. Then pij(di) = di,
pij(dj) = pij(hij) = 0.
By construction pij(di) = pik(di) for any three different indices i, j, k ∈ I. Thus
there exists a basic endomorphism p of Quad(V ) with p|Eij = pij for any i 6= j.
It is the projector pϕ we were looking for.

b) We assume now Hypothesis B. By Theorem 4.10 there is a decomposition
Z = Y1 ⊕ Y2 with Y1 = Zlink and Y2 a free module. Given ϕ ∈ Endb(Z),
we have ϕ(Yi) ⊂ Yi for i = 1, 2, and thus ϕ = ϕ1 ⊕ ϕ2 with ϕi ∈ Endb(Yi).
As just proved there exists a unique basic projector π1 = pϕ1

on Y1 with
π1(q) = q ⇔ ϕ1(q) 6= 0 for all q ∈ B0(Y1). Since Y2 is free we trivially
also have a unique basic projector π2 on Y2 such that for all q ∈ B0(Y2)
π2(q) = q ⇔ ϕ2(q) 6= 0. The projector pϕ := π1 ⊕ π2 on Z has the required
property addressed in the theorem. �

We call pϕ the basic projector associated to ϕ. We now strive for a charac-
terization of the image and the kernel of pϕ in terms of the image and kernel
of ϕ.

Definition 5.11. Given an R-submodule M of Quad(V ), let Mb denote the
unique maximal basic submodule of Quad(V ) contained in M , and let M b

denote the unique minimal basic submodule of Quad(V ) containing M . Mb

and M b are respectively called the basic core and basic hull of M .

It is obvious that

B0(Mb) = B0 ∩M,
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but determining B0(M
b) can be difficult. For example, if M = Rq with

q ∈ Quad(V ), then D0(M
b) consists of all di showing up in qQL, while H0(M

b)
is the minimal subset of H0 appearing in a rigid complement of qQL, in other

terms, the minimal subset Λ ⊂ I [2] such that q is Λc-quasilinear. But there
is an extended class of submodules M of Quad(V ) at hands, for which the
determination of B0(M

b) is trivial.

Definition 5.12. We call a submodule M of Quad(V ) diagonal if

(5.4) M =
∑

i∈I

aidi +
∑

i<j

aijhij

with ideals (= R-submodules) ai, aij of R.

We read off from (5.4) that

D0(M
b) := {di | ai 6= 0}, H0(M

b) :=
{
hij | aij 6= 0

}
.

Examples 5.13.

(a) Every basic module Z is diagonal.

(b) Every submodule of Quad(V ) that is convex in the minimal ordering �
of Quad(V ) is easily seen to be diagonal.

(c) If M is a diagonal submodule of a basic module Z, then for any
ϕ ∈ Endb(Z) also ϕ(M) is diagonal.

(d) Intersections and sums of families of diagonal submodules of Quad(V )
are diagonal.

(e) R(di + dj) is not diagonal if i 6= j. (This module has the basic hull
Rdi +Rdj.)

Proposition 5.14. If ϕ is a basic endomorphism of a basic module Z
then ϕ(Z) is a diagonal module and pϕ(Z) = ϕ(Z)b. The kernel ϕ−1(0) is
itself basic and so

p−1
ϕ (0) = ϕ−1(0) = ϕ−1(0)b.

Proof. It is evident that the modules ϕ(Z) and ϕ−1(0) are diagonal by Exam-
ples 5.13.(b) and (c). By definition of pϕ we have

B0(pϕ(Z)) = {q ∈ B0(Z) | pϕ(q) = q}

= {q ∈ B0(Z) | ϕ(q) 6= 0} = B0(ϕ(Z)
b),

which proves that pϕ(Z) = ϕ(Z)b. In the same way

B0(p
−1
ϕ (0)) = {q ∈ B0(Z) | pϕ(q) = 0}

= {q ∈ B0(Z) | ϕ(q) = 0},

whence p−1
ϕ (0) = ϕ−1(0)b. But ϕ−1(0) is already basic. Indeed, if∑n

1 λiqi ∈ ϕ−1(0) with qi ∈ B0, λi 6= 0, then
∑n

1 λiϕ(qi) = 0, whence
λiϕ(qi) = 0, and so all ϕ(qi) = 0, since R has no zero-divisors. �

Therefore, pϕ = π can also be characterized by the property that, for all q ∈Z,
π(q) 6= 0 iff ϕ(q) 6= 0.
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Example 5.15. Let µ = (µi | i ∈ I) ∈ RI. Then the geometric basic endomor-
phism γµ of Quad(V ) (cf. Example 5.2) has the associated basic projector πJ
(cf. Notation 5.4) with J = {i ∈ I | µi 6= 0}.

We turn to the inverse problem of analyzing the set of basic endomorphisms ϕ
with pϕ = π for a given basic projector π.

Definition 5.16. Let Z be a basic module.

(a) We denote the set of all basic projectors on Z by Pb(Z).

(b) If π ∈ Pb(Z), then we call an endomorphism ϕ ∈ Endb(Z) with pϕ = π
a satellite of π; the set of these ϕ is denoted by Stl(π).

It will be helpful to work in Endb(Z) with a partial ordering finer than the
minimal ordering, analogous to our setting for Z itself. Given ϕ, ψ ∈ Endb(Z),
we define

ϕ ≤ ψ ⇔ ∀z ∈ Z : ϕ(z) ≤ ψ(z),

where on the right hand side “ ≤′′ stands for the function ordering on
Z ⊂ Quad(V ). We call this finer relation ≤ the function ordering on Endb(Z),
in contrast to the minimal ordering which is denoted by � and defined as

ϕ � ψ ⇔ ∃χ ∈ Endb(Z) : ϕ+ χ = ψ.

Given ϕ, ψ ∈ Endb(Z) with coefficients systems (µi) ∪ (µij) and (υi) ∪ (υij),
respectively, then ϕ ≤ ψ iff µi ≤ υi, µij ≤ υij for all i with di ∈ Z and all {i, j}
with hij ∈ Z.

Theorem 5.17. Assume that either Hypothesis A or B holds, and that there
exists some ϑ ∈ G with ϑ < e. Let π be a nonzero basic projector on Z with
B0(π(Z)) finite (e.g. B0(Z) is finite, i.e., Z is finitely generated). Then a
basic endomorphism ϕ of Z is a satellite of π iff there exist α, β ∈ R \ {0} such
that

απ ≤ ϕ ≤ βπ;

in other terms, Stl(π) = conv≤((Rπ) \ {0}). As usual, conv≤ stands for the
convex hull in Endb(Z) (equivalently, in EndR(Z)) with respect to the function
ordering.

Proof. Let {qj | j ∈ J} denote the set B0(Z). Let

ϕ(qj) = µjqj (j ∈ J)

with µj ∈ R, and write

K := {j ∈ J | π(qj) = qj},

which by assumption is a finite set. By definition, ϕ is a satellite of π iff

K = {j ∈ J | µj 6= 0}.

When this holds, set

eµk = min{eµj | j ∈ K},

eµℓ = max{eµj | j ∈ K}.
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Set β := eµℓ. If eµk < e set α := eµ2
k, otherwise take α = ϑ. For these

parameters we have α ≤ µj ≤ β for all j ∈ K, and so απ ≤ ϕ ≤ βπ. Conversely,
if this holds for α, β 6= 0, then for any q ∈ B0(Z) we have ϕ(q) 6= 0 iff π(q) 6= 0,
i.e., π(q) = q. Thus ϕ is a satellite of π. �

The finiteness assumption in Theorem 5.17 is not essential; it can be easily
extended to the case in which V has an infinite basis {εi | i ∈ I}, as follows:

Corollary 5.18. Assume that either Hypothesis A or B holds, and that there
is some ϑ < e in G. Let π ∈ Pb(Z) and ϕ ∈ Endb(Z). Then ϕ is a satellite
of π iff for every finite subset K of I there exist αK , βK ∈ R \ {0} such that

αK(π|ZK) ≤ ϕ|ZK ≤ βK(π|ZK),

where ZK := (Z ∩ VK)I = πK(Z) for VK =
∑

i∈K Rεi, and πK is the (geo-

metric) basic projector (5.1) on Quad(V ) with image Quad(VK)I (cf. Propo-
sition 5.5).

Theorem 5.19. Given π1, π2 ∈ Pb(Z), both the minimum π1 ∧ π2 and the
maximum π1 ∨ π2 exist in (Endb(Z),≤), namely

π1 ∧ π2 = π1π2, π1 ∨ π2 = pπ1+π2
.

Proof. This follows from the fact that for any q ∈ B0(Z) we have

(π1π2)(q) = q iff π1(q) = q and π2(q) = q,

while

pπ1+π2
(q) = q iff π1(q) + π2(q) 6= 0 iff π1(q) = q or π2(q) = q.

�

Now the following is immediate.

Scholium 5.20. Suppose π1, π2 ∈ Pb(Z). Then

(a)

π1 ≤ π2 ⇔ π1π2 = π1 ⇔ π1(Z) ⊂ π2(Z);

(b)

(π1 ∧ π2)(Z) = π1(Z) ∩ π2(Z),

(π1 ∨ π2)(Z) = π1(Z) + π2(Z),

and thus π 7→ π(Z) embeds Pb(Z) as a sublattice into the boolean lattice
of all basic submodules of Z. �

Thus we have a restriction map

τZ : Endb(Z) ։ Pb(Z), ϕ 7→ pϕ

from the commutative R-algebra Endb(Z) to the distributive lattice Pb(Z).
Concerning the fibers of τZ , i.e., the satellite sets, note that if π1 ≤ π2 then
π1 Stl(π2) ⊂ Stl(π1). More generally, for any π1, π2 ∈ Pb(Z) we have

π1 Stl(π2) ⊂ Stl(π1π2).
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It turns out that each fiber of τZ is closed under addition and multiplication.
More generally the following holds.

Proposition 5.21. Let π1, π2 ∈ Pb(Z). Then

Stl(π1) + Stl(π2) ⊂ Stl(π1 ∨ π2) and

Stl(π1) · Stl(π2) ⊂ Stl(π1π2).

Proof. Let ϕ1 ∈ Stl(π1), ϕ2 ∈ Stl(π2). Fixing q ∈ B0(Z), we have

ϕ1(q) = µ1q, ϕ2(q) = µ2q

with µ1, µ2 6= 0, and so πi(q) = q if µi 6= 0 (i = 1, 2). Now (π1 ∨ π2)(q) = q
iff (π1 + π2)(q) 6= 0 iff µ1 + µ2 6= 0 iff (ϕ1 + ϕ2)(q) 6= 0. This proves that
ϕ1 + ϕ2 ∈ Stl(π1 ∨ π2).
Furthermore, (π1π2)(q) = q iff π1(q) 6= 0 and π2(q) 6= 0 iff µ1 6= 0 and µ2 6= 0
iff µ1µ2 6= 0 iff (ϕ1ϕ2)(q) 6= q, since R has no zero divisors. This proves that
ϕ1ϕ2 ∈ Stl(π1π2). �

Moreover, it is evident, say by Corollary 5.18, that for every π ∈ Pb(Z)
the set Stl(π) is convex in the function ordering on Endb(Z), and that
(R \ {0}) Stl(π) ⊂ Stl(π).

6. Modifications of basic endomorphisms

Up to now the only explicit examples of basic endomorphisms, which we have
met, are the basic projectors (§3, §4) and the geometric basic endomorphisms
(cf. §5, Example 5.2 and Proposition 5.3). We now look for procedures to
obtain new basic endomorphisms from old ones. We start with a definition and
a lemma valid in any supertropical semiring R. We intensely use the ν-notation,
cf. §1.4.

Definition 6.1. Given µ, υ ∈ R, we say that υ is obedient to µ if

(1) υ ≤ν µ,

(2) ∀x, y ∈ R: µx = µy ⇒ υx = υy.

Remarks 6.2.

(a) If υ is obedient to µ and ω is obedient to υ, then ω is obedient to µ.

(b) If υ is obedient to µ then, for any ω ∈ R, υω is obedient to µω.

(c) We conclude from a) and b) that if υ1 is obedient to µ1 and υ2 is
obedient to µ2, then υ1υ2 is obedient to µ1µ2.

(d) Every λ ≤ν 1 in R is obedient to 1.

(e) When R is a supersemifield, every υ ∈ R is obedient to any µ ≥ν υ,
where µ ∈ T .

(f) If υ is obedient to µ and υ ∈ T , then also eυ is obedient to µ, but most
often υ is disobedient to eυ.

Lemma 6.3. Assume that υ ∈ R is obedient to µ ∈ R and that a+ µb = a+ µc
for a, b, c ∈ R. Then a+ υb = a+ υc.
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Proof. 1) Assume first that a <ν µb. Then

a+ µb = µb = a+ µc

which implies a <ν µc. Indeed, otherwise we would have a ≥ν µc, whence

a+ µb = a+ µc ∼=ν a <ν µb,

a contradiction. We conclude that a + µc = µc, which implies µb = µc and
then υb = υc by Property (2) in Definition 6.1, whence a+ υb = a+ υc.

2) The remaining case is a ≥ν µb, in which

a ∼=ν a+ µb = a+ µc,

whence a ≥ν µc. Thus by Property (1) in Definition 6.1

(∗) a ≥ν υb, a ≥ν υc.

We run through three subcases.

2.a: Suppose a ∈ G. Then (∗) implies directly that a+ υb = a = a+ υc.

2.b: Suppose a ∈ T and a >ν µb. Then

a = a+ µb = a+ µc,

which forces a >ν µc, since a ∈ T . A fortiori a >ν υb and a >ν υc;
thus

a+ υb = a = a+ υc.

2.c: Suppose a ∈ T and a ∼=ν µb. Then

a+ µb = ea = a+ µc,

which forces eµb = eµc, since a ∈ T . By Property (2) we obtain
eυb = eυc. Recall from (∗) that υb ≤ν a. Thus, either υb ∼=ν υc ∼=ν a,
which gives a + υb = ea = a + υc, or υb ∼=ν υc <ν a, which gives
a+ υb = a = a+ υc.

We have proved that in all cases a+ υb = a+ υc. �

The lemma ensures the following fact about quadratic forms, valid for any
module V over a supertropical semiring.

Lemma 6.4. Assume that υ ∈ R is obedient to µ ∈ R. Let q0, q1, q
′
1 be quadratic

forms on the R-module V such that q0 + µq1 = q0 + µq′1 then

q0 + υq1 = q0 + υq′1.

Proof. For every x ∈ V we have q0(x)+µq1(x) = q0(x)+µq
′
1(x) and we conclude

by Lemma 6.3 that q0(x) + υq1(x) = q0(x) + υq′1(x). �

In the following we assume as before that V is a free quadratic R-module with
base {εi | i ∈ I}, and that |I| > 1, discarding a trivial case.
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Theorem 6.5. Assume that Z is a graphic submodule of Quad(V ). As before,
we write

(6.1) D0(Z) := {di | i ∈ K}, H0(Z) :=
{
hij | {i, j} ∈M

}
,

with K ⊂ I, M ⊂ I [2]. Assume that ϕ is a basic endomorphism of Z, having
the system of coefficients

(µi | i ∈ K) ∪ (µij | {i, j} ∈M),

and furthermore that a family (υij | {i, j} ∈ M) of elements of R is given
such that υij is obedient to µij for every {i, j} ∈M . Then there exists a basic
endomorphism ψ of Z having the coefficient system

(µi | i ∈ K) ∪ (υij | {i, j} ∈M).

Proof. a) We first prove the theorem for the special case that I = {1, 2} and

Z = Quad(V ) = E12 = Rd1 +Rd2 +Rh12.

In this case ϕ ∈ Endb(Z) has three coefficients µ1, µ2, µ, where µ = µ12, and
we are given an element υ = υ12 of R obedient to µ. Then

ϕ(d1) = µ1d1, ϕ(d2) = µ2d2, ϕ(h12) = µh12,

and we claim that there is a basic endomorphism ψ of E12 with ψ(di) = ϕ(di),
for i = 1, 2, but ψ(h12) = υh12.
Given q ∈ Quad(V ) with two presentations

(1) q = α1d1 + α2d2 + αh12 = α1d1 + α2d2 + βh12,

the existence of ψ means that in this situation (1) always

(2) µ1α1d1 + µ2α2d2 + υαh12 = µ1α1d1 + µ2α2d2 + υβh12

holds. Applying ϕ to (1) we obtain

(3) µ1α1d1 + µ2α2d2 + µαh12 = µ1α1d1 + µ2α2d2 + µβh12.

Using Lemma 6.4 with

q0 = µ1α1d1 + µ2α2d2, q1 = αh12, q′1 = βh12,

we see that indeed (2) is a consequence of (3).

b) We employ the Pasting Lemma 5.6 to prove the theorem for Z = Quad(V )
in general. Given {i, j} ∈ I [2], let

ϕij := ϕ|Eij ∈ Endb(Eij),

having the coefficients µi, µj , µij . By step a), for every {i, j} ∈ I [2], there exists
ψij ∈ Endb(Eij) with coefficients µi, µj , υij . Suppose i, j, k are different indices,
then

ψij(di) = µidi = ψik(di).

Thus Lemma 5.6 applies and gives us a basic endomorphism ψ of Quad(V )
with ψ|Eij = ψij for every {i, j} ∈ I [2]. This basic endomorphism has the

desired system of coefficients (µi | i ∈ I) ∪ (υij | {i, j} ∈ I [2]).
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c) Finally, we prove the theorem in its full generality. Given an endomorphism
ϕ ∈ Endb(Z), we extend it to a basic endomorphism ϕ̃ ∈ Endb(Z) with coeffi-
cients (µ̃i | i ∈ I) ∪ (µ̃ij | {i, j} ∈ I [2]), where µ̃i = µi when i ∈ K, otherwise
µ̃i = 0, and µ̃ij = µij for {i, j} ∈ M , otherwise µ̃ij = 0 (extension by zero,
cf. Theorem 5.8). We further extend the family (υij | {i, j} ∈ M) to a family
(υ̃ij | {i, j} ∈ M) by setting υ̃ij = υij when {i, j} ∈M and υ̃ij = 0 otherwise.

It is evident that υ̃ij is obedient to µ̃ij for any {i, j} ∈ I [2].

By step b) there exists a basic endomorphism ψ̃ of Quad(V ) with coefficients

(µ̃i | i ∈ I) ∪ (υ̃ij | {i, j} ∈ I [2]). The restriction ψ := ψ̃|Z has the desired
system of coefficients (µi | i ∈ K) ∪ (υij | {i, j} ∈M). �

Definition 6.6. The above endomorphism ψ ∈ Endb(Z) is called an H-
modification of ϕ ∈ Endb(Z).

Comment. We may interpret the pair (Z,ϕ) as a weighted graph by assigning
weights to the edges and to the vertices of the graph Γ(Z) of Z, namely weight µi
to the vertex di ∈ VerΓ(Z) and weight µij to the edge hij ∈ EdgΓ(Z). For
example, for Z = Quad(V ) and I = {1, 2, 3} we have the weighted triangle

µ3
•

µ23

❈❈
❈❈

❈❈
❈❈

❈
µ13

④④
④④
④④
④④
④

µ1• µ12

•µ2

If, say, R is cancellative, we obtain all H-modifications of ϕ by lowering the
ν-values of the edges.

Definition 6.7. Let Z be a graphic submodule of Quad(V ). Let K ⊂ I,
and let ϕ be a basic endomorphism of Z, having the system of coefficients
(µi | i ∈ K) ∪ (µij | {i, j} ∈ M), according to the notation in The-
orem 6.5. We say, that a basic endomorphism ψ of Z with coefficients
(υi | i ∈ K) ∪ (υij | {i, j} ∈ M) is a D-modification of ϕ, if µij = υij
for {i, j} ∈ M , but µi ≤ν υi for i ∈ K, in other terms ψ(hij) = ϕ(hij) for all
hij ∈ Z, while ψ(di) ≥ν ϕ(di) for all di ∈ Z.

Open Problem 6.8. In contrast to the situation of H-modifications we do not
know whether for every list of coefficients (υi | i ∈ K) ∪ (µij | {i, j} ∈ M),
where υi ≥ν µi for all i ∈ K, a D-modification of ϕ exists .

In general we only have the following weaker result.

Theorem 6.9. Given a basic endomorphism ϕ on a graphic submodule Z with
coefficients (µi | i ∈ K) ∪ (µij | {i, j} ∈M), as in the notation of Theorem 6.5,
and a family (υi | i ∈ K) in R such that µi ≤ υi (minimal ordering instead
of ν-dominance), there exists a basic endomorphism ψ of Z with coefficients
(υi | i ∈ K) ∪ (µij | {i, j} ∈M).
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Proof. We prove the theorem for the case that I = {1, 2} and Z = Quad(V ).
Then, the general case can be obtained as in the proof of Theorem 6.5.
Let

Z = Quad(V ) = E12 = Rd1 +Rd2 +Rh12.

and let ϕ(d1) = µ1d1, ϕ(d2) = µ2d2, ϕ(h12) = µh12. For any given ω1, ω2 ∈ R
we obtain a basic endomorphism χ of Z with coefficients (ω1, ω2, 0) by com-
posing the quasilinear projection

πQL : E12 → Rd1 +Rd2

with the endomorphism d1 7→ ω1d2, d2 7→ ω2d2 of the free module Rd1 + Rd2.
Then ψ := ϕ+χ has the coefficients (µ1+ω1, µ2+ω2, µ). The elements µi+ωi
with ωi running through R, are precisely all υi ≥ µi. �

It is not difficult to provide D-modifications which are not covered by Theo-
rem 6.9.

Examples 6.10. Set Z = E12 = Rd1 +Rd2 +Rh12.

(a) Choose t1, t2 ∈ Te with t1 6= 1, t2 6= 1. Then (t21, t
2
2, t1t2) is the co-

efficient system of a geometric basic endomorphism ϕ0 of Z, which
has an H-modification ϕ with (t21, t

2
2, 1). Now ϕ is a D-modification of

idZ =̂(1, 1, 1). It is easy to find a supertropical semiring R where such ti
exist with t2i 6= 1 (i = 1, 2), cf. e.g. [3, Construction 3.16].

(b) Let µ ∈ Te where µ 6= 1. Then µ idZ has the H-modification (µ, µ, 1),
which is a D-modification of idZ .

In the same vein we obtain the following interesting class of basic endomor-
phisms.

Proposition 6.11. Assume that Z = E12 = Rd1+Rd2+Rh12. Given a triple
(u1, u2, v) ∈ R3 with u1 ∼=ν u2 ∼=ν 1, v <ν 1, there is a well defined basic
endomorphism ϕ of Z which maps any quadratic form

q =

[
α1 α

α2

]
to

[
u1α1 vα

u2α2

]
.

Proof. Let ψ := u1π1 + u2π2, where πi is the basic projector onto Rdi, and
χ := v idZ . Then ψ and χ map q to

[
u1α1 0

u2α2

]
and [ vα1 vα

vα2
], respectively,

and so ϕ := ψ + χ maps q to [ u1α1 vα
u2α2

], as desired, since ui + v = ui, for
i = 1, 2. �

7. The characteristic projectors

We assume in the whole section that Z is a basic module over a supertropical
semiring R such that for every ϕ ∈ Endb(Z) there exists a basic projector
p = pϕ associated to ϕ, i.e., for any generator q ∈ B0(Z) of Z we have p(q) = q
if ϕ(q) 6= 0 and p(q) = 0 if ϕ(q) = 0. We know from §5 that this holds under one
of the hypotheses A, B listed in Convention 5.9, but there may be also other
cases where it is true. Our goal is to associate a projector p̃ on the R-module Z
to ϕ which better reflects the nature of ϕ than pϕ.
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We will use the following simple fact.

Lemma 7.1. Let ϕ ∈ Endb(Z) and p = pϕ. Then pϕ = ϕ.

Proof. Since Endb(Z) is commutative, pϕ = ϕp. Let q ∈ B0(Z). If ϕ(q) 6= 0
the p(q) = q, whence ϕ(p(q)) = ϕ(q). If ϕ(q) = 0 then p(q) = 0, whence again
ϕ(p(q)) = ϕ(q). Thus ϕp = ϕ. �

We define a function χ : R → R taking values in {0, 1, e}, as follows.

χ(x) =





1 if x ∈ T ,
e if x ∈ G,
0 if x = 0.

Note that for every x ∈ R

(7.1) χ(x)x = x

and that

(7.2) χ(x)2 = χ(x).

We emphasize that in this section it is not necessary to assume that T = R\eR
or G = eR \ {0} is closed under multiplication.
As previously (cf. (6.1)) we use the labeling

D0(Z) := {di | i ∈ K}, H0(Z) :=
{
hij | {i, j} ∈M

}
,

with K ⊂ I, M ⊂ I [2].

Theorem 7.2. Let ϕ be a basic endomorphism of Z with coefficients

(µi | i ∈ K) ∪ (µij | {i, j} ∈M).

Then there exists a basic endomorphism p̃ of Z with coefficients

(χ(µi) | i ∈ K) ∪ (χ(µij) | {i, j} ∈M).

Proof. Assume that two presentations of a quadratic form q ∈ Z are given,

q =
∑

i∈K

αidi +
∑

{i,j}∈M

αijhij

=
∑

i∈K

αidi +
∑

{i,j}∈M

βijhij .

Then

ϕ(q) =
∑

i∈K

µiαidi +
∑

{i,j}∈M

µijαijhij

=
∑

i∈K

µiαidi +
∑

{i,j}∈M

µijβijhij .
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We introduce the quadratic forms

q′ =
∑

i∈K

χ(µi)αidi +
∑

{i,j}∈M

χ(µij)αijhij ,

q′′ =
∑

i∈K

χ(µi)αidi +
∑

{i,j}∈M

χ(µij)βijhij .

Then

(∗) ϕ(q′) = ϕ(q′′)

since µi(χ(µi)) = µi, µij(χ(µij)) = µij in consequence of (7.1). Applying p to
equation (∗), we infer from Lemma 7.1 that q′ = q′′, completing the proof. �

Employing property (7.2) of χ it follows that (p̃)2 = p̃, and so p̃ is a projector
of the R-module Z. We call p̃ the characteristic projector of ϕ (or, associated
to ϕ), and denote it by p̃ϕ.
Theorem 7.2 implies the following.

Scholium 7.3. For any q ∈ B0(Z)

p̃ϕ(q) =





q if ϕ(q) ∈ T q,

eq if ϕ(q) ∈ Gq,

0 if ϕ(q) = 0.

Corollary 7.4. p̃ϕ is a satellite of pϕ.

Proof. Let p̃ := p̃ϕ, p := pϕ, q ∈ B0(Z). Trivially p̃(q) 6= 0 iff ϕ(q) ∈ T q ∪ Gq
and p(q) 6= 0 iff ϕ(q) 6= 0. Since T ∪ G = R \ {0} and the R-module Rq is free,
it is evident that ϕ(q) ∈ T q ∪ Gq iff ϕ(q) 6= 0. Thus p̃(q) 6= 0 iff p(q) 6= 0. �

There remains the problem of finding all basic endomorphisms of Z with co-
efficients in {0, 1, e}. They then appear as characteristic projectors of basic
endomorphisms, in particular of themselves. We denote the set of these pro-
jectors by P ′

b(Z). Our goal is to determine all elements of P ′
b(Z) in the case

that Z is graphic, but first we have some general observations on P ′
b(Z).

Since {0, 1, e} is a subsemiring of R consisting of idempotents, it is evident
that P ′

b(Z) is a subsemiring of the commutative semiring Endb(Z) consisting
of idempotents. In the good case that 0, 1, e are the only idempotents of R,
P ′
b(b) is the set of all idempotents of Endb(Z). In the degenerate case that

e = 1, i.e., eR = R, we have P ′
b(Z) = Pb(Z).

We now search for the elements of P ′
b(Z) in the case that Z = Quad(V ) with

I = {1, 2}, so

Z = E12 = Rd1 +Rd2 +Rh12.

Identifying each p ∈ P ′
b(Z) with its triple of coefficients, we have to find out

which triples (µ1, µ2, µ) with entries in {0, 1, e} are elements of P ′
b(Z). We may

assume that e 6= 1.
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The set Pb(Z) of basic projectors of Z = E12 is a subset of P ′
b(Z), closed under

multiplication. It consists of the five triples

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1).

The finite sums of these triples constitute the subsemiring P ′′
b (Z) of P ′

b(Z),
which is generated by Pb(Z). It contains beside Pb(Z) the nine triples

(e, 0, 0), (0, e, 0), (e, 1, 0), (1, e, 0),

(e, e, 0), (e, 1, 1), (1, e, 1), (e, e, 1), (e, e, e).

But the triples (1, 1, e), (e, 1, e), (1, e, e) which are not in P ′′
b (Z) (as long as

e 6= 1) are nevertheless in P ′
b(Z), as a consequence of Theorem 6.5 on H-

modifications, since (1, 1, 1), (e, 1, 1), (1, e, 1) are in P ′
b(Z) and e is obedient

to 1.
We have verified

Lemma 7.5. P ′
b(E12) contains all triples (µ1, µ2, µ) with entries in {0, 1, e}

such that µ1 6= 0, µ2 6= 0 whenever µ 6= 0, equivalently, such that µ2 ≤ν µ1µ2.

Under very mild conditions on the supertropical semiring R we now see that
the triples from Lemma 7.5 exhaust the set P ′

b(Z).

Lemma 7.6. Assume that eR contains an element z > e. Then all triples
(µ1, 0, µ), (0, µ2, µ) with µ 6= 0 are not in P ′

b(Z).

Proof. Suppose that (e, 0, e) ∈ P ′
b(Z), where Z := E12. We conclude from the

relation d1 + d2 = d1 + d2 + h12 that ed1 = ed1 + eh12, which means that

ex21 = ex21 + ex1x2

for any x1, x2 ∈ R. Inserting here x1 = e and x2 = z ∈ G with z > e, we obtain
that e = e + z = z, a contradiction. Thus (e, 0, 0) /∈ P ′

b(Z). We conclude by
Theorem 6.9 that the triples (0, 0, e) and (1, 0, e) both are not in P ′

b(Z) since
otherwise (e, 0, e) would be a D-modification of one of these triples (since 0 < e
and 1 < e), and so an element of P ′

b(Z). This proves that no triple (µ1, 0, µ)
with µ 6= 0 is in P ′

b(Z). By symmetry also no triple (0, µ2, µ) with µ 6= 0 is
in P ′

b(Z). �

Theorem 7.7. Assume that there exists some z ∈ eR with z > e. Furthermore
assume that the basic module Z is graphic and (µi | i ∈ K)∪ (µij | {i, j} ∈M)
is a tuple of elements in {0, 1, e}. Then there exists a projector p ∈ P ′

b(Z) with
these coefficients iff, whenever {i, j} ∈ M and µi = 0 or µj = 0, also µij = 0,
in other terms iff, µ2

ij ≤ν µiµj for all {i, j} ∈M.

Proof. Since the Pasting Lemma 5.6 and the Extension Theorem 5.8 hold with-
out any restriction on the supertropical semiring R, we can repeat the first two
paragraphs in the proof of Theorem 5.10, showing that it suffices to verify
Theorem 7.7 in the very special case that Z = E12, which has be done above
(Lemmas 7.5 and 7.6). �
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8. The basic endomorphisms over a tangible supertropical

semifield

In this section we address the “absolute” existence problem for basic endomor-
phisms, focussing on the case of Z = Quad(V ), I = {1, 2}, i.e.,

Z = Quad(V ) = Rd1 +Rd2 +Rh12.

At the moment R may be any supertropical semiring. Given a triple
(µ1, µ2, µ) ∈ R3, we enquire whether a basic endomorphism ϕ of Z with coef-
ficients µ1, µ2, µ exists, i.e., with

ϕ(d1) = µ1d1, ϕ(d2) = µ2d2, ϕ(h12) = µh12.

Since d1 + d2 = d1 + d2 + h12, we have the necessary condition for existence
of ϕ that

(8.1) µ1d1 + µ2d2 = µ1d1 + µ2d2 + µh12,

which means an equivalence of triangular schemes 9

[
µ1 µ

µ2

]
∼=

[
µ1 0

µ2

]
.

Problem 8.1. For which supertropical semirings R is Condition (8.1) suffi-
cient for the existence of a basic endomorphism of Z = Quad(V ) = Rd1 +
Rd2 +Rh12 with coefficients µ1, µ2, µ?

While in the last sections, starting from §3, we have been eager to impose
only mild restrictions on the supertropical semiring R, we now solve this prob-
lem for the class of tangible supersemifields. We start with a general lemma,
implementing a previous argument in different context.

Lemma 8.2. A triple (µ1, µ2, µ) ∈ R3 serves as the coefficients of a basic en-
domorphism of Z = Rd1 + Rd2 + Rh12 precisely if, for any q ∈ Z, any two
different presentations

(A) q =

[
α1 α

α2

]
=

[
α1 β

α2

]

ensue an equivalence

(B)

[
µ1α1 µα

µ2α2

]
∼=

[
µ1α1 µβ

µ2α2

]
.

Proof. If (A) implies (B), then the map ϕ : Z → Z given by

ϕ

([
α1 α

α2

])
=

[
µ1α1 µα

µ2α2

]
,

or in other terms as

ϕ(α1d1 + α2d2 + αh12) = α1µ1d1 + α2µ2d2 + αµh12,

9In the terminology of [8, §1]: The “formal” quadratic forms
[ µ1 µ

µ2

]

,
[

µ1 0

µ2

]

present

the same “functional” quadratic form.
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is well defined and obviously is an endomorphism of Z, which is basic with
coefficients µ1, µ2, µ. Conversely, if such basic endomorphism exists, then (A)
implies (B). �

From now on R is a tangible supersemifield, which we tacitly assume to be
nontrivial.10 Condition (8.1) means that the quadratic form q = [ µ1 µ

µ2
] is

quasilinear, q = qQL, equivalently 0 ∈ C12(q). By [8, §7] (cf. there [8, Propo-
sition 7.9], [8, Theorem 7.11]) this holds iff either µ2 ≤ν µ1µ2 or R is discrete
and µ2 ∼=ν π−1µ1µ2, µ1, µ2 ∈ G. We are ready to prove

Theorem 8.3. Assume that R is a tangible supersemifield and (µ1, µ2, µ) ∈ R3.
Then a basic endomorphism of Z := Quad(V ) = Rd1+Rd2+Rh12, I = {1, 2},
with coefficients (µ1, µ2, µ) exists iff

µ2 ≤ν µ1µ2,

excluding the degenerate case that R is discrete and Te = {1}, in which every
(µ1, µ2, µ) ∈ G3 with µ2 = π−1µ1µ2 yields a basic endomorphism,

Proof. a) As commented above, we may restrict to the case of triples (µ1, µ2, µ)
with either µ2 ≤ν µ1µ2 or R is discrete and µ2 ∼=ν π−1µ1µ2, where µ1, µ2 ∈ G.

b) Assume that µ2 ≤ν µ1µ2. Given q ∈ Z with two presentations (A) and
α 6= β, we verify that (B) is valid, assisted again by [8, Theorems 7.11 and 7.12].
We start with the case that α2 ≤ν α1α2 and β2 ≤ν α1α2. Then

(µα)2 ≤ν (µ1α1)(µ2α2) and (µβ)2 ≤ν (µ1α1)(µ2α2),

and thus both forms in (B) are quasilinear, whence
[
µ1α1 µα

µ2α2

]
∼=

[
µ1α1 0

µ2α2

]
∼=

[
µ1α1 µβ

µ2α2

]
.

By [8, Theorem 7.11] the remaining case to be considered is that R is discrete
and α2 ∼=ν π

−1α1α2, possibly with α and β interchanged. Then, by the same
theorem, β ∼=ν α if α2 ∈ T or α1 ∈ T , while β ≤ν α if both α1, α2 are in G.
If µ2 <ν µ1µ2, then

(µα)2 ≤ν (µ1α1)(µ2α2) and (µβ)2 ≤ν (µ1α1)(µ2α2),

and as before we conclude that (B) is valid.
Let µ2 ∼=ν µ1µ2, then

(µα)2 ∼=ν π
−1(µ1α1)(µ2α2).

If β <ν α then µβ <ν µα, and µ1α1, µ2α2 ∈ G, since α1, α2 ∈ G. Thus (B) is
valid, cf. [8, Theorem 7.12]. If β ∼=ν α then µβ ∼=ν µα, and (B) holds again by
[8, Theorem 7.12] (regardless whether µiαi is ghost or tangible). We conclude
that, whenever µ2 ≤ν µ1µ2, the triple (µ1, µ2, µ) yields a basic endomorphism.
Finally, we consider the case that R is discrete and µ2 ∼=ν π−1µ1µ2, where
µ1, µ2 ∈ G. We choose α1, α2, α, β in R such that

α2 ∼=ν π
−1α1α2

∼=ν β
2,

10This means that G 6= {e}. If G = {e}, all problems discussed here seem to be trivial.
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whence α ∼=ν β, but, if possible, µα 6= µβ. Then

(µα)2 ∼=ν π
−2(µ1α1)(µ2α2) ∼=ν (µβ)2.

Thus (B) fails when µα 6= µβ, and we conclude that (µ1, µ2, µ) does not provide
a basic endomorphism.
For µ ∈ T we may choose α ∈ T and β = eα. When µ ∈ G, we need the
group Te to be nontrivial, since otherwise α ∼=ν β implies α = β. Therefore we
choose α, β ∈ T with α 6= β, α ∼=ν β, α

2 ∼=ν π
−1α1α2. Thus only in the subcase

that µ ∈ G, Te = {1} the triple (µ1, µ2, µ) yields a basic endomorphism. �

We now obtain a partial answer, to Problem 8.1 as follows.

Theorem 8.4. Assume that R is a tangible supersemifield. Let Z = Quad(V )
with I = {1, 2}, i.e.,

Z := Quad(V ) = Rd1 +Rd2 +Rh12.

Assume that (µ1, µ2, µ) ∈ R3 is a triple with

(8.2) µ1d1 + µ2d2 + µh12 = µ1d1 + µ2d2.

(a) If R is dense, then there exists a basic endomorphism of Z with coeffi-
cients (µ1, µ2, µ).

(b) If R is discrete there always exist triples in R3 satisfying (8.2) which
do not yield basic endomorphisms. These are the (µ1, µ2, µ) ∈ R3 with
the following properties:
I. If Te 6= {1}:

µ2 ∼=ν π
−1µ1µ2, µ1, µ2 ∈ G;

II. If Te = {1}:

µ2 ∼=ν π
−1µ1µ2, µ1, µ2 ∈ G, µ ∈ T .

Proof. Recall that (8.2) holds iff either µ2 ≤ν µ1µ2 or R is discrete
µ2 ∼=ν π−1µ1µ2, and µ1, µ2 ∈ G. Comparing this with the conditions in
Theorem 8.3 under which (µ1, µ2, µ) yields a basic endomorphism of Z, we
obtain the claim. �

Theorem 8.3 readily generalizes to an existence theorem for basic endomor-
phisms of a linked module Z, as follows. (We consider first the case that
Z = Quad(V ) and adhere to the standard notation (3.1) for D0 and H0.)

Theorem 8.5. Assume that R is a tangible supersemifield.

(a) If Te 6= {1}, then a family

(µi | i ∈ I) ∪ (µij | i < j)

in R serves as the system of coefficients of a basic endomorphism
of Quad(V ) iff

(8.3) µ2
ij ≤ν µiµj

for all i, j ∈ I with i < j. The same holds when Te = {1} and R is
dense.
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(b) When R is discrete and Te = {1}, Condition (8.3) has to be replaced
by the more complicated condition, that for all i < j either µ2

ij ≤ν µiµj
or

µ2
ij
∼=ν π

−1µiµj , (µi, µj , µij) ∈ G3.

(c) Mutatis mutandis, all this remains true if we replace Quad(V ) by any
linked submodule Z of Quad(V ).

Proof. This follows from Theorem 8.3 by the same line of thought as in parts
(b) and (c) of the proof of Theorem 6.5, using the Pasting Lemma 5.6. �

When Z is a basic R-module, and R is a tangible supersemifield, then
Z = Zlink ⊕ Y with Y a free R-module (cf. Theorem 4.10). Every basic
endomorphism ϕ of Z is a direct sum ϕ = ϕ1⊕ϕ2, with ϕ1 and ϕ2 basic endo-
morphisms of Zlink and Y respectively. Since Y is free there are no restrictions
on the coefficients system of ϕ2, and therefore we know all the endomorphisms
of Z. We omit the details.

Remark 8.6. As a consequence of Theorems 8.5 and 6.9, Problem 6.8 about D-
modifications has a positive answer when R is a tangible supersemifield. Every
change of coefficients µi 7→ υi (i ∈ K), prescribed in Definition 6.7 for a given
basic endomorphism ϕ is realized by a D-modification of ϕ. Here we do not
need to bother about the case that Te = {1}, since then Problem 6.8 vanishes:
If υi ≤ν µi, then υi ≤ µi.
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