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1 Introduction.

Hochschild cohomology is a basic invariant which associates to a finite dimen-
sional algebra A a super-commutative algebra HH(A) = Ext●A -mod-A(A). The
algebra HH(A) can be thought of as the derived centre of the algebra A, given
as it is by the formula HH(A) = H●EndA -mod-A(Ã), where Ã is a projective
resolution of A in the category A -mod-A of A-A-bimodules; to see the analogy
compare with the formula Z(A) = EndA -mod-A(A) for the classical centre Z(A)
of a unital algebra A. If M is any A-module, then the natural algebra homo-
morphism Z(A)→ HomA(M,M) extends to a natural algebra homomorphism
HH(A)→ Ext●A(M,M).

Like other algebras obtained by taking derived endomorphisms, Hochschild
cohomology and its variants can be endowed with additional structures, which
have been the source of diverse interest: the most basic such is known as the
Gerstenhaber bracket [5]. But even without further decoration, the algebra
HH(A) has proved difficult to compute in specific examples, and its behaviour
difficult to predict. One delicacy is the issue of finite generation of HH(A)
which is not guaranteed for a finite dimensional algebra A, even modulo the
ideal of nilpotent elements [23, 22]; yet there are finite dimensional self-injective
algebras whose Hochschild cohomology is not merely finitely generated but
finite dimensional [2].

The subject of this article is the computation of HH in a basic example arising
in the representation theory of algebraic groups. We examine the Hochschild
cohomology of polynomial representations of the algebraic group G = GL2(F ),
where F is an algebraically closed field of characteristic p. Indeed, we com-
pute the Hochschild cohomology of any Ringel self-dual block of polynomial
representations of G for p > 2, which by [7, Theorem 27] are precisely those

Documenta Mathematica 23 (2018) 117–170



Hochschild Cohomology of GL2 119

blocks with pl simple modules for l ∈ N. The algebras describing these blocks
increase in complexity as l increases, but we are nevertheless able to develop
sufficiently sharp homological tools to achieve the calculation of their HH alge-
bras. Their Hochschild cohomology algebras, for which we give explicit bases
and multiplications, turn out not only to be finitely generated, but indeed
finite-dimensional.

We apply a theory of algebraic operators (2-functors) on certain 2-categories
which underlies the representation theory of G [15], [16]. We also use the theory
of quasi-hereditary algebras [3], the theory of Koszul duality [1], the formalism
of differential graded algebras and their derived categories [11], a theory of ho-
mological duality for algebraic operators, explicit analysis of certain bimodules
associated with a well-known quasi-hereditary algebra c and its homological
duals, and a formalism of algebras with a polytopal basis.

2 The answer.

All algebras considered in this article will be F -algebras. Suppose Γ =

⊕i,j,k∈Z Γ
ijk is a Z-trigraded algebra. We have a combinatorial operator OΓ

which acts on the collection of Z-bigraded algebras Σ after the formula

OΓ(Σ)
ik = ⊕

j,k1+k2=k

Γijk1 ⊗F Σjk2 ,

where we take the super tensor product with respect to the k-grading.

Let p > 2. In the main body of the paper we define an ijk-graded algebra Π

with an explicit, canonically defined basis BΠ. A complete description of the
algebra Π, its basis, and its product, is given in Section 11.

There is a natural algebra homomorphism F ←Π which is a splitting of the map
sending 1 to the identity in Π. This lifts to a morphism of operatorsOF ←OΠ,
which means that we obtain an algebra homomorphism OFΣ←OΠΣ for every
Σ. Since O2

F =OF we obtain a sequence of operators

OF ←OFOΠ ←OFO
2
Π
←OFO

3
Π
← ...

We define hhl to be the Hochschild cohomology of a block of polynomial rep-
resentations of G with pl simple modules and establish the following:

Theorem 1. For any l > 0, the algebra hhl is isomorphic to OFO
l
Π
(F [z, z−1]).

Remark 2. For every l the algebra hhl inherits an explicit basis from Π with
an explicit product as described in Corollary 27.

Acknowledgement. The first author acknowledges support from ERC grant
PERG07-GA-2010-268109. We would also like to thank the referee for an
extremely thorough and helpful report.
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3 Guidebook.

The proof of Theorem 1 passes through a number of counties of diverse char-
acter; here we briefly describe some of these. The algebras we are interested in
are not Koszul algebras; nevertheless, they are closely related to certain Koszul
algebras and we make use of some pretty generalities concerning the Hochschild
cohomology of Koszul algebras; in Section 4 we give an account of these. In
Section 5 we introduce certain algebraic operators and gather together some
facts about these that we have established in previous papers. In Section 6
we describe an interaction of these operators with Hochschild cohomology and
Koszul duality. In Section 7 we recall from another paper [15] how special
examples of our algebraic operators can be used to describe the polynomial
representation theory of GL2(F ). In Section 8 we show that this description of
the polynomial representation theory of GL2(F ) via algebraic operators along
with the Section 6 analysis of the behaviour of Hochschild cohomology under
such algebraic operators can be used to describe the Hochschild cohomology
for the algebras relevant to GL2(F ) in terms of an algebraic operator OHH(Λ);

here Λ = HTΩ(t!)) is the homology tensor algebra over a certain Koszul algebra
Ω of a certain pair of dg Ω-Ω bimodules t!, and HH is the operator that sends a
graded algebra X =⊕iX

i to a graded algebra⊕iHH(X0,X i). In Section 9 we
give a combinatorial description of the algebra Λ via certain bimodules; to do
this we invoke a study of the negative part Λ− of Λ made in a previous article
[16], and Serre duality for Ω. In Section 10 we perform a detailed combinatorial
analysis of the Hochschild cohomology of certain bimodules appearing in the
algebra Λ. A fact emerging here is that a certain quotient Θ of Ω, commonly
known as the preprojective algebra of type A, possesses an involution σ such
that

Θσ ≅ Θ∗, HH(Ω,Θσ) ≅ HH(Ω,Θ)∗;
the first of these formulas asserts the well known self-injectivity of Θ, but the
second asserts something similar holds under HH(Ω,−). In Section 11 we use
the analysis of the preceding section to give a combinatorial description of
Π = HH(Λ) in terms of certain bimodules and maps between them. Finally in
Section 12 we reach our destination, and give a proof of Theorem 1 as well as
a monomial basis for the algebras we construct.

4 Hochschild cohomology of Koszul algebras.

4.1 Grading conventions.

In order to fix our notations, we will now give a brief introduction to dg alge-
bras and modules, which will be the main objects of study in this paper. A
differential graded vector space is a Z-graded vector space V = ⊕kV

k with a
graded endomorphism d of degree 1. We write ∣v∣ for the degree of a homo-
geneous element of V . We will always assume all V k to be finite-dimensional.
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We assume d can act both on the left and the right of V , with the conven-
tion d(v) = (−1)∣v∣(v)d. A differential graded algebra is a Z-graded algebra
A = ⊕kA

k with a differential d such that

d(ab) = d(a).b + (−1)∣a∣a.d(b),
or equivalently (ab)d = a.(b)d + (−1)∣b∣(a)d.b.
If A is a differential graded algebra then a differential graded left A-module is
a graded left A-module M with differential d such that

d(a.m) = d(a).m + (−1)∣a∣a.d(m);
a differential graded right A-module is a graded right A-module M with differ-
ential d such that

d(m.a) = d(m).a + (−1)∣m∣m.d(a).
If A and B are dg algebras then a dg A-B-bimodule is a graded A-B-bimodule
with a differential which is both a left dg A-module and a right dg B-module.

If AMB and BNC are dg bimodules where A, B, and C are dg algebras, then
M ⊗B N is a dg A-C-bimodule with differential

d(m⊗ n) = d(m)⊗ n + (−1)∣m∣m⊗ d(n).
Speaking about morphisms of dg algebras and dg (bi-)modules we mean ho-
mogeneous morphisms. However, if AMB and ANC are dg bimodules where
A, B, and C are dg algebras, then HomA(M,N), the k-graded vector space
whose k-degree m-part consists of all A-module morphisms f ∶ M → N such
that f(M ●) ⊆M ●+m. This is a dg B-C-bimodule with differential

d(φ) = d ○ φ − (−1)∣φ∣φ ○ d.
If AM is a left dg A-module, then EndA(M) is a differential graded algebra
which acts on the right of M , giving M the structure of an A-EndA(M)-
bimodule, the differential on EndA(M) being given by (φ)d = φ ○ d − (−1)∣φ∣d ○
φ. If MB is a right dg B-module, then EndB(M) is a differential graded
algebra which acts on the left of M , giving M the structure of an EndB(M)-B-
bimodule, the differential on EndB(M) being given by d(φ) = d○φ−(−1)∣φ∣φ○d.
A differential bi- (tri-)graded vector space is a vector space V with a Z

2- respec-
tively Z

3-grading whose coordinates we denote by (j, k) respectively (i, j, k) and
an endomorphism d of degree (0,0,1), i.e. d is homogeneous with respect to
the i, j-gradings and has degree 1 in the k-grading, which we will also call the
homological grading. We denote by ܂⋅܂ a shift by 1 in the j-grading, meaning(V j(܂n܂ = V j−n. Since we will often identify dg modules and complexes, we will
stick to the complex convention of [⋅] being a shift to the left, i.e. V [n]k = V k+n.
Altogether (V ijk([m]܂n܂ = V i,j−n,k+m.
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All definitions above can be extended to the differential bi- (tri-)graded set-
ting, defining differential bi- (tri-)graded algebras, differential bi- (tri-)graded
(left and right) A-modules as well as bi- (tri-)graded A-B-bimodules as bi- (tri-
)graded algebras resp. modules resp. bimodules which are differential graded al-
gebras resp. modules resp. bimodules with respect to the k-grading, i.e. with re-
spect to an endomorphism of degree (0,0,1). Speaking about morphisms of dif-
ferential bi- (tri-)graded algebras and differential bi- (tri-)graded (bi-)modules
we mean homogeneous morphisms with respect to all gradings. Similarly to
the above, homomorphism spaces taken between A-modules (rather than dif-
ferential (bi-) trigraded A-modules) will carry a differential bi- (tri-)grading.

For a dg algebra A, we denote by Ddg(A) the dg derived category of A, whose
objects are (left) dg A-modules and where morphisms are given by the local-
isation of the class of dg module morphisms with respect to the class which
are quasi-isomorphisms (see [11, Section 3.1, 3.2]). We denote by A -perf and
perf-A the categories of left resp. right perfect dg A-modules.

We let H denote the cohomology functor, which takes a differential k-graded
complex C to the k-graded vector space HC =H●C.

4.2 Hochschild cohomology of Koszul algebras.

Koszul duality was introduced by Beilinson, Ginzburg and Soergel [1] and gen-
eralised to dg algebras by Keller [9, Section 10]. The conventions we follow are
given in [17, Appendix B], and also summarised below.

Setup 3. Throughout this section, A denotes a finite-dimensional Koszul al-
gebra. It is hence in particular a quadratic j-graded algebra of the form A =
TA0(A1)/R, with relations R ⊂ A1 ⊗A0 A1, and we write A! = TA0((A!)−1)/R!

for its quadratic dual (which is then also Koszul), where the A0-A0 bimodules
A1 and (A!)−1, and the short exact sequences of A0-A0-bimodules

0→ R → A1 ⊗A0 A1 → A2 → 0

0← (A!)−2 ← (A!)−1 ⊗A0 (A!)−1 ← R! ← 0,

are duals of each other. We insist A is generated in j-degrees 0 and 1, and
A! is generated in j-degrees 0 and −1. We assume that A0 is isomorphic to a
direct product of a number of copies of F , and denote by es the idempotent
corresponding to the sth copy.

Following [13, Proposition 2.2.4.1] and [10, Section 4.7], the Koszul resolution
is given by A⊗τ (A!)∗ ⊗τ A where τ is the canonical twisting cochain given by
the composition (A!)∗ → A1 → A

of the inclusion by the projection. The complex A⊗τ (A!)∗ ⊗τ A is isomorphic
as a complex to B ∶= A⊗A0 (A!)∗ ⊗A0 A, with differential

α⊗ ϕ⊗α′ Ă ∑
ρ∈B1
((−1)∣α∣αρ⊗ ρ∗ϕ⊗ α′ − (−1)∣ϕ∣+∣α∣+∣ρ∗ ∣α⊗ϕρ∗ ⊗ ρα′),
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where B1 is any basis of the free A0-A0-bimodule A1 (cf. [18, page 1119]).

It follows from [18, Theorem 6.3] that there is an isomorphism of dg algebras

HomA0⊗A0op(A!∗,A) → HomA⊗Aop(A⊗A0 A!∗ ⊗A0 A,A⊗A0 A!∗ ⊗A0 A)
given by

f Ă (α⊗ϕ⊗ α′ Ă (−1)∣f ∣(∣α∣+∣ϕ1∣)α⊗ ϕ(1) ⊗ f(ϕ(2))α′)
where the algebra structure on HomA0⊗A0op(A!∗,A) is induced by the comul-
tiplication ∆ ∶ A!∗ → A!∗⊗A0 A!∗ on A!∗ and we write ∆(ϕ) = ϕ(1)⊗ϕ(2). Note
that the original source considers tensor products and hom spaces over F , but
the results readily generalise to our setup.

Let nowX,Y be differential jk-graded A-A-bimodules. It then follows similarly
that the morphism

HomA0⊗A0op(A!∗,X)→ HomA⊗Aop(A⊗A0 A!∗ ⊗A0 A,A ⊗A0 A!∗ ⊗A0 X) (1)

given by

f Ă (α⊗ϕ⊗ α′ Ă (−1)∣f ∣(∣α∣+∣ϕ1∣)α⊗ ϕ(1) ⊗ f(ϕ(2))α′)
translates the product

HomA0⊗A0op(A!∗,X)⊗HomA0⊗A0op(A!∗, Y ) → HomA0⊗A0op(A!∗,X ⊗A Y )
induced by comultiplication on A!∗ into the cup product

HH(A,X)⊗HH(A,Y ) → HH(A,X ⊗A Y )
after taking homology.

Lemma 4. In the situation of Setup 3, and for X a differential jk-bigraded
A-A-bimodule, we have isomorphisms of jk-graded vector spaces,

HomA⊗Aop(B,X) ≅ HomA0⊗A0op(A0,A! ⊗A0 X)
≅⊕

s,t

esA
!et ⊗F etXes

≅⊕
s,t

(es ⊗ es)(A! ⊗F Xop)(et ⊗ et).
Explicitly, the isomorphism

⊕
s,t

esA
!et ⊗F etXes → HomA⊗Aop(B,X)

is given by

a⊗ xĂ (χa⊗x∶ α⊗ ϕ⊗α′ Ă (−1)∣ϕ∣∣x∣+(∣a∣+∣x∣)∣α∣αϕ(a)xα′) .
Documenta Mathematica 23 (2018) 117–170



124 V. Miemietz, W. Turner

Proof. The second and third isomorphisms hold by definition. The first holds
by a sequence of adjunctions:

HomA⊗Aop(A⊗A0 A!∗ ⊗A0 A,X) ≅ HomA0⊗A0op(A!∗,X)
≅ HomA0⊗A0op(A0,HomA0(A!∗,X))
≅ HomA0⊗A0op(A0,A! ⊗A0 X).

Tracing these adjunctions, we obtain the desired isomorphism

⊕
s,t

esA
!et ⊗F etXes → HomA⊗Aop(B,X)

as the composition of the isomorphism

⊕
s,t

esA
!et ⊗F etXes → HomA0⊗A0op(A!∗,X) (2)

given by
a⊗ xĂ (ϕĂ (−1)∣ϕ∣∣x∣ϕ(a)x)

and the isomorphism

HomA0⊗A0op(A!∗,X)→ HomA⊗Aop(A⊗A0 A!∗ ⊗A0 A,X)
given by

f Ă (α⊗ϕ⊗α′ Ă (−1)∣f ∣∣α∣αf(ϕ)α′) ,
which is the composition of the morphism in (1) and the natural projection
A⊗A0 A!∗ ⊗A0 X →X .

Setup 5. In addition to keeping the conventions from Setup 3, we now further
assume we are in one of the following cases:

1. A is jk-graded such that A1● = A10, and (A!)−1● = (A!)−11. This implies
in particular that A is concentrated in k-degree 0, and A! is concentrated
in non-negative k-degrees.

2. A is jk-graded such that A1● = A11, and (A!)−1● = (A!)−10. This implies
in particular that A! is concentrated in k-degree 0, and A is concentrated
in non-negative k-degrees.

In particular, assuming Setup 5 (1), the differential on B = A ⊗A0 A!∗ ⊗A0 A

specialises to

α⊗ϕ⊗α′ Ă ∑
ρ∈B1
(αρ⊗ ρ∗ϕ⊗α′ + (−1)∣ϕ∣α⊗ϕρ∗ ⊗ ρα′)

and, assuming Setup 5 (2), the differential on B specialises to specialises to

α⊗ϕ⊗α′ Ă (−1)∣α∣ ∑
ρ∈B1
(αρ⊗ ρ∗α⊗ α′ − α⊗ϕρ∗ ⊗ ρα′).
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Theorem 6. Assume we are in the situation of Setup 5(2) and let X be a
differential jk-bigraded A-A-bimodule. Then we have an isomorphism

HH(A,X) ≅ H(⊕
s,t

esA
!et ⊗ etHXes)

where the differential on ⊕s,t esA
!et ⊗ etHXes is given by

a⊗ xĂ − ∑
ρ∈B1
(aρ∗ ⊗ ρx − (−1)∣x∣ρ∗a⊗ xρ).

Proof. In Setup 5(2), the jk-graded vector space isomorphism

⊕
s,t

esA
!et ⊗F etXes → HomA⊗Aop(A⊗A0 A!∗ ⊗A0 A,X)

from Lemma 4 is now given by

a⊗ xĂ (χa⊗x∶ α⊗ϕ⊗α′ Ă (−1)∣α∣∣x∣αϕ(a)xα′) , (3)

which, wanting this to be an isomorphism of jk-graded differential bimodules,
forces the differential on ⊕s,t esA

!et ⊗F etXes to be given by

d∶a⊗ xĂ (1⊗ dX)(a⊗ x) − ∑
ρ∈B1
(aρ∗ ⊗ ρx − (−1)∣x∣ρ∗a⊗ xρ)

where dX again denotes the differential on X .

Indeed, we compute the differential of χa⊗x which is the map

α⊗ϕ⊗ α′ Ă (−1)∣α∣∣x∣(−1)∣α∣αϕ(a)dX(x)α′
− (−1)∣x∣χa⊗x

̂
̂(−1)∣α∣ ∑ρ∈B1(αρ⊗ ρ∗ϕ⊗ α′ − α⊗ ϕρ∗ ⊗ ρα′)̂̂

= (−1)∣α∣(∣x∣+1)αϕ(a)dX(x)α′
− (−1)∣α∣+∣x∣(−1)(∣α∣+1)∣x∣ ∑

ρ∈B1
αρ(ρ∗ϕ)(a)xα′

+ (−1)∣α∣+∣x∣(−1)∣α∣∣x∣ ∑
ρ∈B1

α(ϕρ∗)(a)xρα′
= (−1)∣α∣(∣x∣+1)αϕ(a)dX(x)α′
− (−1)∣α∣(∣x∣+1) ̂̂∑ρ∈B1 αρϕ(aρ

∗)xα̂̂
− (−1)(∣α∣+1)(∣x∣+1) ̂̂∑ρ∈B1 αϕ(ρ

∗a)xρα̂̂ .
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126 V. Miemietz, W. Turner

On the other hand, with the prescribed differential d,

χd(a⊗x) = χa⊗dX(x) − ∑
ρ∈B1
(χaρ∗⊗ρx − (−1)∣x∣χρ∗a⊗xρ) ,

which is the map

α⊗ϕ⊗ α′ Ă (−1)∣α∣(∣x∣+1)αϕ(a)dx(x)α′
− (−1)∣α∣(∣x∣+1) ∑

ρ∈B1
αϕ(aρ∗)ρxα′

+ (−1)∣x∣(−1)∣α∣(∣x∣+1) ∑
ρ∈B1

αϕ(ρ∗a)xρα′
= (−1)∣α∣(∣x∣+1)αϕ(a)dX(x)α′
− (−1)∣α∣(∣x∣+1) ∑

ρ∈B1
αϕ(aρ∗)ρxα′

− (−1)(∣α∣+1)(∣x∣+1) ∑
ρ∈B1

αϕ(ρ∗a)xρα′

which equals the expression for the differential of χa⊗x(α ⊗ ϕ ⊗ α′) term by
term.

We write d = 1 ⊗ dX + d̃ for the differential on ⊕s,t esA
!et ⊗F etXes. We are

interested in the homology of this complex. Notice that the map (which is in
itself a differential) a⊗xĂ a⊗dX(x) has j-degree 0 on each tensor factor, and
the remaining part of the differential has j-degree −1 on the first and j-degree
1 on the second tensor factor. We now consider the spectral sequence induced
by the radical filtration of A!. Then it follows immediately from the definition
that d0 = 1⊗ dX , d1 = d̃ and dl = 0 for all l ≥ 2 and consequently

H(⊕
s,t

esA
!et ⊗ etXes) ≅ H(⊕

s,t

esA
!et ⊗ etHXes)

where the differential on the latter complex is precisely given by d̃.

We now consider the cup product in Hochschild cohomology.

Proposition 7. Assume we are in the situatiom of Setup 5(2) and let X and Y

be differential jk-bigraded A-A-bimodules. Under the isomorphism in Theorem
6, the cup product

HH(A,X)⊗HH(A,Y )→ HH(A,X ⊗ Y )
is translated to

(⊕
s,t

esA
!et ⊗ etHXes)⊗ (⊕

s,t

esA
!et ⊗ etHY es)→⊕

s,t

esA
!et ⊗ etH(X ⊗A Y )es

(a⊗ x)⊗ (b⊗ y)Ă ba⊗ xy.
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Proof. Recall from (1) the isomorphism of dg vector spaces

T∶HomA0⊗A0op(A!∗,X)→ HomA⊗Aop(A⊗A0 A!∗ ⊗A0 A,A⊗A0 A!∗ ⊗A0 X)
given by

f Ă (α⊗ ϕ⊗ α′ Ă (−1)∣f ∣(∣α∣+∣ϕ1 ∣)α⊗ϕ(1) ⊗ f(ϕ(2))α′) .
Notice that composing this with the natural projection A⊗A0 A!∗ ⊗A0 X →X ,
the only term in the sum that survives in T(f)(α ⊗ ϕ ⊗ α′) is (−1)∣f ∣(∣α∣)α ⊗
1⊗ f(ϕ)α′ which maps to (−1)∣f ∣(∣α∣)αf(ϕ)α′. Hence, if f is the image of a⊗x
under the isomorphism (2), we precisely obtain our χa⊗x from (3) above.

The product

HomA0⊗A0op(A!∗,X)⊗HomA0⊗A0op(A!∗, Y ) → HomA0⊗A0op(A!∗,X ⊗A Y )
induced by comultiplication on A!∗ translates into the cup product HH(A,X) →
HH(A,Y )→ HH(A,X⊗Y ) after taking homology. We thus consider the trans-
lation of the product

HomA0⊗A0op(A!∗,X)⊗HomA0⊗A0op(A!∗, Y ) → HomA0⊗A0op(A!∗,X ⊗A Y )
induced by comultiplication on A!∗ into a product

(A! ⊗A0⊗A0op X)⊗ (A! ⊗A0⊗A0op Y )→ A! ⊗A0⊗A0op (X ⊗A Y ) .
Denoting the image of a ⊗ x under the isomorphism (2) by ξa⊗x∶ (ϕ Ă ϕ(a)x)
(using ∣ϕ∣ = 0), we see that from (ξa⊗x ⋅ξb⊗y)(ϕ) = ϕ(1)(a)ϕ(2)(b)x⊗y it follows
that the product of a ⊗ x and b ⊗ y, being the preimage of (ξa⊗x ⋅ ξb⊗y) is
ba⊗ (x⊗ y), from the formula ∆(ϕ)(a⊗ b) = ϕ(ba).
Since the splitting of the differential on A!⊗A0⊗A0opX as d = dX+d̃ is compatible
with the tensor product, the isomorphism obtained in Theorem 6 is compatible
with the cup product in homology and we obtain the desired multiplication
formula.

5 Some old things.

Here we gather an assortment of notions and facts we have established in pre-
vious articles. More details can be found in those articles [15], [16].

5.1 The 2-category T

Let T denote the collection of pairs (A,M) where A is a differential k-graded
algebra and M is a differential k-graded A-A-bimodule.
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The collection T in fact forms the set of objects of a 2-category: 1-morphisms
from (A,M) to (B,N) are given by a pair (S,φS), consisting of a differential
(bi-)graded A-B-bimodule ASB and a quasi-isomorphism

φS ∶ S ⊗B N →M ⊗A S;

2-morphisms from (S,φS) to (T,φT ) are given by homomorphisms of differen-
tial (bi-)graded A-B-bimodules f ∶ S → T such that the diagram

S ⊗B N
φS //

f⊗id

��

M ⊗A S

id⊗f

��
T ⊗B N

φT // M ⊗A T

commutes.

Definition 8. We define a Rickard object of T to be an object (A,M) of
T , where AMA is perfect as a left dg A-module and as a right dg A-module, the
natural morphism of dg algebras A→ RHomA(M,M) is a quasi-isomorphism,
there is a quasi-isomorphismA→ HA, and HA is a finite-dimensional algebra of
finite global dimension. We call a Rickard object (A,M) a classical Rickard
object if A has zero differential, and AMA is projective on both sides.

Definition 9. We define a j-graded object of T to be an object (a,m)
of T , where a = ⊕ajk is a differential bigraded algebra, and m = ⊕mjk a
differential bigraded a-a-bimodule, and aj● =mj● = 0 for j < 0.

5.2 The operator O.

Let (a,m) be a j-graded object of T . We define

Oa,mĂ T

to be the operator given by

Oa,m(A,M) = (a(A,M),m(A,M)),
where

α(A,M) = (α0 ⊗A)⊕ (⊕
j>0

αj ⊗M⊗Aj)
for α ∈ {a,m}. The algebra structure on⊕ajk⊗F M⊗Aj is the restriction of the
algebra structure on the tensor product of algebras a⊗TA(M), where TA(M)
denotes the tensor algebra of M over A. The k-grading and differential on the
complex⊕ajk⊗M⊗Aj are defined to be the total k-grading and total differential
on the tensor product of complexes. The bimodule structure, grading and
differential on ⊕mjk ⊗M⊗Aj are defined likewise.

We remark that this extends to a 2-endofunctor of T (cf. [15, Lemma 9]).
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Lemma 10. [16, Lemma 14] Let a,b,c be a differential bigraded algebras, bxa

and ayc differential bigraded modules, all concentrated in nonnegative j-degrees.
Let (A,M) be an object of T . Then

x(A,M)⊗a(A,M) y(A,M) ≅ (x⊗a y)(A,M)
as differential bigraded b(A,M)-c(A,M)-bimodules.

Given a differential bigraded a-module x, with components in positive and
negative j-degrees, we define x(A,M) to be the a(A,M)-module given by

x(A,M) = (⊕
j<0

xj● ⊗ (M−1)⊗A−j)⊕ (x0● ⊗A)⊕ (⊕
j>0

xj● ⊗M⊗Aj),
where M−1 ∶= HomA(M,A).
Lemma 11. (cf.[16, Lemma 15]) Let c be a differential bigraded algebra with c0

a product of copies of F . Let x and y are differential bigraded c-modules, all
concentrated in nonnegative j-degrees, and let (A,M) be a Rickard object of T .
Then we have a quasi-isomorphism of differential bigraded (c0⊗A)⊗(c0⊗A)op-
modules

Homc(x,y)(A,M) → Homc(A,M)(x(A,M),y(A,M)).
Proof. This was proved in [15, Proof of Theorem 13] (though it was stated only
as a quasi-isomorphism of differential bigraded vector spaces there), but for the
convenience of the reader we recall the construction.

For notational simplicity, we write M j ∶=M⊗Aj for j ≥ 0 and M j ∶=M⊗A−j for
j ≤ 0, and also write t1Ȃtj ∶= t1 ⊗Ȃ⊗ tj ∈M

j for j > 0.

We construct a map

β ∶ Homc(x,y)(A,M) → Homc(A,M)(x(A,M),y(A,M)).
For an element fj ⊗ t1Ȃtj , or fj ⊗ h, where fj ∈ Hom

(j)
c (x,y), and t1Ȃtj ∈M

j

if j ≥ 0, and where h ∈ HomA(M−j,A) if j < 0, we define

β(fj ⊗ t1Ȃtj) = (xk ⊗ t′1Ȃt
′
k Ă fj(xk)⊗ t′1Ȃt

′
kt1Ȃtj),

β(fj⊗h) = [xk ⊗ t′1Ȃt
′
k Ă { 0 if − j > k

fj(xk)⊗ t′1Ȃt
′
k−(−j)h(t′k−(−j)+1 . . . t′k) if − j ≤ k

]
where we work with the convention that for all A-A-bimodules M and N

such that N is finitely generated and projective, we identify HomA(N,A) ⊗A

HomA(M,A) with HomA(M ⊗A N,A) via the map sending any g ⊗ f to the
morphism from M ⊗A N to A given by m⊗ n Ă g(n)f(m). Using an explicit
quasi-isomorphism

HomA(M i−1,A⊗A M j−1) → HomA(M i−1,HomA(M,M)⊗A M j−1)
→ HomA(M i,M j)
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given by

(t1Ȃti−1 Ă 1⊗ f(t1Ȃti−1))Ă (t1Ȃti−1 Ă (ti Ă ti)⊗ f(t1Ȃti−1))
Ă (t′1Ȃt′i Ă t′1f(t′2Ȃt′i)).

iteratively, and applying the technical result [15, Lemma 16], which computes
the space Homc(A,M)(x(A,M),y(A,M)) as a (c0⊗A)-(c0⊗A)-bimodule, one
sees that β is a quasi-isomorphism of (c0 ⊗A)-(c0 ⊗A)-bimodules.

5.3 The operator O.

We now recall the definition of the operator O from [16]. Let Γ = ⊕Γijk be a
differential trigraded algebra. We have an operator

OΓĂ {Σ∣ Σ =⊕Σjk a differential bigraded algebra }
given by

OΓ(Σ)ik = ⊕
j,k1+k2=k

Γijk1 ⊗Σjk2 . (4)

The algebra structure and differential are obtained by restricting the algebra
structure and differential from Γ ⊗ Σ. If we forget the differential and the
k-grading, the operator OΓ is identical to the operator OΓ defined in the in-
troduction.

Suppose we are given (ai,mi) for 1 ≤ i ≤ n, and (A,M). Let us define (Ai,Mi)
recursively via (Ai,Mi) = Oai,mi

(Ai−1,Mi−1) and (A0,M0) = (A,M).
Lemma 12. [16, Lemma 20]

(i) We have an algebra isomorphism

TAn
(Mn) ≅OTan(mn)...OTa1

(m1)(TA(M)).
(ii) We have an isomorphism of objects of T

Oan,mn
ȂOa1,m1

(A,M)
≅ (OTa1

(m1)...OTan(mn)(TA(M))0◇●,OTa1
(m1)...OTan(mn)(TA(M))1◇●).

6 Algebraic operators and Hochschild cohomology.

Given a Rickard object (a,m) in T , we define HH(a,m) ∶=⊕i∈ZHH(a,m⊗ai),
where for i < 0, we understand m⊗ai as (m−1)⊗a−i for m−1 = Homa(m,a) the
bimodule adjoint to m.

Lemma 13. Let (a,m) be a j-graded classical Rickard object in T . Then the
space HH(a,m) has the structure of an ijk-trigraded associative algebra.
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Proof. Let ã be a projective a-a-bimodule resolution of a and note that this im-
plies that m̃i ∶= ã⊗am

⊗ai is a complex of projective bimodules quasi-isomorphic
to m⊗ai. In this case, we have natural isomorphisms

HHoma⊗aop(m̃h, m̃i+h) ≅ HHoma⊗aop(ã,Homaop(m⊗ah, m̃i+h))
≅ HHoma⊗aop(ã, m̃i ⊗a Homaop(m⊗ah,m⊗ah))
≅ HHoma⊗aop(ã, m̃i)
= HH(a,m⊗ai).

for any h ∈ Z, where the first isomorphism is just adjunction, the second
relies on m⊗ah being finitely generated projective as a right a-module, and
the third comes from (a,m) being Rickard. Identifying HH(a,m⊗ai) with
HHoma⊗aop(m̃h, m̃h+i) via this isomorphism gives us an associative product

HH(a,m⊗ai)⊗HH(a,m⊗ah)→ HH(a,m⊗ah+i)
that equips HH(a,m) with the structure of an ijk-graded algebra. Note that
this is the algebra structure obtained from the general definition of the cup
product.

Theorem 14. Let (a,m) be a j-graded object in T with a concentrated in
k-degree zero and Koszul, and let (A,M) be a Rickard object in T . Then we
have

HHOa,m(A,M) ≅OHH(a,m)(HH(A,M))
as ijk-graded algebras.

Proof. Since a is Koszul, we have a projective a-a-bimodule resolution of a
given by (a⊗a0 a!∗ ⊗a0 a)Ă a

by Section 4. Let now Ã be a projective A-A-bimodule resolution of A, and
in analogy to the above, M̃ i = Ã ⊗A M⊗Ai a corresponding A-A-bimodule
resolution of M⊗Ai for any i ∈ Z.

We now set a!∗(Ã,M) ∶= (a!∗)0 ⊗ Ã ⊕⊕j>0(a!∗)j ⊗ M̃ j. (Note that since a! is
negatively j-graded, its dual is again positively j-graded.) We claim that

a(A,M)⊗a0(A,M) a
!∗(Ã,M)⊗a0(A,M) a(A,M)Ă a(A,M)

is a projective a(A,M)-a(A,M) bimodule resolution.

Indeed, as a!∗ is projective over a0 ⊗ a0 op and M̃ j is projective over A ⊗ Aop

for every j, we have that a!∗(Ã,M) is projective over

a0 ⊗A⊗ (a0 ⊗A)op = a0(A,M)⊗ a0(A,M)op.
Furthermore, a(A,M) is projective over a0(A,M) = a0 ⊗ A on both sides so
a(A,M)⊗a(A,M)op is projective in a0(A,M)⊗a0(A,M)op -mod. Therefore,
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the induced module a(A,M)⊗a0(A,M)a
!∗(Ã,M)⊗a0(A,M)a(A,M) is projective

in a(A,M) ⊗ a(A,M)op -mod. By construction, it is quasi-isomorphic to the
bimodule a(A,M)⊗a0(A,M) a

!∗(A,M)⊗a0(A,M) a(A,M), which by Lemma 10

is quasi-isomorphic to (a⊗a0 a!∗ ⊗a0 a)(A,M) and hence to a(A,M).
Now, setting

̃a(A,M) ∶= a(A,M)⊗a0(A,M) a
!∗(Ã,M)⊗a0(A,M) a(A,M),

we have isomorphisms

HH(a(A,M),m(A,M)⊗a(A,M)i)
≅ HHoma(A,M)⊗a(A,M)op( ̃a(A,M),m(A,M)⊗a(A,M)i)
≅ HHoma0(A,M)⊗a0(A,M)op(a!∗(Ã,M),m(A,M)⊗a(A,M)i)
= HHoma0⊗A⊗(a0⊗A)op(a!∗(Ã,M),m(A,M)⊗a(A,M)i)

by projectivity of ̃a(A,M) as an a(A,M)⊗a(A,M)op-module and adjunctions.

Next, notice that, as an a0 ⊗A-a0 ⊗A-bimodule, a!∗(Ã,M) ≅ (a0 ⊗ Ã) ⊗a0⊗A

a!∗(A,M), so we can use adjunction again and obtain

HHoma0⊗A⊗(a0⊗A)op(a!∗(Ã,M),m(A,M)⊗a(A,M)i)
≅ HHoma0⊗A⊗(a0⊗A)op((a0 ⊗ Ã)⊗a0⊗A a!∗(A,M),m(A,M)⊗a(A,M)i)
≅ HHoma0⊗A⊗(a0⊗A)op(a0 ⊗ Ã,Hom(a0⊗A)op(a!∗(A,M),m(A,M)⊗a(A,M)i))

(5)

We now claim that m(A,M)⊗a(A,M)i is quasi-isomorphic to m⊗ai(A,M) as
a0 ⊗A-a0 ⊗A-bimodules. This follows directly from Lemma 10 for i > 0. For
i < 0, we obtain

m(A,M)⊗a(A,M)i = Homa(A,M)(m(A,M),a(A,M))⊗a(A,M)−i

≅ Homa(A,M)(m(A,M)⊗a(A,M)−i,a(A,M))
≅ Homa(A,M)(m⊗a−i(A,M),a(A,M))
←qim Homa(m⊗a−i,a)(A,M)
≅ Homa(m,a)⊗a−i(A,M)
=m⊗ai(A,M)

where the first isomorphism comes from iterated adjunction and the fact that
for (a,m) Rickard, m(A,M) is again perfect as a left dg A-module and
as a right dg A-module, the second isomorphism is Lemma 10, the quasi-
isomorphism is Lemma 11 and the final isomorphism again uses iterated ad-
junction and the fact that m is perfect as a left dg a-module and as a right dg
a-module.
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Using this, we have a quasi-isomorphism of a0 ⊗A-a0 ⊗A-bimodules

Hom(a0⊗A)op(a!∗(A,M),m(A,M)⊗a(A,M)i)
←qim Hom(a0⊗A)op(a!∗(A,M),m⊗ai(A,M))
≅ Hom(a0(A,M))op(a!∗(A,M),m⊗ai(A,M))
←qim Hom(a0)op(a!∗,m⊗ai)(A,M)
≅ (m⊗ai ⊗a0 a!)(A,M).

Putting this back into (5), we obtain

HHoma0⊗A⊗(a0⊗A)op(a0 ⊗ Ã,Hom(a0⊗A)op(a!∗(A,M),m(A,M)⊗a(A,M)i))
≅ HHoma0⊗A⊗(a0⊗A)op(a0 ⊗ Ã, (m⊗ai ⊗a0 a!)(A,M))
≅ HHoma0⊗A⊗(a0⊗A)op(a0 ⊗ Ã,⊕

j

(m⊗ai ⊗a0 a!)j ⊗M⊗Aj)
≅ H⊕

j

Homa0⊗a0op(a0, (m⊗ai ⊗a0 a!)j)⊗HomA⊗Aop(Ã,M⊗Aj)
≅ H⊕

j

Homa0⊗a0op(a0, (m⊗ai ⊗a0 a!))j ⊗HomA⊗Aop(Ã,M⊗Aj)
≅ H⊕

j

Homa⊗aop(a⊗a0 a!∗ ⊗a0 a,m⊗ai)j ⊗HomA⊗Aop(Ã,M⊗Aj)
= HHoma⊗aop(a⊗a0 a!∗ ⊗a0 a,m⊗ai)(HH(A,M))
= OHH(a,m)(HH(A,M))i●◇.

Summing over all i, we obtain the desired isomorphism as ijk-graded vector
spaces. In order to check that this is an isomorphism of ijk-graded algebras,
we set

ã ∶= a⊗a0 a!∗ ⊗a0 a, m̃h ∶= ã⊗a m
⊗ah

and ̃m(A,M)h ∶= ̃A(A,M)⊗a(A,M)m(A,M)⊗a(A,M)h.

One then constructs a similar isomorphism as above for

HHoma(A,M)⊗a(A,M)op( ̃m(A,M)h, ̃m(A,M)h+i)
≅ HHoma⊗aop(m̃h, m̃h+i)(HH(A,M))

and checks that due to the naturality of all constructions the isomorphisms in
the diagram

HHom
a(A,M)⊗a(A,M)op (

̃m(A,M)
h
, ̃m(A,M)

h+i
) oo //

OO

��

HHom
a⊗aop(m̃

h
, m̃

h+i)(HH(A,M))OO

��
HHom

a(A,M)⊗a(A,M)op (
̃a(A,M),m(A,M)

⊗
a(A,M)i) oo //

HHom
a⊗aop (ã,m

⊗ai)(HH(A,M))

commute.
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Observe that for a j-graded Rickard object (a,m) in T , the differential tri-
graded a-a-bimodule ⊕i∈Zm

⊗ai (where m⊗a0 ∶= a), obtains the structure
of an associative ijk-trigraded algebra when passing to homology, coming
from the natural (quasi-) isomorphisms m ⊗a m−1

∼
→ a of evaluation and

m−1⊗am
∼
→ Enda(m) qim← a. We denote this ijk-trigraded algebra by HTa(m)

where m stands for (m,m−1). We define the ijk-graded vector space

HH(HTa(m)) ∶=⊕
i∈Z

HH(a,H(m⊗ai)).
Lemma 15. Suppose (a,m) is a j-graded classical Rickard object in T such
that a is Koszul with a! concentrated in k-degree 0 (that is, the pair (a,a!)
satisfy the hypotheses in Setup 5(2)). Set m = (m,m−1) and X ∶= HTa(m).
Then HH(a,m) is isomorphic to HH(HTa(m)) as ijk-graded vector spaces,
both being isomorphic to

H(⊕
s,t

(es ⊗ es)(a! ⊗X)(et ⊗ et))
with differential

a⊗ xĂ − ∑
ρ∈B1
(aρ∗ ⊗ ρx − (−1)∣x∣ρ∗a⊗ xρ) .

Proof. Since HH(a,m) ≅⊕i∈ZHH(a,m⊗ai) and each m⊗ai is a differential jk-
graded a-a-bimodule, we can apply Theorem 6 to obtain an isomorphism

HH(a,m) ≅⊕
i∈Z

H(⊕
s,t

esa
!et ⊗ etH(m⊗ai)es) ≅ H(⊕

s,t

esa
!et ⊗ etH(⊕

i∈Z

m⊗ai)es)
where the differential on⊕s,t esa

!et⊗etH(⊕i∈Zm
⊗ai)es is as given in the state-

ment of the lemma. Here we have used that homology and tensor products com-
mute with direct sums. Applying Theorem 6 to the ijk-graded a-a-bimodule
(with trivial differential) X , we obtain the same result.

Note that via this isomorphism, HH(HTa(m)) is equipped with a structure of
associative algebra.

Proposition 16. Under the assumptions of Lemma 15, the multiplicative
structure on HH(HTa(m)) ≅ HH(a,m) is induced by the multiplicative struc-
ture on HTa(m).
Proof. By Proposition 7, the multiplicative structure on HH(a,m) under the
isomorphism to

H(⊕
s,t

esa
!et ⊗ etH(⊕

i∈Z

m⊗ai)es) ≅ H(⊕
s,t

esa
!et ⊗ et⊕

i∈Z

H(m⊗ai)es)
is given by (a⊗ x)(b ⊗ y) = ba⊗ xy, where xy is the multiplication induced in
homology from the tensor product structure. At the same time, this is precisely
the multiplication on HTa(m) and the claim follows.
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7 Representations of GL2(F ).
Let G = GL2(F ). We study Ringel self-dual blocks of polynomial represen-
tations of G, where by a block of an abelian category A, we mean a Serre
subcategory B of A minimal such that, given a pair of objects L,M ∈ A with
Ext∗A(L,M) ≠ 0, the conditions L ∈ B and M ∈ B are equivalent. According to
[7] a block of polynomial representations of G is Ringel self-dual if and only if
it has pl simple modules.

Let c be the finite dimensional algebra given by the quotient of the path algebra
of

1
●

η
(( 2
●

ξ

hh

η
(( 3
●

ξ

hh Ȃ
p−1
●

η
)) p
●,

ξ

jj

modulo the ideal
I = (ηξep, ξ2, η2, ξη + ηξ).

The algebra c is jk-graded with η and ξ having j-degree 1 and the whole algebra
being concentrated in k-degree 0. It is a Ringel self-dual algebra with tilting
bimodule t. Explicitly, t can be defined as follows. We can realise the algebra c

as an idempotent subquotient of the infinite-dimensional (non-unital) algebra
Z given by the quiver

Ȃ
0
●

η
(( 1
●

ξ

hh

η
(( 2
●

ξ

hh

η
(( 3
●

ξ

hh Ȃ ,

modulo relations ξ2 = η2 = ξη + ηξ = 0. Denote by τ the algebra involution of Z
which sends vertex i to vertex p − i and exchanges ξ and η. Setting

t = ∑
1≤l≤p,0≤m≤p−1

elZem,

t admits a natural left action of c by the subquotient c and a natural right
action by twisting the regular right Z-action by τ . In this way, t is naturally a
c-c-bimodule.

We now let t be a Rickard tilting complex representing t for c, and set t−1 =
Homc(t,c) to be its adjoint. It is then immediate that (c, t) is a classical
Rickard object in T . Indeed, c is an algebra, t is projective on both sides
and the natural morphism c→ Endc(t) is a quasi-isomorphism by Ringel self-
duality.

By [15, Corollary 21], a block of polynomial representations of G with pl

simple modules is equivalent to the category of modules over the algebra
OF,0O

l
c,t(F,F ). To compare to the notation used there, note that OF,0 sim-

ply picks out the algebra component of the resulting pair. By [16, Lemma
30], there is an quasi-isomorphism OF,0O

l
c,t(F,F ) → OF,0O

l
c,t(F,F ) and quasi-

isomorphic dg algebras share the same Hochschild cohomology, hence we define
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hhl to be the Hochschild cohomology of the algebra OF,0O
l
c,t(F,F ). As we are

ultimately interested in hhl with k-grading given by the homological grading
on Hochschild cohomology, we work with the gradings that suit this purpose,
i.e. c is assumed to be concentrated in k-degree zero and c! is assumed to be
concentrated in positive k-degrees.

The aim of the rest of this article is to compute hhl.

8 Reduction.

The following Proposition demonstrates how our formalism of algebraic opera-
tors and homological duality reduce the computation of the algebra hhl to the
computation of the algebra HH(HTc!(t!)), where t! = (t!, t!−1) is the image of(t, t−1) under Koszul duality.

Proposition 17. We have hhl ≅OFO
l
HH(HT

c
!(t!))
(F [z, z−1]).

Proof. We have algebra isomorphisms

hhl ≅ HHOF,0O
l
c,t(F,F )

≅OFHH(Ol
c,t(F,F ))

≅OFO
l
HH(c,t)(HH(F,F ))

≅OFO
l
HH(c,t)(F [z, z−1])

by Theorem 14 and the observation that HH(F,0) ≅ F and HH(F,F ) ≅
F [z, z−1].
Rather than computing HH(c, t) directly as ⊕iHH(c, ti), we pull c through
Koszul duality. We have derived equivalences ([17, Appendix B])

D(c -bigrjk) ≅D(c! -bigrjk), D(bigrjk-c) ≅D(bigrjk-c!)
cĂ c!∗ ⊗c0 c, cĂ c⊗c0 c

!.

Here D(c -bigrjk) denotes the derived category of differential jk-bigraded left
c-modules and D(bigrjk-c) denotes the derived category of differential jk-
bigraded right c-modules. Putting these together (cf. [19, Theorem 2.1]) we
have

D(c -bigrjk-c) ≅D(c! -bigrjk-c!)
cĂ c!∗ ⊗c0 c⊗c0 c

!,

and since the equivalences (−⊗c! c
!∗⊗c0 c,−⊗c c⊗c0 c

!) are adjoint equivalences
(cf. [17, Appendix B, Adjunction]) we have an isomorphism in the derived
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category between c! and c!∗ ⊗c0 c ⊗c0 c
!, Furthermore, by definition t! is the

image of t under the above equivalence. We thus have an isomorphism

HH(c, t) =⊕
i

HH(c, t⊗ci)
≅⊕

i

HRHomc⊗cop(c, t⊗ci)
≅⊕

i

HRHomc!⊗c! op(c!,c!∗ ⊗c0 t
⊗ci ⊗c0 c

!)
≅⊕

i

HRHomc!⊗c! op(c!, (c!∗ ⊗c0 t⊗c0 c
!)⊗c

! i)
≅⊕

i

HRHomc!⊗c! op(c!, t!⊗c
! i)

= HH(c!, t!).
which implies

OFO
l
HH(c,t)(F [z, z−1]) ≅OFO

l
HH(c!,t!)(F [z, z−1]).

But HH(c!, t!) is isomorphic to HH(HTc!(t!)) by Lemma 15, which completes
the proof of the Proposition.

The above Proposition leaves us with the problem of computing HH(HTc!(t!))
in the remaining sections. We compute HTc!(t!) in Section 9, then the
Hochschild cohomology of the bimodules appearing in HH(c!,H(t!⊗c

! i)) for
various i in Section 10, and finally infer the multiplication on HH(HTc!(t!))
from that on HTc!(t!) in Section 11.

9 The algebra Λ.

In this section we compute the algebra structure of Λ ∶= HTc!(t!), which en-
twines the algebra c!, its dual, its tilting bimodule, and a preprojective algebra
Θ in a subtle way. We do this by first computing Λ− ∶= H(Tc!(t!−1)) and
Λ
+ ∶= H(Tc!(t!)) separately and then investigating their interaction.

9.1 The algebras Ω and Θ.

We first need some notation. The algebra c has generators ξ and η, and its
Koszul dual c! = Ω has dual generators x and y; The quiver of Ω is given by

1
●

y

66
2
●

x
vv

y

66
3
●

x
vv

Ȃ
p−1
●

y

66
p
●

xtt

and the relations for Ω are xye1 = 0 and xy = yx. Since ξ and η were assumed
to have j-degree 1 and k-degree 0, x and y now both have j-degree −1 and
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k-degree 1. For notational convenience we use a different convention for the
direction of arrows in Ω than we used in our previous article [16]. We denote
by ei the idempotent corresponding to vertex i.

Note that morphisms from Ωei to Ωel are of the form ⋅xl−i(xy)s if i ≤ l, where
0 ≤ s ≤ i−1, or of the form ⋅yi−l(xy)s if i ≥ l, where 0 ≤ s ≤ l−1. Such morphisms
have (j, k) degree (−(l−i+2s), l−i+2s) and (−(i− l+2s), i− l+2s) respectively.
The algebra Ω has a simple preserving duality, interchanging x and y. It
is quasi-hereditary (with uniserial standard modules ∆i = Ωei/Ωei−1Ωei) and
Ringel self-dual (by [14, Theorem 1, Example 19] and Ringel self-duality of
c), and its tilting (bi-)module is easily seen to be isomorphic to ΩepΩ. This
bimodule is self-dual via the isomorphism

ΩepΩ ≅ (ΩepΩ)∗2܂ − 2p2]܂ − 2p] (6)

induced by the symmetric associative nondegenerate bilinear form

ΩepΩ⊗ΩepΩĂ F,

sending esx
dyeet ⊗ es′x

d′ye
′

et′ to 1 if s = t′, t = s′, and d + d′ = e + e′ = p − 1,
and to zero otherwise. The degree shift comes from the bimodule socle of
ΩepΩ (which is given by epy

p−1xp−1ep) having (j, k)-degree (2 − 2p,2p − 2),
and thus the bimodule top of (ΩepΩ)∗ having (j, k)-degree (2p − 2,2 − 2p).
Thus, with our grading conventions from Section 4.1, (ΩepΩ)∗2܂ − 2p2]܂ − 2p]
indeed has top in degree (0,0). We furthermore claim that (Ω,ΩepΩ) is a
Rickard object. Indeed, Ω is an algebra, ΩepΩ is perfect both as a left and as
a right Ω-module, and RHomΩ(ΩepΩ,ΩepΩ) is in fact isomorphic to Ω, since
ExtiΩ(ΩepΩ,ΩepΩ) = 0 for i > 0 thanks to ΩepΩ being the tilting module for a
Ringel self-dual quasi-hereditary algebra.

We define the algebra Θ to be the quotient Ω/ΩepΩ, where ei denotes the
idempotent at vertex i. The algebra Θ is called the preprojective algebra of
type Ap−1. Let σ be the involution of Θ which switching es and ep−s, and x and
y. Then Θ is a self-injective algebra with Nakayama automorphism σ. Indeed
we have an isomorphism of Θ-Θ-bimodules

Θσ → Θ∗2܂ − p2]܂ − p]∶ es Ă es(yp−s−1xs−1)∗ep−s. (7)

Indeed it is easy to check that this is an isomorphism of ungraded bimodules,
and the degree (0,0)-part of Θ∗2܂ − p2]܂ − p] is, according to our grading con-
ventions from Section 4.1, equal to (Θ∗)p−2,2−p = (Θ2−p,p−2)∗, which indeed
contains the element es(yp−s−1xs−1)∗ep−s.
Viewed as a tilting complex of ungraded left Ω-modules, t!−1 is quasi-isomorphic
to the direct sum of

Ωep → 0

with the direct sum over l = 1, . . . , p of two term complexes

Ωep
⋅yl

→ Ωep−l
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by [16, Lemma 34]. By [16, Lemma 37(iv)], the right action of Ω on these
complexes is given by the action of elxel+1 respectively elyel−1 (whenever none
of involved idempotents are ep) as

Ωep
⋅yl

//

1

��

Ωep−l

⋅y

��

Ωep
⋅yl

//

⋅xy

��

Ωep−l

⋅x

��
Ωep

⋅y
l+1

// Ωep−l−1 Ωep
⋅y

l−1

// Ωep−l+1,

(8)

while the action of the elements ep−1xep and epyep−1 is given by

Ωep
⋅yp−1

//

1

��

Ωe1 Ωep

⋅xy

��
Ωep Ωep

⋅yp−1

// Ωe1

(9)

respectively.

Taking the adjoint and applying our simple-preserving duality, t! is, as a tilting
complex of ungraded left Ω-modules, quasi-isomorphic to the direct sum of

0→ Ωep

with the direct sum over l = 1, . . . , p of two term complexes

Ωep−l
⋅xl

→ Ωep

with the right action of the generators elxel+1 respectively elyel−1 (whenever
none of involved idempotents are ep) given by

Ωep−l

⋅y

��

⋅xl

// Ωep

⋅xy

��

Ωep−l

⋅x

��

⋅xl

// Ωep

⋅1

��
Ωep−l−1

⋅x
l+1

// Ωep Ωep−l+1
⋅x

l−1

// Ωep

(10)

respectively, while the action of the elements ep−1xep and epyep−1 is given by

Ωe1
⋅x

p−1

// Ωep

xy

��

Ωep

⋅1

��
Ωep Ωe1

⋅xp−1
// Ωep

(11)

respectively.

To ease notation, we will, in the remainder of the article, write t!i for (t!)⊗c
! i =(t!)⊗Ωi and t!−i for (t!−1)⊗c

! i = (t!−1)⊗Ωi for i > 0.
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9.2 Recollections of the homology H(Tc!(t!−1)).
Recall that, given a collection (Ms, fs)s where the Ms are differential (j, k)-
bigraded Ω-modules, and the fs are morphisms of differential (j, k)-bigraded
Ω-modules (preserving both j- and k-degrees), such that the sequence

ȂMs

fs→Ms+1

fs+1→ Ms+1Ȃ

is a complex of (j, k)-bigraded vector spaces, we can associate a differential(j, k)-bigraded Ω-module, namely the iterated cone of the family of morphisms(fs)s. In particular, if

f ∶M−s
f−s→ M−s+1

f−s+1→ Ȃ
f−1→ M0

is a complex of (j, k)-bigraded vector spaces, the homology of this sequence is
given by ⊕s

i=0 H
i(f)[i].

We now summarise the results of [16, Section 8], recalling that there x and y

were interchanged, and given j-degree 1, so in particular, all shifts in j-degree
from [16] appear as the negative here.

Consider the family (f l)l=1,...,p of morphisms differential (j, k)-bigraded Ω-
modules

fl∶Ωep܂−l܂[−l]→ Ωep−l

given by right multiplication with yl for l = 1, . . . , p − 1 and by the zero map

fp∶Ωep܂−p܂[−p]→ 0.

By [16, Lemma 34], the differential (j, k)-bigraded Ω-module t!−1 is quasi-
isomorphic to the cone X−1 of the direct sum ⊕p

l=1 fl of these morphisms. By
[16, Lemma 37 (iv)], X−1 has homology isomorphic to Ω܂−p܂[1−p]⊕Θσ, coming
from a direct sum over l of exact sequences of j-graded Ω-modules [16, Lemma
35]

0→ Ωel܂−p܂→ Ωep܂−l܂→ Ωep−l → Θep−l → 0,

to which the homology of the isolated summand coming from fp is added. The
right action of Ω is induced by the diagrams (8) and (9).

For i > 1, by [16, Lemma 38],t!−i is quasi-isomorphic to the direct sum X−i =

⊕p
l=1X

−iel, where X−iel is the iterated cone of the i + 1-term sequence gl of
morphisms of differential (j, k)-bigraded Ω-modules (each sequence being a
complex of (j, k)-bigraded vector spaces), where gp is given by

Ωep܂−ip܂[−ip]→ 0→Ȃ → 0,

and, for l = 1, . . . , p − 1, gl is the sequence

Ȃ
⋅(xy)l

→ Ωep܂l−3p܂[l−3p] ⋅(xy)p−l→ Ωep܂−l−p܂[−l−p] ⋅(xy)l→ Ωep܂l−p܂[l−p] ⋅yp−l

→ Ωel
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if i is even and

Ȃ
⋅(xy)p−l

→ Ωep܂−l−2p܂[−l−2p] ⋅(xy)l→ Ωep܂l−2p܂[l−2p] ⋅(xy)p−l→ Ωep܂−l܂[−l] ⋅yl

→ Ωep−l

if i is odd.

Furthermore X−i has homology

H(t!−i) ≅ Ω܂−ip܂[i(1 − p)]⊕Θσ܂−(i − 1)p܂[(i − 1)(1 − p)]⊕ ...⊕Θσi[0]܂0܂
≅ Ω܂−ip܂[i(1 − p)]⊕ i

⊕
j=1

Θσj i)−܂ − j)p܂[(i − j)(1 − p)].

The structure of Λ− = H(Tc!(t!−1)) as a k-graded Ω-Ω-bimodule is therefore
given by

Ω[0]
Ω[1 − p] Θσ[0]

Ω[2 − 2p] Θσ[1 − p] Θ[0]
Ω[3 − 3p] Θσ[2 − 2p] Θ[1 − p] Θσ[0]

Ω[4 − 4p] Θσ[3 − 3p] Θ[2 − 2p] Θσ[1 − p] Θ[0]
...

and the structure of Λ− as a j-graded Ω-Ω-bimodule is given by

Ω܂0܂
Ω܂−p܂ Θσ܂0܂

Ω2−܂p܂ Θσ܂−p܂ Θ܂0܂
Ω3−܂p܂ Θσ2−܂p܂ Θ܂−p܂ Θσ܂0܂

Ω4−܂p܂ Θσ3−܂p܂ Θ2−܂p܂ Θσ܂−p܂ Θ܂0܂.
...

By [16, Theorem 32], Λ− is is isomorphic to the tensor algebra TΩ(Θσ)⊗F [ξ]
where ξ is a variable of j-degree −p and k-degree p−1, so that Ωξ ≅ Ω܂−p܂[1−p].
9.3 Homology of the bimodules t!i for i > 0.

By definition, t! = HomΩ(t!−1,Ω), so using our simple preserving duality, t! is
quasi-isomorphic to the direct sum X1 =⊕p

l=1 X
1el, where X1el[1] is the cone

of the morphism

Ωep−l
⋅xl

→ Ωep܂l܂[l]
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for l = 1, . . . , p − 1, and of

0→ Ωep܂p܂[p]
for l = p. The homology of X1el is easily seen to be ΩepΩel܂p܂[p − 1], so X1 is
in fact quasi-isomorphic ΩepΩ܂p܂[p − 1].
For t!2, we similarly see that this is quasi-isomorphic to X2 =⊕p

l=1X
2el where

X2el[2] is the iterated cone of the sequence of morphisms

Ωel
⋅xp−l

→ Ωep܂p − l܂[p − l] ⋅(xy)l→ Ωep܂p + l܂[p + l]
for l = 1, . . . , p − 1, and of

0→ 0→ Ωep2܂p܂[2p]
for l = p.

Using that ΩepΩ is the tilting module for the Ringel self-dual algebra Ω and
the isomorphism given in (6), we have a sequence of ungraded Ω-Ω-bimodule
isomorphisms,

ΩepΩ⊗Ω ΩepΩ ≅ (ΩepΩ)∗ ⊗Ω ΩepΩ

≅ HomF (HomF ((ΩepΩ)∗ ⊗Ω ΩepΩ, F ), F )
≅ HomF (HomΩ(ΩepΩ,ΩepΩ), F )
≅ Ω∗

(12)

as an ungraded Ω-Ω-bimodule. Explicitly, denoting by ܂−,−܂ the pairing ob-
tained from (6), an isomorphism is given by the assignment

u⊗ v Ă (w Ă ,u܂ vw܂) .
Thus we already know that the homology of X2 is isomorphic to Ω∗ as an
ungraded Ω-Ω-bimodule, and we only need to determine the gradings. Direct
computation shows that the sequence of morphisms

Ωel
⋅xp−l

→ Ωep܂p − l܂[p − l] ⋅(xy)l→ Ωep܂p + l܂[p + l]
indeed has homology Ω∗el[2]܂2܂ in the last place, via the isomorphism in ho-
mology induced by the morphism of left Ω-modules Ωep → Ω∗el which sends ep
to (elyl−1xp−1ep)∗. Hence the homology of X2el is given by Ω∗el[0]܂2܂.
Again using the simple preserving duality, we see that for i > 2, t!i is quasi-
isomorphic to X i = ⊕p

l=1X
iel, where X iel[i] is the iterated cone of the i + 1-

term sequence g̃l of morphisms of differential (j, k)-bigraded Ω-modules (each
sequence being a complex of (j, k)-bigraded vector spaces), where g̃p is given
by

0→Ȃ → 0→ Ωep܂ip܂[ip],
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and, for l = 1, . . . , p − 1, g̃l is the sequence

Ωel
⋅xp−l

→ Ωep܂p − l܂[p − l] ⋅(xy)l→ Ωep܂l + p܂[l + p] ⋅(xy)p−l→ Ωep3܂p − l3]܂p − l] ⋅(xy)l→ Ȃ

if i is even and

Ωep−l
⋅xl

→ Ωep܂l܂[l] ⋅(xy)p−l→ Ωep2܂p − l2]܂p − l] ⋅(xy)l→ Ωep܂l + 2p܂[l + 2p] ⋅(xy)p−l→ Ȃ

if i is odd.

Since Ω is a finite dimensional algebra which has finite global dimension (as the
Koszul dual of a finite-dimensional algebra, alternatively, as a quasi-hereditary
algebra), Ω∗ ⊗L

Ω − is a Serre functor on Db(Ω) by [8, 4.6]. Hence we have, in
the ungraded setting, a quasi-isomorphism

t!−i = HomΩ(t!i,Ω) qim
→ HomΩ(Ω,Ω∗ ⊗Ω t!i)∗

where we have used that

HomΩ(Ω,Ω∗ ⊗L

Ω t!i)∗ ≅ HomΩ(Ω,Ω∗ ⊗Ω t!i)∗
since t!i is projective as a left Ω-module. Thus t!−i is quasi-isomorphic to

(Ω∗ ⊗Ω t!i)∗ = (t!i+2)∗.
Putting in gradings, this gives a quasi-isomorphism between

t!−i
qim
→ HomΩ(Ω,Ω∗ ⊗Ω t!i)∗ ≅ HomΩ(Ω, t!i+2[0]܂2−܂)∗ ≅ (t!i+2)∗[0]܂2܂,

or, equivalently, for i ≥ 2, a quasi-isomorphism

t!i
qim
→ (t!−(i−2)[0]܂2−܂)∗ = (t!−(i−2))∗[0]܂2܂.

Therefore,

H(t!i) ≅ (H(t!−(i−2)))∗܂2܂
≅ (Ω܂−(i − 2)p܂[(i − 2)(1 − p)]⊕ i−2

⊕
j=1

Θσj i)−܂ − 2 − j)p܂[(i − 2 − j)(1 − p)])∗܂2܂
≅ (Ω∗܂(i − 2)p܂[(i − 2)(p − 1)]⊕ i−2

⊕
j=1

Θσj
i)܂∗ − 2 − j)p܂[(i − 2 − j)(p − ܂2܂([(1

≅ Ω∗2܂ + (i − 2)p܂[(i − 2)(p − 1)]⊕ i−2

⊕
j=1

Θσj
2܂∗ + (i − 2 − j)p܂[(i − 2 − j)(p − 1)].

Using Θ∗ ≅ Θσ܂p−2܂[p−2] coming from the isomorphism (7) and the fact that

the involution σ of Θ induces an isomorphism of bimodules σΘ ≅ Θσ−1 ≅ Θσ,

Documenta Mathematica 23 (2018) 117–170



144 V. Miemietz, W. Turner

we obtain

H(t!i)
≅ Ω∗2܂ + (i − 2)p܂[(i − 2)(p − 1)]⊕ i−2

⊕
j=1

Θσ
j+1܂(i − 1 − j)p܂[(i − 1 − j)(p − 1) − 1]

≅ Ω∗2܂ + (i − 2)p܂[(i − 2)(p − 1)]⊕Θ܂(i − 2)p܂[(i − 2)(p − 1) − 1]⊕Ȃ
Ȃ⊕Θσi−1܂p܂[p − 2].

(13)

Explicitly, the generator ep of the rightmost copy of Ωep in X iel corresponds
to the element (elxp−1yl−1ep)∗ ∈ Ω∗ in homology. The homology class of an
element uep in a middle term of the form Ωep inXi annihilated by the morphism
given by right multiplication by (xy)l corresponds to the element u′el in Θ such
that u′xp−lep = uep.

Hence the structure of Λ+ as a k-graded Ω-Ω-bimodule is given by

...

Θ[p − 2] Θσ[2p − 3] Θ[3p − 4] Ω∗[3p − 3]
Θσ[p − 2] Θ[2p − 3] Ω∗[2p − 2]
Θ[p − 2] Ω∗[p − 1]
Ω∗[0]

ΩepΩ[p − 1]
Ω

while the structure of Λ+ as a j-graded Ω-Ω-bimodule is given by

...

Θ܂p܂ Θσ2܂p܂ Θ3܂p܂ Ω∗2܂ + 3p܂
Θσ܂p܂ Θ2܂p܂ Ω∗2܂ + 2p܂
Θ܂p܂ Ω∗2܂ + p܂
Ω∗܂2܂

ΩepΩ܂p܂
Ω .

9.4 The product on Λ.

We now investigate the algebra structure on Λ. We recall from [16, Theorem
32] (or Section 9.2) that Λ− is nothing but the tensor algebra TΩ(Θσ)⊗ F [ξ]
for a variable ξ of j-degree −p and k-degree p − 1.
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In order to determine the products of two elements in Λ
+, or mixed products

between Λ
+ and Λ

−, we use an explicit right Ω-module structure on the one-
sided tilting comlpexes described in the previous section.

In [16, Lemma 38 (ii), equations (9) and (10)], we gave the description of the
right Ω-structure on X−i in the example of i odd and not involving the pth
summand. For completeness, we include a full description here. The action of
the generators elxel+1 respectively elyel−1 is induced by the diagrams

Ωep

⋅1

��

⋅(xy)l // Ȃ
⋅(xy)l // Ωep

⋅xy

��

⋅(xy)p−l// Ωep

⋅1

��

⋅y
l

// Ωep−l

⋅y

��
Ωep

⋅(xy)l+1 // Ȃ
⋅(xy)l+1// Ωep

⋅(xy)p−l−1// Ωep
⋅yl+1

// Ωep−l−1

Ωep
⋅(xy)l //

⋅xy

��

Ȃ
⋅(xy)l // Ωep

⋅1

��

⋅(xy)p−l// Ωep

⋅xy

��

⋅yl

// Ωep−l

⋅x

��
Ωep

⋅(xy)l−1 // Ȃ
⋅(xy)l−1// Ωep

⋅(xy)p−l+1// Ωep
⋅yl−1

// Ωep−l+1

(14)

for i odd and

Ωep
⋅(xy)l //

⋅1

��

Ȃ
⋅(xy)p−l// Ωep

⋅(xy)l //

⋅1

��

Ωep

⋅xy

��

⋅yp−l

// Ωel

⋅x

��
Ωep

⋅(xy)l+1 // Ȃ
⋅(xy)p−l−1// Ωep

⋅(xy)l+1// Ωep
⋅yp−l−1

// Ωel+1

Ωep
⋅(xy)l //

⋅xy

��

Ȃ
⋅(xy)p−l// Ωep

⋅(xy)l //

⋅xy

��

Ωep

⋅1

��

⋅yp−l

// Ωel

⋅y

��
Ωep

⋅(xy)l−1 // Ȃ
⋅(xy)p−l+1// Ωep

⋅(xy)l−1// Ωep
⋅yp−l+1

// Ωel−1

(15)

for i even, wherever this makes sense for l (i.e. the larger value being less than
or equal to p − 1). The action of the elements ep−1xep and epyep−1 is induced
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by

Ωep

⋅1

��

⋅(xy) // Ȃ
⋅(xy)p−1// Ωep

⋅(xy) // Ωep
⋅yp−1

// Ωe1

Ωep

Ωep

⋅xy

��
Ωep

⋅(xy)p−1 // Ȃ
⋅(xy)p−1// Ωep

⋅(xy) // Ωep
⋅yp−1

// Ωe1

(16)

for i odd and

Ωep
⋅(xy)p−1 //

⋅1

��

Ȃ
⋅(xy) // Ωep

⋅(xy)p−1// Ωep
⋅y // Ωep−1

Ωep

Ωep

⋅xy

��
Ωep

⋅(xy)p−1 // Ȃ
⋅(xy) // Ωep

⋅(xy)p−1// Ωep
⋅y // Ωep−1

(17)

for i even.

Similarly, the right Ω-structure on t!i is generated by the action of elxel+1
respectively elyel−1 induced from the morphism of complexes

Ωep−l
⋅xl

//

⋅y

��

Ωep
⋅(xy)p−l//

⋅xy

��

Ωep

⋅1

��

⋅(xy)l // Ȃ
⋅(xy)l // Ωep

⋅xy

��
Ωep−l−1

⋅xl+1
// Ωep

⋅(xy)p−l−1// Ωep
⋅(xy)l+1 // Ȃ

⋅(xy)l+1// Ωep

Ωep−l
⋅xl

//

⋅x

��

Ωep
⋅(xy)p−l//

⋅1

��

Ωep

⋅xy

��

⋅(xy)l // Ȃ
⋅(xy)l // Ωep

⋅1

��
Ωep−l+1

⋅xl−1
// Ωep

⋅(xy)p−l+1// Ωep
⋅(xy)l−1 // Ȃ

⋅(xy)l−1// Ωep

(18)
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for i odd and

Ωel
⋅xp−l

//

⋅x

��

Ωep
⋅(xy)l //

⋅1

��

Ωep

⋅xy

��

⋅(xy)p−l // Ȃ
⋅(xy)l // Ωep

⋅xy

��
Ωel+1

⋅xp−l−1
// Ωep

⋅(xy)l+1// Ωep
⋅(xy)p−l−1// Ȃ

⋅(xy)l+1// Ωep

Ωel
⋅xp−l

//

⋅y

��

Ωep
⋅(xy)l //

⋅xy

��

Ωep

⋅1

��

⋅(xy)p−l // Ȃ
⋅(xy)l // Ωep

⋅1

��
Ωel−1

⋅xp−l+1
// Ωep

⋅(xy)l−1// Ωep
⋅(xy)p−l+1// Ȃ

⋅(xy)l−1// Ωep

(19)

for i even. The action of the elements ep−1xep and epyep−1 is induced by the
morphism of complexes

Ωe1
⋅xp−1

// Ωep
⋅xy // Ωep

⋅(xy)p−1 // Ȃ
⋅(xy)p−1// Ωep

⋅xy

��
Ωep

Ωep

⋅1

��
Ωe1

⋅xp−1
// Ωep

⋅xy // Ωep
⋅(xy)p−1 // Ȃ

⋅(xy)p−1// Ωep

(20)

for i odd and

Ωep−1
⋅x // Ωep

⋅(xy)p−1// Ωep
⋅xy // Ȃ

⋅(xy)p−1// Ωep

⋅xy

��
Ωep

Ωep

⋅1

��
Ωep−1

⋅x // Ωep
⋅(xy)p−1// Ωep

⋅xy // Ȃ
⋅(xy)p−1// Ωep

(21)

for i even.
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Given these actions, we can now explicitly describe the quasi-isomorphism be-
tween X i ⊗Ω X−1 and X i−1. For l = 1, . . . , p,

X i⊗ΩX
−1el =X

i⊗Ωcone(Ωep܂−l܂[−l] ⋅yl

→ Ωep−l) ≅ cone(X iep܂−l܂[−l] ⋅yl

→ X iep−l)
is the iterated cone of the total complex of the double complex (where we omit
gradings for readability)

Ωep

⋅(1)p−l

��
Ωep−l

⋅x
l

// Ωep
⋅(xy)p−l// Ωep

⋅(xy)l// Ȃ
⋅(xy)p−l// Ωep

Ωep

⋅(1)p−l

��
Ωel

⋅xp−l
// Ωep

⋅(xy)l// Ωep
⋅(xy)p−l// Ȃ

⋅(xy)p−l// Ωep

for i even and i odd respectively. The quasi-isomorphism of the total complex
to the lower one shortened by the right-most term is then obvious.

For the pth summand, we have natural isomorphisms

X i ⊗Ω X−1ep =X
i ⊗Ω cone(Ωep܂−p܂[−p]→0)

≅ cone(X iep܂−p܂[−p]→0)
≅X iep܂−p1]܂ − p] ≅X i−1ep.

We now define a number of bimodule homomorphisms, which we then show
provide the multiplication maps between parts of Λ.

Lemma 18. We have natural bimodule homomorphisms,

β ∶ ΩepΩ⊗Ω ΩepΩ
∼
→ Ω∗,

ζl ∶ ΩepΩ⊗Ω Ω∗
∼
→ Ω∗, ζr ∶ Ω

∗ ⊗Ω ΩepΩ
∼
→ Ω∗,

ǫ ∶ Ω∗ ⊗Ω Ω∗
∼
→ Ω∗,

θl ∶ Ω⊗Ω Ω∗Ă ΩepΩ, θr ∶ Ω
∗ ⊗Ω ΩĂ ΩepΩ

ιl ∶ Ω⊗Ω Ω∗ → Ω, ιr ∶ Ω
∗ ⊗Ω Ω → Ω,

νl ∶ Θ⊗Θσ → Ω∗, νr ∶ Θ
σ ⊗Θ→ Ω∗.
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Proof. Firstly, β is nothing but the bimodule isomorphism constructed in (12).

The dual of the short exact sequence

0→ ΩepΩ→ Ω→ Θ→ 0

is isomorphic to
0→ Θσ → Ω∗ → ΩepΩ→ 0 (22)

using the bimodule isomorphisms (6) and (7). Applying the right exact functor
unctor ΩepΩ⊗Ω − to (22), we obtain an exact sequence

ΩepΩ⊗Ω Θσ → ΩepΩ⊗Ω Ω∗ → ΩepΩ⊗Ω ΩepΩ→ 0

and noting that ΩepΩ⊗ΩΘσ = 0, the second map is an isomorphism. The map
ζl is then the composition

ΩepΩ⊗Ω Ω∗
∼
→ ΩepΩ⊗Ω ΩepΩ

β
→ Ω∗

of this isomorphism with β.

Similarly ζr is the composition

Ω∗ ⊗Ω ΩepΩ
∼
→ ΩepΩ⊗Ω ΩepΩ

β
→ Ω∗

of the isomorphism obtained by applying the right exact functor −⊗ΩΩepΩ to
(22) (noting that again Θσ ⊗Ω ΩepΩ = 0) with the bimodule isomorphism β.

Applying −⊗Ω Ω∗ to (22) gives an exact sequence

Θσ ⊗Ω Ω∗ → Ω∗ ⊗Ω Ω∗ → ΩepΩ⊗Ω Ω∗ → 0

and, noting that Ω∗ is a quotient of (Ωep)⊕p and hence Θσ ⊗Ω Ω∗ = 0, the
second map is again an isomorphism. The map ǫ is the composition

Ω∗ ⊗Ω Ω∗
∼
→ ΩepΩ⊗Ω Ω∗

ζl→ Ω∗

of this isomorphism with the isomorphism ζl.

The morphisms θl, θr are just given by the compositions

Ω⊗Ω Ω∗ ≅ Ω∗Ă ΩepΩ and Ω∗ ⊗Ω Ω ≅ Ω∗Ă ΩepΩ

of the quotient map Ω∗Ă ΩepΩ from (22) with the canonical isomorphisms.

We define ιl, ιr as the compositions

Ω⊗Ω Ω∗
θl→ ΩepΩ Ă Ω

respectively

Ω∗ ⊗Ω Ω
θr→ ΩepΩ Ă Ω
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of θl, θr with the natural embedding respectively.

The morphisms νl and νr are defined as the compositions

Θ⊗Ω Θσ → Θσ Ă Ω∗ and Θσ ⊗Ω Θ→ Θσ Ă Ω∗

of the natural actions with the embedding from (22) respectively.

To describe the product on Λ using our natural bimodule homomorphisms we
split the algebra into five parts:

� Ω− consisting of all copies of Ω inΛ− (with possible shifts Ω܂−lp܂[l(1−p)]),
� Θ−, consisting of all copies of Θ or Θσ in Λ− (of the form Θ(σ)܂−lp܂[l(1−

p)]),
� T ∶= ΩepΩ܂p܂[p − 1], ,
� Θ+ consisting of all copies of Θ or Θσ in Λ+ (of the form Θ(σ)܂lp܂[l(p −

1) − 1]), and
� Ω∗+, consisting of all copies of Ω

∗ inΛ
+,(with possible shifts Ω∗2܂+lp܂[l(p−

1)]).
To ease checking of vanishing of multiplication due to degree reasons, we now
provide a table describing in which degrees each of the Ω-Ω-bimodule compo-
nents are concentrated. Here the first element in each list is the degree of the
generators, so j-degrees grow successively more negative, and k-degrees grows
successively more positive.

nonzero j-degrees nonzero k-degrees
Ω܂−lp܂[l(1 − p)] −lp,Ȃ,−(l + 2)p + 2 lp − l,Ȃ, (l + 2)(p − 1)

Θ(σ)܂−lp܂[l(1 − p)] −lp,Ȃ,−(l + 1)p + 2 l(p − 1),Ȃ, (l + 1)(p − 1) − 1
ΩepΩ܂p܂[p − 1] p,Ȃ,−p + 2 1 − p,Ȃ, p − 1

Θ(σ)܂lp܂[l(p − 1) − 1] lp,Ȃ, (l − 1)p + 2 l(1 − p) + 1,Ȃ, (l − 1)(1 − p)
Ω∗2܂ + lp܂[l(p − 1)] (l + 2)p,Ȃ,2 + lp (l + 2)(1 − p),Ȃ, l(1 − p).

With this information, we can now prove the following proposition.

Proposition 19. The multiplication between these five parts is given by the
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following table:

Ω− Θ− T Θ+ Ω∗+

Ω− a a a 0 ι, θ, a

Θ− a a 0 0, a, ν 0

T a 0 β 0 ζ

Θ+ 0 0, a, ν 0 0 0

Ω∗+ ι, θ, a 0 ζ 0 ǫ

Here a is our generic notation for an action map. For the products where we
give several options, the choice depends on the component in which the product
lands. In the case of products between Ω− and Ω∗+ this is determined by

Component in which the product lands: Ω− T Ω∗+

Natural map describing the product: ι θ a

and in the case of products between Θ− and Θ+, it is given by

Component in which the product lands: Λ
− T Θ+ Ω∗+

Natural map describing the product: 0 0 a ν.

Proof. The fact that the product on Λ− is as given in the top left 2 × 2-corner
of our table we have already established in a previous paper [16, Theorem 32].

Thanks to our simple preserving duality, we can rephrase everything in terms
of right modules (obtaining a quasi-isomorphism between t!−1 and

Y −1 = cone((epΩ)p → p−1

∑
l=1

elΩ)
and between t!i and

Y i = cone(p−1∑
l=1

elΩ → (epΩ)p−1 → Ȃ→ (epΩ)p−1 → (epΩ)p)
respectively (with analogous actions to those given in (14),(15),(16),(17),(18),
(19),(20) and (21)), where we obtain an obvious quasi-isomorphism Y −1⊗ΩY

i =
Y i−1, implying that it suffices to check multiplications in one order.

We next consider the bottom right 3× 3 corner, which provides the multiplica-
tion on Λ

+.

Note that, ΩepΩ being the tilting bimodule and quasi-isomorphic to t!, the
tensor algebra TΩΩepΩ is necessarily a subalgebra of Λ+. Thanks to the iso-

morphism ΩepΩ⊗ΩΩepΩ
∼
→ Ω∗, the multiplicative structure of this is given by

β, ζl, ζr and ǫ, providing the nonzero entries in this square.
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The product between Θ+ and Θ+ is zero by degree reasons. Indeed, the tensor
product of Θ(σ)܂lp܂[l(p−1)−1] appearing in H(t!i) and Θ(σ)܂l′p܂[l′(p−1)−1]
appearing in H(t!i′) is generated in j-degree (l + l′)p and k-degree (l + l′)(1 −
p)+ 2. The only nonzero component of H(t!(i+i′)) in this j-degree is the top of
Θ(σ)܂(l + l′)p܂[(l + l′)(p − 1) − 1], but this has incorrect k-degree.
Both ΩΩ

∗ and ΩepΩ are quotients of Ωe⊕pp (and using the simple-preserving
duality on Ω, similarly Ω∗Ω and ΩepΩ are quotients of (epΩ)⊕p), and Θ⊗ΩΩep =
Θσ ⊗Ω Ωep = 0 (and similarly epΩ⊗Ω Θ = epΩ ⊗Ω Θσ = 0), thus the remaining
zeros in this square follow from right exactness of Θ(σ)⊗Ω − (respectively −⊗Ω

Θ(σ)).

It remains to confirm the bottom left 3 × 2 (or equivalently, top right 2 × 3)
rectangle of our table.

Repeating the argument about Ω∗ and ΩepΩ being quotients of sums of the
pth projective, we obtain that mutliplications between Θ− and Ω∗ respectively
ΩepΩ in either order are again zero.

The fact that multiplication between H(t!) ≅ ΩepΩ܂p܂[p−1] and Ω− is just the
normal action map follows immediately from the quasi-isomorphism between
t! and ΩepΩ.

If the product between Θ+ and Θ− (in either order) lands in Λ
− or ΩepΩ, it is

again zero by degree reasons. Indeed, the tensor product of Θ(σ)܂lp܂[l(p−1)−1]
appearing in H(t!i) and Θ(σ)܂−l′p܂[l′(1−p)] appearing in H(t!−i′) is generated
in j-degree (l−l′)p and k-degree (l−l′)(1−p)+1. Since by assumption i′ > i, the

only subspace with this nonzero j degree in H(t!i−i′) is the top of Θ(σ)܂−(l′ −
l)p܂[(l′ − l)(1 − p)], but this again has the wrong k-degree.

For products involving Ω− and Ω∗+, note that Ω
∗
+ is a component of the subalge-

bra TΩΩepΩ. Multiplications being induced by the action maps hence follows
from the same claim for ΩepΩ.

In order to analyse the remaining multiplications, note that thanks to [16,
Theorem 32], which proves that Λ

− is indeed just a tensor algebra, it suffices
to consider the case where one is a component of H(t!−1) and the other a
component of H(t!i) for i > 1, so consider multiplication H(t!i) ⊗ H(t!−1) →
H(t!i−1) coming from the quasi-isomorphism X i ⊗Ω X−1 → X i−1 described
before Lemma 18.

Then products between Θ+ and Θ− being as stated follows from Θ− appearing
as a quotient of ⊕p−1

l=1 Ωel in X−1, the explicit maps, given in (14),(15),(18) and
(19), describing the right action of Ω on X i, and the explicit description of how
elements in terms of Xi correspond to elements in Θ+ following (13).

In order to verify that the product between Θ+ and Ω−, we again look at the
explicit action maps. Indeed, since Ω− appears as a submodule of (Ωep)⊕p in
X−1, a lift of an element in Ω− to X−1 is necessarily of the form elωep for some
ω. Since in the right action of elωep on X i, any lift of Θ+ in X i is annihilated,
the product between Θ+ and Ω− is zero as stated.
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10 Explicit Hochschild cohomology of some bimodules.

Here we describe the components of HH(c!,Λ) as HH(c!)-HH(c!)-bimodules.

We fix the element z ∶= ∑p
l=2 xyel in Ω.

Let us first describe the centres of our algebras c and c!.

Lemma 20. The centre of c is Z(c) = F.1⊕c2 = ∑p−1
l=1 F ⋅ ξηel. The centre of Ω

is Z(Ω) = F [z]/zp where z = xy has k-degree 2.

Proposition 21. Suppose p > 2.

(i) HH(Ω) is isomorphic to Z(c)⊗Z(Ω)⊗Ȃ(κ)/(c2.z,c2κ, zp−1κ), where c2

has jk-degree (2,0), the z has jk-degree (−2,2) and κ has jk-degree (0,1).
(ii) HH(Ω,Θ) is isomorphic to HH(Ω)/(z p−1

2 ) as an HH(Ω)-HH(Ω)-
bimodule.

(iii) HH(Ω,Θσ) is isomorphic to HH(Ω,Θ)∗4܂−p܂[2−p] as an HH(Ω)-HH(Ω)-
bimodule.

(iv) HH(Ω,Ω∗) is isomorphic to Ω0, the degree 0 part of Ω.

(v) HH(Ω,ΩepΩ) is isomorphic to the kernel of the natural surjection

HH(Ω)→ HH(Ω)/(z p−1
2 ).

Proof. (i) By Theorem 6, we need to compute the homology of Dc ∶=

⊕s,t escet ⊗ etΩes with differential sending α⊗ a to

αξ ⊗ ya + αη ⊗ xa − (−1)∣a∣ξα⊗ ay − (−1)∣a∣ηα⊗ ax.

The complex Dc is Z
2-graded, where we give es degree (0,0), we give x and

y degree (0,1), and we give ξ and η degree (−1,0). The differential therefore
has degree (−1,1). We remark that this is not our usual (j, k)-grading and
we still denote by ∣ ⋅ ∣ the k-degree of an element as before. We have a basis for
escet ⊗ etΩes given by those monomials esξ

mξηmηet ⊗ etx
mxymyes which are

not zero in this space. We set

as,l = esξes+1 ⊗ es+1yz
les, bs,l = esηes−1 ⊗ es−1xz

les, ws,l = esξηes ⊗ esz
l+1es

and note that as,l ≠ 0 if and only if l + 1 ≤ s ≤ p − 1, bs,l ≠ 0 if and only if
l + 2 ≤ s ≤ p and ws,l ≠ 0 if and only l + 2 ≤ s ≤ p − 1. Moreover, as,l and bs,land
ws,l vanish for all s if l ≥ p − 1. The nonzero graded subspaces of Dc are D−2,0

c

(which is just c2⊗1Ω and isomorphic to c2), D0,2l
c for 0 ≤ l ≤ p−1, D−1,2l+1c and

D−2,2l+2c for 0 ≤ l ≤ p−2. The first is just c2⊗1Ω and isomorphic to c2. For fixed
l, D0,2l

c
, D−1,2l+1

c
and D−2,2l+2

c
have bases given by {es ⊗ esz

les∣s = l + 1, . . . p},
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{as,l∣s = l + 1, . . . p − 1} ∪ {bs,l∣s = l + 2, . . . p} and {ws,l∣s = l + 2, . . . , p − 1}
respectively. Our complex Dc is then a sum of the complex

0→ c2 → 0

and the sum over l of complexes, for 0 ≤ l ≤ p − 2,

(0→D(0,2l)c →D(−1,2l+1)c →D(−2,2l+2)c → 0)
≅ (0→ F p−l → F 2p−2−2l → F p−2−l → 0)

(where we interpret spaces as zero if they have zero or negative dimensions,

which happens for D
(−2,2l+2)
c for l ≥ p − 2 and for D

(−1,2l+1)
c for l = p − 1) and

the differential acts on the l-component by

es ⊗ esz
les Ă as,l + bs,l − as−1,l − bs+1,l,

as,l Ă ws,l −ws+1,l

bs,l Ă −ws,l +ws−1,l

from where we see that in the sequenceD0,2l
c
→D−1,2l+1

c
→D−2,2l+2

c
the last map

is surjective, the first has one-dimensional kernel spanned by ∑p
s=l+1 es⊗esz

les =
1 ⊗ zl (which lies in the centre of Ω), and one-dimensional homology in the
middle spanned by κzl where κ ∶= ∑p−1

s=1 as,0. The homology H(Dc) is therefore
c2 ⊕

p−2

⊕
l=0

F.κzl ⊕
p−1

⊕
l=0

F.zl

and the multiplication is obvious from this explicit description and Proposition
7. In our gradings, the j-grading sees η, ξ, x, y in degrees 1,1,−1,−1 respectively,
and the k grading has η, ξ, x, y in degrees 0,0,1,1, so the factor c2 has (j, k)-
degree (2,0), the element z has (j, k)-degree (−2,2) and the element κ has(j, k)-degree (0,1). This completes the proof of (i).

(ii) By Theorem 6, we need to compute the homology of Dc,Θ ∶= ⊕s,t escet ⊗
etΘes with differential

α⊗mĂ αξ ⊗ ym + αη ⊗ xm − (−1)∣m∣ξα⊗my − (−1)∣m∣ηα⊗mx.

Using the same grading and notation as in (i), the only nonzero graded com-
ponents are D

−2,0
c,Θ

(which, as before, is just c2 ⊗ 1Ω ≅ c2 and contributes to

homology), D0,2l
c,Θ

, D−1,2l+1
c,Θ

for 0 ≤ l ≤ p−3

2
(recall that p is odd) and D

−2,2l+2
c,Θ

for

0 ≤ l ≤ p−5

2
. When nonzero, the spaces D0,2l

c,Θ , D−1,2l+1
c,Θ and D

−2,2l+2
c,Θ have bases

given by {es ⊗ esz
les∣s = l + 1, . . . p − l − 1}, {as,l∣s = l + 1, . . . p − l − 2} ∪ {bs,l∣s =

l + 2, . . . p − l − 1} and {ws,l∣s = l + 2, . . . , p − l − 2} respectively. Our complex
Dc,Θ is then a sum of the complex

0→ c2 → 0

Documenta Mathematica 23 (2018) 117–170



Hochschild Cohomology of GL2 155

and the sum over l of complexes for 0 ≤ l ≤ p−3

2
,

(0→D(0,2l)
c,Θ

→D
(−1,2l+1)
c,Θ

→D
(−2,2l+2)
c,Θ

→ 0)
≅ (0→ F p−2l−1 → F 2p−4l−4 → F p−2l−3 → 0)

and the differential acts as before on the basis elements. Again the last map is
surjective, the first has kernel ∑p−l−1

s=l+1 es ⊗ esz
les = 1 ⊗ zl, and homology in the

middle is spanned by κzl = ∑p−l−2
s=l+1 as,l. The homology H(Dc,Θ) is therefore

c2 ⊕

p−3
2

⊕
l=0

F.zlκ⊕

p−3
2

⊕
l=0

F.zl.

By Proposition 7, the HH(Ω)-HH(Ω)-bimodule structure induced by multi-
plication in cop and the Ω-Ω-bimodule structure on Θ. Using the explicit
description of basis elements in terms of tensor products of elements in c and
elements in Θ, (ii) follows.

(iii) Again by Theorem 6, in order to compute HH(Ω,Θσ) we need to compute
the homology of

Dc,Θσ ∶=⊕
s,t

escet ⊗ etΘ
σes,

with differential

α⊗mĂαξ ⊗ ym + αη ⊗ xm − (−1)∣m∣ξα⊗m ⋅ y − (−1)∣m∣ηα⊗m ⋅ x

= αξ ⊗ ym + αη ⊗ xm − (−1)∣m∣ξα⊗mx − (−1)∣m∣ηα⊗my

where we denote by m ⋅x the action of x ∈ Ω on the element m ∈ Θσ and by mx

the usual (untwisted) action of Ω on Θ. As a vector space, this is isomorphic to

⊕s,t escet⊗etΘep−s. This has nonzero componentsD
(0,p−2−2l)
c,Θσ for l = 0, . . . , p−3

2
,

as well as D
(−1,p−1−2l)
c,Θσ and D

(−2,p−2l)
c,Θσ for l = 1, . . . , p−1

2
, with bases given by

{es ⊗ esx
p−s−l−1ys−l−1ep−s∣s = l + 1, . . . , p − l − 1}

{esξes+1⊗es+1xp−s−l−1ys−lep−s, es+1ηes⊗esx
p−s−l−1ys−lep−s−1∣s = l, . . . , p− l−1}

and {esξηes ⊗ esx
p−s−lys−lep−s∣s = l, . . . , p − l}

respectively. As the differential has degree (−1,1), for l = 0 we obtain homology
spanned by {es ⊗ esx

p−s−1ys−1ep−s∣s = 1, . . . , p − 1} in degree (0, p − 2). This is
equal to 1⊗ (Θσ)p−2. The rest of the complex is a sum over l for l = 1, . . . , p−1

2

of

(0→D(0,p−2−2l)
c,Θσ →D

(−1,p−1−2l)
c,Θσ →D

(−2,p−2l)
c,Θσ → 0)

≅ (0→ F p−2l−1 → F 2p−4l → F p−2l+1 → 0).
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Setting
fs,l = esξes+1 ⊗ es+1x

p−s−l−1ys−lep−s,

gs,l = es+1ηes ⊗ esx
p−s−l−1ys−lep−s−1

vs,l = esξηes ⊗ esx
p−s−lys−lep−s

respectively, the differential acts as

es ⊗ esx
p−s−l−1ys−l−1ep−s Ă fs,l + fs−1,l + gs,l + gs−1,l

fs,l Ă vs,l + vs+1,l

gs,l Ă −vs,l − vs+1,l.

It is easy to see that the first map is injective. However, the image of the last
map is spanned by vs,l + vs+1,l for s = l, . . . , p − l − 1 and is hence only p − 2l-
dimensional, leaving one-dimensional homology in both the middle (spanned
by µl = (f p−1

2
,l + g p−1

2
,l) say) and the end (spanned by νl = (v p−1

2
,l − v p+1

2
,l),

say). In order to describe the structure as HH(Ω)-HH(Ω)-bimodule, we need
to determine the action of the generators of HH(Ω) on this, and in light of
Proposition 7 this is induced by multiplication in cop and the action of Ω on
either side of Θσ, or, in other words, the natural action of Dc on Dc,Θσ . It
is clear that both νl and µl are annihilated by c2. Direct computation shows
that κ.µl = µl.κ =

1
2
νl, z.µl = µl.z = µl−1 and z.νl = νl.z = νl−1. By graded

dimensions, the only other non-zero product could be c2.D
(0,p−2)
c,Θσ , which lies in

degree (−2, p−2), where ν1 also lives. Direct computation shows that with our
choice of representatives of homology, we obtain

(esξηes ⊗ es)(es ⊗ esx
p−s−1ys−1ep−s) = (es ⊗ esx

p−s−1ys−1ep−s)(esξηes ⊗ es)
=
1

2
(−1) p−1

2
−sν1

and all other product with non-matching idempotents are obviously zero. The(j, k)-degrees of the basis elements are (−p + 2, p − 2) for es ⊗ esx
p−s−1ys−1ep−s

for s = 1, . . . , p− 1, then (−p+ 2+ 2l, p− 2l − 1) for µl and (−p+ 2+ 2l, p− 2l) for
νl.

This completes our combinatorial description of HH(Ω,Θσ). To define an iso-
morphism between HH(Ω,Θσ) and HH(Ω,Θ)∗ we now define a bilinear form

∣−,−∣ ∶ HH(Ω,Θσ)⊗HH(Ω,Θ)→ F

such that

∣h,h′h′′∣ = ∣hh′, h′′∣, ∣h,h′′h′∣ = (−1)∣h′∣k(∣h∣k+∣h′′∣k)∣h′h,h′′∣,
for h ∈ HH(Ω,Θσ), h′ ∈ HH(Ω), h′′ ∈ HH(Ω,Θ). Indeed the form ∣−,−∣ which
pairs 2(−1) p−1

2
−s(es⊗esxp−s−1ys−1ep−s) ∈ HH(Ω,Θσ) (of (j, k)-degree (2−p, p−

2)) with esξη ⊗ 1 ∈ HH(Ω,Θ) (which has (j, k)-degree (2,0)), which pairs zl
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(of (j, k)-degree (−2l,2l)) with νl+1 (of (j, k)-degree (2l − p + 4, p − 2l − 2)),
and which pairs zlκ (of (j, k)-degree (−2l,2l + 1)) with µl+1(of (j, k)-degree(2l−p+4, p−2l−3)) has the required property; in fact all signs (−1)∣h′∣k(∣h∣k+∣h′′∣k)
are +1 when ∣h′h,h′′∣ is nonzero for elements h,h′,h′′ of our canonical bases since
the super-commutation relations defining HH(Ω) are all commutation relations,
with z lying in degree 2. It follows that there is an isomorphism

HH(Ω,Θσ) ≅ HH(Ω,Θ)∗4܂ − p2]܂ − p]
as claimed.

(iv) Similarly to the previous ones, we apply Theorem 6 and see that we need
to compute the homology of the complex Dc,Ω∗ ∶= ⊕s,t escet ⊗ etΩ

∗es with
differential sending α⊗ϕ to

αξ ⊗ yϕ + αη ⊗ xϕ − (−1)∣ϕ∣ξα⊗ ϕy − (−1)∣a∣ηα⊗ ϕx.

The computation is similar to the one in (i). We set

ãs,l−1 = es−1ξes ⊗ es(zl−1x)∗es−1 b̃s,l−1 = es+1ηes ⊗ es(zl−1y)∗es+1.
The nonzero graded components of Dc,Ω∗ are D

(0,0)
c,Ω∗

, having basis given by

{es ⊗ e∗s ∣ s = 1, . . . p}, as well as D(0,−2l)c,Ω∗ ,D
(−1,−2l+1)
c,Ω∗ and D

(−2,−2l+2)
c,Ω∗ for 1 ≤ l ≤

p − 1 with respective bases given by

{es ⊗ es(zl)∗es ∣ s = l + 1, . . . , p}
{es−1ξes ⊗ es(zl−1x)∗es−1, esηes−1 ⊗ es−1(zl−1y)∗es ∣ s = l + 1, . . . , p}

{esξηes ⊗ es(zl−1)∗es ∣ s = l, . . . , p − 1}.
Our complex is isomorphic to the direct sum of p complexes

0→D
(0,−2l)
c,Ω∗ →D

(−1,−2l+1)
c,Ω∗ →D

(−2,−2l+2)
c,Ω∗ → 0

for l = 1, .., p− 1 and 0→D
(0,0)
c,Ω∗ → 0. The last summand provides the homology

claimed in this case, so we need to show that the first p−1 summands are exact.

Indeed, the dimensions of D
(0,−2l)
c,Ω∗ ,D

(−1,−2l+1)
c,Ω∗ and D

(−2,−2l+2)
c,Ω∗ are p− l, 2(p− l)

and p − l respectively, so it suffices to show that the differential is injective on
the first and surjective on the last component. Since

ãs,l−1 = es−1ξes ⊗ es(zl−1x)∗es−1 b̃s,l−1 = es+1ηes ⊗ es(zl−1y)∗es+1,
the differential acts as

es ⊗ es(zl)∗es Ă as+1,l−1 + bs−1,l−1 − as,l−1 − bs,l−1,

where summands are considered as zero if s falls outside of the range 1, . . . , p,
from which we see injectivity of the first differential. The basis element ãs,l−1 in
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D
(−1,−2l+1)
c,Ω∗ gets sent to es−1ξηes−1⊗es−1(zl−1)∗es−1−esξηes⊗es(zl−1)∗es where

again summands are considered as zero if s falls outside of the range 1, . . . , p,
from which we see surjectivity of the the second differential, completing the
proof of (iv).

(v) We have an exact sequence of Ω-Ω-bimodules,

0→ ΩepΩ → Ω → Θ→ 0.

Applying RHomΩ⊗Ωop(Ω,−) gives us an exact triangle

RHomΩ⊗Ωop(Ω,ΩepΩ)→ RHomΩ⊗Ωop(Ω,Ω) → RHomΩ⊗Ωop(Ω,Θ)Ă
in the derived category of F -F -bimodules, which corresponds to an exact tri-
angle

HH(Ω,ΩepΩ)→ HH(Ω,Ω)→ HH(Ω,Θ) Ă
We know HH(Ω,Ω) and HH(Ω,Θ), and from our calculations the map between
them is visibly the canonical surjection. This completes the proof of (v).

We give some pictures visualising the structure of the bimodules in case p = 5
(the numbers down the left hand side denote the k-grading and along the top
the j-grading Here is HH(Ω):

2 1 0 −1 −2 −3 −4 −5 −6 −7 −8

0 1
❥❥
❥❥
❥❥

❃
❃
❃
❃
❃
❃
❃
❃
❃
❃
❃

0 F⊕p−1

1 κ

❏
❏
❏
❏
❏
❏
❏
❏
❏

2 z

❑
❑
❑
❑
❑
❑
❑
❑
❑
❑

3 κz

❏
❏
❏
❏
❏
❏
❏
❏

4 z2

❑
❑
❑
❑
❑
❑
❑
❑
❑
❑

5 κz2

❑
❑
❑
❑
❑
❑
❑
❑
❑

6 z3

❏
❏
❏
❏
❏
❏
❏
❏
❏

7 z3κ

8 z4

Here is HH(Ω,Θ):
2 1 0 −1 −2 −3

0 1
✐✐
✐✐
✐✐
✐

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

0 F⊕p−1

1 κ

▲
▲
▲
▲
▲
▲
▲
▲
▲

2 z

3 κz
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Here is HH(Ω,Θσ):
1 0 −1 −2 −3

0 µ2

❍
❍
❍
❍
❍
❍
❍
❍
❍

1 ν2

❂
❂
❂
❂
❂
❂
❂
❂
❂
❂
❂

2 µ1

3 F⊕p−1

❤❤
❤❤
❤❤
❤❤

3 ν1

Here is HH(Ω,Ω∗):
0 F⊕p

Here is HH(Ω,ΩepΩ):
−4 −5 −6 −7 −8

4 z2

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲

5 κz2

▲
▲
▲
▲
▲
▲
▲
▲
▲

6 z3

❑
❑
❑
❑
❑
❑
❑
❑
❑
❑

7 z3κ

8 z4

Remark 22. The bimodule isomorphism

HH(Ω,Θσ) ≅ HH(Ω,Θ)∗4܂ − p2]܂ − p]
of Proposition 21(iii) is striking, since we also have Θσ ≅ Θ∗ as bimodules. This
duality between Hochschild cohomologies does not follow from basic general
principles and therefore deserves further comment. We give a more conceptual
explanation of its origin here. Thanks to (6) and (7), the dual of the short
exact sequence

0→ ΩepΩ→ Ω→ Θ→ 0

is isomorphic to

0← ΩepΩ2܂p − 2p]܂2 − 2]← Ω∗ ← Θσ܂p − p]܂2 − 2]← 0.

Applying derived HomΩ⊗Ωop(Ω,−) gives us an exact triangle

HH(Ω,Θσ)܂p − p]܂2 − 2]→ HH(Ω,Ω∗) → HH(Ω,ΩepΩ)2܂p − 2p]܂2 − 2]Ă
We know from Proposition 21(v) that HH(Ω,ΩepΩ) is the kernel of HH(Ω,Ω →
Θ), an extension of F [κ, z]/(κ2, z

p−1
2 −1܂( p1]܂− p] by F −2܂ 2p2]܂− 2p] and we
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know that HH(Ω,Ω∗) is isomorphic to F⊕p[0]܂0܂. Two copies of F cancel in
the derived category in our triangle via the map HH(γ) where γ is the natural
surjection Ω∗ Ă ΩepΩ from (22) (see proof of Lemma 24, the product ◊l).
Using

F [κ, z]/(κ2, z
p−1
2 −1܂( p1]܂ − p]2܂p− −2p]܂2 2] ≅ F [κ, z]/(κ2, z

p−1
2 −p܂( −p]܂1 1],

this leaves us with an exact triangle

HH(Ω,Θσ)܂p − p]܂2 − 2]→ F⊕p−1 → F [κ, z]/(κ2, z
p−1
2 p܂( − p]܂1 − 1]Ă,

which we can shift to a triangle

F [κ, z]/(κ2, z
p−1
2 →[0]܂1܂( HH(Ω,Θσ)→ F⊕p−12܂ − p2]܂ − p]Ă

or

F [κ, z]/(κ2, z
p−1
2 p܂( − p]܂3 − 2]→ HH(Ω,Θσ)܂p − p]܂4 − 2]→ F⊕p−1[0]܂2−܂Ă

This is dual to the exact triangle

F⊕p−1[0]܂2܂→ HH(Ω,Θ)→ F [κ, z]/(κ2, z
p−1
2 )Ă .

Here we use the self-injectivity of F [κ, z]/(κ2, z
p−1
2 ), which is given by an iso-

morphism

F [κ, z]/(κ2, z
p−1
2 ) ≅ F [κ, z]/(κ2, z

p−1
2 3܂∗( − p2]܂ − p]

of F [κ, z]/(κ2, z
p−1
2 )-F [κ, z]/(κ2, z

p−1
2 )-bimodules. We thus have

HH(Ω,Θ)∗ ≅ HH(Ω,Θσ)܂p − p]܂4 − 2]
as jk-graded HH(Ω)-HH(Ω)-bimodules.

Remark 23. The spaces computed in Proposition 21 come with natural bases.

Denote χ ∶= HH(Ω) and χ ∶= χ/z p−1
2 , and let χ denote the kernel of the natural

surjection χ → χ, so we have isomorphisms HH(Ω,Θ) ≅ χ, χȂ ∶= HH(Ω,Θσ) ≅
χ∗4܂ − p2]܂ − p] and HH(Ω,ΩepΩ) ≅ χ. We have bases for these bimodules,
indexed by pairs (d, e) where d denotes a jk-degree and e an idempotent such
that emd,e = md,e (as an example, m−2l,2l,1 corresponds to zl = 1 ⋅ zl, m2,0,es
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corresponds to esξηes ⊗ es, etc):

Bχ ={m−2l,2l,1∣0 ≤ l ≤ p − 1} ∪ {m−2l,2l+1,1∣0 ≤ l ≤ p − 2}
∪ {m2,0,es ∣1 ≤ s ≤ p − 1};

Bχ ={m−2l,2l,1∣0 ≤ l ≤ p − 3

2
} ∪ {m−2l,2l+1,1∣0 ≤ l ≤ p − 3

2
}

∪ {m2,0,es ∣1 ≤ s ≤ p − 1};
Bχ∗ ={m2l,−2l,1∣0 ≤ l ≤ p − 3

2
} ∪ {m2l,−2l−1,1∣0 ≤ l ≤ p − 3

2
}

∪ {m−2,0,es ∣1 ≤ s ≤ p − 1};
Bχ =Bχ/Bχ;
BΩ0 ={m0,0,es ∣1 ≤ s ≤ p}.

More precisely we have

Bχ ={1, zl∣0 ≤ l ≤ p − 1} ∪ {κzl∣1 ≤ l ≤ p − 2} ∪ {esξη ⊗ 1∣1 ≤ s ≤ p − 1};
BχȂ ={νl+1∣0 ≤ l ≤ p − 3

2
} ∪ {µl+1∣0 ≤ l ≤ p − 3

2
}

∪ {es ⊗ esx
p−s−1ys−1ep−s∣1 ≤ s ≤ p − 1} = {mj+4−p,k+p−2,e∣mj,k,e ∈ Bχ∗}

and we identify Bχ and Bχ with subsets of Bχ in the natural way. The basis
BΩ0 is merely the set of idempotents es for 1 ≤ s ≤ p.

11 The algebra Π = HH(Λ).
Cute as Λ is, to compute the Hochschild cohomology of blocks of polynomial
representations of GL2 we must diminish it, by taking Hochschild cohomology
with respect to Ω. The resulting algebra we call Π. In the remaining parts of
the paper we assume p > 2.

11.1 Description via bimodules.

Recall the notations from Remark 23. By taking componentwise Hochschild
cohomology we see that the structure of Π as an ungraded χ-χ-bimodule is

Documenta Mathematica 23 (2018) 117–170



162 V. Miemietz, W. Turner

given by

...

χ∗ χ Ω0

χ Ω0

Ω0

χ

χ

χ χ∗

χ χ∗ χ

χ χ∗ χ χ∗

χ χ∗ χ χ∗ χ

...

From the structure of Λ as bigraded Ω-Ω-bimodule, we infer the structure of
Π− = HH(Λ−) as a k-graded χ-χ-bimodule

χ

χ[1 − p] χ∗[2 − p]
χ[2 − 2p] χ∗[3 − 2p] χ

χ[3 − 3p] χ∗[4 − 3p] χ[1 − p] χ∗[2 − p]
χ[4 − 4p] χ∗[5 − 4p] χ[2 − 2p] χ∗[3 − 2p] χ

... ;

the structure of Π− as a j-graded χ-χ-bimodule

χ

χ܂−p܂ χ∗4܂ − p܂
χ2−܂p܂ χ∗4܂ − 2p܂ χ

χ3−܂p܂ χ∗4܂ − 3p܂ χ܂−p܂ χ∗4܂ − p܂
χ4−܂p܂ χ∗4܂ − 4p܂ χ2−܂p܂ χ∗4܂ − 2p܂ χ

... ;
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the structure of Π+ = HH(Λ+) as a k-graded χ-χ-bimodule

...

χ[p − 2] χ∗[p − 1] χ[3p − 4] Ω0[3p − 3]
χ∗[0] χ[2p − 3] Ω0[2p − 2]

χ[p − 2] Ω0[p − 1]
Ω0[0]

χ[p − 1]
χ ;

and finally the structure of Π+ as a j-graded χ-χ-bimodule

...

χ܂p܂ χ∗4܂ + p܂ χ3܂p܂ Ω02܂ + 3p܂
χ∗܂4܂ χ2܂p܂ Ω02܂ + 2p܂
χ܂p܂ Ω02܂ + p܂
Ω0܂2܂

χ܂p܂
χ܂0܂ .

11.2 Multiplication.

In order to give the multiplication on Π, which thanks to Propositions 7 and
16 is induced by multiplication in Λ, we first define a number of χ-χ-bimodule
homomorphisms between the various components of Π.

Lemma 24. Let ؂, ◊l, ◊r, ⧫, ⧫r, Ԃl, Ԃr and ▲ be the χ-χ-bimodule homo-
morphisms obtained by applying HH(Ω,−) to a ∶ Θσ ⊗Θσ → Θ, θl, θr, ιl, ιr,
νl, νr, and β from Lemma 18 respectively, which we identify with products of
components of H(cop⊗Λ). Then the products of basis elements in these spaces
that are nonzero are given as follows:
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؂ ∶ χ∗ ⊗χ χ∗ → χ

µ p−1
2
⊗ µ p−1

2
Ă ξη(e p−1

2
− e p+1

2
)

(e p+1
2
⊗ e p+1

2
x

p−3
2 y

p−1
2 e p−1

2
)⊗ µ p−1

2
Ă κz

p−3
2

(e p−1
2
⊗ e p−1

2
x

p−1
2 y

p−3
2 e p+1

2
)⊗ µ p−1

2
Ă κz

p−3
2

µ p−1
2
⊗ (e p+1

2
⊗ e p+1

2
x

p−3
2 y

p−1
2 e p−1

2
) Ă κz

p−3
2

µ p−1
2
⊗ (e p−1

2
⊗ e p−1

2
x

p−1
2 y

p−3
2 e p+1

2
) Ă κz

p−3
2

◊l ∶ χ⊗χ Ω0 → χ, ◊r ∶ Ω0 ⊗χ χ→ χ

1⊗ ep Ă zp−1 ep ⊗ 1Ă zp−1

⧫l ∶ χ⊗χ Ω0 → χ, ⧫r ∶ Ω0 ⊗χ χ→ χ

1⊗ ep Ă zp−1 ep ⊗ 1Ă zp−1

Ԃl ∶ χ⊗χ χ∗ → Ω0,

1⊗ (es ⊗ esx
p−s−1ys−1)Ă es, 1 ≤ s ≤ p − 1

Ԃr ∶ χ∗ ⊗χ χ→ Ω0,

(es ⊗ esx
p−s−1ys−1)⊗ 1Ă es, 1 ≤ s ≤ p − 1

▲ ∶ χ⊗χ χ→ Ω0,

z
p−1
2 ⊗ z

p−1
2 Ă

p

∑
s= p+1

2

es

Proof. The product؂. Let us consider the element κz
p−3
2 of HH(Ω,Θ). From

the proof of Lemma 21(ii) we find it is equal to ∑p−1
s=1 as,0z

p−3
2 . We know that

as,0z
p−3
2 is zero unless s = p−1

2
; consequently

κz
p−3
2 = e p−1

2
ξe p+1

2
⊗ e p+1

2
x

p−3
2 y

p−1
2 e p−1

2
.

The image of e p−1
2
⊗ z

p−3
2 under the differential is

e p−1
2
ξe p+1

2
⊗ e p+1

2
x

p−3
2 y

p−1
2 e p−1

2
− e p+1

2
ηe p−1

2
⊗ e p−1

2
x

p−1
2 y

p−3
2 e p+1

2
,
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and therefore in homology we obtain

κz
p−3
2 = e p−1

2
ξe p+1

2
⊗ e p+1

2
x

p−3
2 y

p−1
2 e p−1

2
= e p+1

2
ηe p−1

2
⊗ e p−1

2
x

p−1
2 y

p−3
2 e p+1

2
.

We have µ p−1
2
= e p−1

2
ξe p+1

2
⊗ e p+1

2
+ e p+1

2
ηe p−1

2
⊗ e p−1

2
. Multiplying in cop ⊗ Λ

gives us؂.

The product ◊l. Consider the product θl ∶ Ω ⊗ Ω∗ → ΩepΩ. This factors
over the action map Ω ⊗ ΩepΩ → ΩepΩ, and consequently ◊l factors over the
action map χ ⊗ χ → χ. If we want to know ◊l it therefore suffices to know

HH(γ) ∶ Ω0 → χ where again γ is the natural surjection Ω∗ Ă ΩepΩ from
(22). For every 1 ≤ s ≤ p − 1, the linear form e∗s vanishes on ΩepΩ whereas the
restriction of e∗p to ΩepΩ is equal to ܂−,zp−1܂ (where ܂−,−܂ is the bilinear form
induced by (6)). Accordingly, the mapping HH(γ) vanishes on es and maps ep
to zp−1, which fits with the stated structure of ◊l.

The product ⧫l. The product ιl is merely the composition of θl and the em-
bedding of ΩepΩ in Ω. Therefore ⧫l is the composition of ◊l and the natural
embedding of χ in χ.

The product Ԃl. Consider the product νl ∶ Θ⊗Θ
σ → Ω∗. This is the composite

of the action of Θ on Θσ and the embedding µ of Θσ in Ω∗ using (7), in which
the socle of Θσ is identified with the socle of Ω∗. To know HH(νl) it therefore
suffices to know HH(µ). Since in our computation of HH(Ω,Ω∗) the space Ω0

is identified with the socle of Ω∗ in the tensor product cop⊗Ω∗, and µ identifies
es ⊗ esx

p−s−1ys−1 with the element of the socle of Ω∗ corresponding to es ∈ Ω
0,

the product Ԃl is as stated.

The products ◊r, ⧫r, and Ԃr are established similarly to ◊l, ⧫l, and Ԃl.

The product ▲. We know that under ▲ the radical of χ must have product

zero with all elements since Ω0 is semisimple. This leaves us with the problem

of finding the square of the element z
p−1
2 of χ in Ω0. We need to find the

element in Ω0 corresponding to β(z p−1
2 ⊗z

p−1
2 ), that is∑p

s=1 β(z p−1
2 ⊗z

p−1
2 )(es)es.

Now, by the explicit isomorphism described after (12) β(z p−1
2 ⊗ z

p−1
2 )(es) esz܂= p−1

2 es, esz
p−1
2 es܂, which equals 1 if s ≥ p+1

2
and 0 otherwise. Thus the

resulting element in Ω0 is ∑p

s= p+1
2

es, as stated.

We use these maps to describe the product inΠ, where we again gather together
components which are isomorphic (up to shift), according to whether they lie
in Π

+ or Π−, in a similar way as in Proposition 19.
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Theorem 25. Products between the various components in Π are given by the
following table

χ− χ− χ∗− χ χ+ χ∗+ Ω0
+

χ− a a a a 0 0 ⧫,◊, a

χ− a a a 0 0, a 0, a,Ԃ 0

χ∗− a a ؂ 0 0, a,Ԃ 0,؂ 0

χ a 0 0 ▲ 0 0 0

χ+ 0 0, a 0, a,Ԃ 0 0 0 0

χ∗+ 0 0, a,Ԃ 0,؂ 0 0 0 0

Ω0
+ ⧫,◊, a 0 0 0 0 0 0

Possible ambiguities are covered by further tables. For the product of Ω0
+ and

χ−:

Component in which the product lands: χ χ Ω0
+

Natural map describing the product: ⧫ ◊ a

For the product of χ+ and χ−:

Component in which the product lands: χ+ Π−

Natural map describing the product: a 0

For the product of χ∗− and χ+:

Component in which the product lands: χ∗+ χ
+

Ω0
+ Π

−

Natural map describing the product: a 0 Ԃ 0

For the product of χ∗+ and χ−:

Component in which the product lands: χ∗+ χ
+

Ω0
+ Π

−

Natural map describing the product: a 0 Ԃ 0

For the product of χ∗+ and χ∗−:

Component in which the product lands: χ+ Π
−

Natural map describing the product: ؂ 0

Proof. All the action products are inherited from action products inΛ; all other
nonzero products are inherited from nonzero products in Λ or via Lemma 24.
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The zero products are either inherited from zero products in Λ, or determined
by the fact that the products lie in degrees in which there are no nonzero
elements with respect to the various gradings; for example HH(ǫ) = HH(ζ) = 0
by this reasoning.

12 A monomial basis.

As any Ringel self-dual block of polynomial representations of G is equivalent
to OF,0O

l
c,t(F, (F,F )) -mod for some l ≥ 0, we have established the following:

Theorem 26. We have isomorphisms of k-graded algebras

hhl ≅OFO
l
Π
(F [z, z−1]).

Proof. This is a restatement of Proposition 17.

We describe a basis for Π indexed by elements of a polytope. Roughly, we label
basis elements md,e for Π by a pair (d, e) where d ∈ Z3 denotes a ijk-degree,
and e denotes an element of Ω0, either 1 or an idempotent.

More precisely, here is our basis for Π:

BΠ =Bχ− ∪Bχ−
∪Bχ∗−

∪Bχ ∪Bχ+
∪Bχ∗+

∪BΩ0

={ma,b,i,j+ap,k+a(1−p),e∣mj,k,e ∈ Bχ, a ≤ 0, b = 0, i = a + b}
∪{ma,b,i,j+ap,k+a(1−p),e∣mj,k,e ∈ Bχ, a ≤ 0, b ≤ −2, b even , i = a + b}
∪{ma,b,i,j+(4−p)+ap,k+(p−2)+a(1−p),e∣mj,k,e ∈ Bχ∗ , a ≤ 0, b ≤ −1, b odd, i = a + b}
∪{m1,0,1,j+p,k+1−p,e∣mj,k,e ∈ Bχ}
∪{ma,b,i,j+(a−1)p,k+1+(a−1)(1−p),e∣mj,k,e ∈ Bχ, a ≥ 2, b ≥ 1, b odd , i = a + b}
∪{ma,b,i,j+4+(a−2)p,k+(a−2)(1−p),e∣mj,k,e ∈ Bχ∗ , a ≥ 2, b ≥ 2, b even , i = a + b}
∪{ma,b,i,j+2+(a−2)p,k+(a−2)(1−p),e∣mj,k,e ∈ BΩ0 , a ≥ 2, b = 0, i = a + b}

We describe the a, b grading as follows: in our pictures of Π a shift by a

corresponds to a move to the northeast by a and a shift by b corresponds to
a move to the north by b. The product of a pair of basis elements in Π is
either another basis element, or the sum of a basis element and the negative
of another basis element, or ± 1

2
a basis element, or zero; when a product of

ma,b,i,j,k,e.ma′,b′,i′,j′,k′,e′ is nonzero, the basis elements in the product take the
form ma+a′,b+b′,i+i′,j+j′ ,k+k′,y. Precise formulas for the product are given by
the formulas in the statement of Lemma 24 and the table in the statement of
Theorem 25.

We can now use this to construct a basis for hhl.
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Corollary 27. The algebra hhl inherits an explicit basis from Π.

Before proving this, we recall that the ik-homogeneous component of
Ol

Π
(F [z, z−1]) is given by ⊕Π

ij1k1 ⊗Πj1j2k2 ⊗ȂΠjl−1j1kl ⊗ zkl where the sum
runs over all integers j1, . . . , jl and k1, . . . , kl such that k1 + Ȃ + kl = k. The
operator OF then projects onto the homogeneous component of i-degree 0.

Proof. We explicitly write down such a basis as follows: let BΠ denote our
basis for Π. We have a basis for the algebra Π⊗F l ⊗F F [z, z−1] given by
B×l

Π
× {zd∣d ∈ Z}; the product of basis elements is the super × product. We

define the weight of a monomial mw1 ⊗ ...⊗mwq ⊗ zα in B×l
Π
× {zd∣d ∈ Z} to be

(w2
i −w

1
j ,w

3
i −w

2
j , ....,w

l
i −w

l−1
j , α −wl

j) ∈ Zl+1,

where (wi,wj) denotes the ij-degree of mw. We then have a basis for the
algebra OFO

l
Π
(F [z, z−1]) given by weight zero elements in B×l

Π
× {zd∣d ∈ Z};

the product is the restriction of the product on B×l
Π
× {zd∣d ∈ Z}.

Corollary 28. The map hhl → hhl−1 is surjective for l ≥ 1.

Proof. The map Π → F is surjective, implying

OΠ(a) →OF (a)
is surjective for any a, implying

OFOΠ(a) →O
2
F (a) =OF (a)

is surjective for any a, implying

OFO
l
Π(F [z, z−1]) →OFO

l−1
Π (F [z, z−1])

is surjective, implying hhl → hhl−1 is surjective.
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