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1 INTRODUCTION.

Hochschild cohomology is a basic invariant which associates to a finite dimen-
sional algebra A a super-commutative algebra HH(A) = Ext% ., 4 4(A). The
algebra HH(A) can be thought of as the derived centre of the algebra A, given
as it is by the formula HH(A) = H*End_mod. 4(A), where A is a projective
resolution of A in the category A-mod- A of A-A-bimodules; to see the analogy
compare with the formula Z(A) = End 4 -mod- a(A) for the classical centre Z(A)
of a unital algebra A. If M is any A-module, then the natural algebra homo-
morphism Z(A) - Hom (M, M) extends to a natural algebra homomorphism
HH(A) - Ext% (M, M).

Like other algebras obtained by taking derived endomorphisms, Hochschild
cohomology and its variants can be endowed with additional structures, which
have been the source of diverse interest: the most basic such is known as the
Gerstenhaber bracket [5]. But even without further decoration, the algebra
HH(A) has proved difficult to compute in specific examples, and its behaviour
difficult to predict. One delicacy is the issue of finite generation of HH(A)
which is not guaranteed for a finite dimensional algebra A, even modulo the
ideal of nilpotent elements [23, 22]; yet there are finite dimensional self-injective
algebras whose Hochschild cohomology is not merely finitely generated but
finite dimensional [2].

The subject of this article is the computation of HH in a basic example arising
in the representation theory of algebraic groups. We examine the Hochschild
cohomology of polynomial representations of the algebraic group G = GLo(F'),
where F' is an algebraically closed field of characteristic p. Indeed, we com-
pute the Hochschild cohomology of any Ringel self-dual block of polynomial
representations of G for p > 2, which by [7, Theorem 27] are precisely those

DOCUMENTA MATHEMATICA 23 (2018) 117-170



HocHscHILD COHOMOLOGY OF GLs 119

blocks with p! simple modules for [ € N. The algebras describing these blocks
increase in complexity as [ increases, but we are nevertheless able to develop
sufficiently sharp homological tools to achieve the calculation of their HH alge-
bras. Their Hochschild cohomology algebras, for which we give explicit bases
and multiplications, turn out not only to be finitely generated, but indeed
finite-dimensional.

We apply a theory of algebraic operators (2-functors) on certain 2-categories
which underlies the representation theory of G [15], [16]. We also use the theory
of quasi-hereditary algebras [3], the theory of Koszul duality [1], the formalism
of differential graded algebras and their derived categories [11], a theory of ho-
mological duality for algebraic operators, explicit analysis of certain bimodules
associated with a well-known quasi-hereditary algebra ¢ and its homological
duals, and a formalism of algebras with a polytopal basis.

2 THE ANSWER.

All algebras considered in this article will be F-algebras. Suppose T' =
D j ez I'J* is a Z-trigraded algebra. We have a combinatorial operator Or
which acts on the collection of Z-bigraded algebras ¥ after the formula

Or(X)* = @ T epnit,
jok1+ka=k
where we take the super tensor product with respect to the k-grading.

Let p > 2. In the main body of the paper we define an ijk-graded algebra IT
with an explicit, canonically defined basis Bry. A complete description of the
algebra II, its basis, and its product, is given in Section 11.

There is a natural algebra homomorphism F' < IT which is a splitting of the map
sending 1 to the identity in II. This lifts to a morphism of operators O p « Oy,
which means that we obtain an algebra homomorphism O g3 < O for every
Y. Since D% = O we obtain a sequence of operators

DF <—DFDH FDFD%-I <—DFD:}1’—[ <~ ...

We define hh; to be the Hochschild cohomology of a block of polynomial rep-
resentations of G with p' simple modules and establish the following:

THEOREM 1. For anyl >0, the algebra hhy is isomorphic to O O (F[z,271]).

REMARK 2. For every [ the algebra hh; inherits an explicit basis from IT with
an explicit product as described in Corollary 27.

ACKNOWLEDGEMENT. The first author acknowledges support from ERC grant
PERGO07-GA-2010-268109. We would also like to thank the referee for an
extremely thorough and helpful report.
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120 V. MiemMiETZ, W. TURNER
3  GUIDEBOOK.

The proof of Theorem 1 passes through a number of counties of diverse char-
acter; here we briefly describe some of these. The algebras we are interested in
are not Koszul algebras; nevertheless, they are closely related to certain Koszul
algebras and we make use of some pretty generalities concerning the Hochschild
cohomology of Koszul algebras; in Section 4 we give an account of these. In
Section 5 we introduce certain algebraic operators and gather together some
facts about these that we have established in previous papers. In Section 6
we describe an interaction of these operators with Hochschild cohomology and
Koszul duality. In Section 7 we recall from another paper [15] how special
examples of our algebraic operators can be used to describe the polynomial
representation theory of GLy(F'). In Section 8 we show that this description of
the polynomial representation theory of GLo(F') via algebraic operators along
with the Section 6 analysis of the behaviour of Hochschild cohomology under
such algebraic operators can be used to describe the Hochschild cohomology
for the algebras relevant to GLy(F') in terms of an algebraic operator Ogg(a);
here A = HTq(t')) is the homology tensor algebra over a certain Koszul algebra
Q of a certain pair of dg Q-Q bimodules t', and $$) is the operator that sends a
graded algebra X = @; X' to a graded algebra @; HH(X?, X*). In Section 9 we
give a combinatorial description of the algebra A via certain bimodules; to do
this we invoke a study of the negative part A~ of A made in a previous article
[16], and Serre duality for Q. In Section 10 we perform a detailed combinatorial
analysis of the Hochschild cohomology of certain bimodules appearing in the
algebra A. A fact emerging here is that a certain quotient © of 2, commonly
known as the preprojective algebra of type A, possesses an involution o such
that
07 20", HH(Q,07) 2 HH(Q,0)";

the first of these formulas asserts the well known self-injectivity of ©, but the
second asserts something similar holds under HH(2,-). In Section 11 we use
the analysis of the preceding section to give a combinatorial description of
IT = HH(A) in terms of certain bimodules and maps between them. Finally in
Section 12 we reach our destination, and give a proof of Theorem 1 as well as
a monomial basis for the algebras we construct.

4  HOCHSCHILD COHOMOLOGY OF KOSZUL ALGEBRAS.

4.1 GRADING CONVENTIONS.

In order to fix our notations, we will now give a brief introduction to dg alge-
bras and modules, which will be the main objects of study in this paper. A
differential graded vector space is a Z-graded vector space V = @, V¥ with a
graded endomorphism d of degree 1. We write |v| for the degree of a homo-
geneous element of V. We will always assume all V* to be finite-dimensional.
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HocHscHILD COHOMOLOGY OF GLs 121

We assume d can act both on the left and the right of V', with the conven-
tion d(v) = (-1)!l(v)d. A differential graded algebra is a Z-graded algebra
A =@, A* with a differential d such that

d(ab) = d(a).b+ (-1)a.d(b),

or equivalently
(ab)d = a.(b)d + (-1)"(a)d.b.

If A is a differential graded algebra then a differential graded left A-module is
a graded left A-module M with differential d such that

d(a.m) = d(a).m+ (-1)1*la.d(m);

a differential graded right A-module is a graded right A-module M with differ-
ential d such that
d(m.a) =d(m).a+ (-1)™m.d(a).

If A and B are dg algebras then a dg A-B-bimodule is a graded A-B-bimodule
with a differential which is both a left dg A-module and a right dg B-module.

If 4Mp and pN¢ are dg bimodules where A, B, and C' are dg algebras, then
M ®p N is a dg A-C-bimodule with differential

dim®n) =d(m)en+(-1)"med(n).

Speaking about morphisms of dg algebras and dg (bi-)modules we mean ho-
mogeneous morphisms. However, if 4Mp and 4 N¢ are dg bimodules where
A, B, and C are dg algebras, then Hom4 (M, N), the k-graded vector space
whose k-degree m-part consists of all A-module morphisms f : M — N such
that f(M®) c M**™. This is a dg B-C-bimodule with differential

d(¢) =do¢-(-1)¥pod.

If AM is a left dg A-module, then End4 (M) is a differential graded algebra
which acts on the right of M, giving M the structure of an A-Enda(M)-
bimodule, the differential on End 4 (M) being given by (¢)d = pod— (-1)?ldo
¢. If Mp is a right dg B-module, then Endg(M) is a differential graded
algebra which acts on the left of M, giving M the structure of an End g (M )-B-
bimodule, the differential on Endp (M) being given by d(¢) = do¢—(-1)1?lpod.

A differential bi- (tri-)graded vector space is a vector space V with a Z?- respec-
tively Z3-grading whose coordinates we denote by (j, k) respectively (i, j, k) and
an endomorphism d of degree (0,0,1), i.e. d is homogeneous with respect to
the ¢, j-gradings and has degree 1 in the k-grading, which we will also call the
homological grading. We denote by (-) a shift by 1 in the j-grading, meaning
(V(n))? = VI Since we will often identify dg modules and complexes, we will
stick to the complex convention of [-] being a shift to the left, i.e. V[n]k = VF+n.
Altogether
(V(n)[m])”k _ Vi,j—n,k-%—m.
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122 V. MiemMiETZ, W. TURNER

All definitions above can be extended to the differential bi- (tri-)graded set-
ting, defining differential bi- (tri-)graded algebras, differential bi- (tri-)graded
(left and right) A-modules as well as bi- (tri-)graded A-B-bimodules as bi- (tri-
)graded algebras resp. modules resp. bimodules which are differential graded al-
gebras resp. modules resp. bimodules with respect to the k-grading, i.e. with re-
spect to an endomorphism of degree (0,0,1). Speaking about morphisms of dif-
ferential bi- (tri-)graded algebras and differential bi- (tri-)graded (bi-)modules
we mean homogeneous morphisms with respect to all gradings. Similarly to
the above, homomorphism spaces taken between A-modules (rather than dif-
ferential (bi-) trigraded A-modules) will carry a differential bi- (tri-)grading.

For a dg algebra A, we denote by Dgg4(A) the dg derived category of A, whose
objects are (left) dg A-modules and where morphisms are given by the local-
isation of the class of dg module morphisms with respect to the class which
are quasi-isomorphisms (see [11, Section 3.1, 3.2]). We denote by A-perf and
perf- A the categories of left resp. right perfect dg A-modules.

We let H denote the cohomology functor, which takes a differential k-graded
complex C' to the k-graded vector space HC' = H*C'.

4.2 HOCHSCHILD COHOMOLOGY OF KOSZUL ALGEBRAS.

Koszul duality was introduced by Beilinson, Ginzburg and Soergel [1] and gen-
eralised to dg algebras by Keller [9, Section 10]. The conventions we follow are
given in [17, Appendix B], and also summarised below.

SETUP 3. Throughout this section, A denotes a finite-dimensional Koszul al-
gebra. It is hence in particular a quadratic j-graded algebra of the form A =
T 40(A')/R, with relations R c A' ® 40 A', and we write A' = T 40((A')™)/R'
for its quadratic dual (which is then also Koszul), where the A°-A° bimodules
A' and (A")7!, and the short exact sequences of A% A%bimodules

0>R—->A'®40 A' > A2 50
0 (A2« (A) T (A4) T <R <0,
are duals of each other. We insist A is generated in j-degrees 0 and 1, and
A" is generated in j-degrees 0 and —1. We assume that A° is isomorphic to a

direct product of a number of copies of F', and denote by e the idempotent
corresponding to the sth copy.

Following [13, Proposition 2.2.4.1] and [10, Section 4.7], the Koszul resolution
is given by A®, (A')* ®, A where 7 is the canonical twisting cochain given by
the composition

(A" > A" > A
of the inclusion by the projection. The complex A®;, (A')* ®, A is isomorphic
as a complex to B = A® 40 (A')* ® 40 A, with differential

a®p®ad > ) (-Dape prp®a - (1)l ly @ pp* @ pa’),
peBl
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HocHscHILD COHOMOLOGY OF GLs 123

where B! is any basis of the free A°-A%-bimodule A' (cf. [18, page 1119]).

It follows from [18, Theorem 6.3] that there is an isomorphism of dg algebras
Hom gog g00p (A", A) > Hom ag aer (A ® 40 A ® 40 A, A® 40 A ® 40 A)
given by
fr(apea » (-0 0 o0 @ f(p))a’)

where the algebra structure on Hom 4og 4000 (4™, A) is induced by the comul-
tiplication A: A™ - A" ® 40 A on A" and we write A(p) = ©(1) ® @(2)- Note
that the original source considers tensor products and hom spaces over F', but
the results readily generalise to our setup.

Let now X, Y be differential jk-graded A-A-bimodules. It then follows similarly
that the morphism

Hom 4og 4000 (A", X) = Homagaor (A ® 40 A" ® 40 A, A® 40 A" @40 X) (1)

given by
fr(eepead » (-9 g o0 @ fpe)d)

translates the product

Hom 40 4000 (A", X) ® Hom gog 4000 (A, Y) - Hom 4o 4000 (A", X ® 4 Y)
induced by comultiplication on A into the cup product

HH(A,X)®HH(A,Y) > HH(A, X ®4Y)

after taking homology.

LEMMA 4. In the situation of Setup 3, and for X a differential jk-bigraded
A-A-bimodule, we have isomorphisms of jk-graded vector spaces,
Hom g a0r (B, X ) = Hom 4o 4000 (A%, A' ® 40 X))
x@PeAeror e Xe,

s,t

*@Ples®es) (A ®p XP)(e;®e;).

s,t
Ezxplicitly, the isomorphism

@eSA!et ®p e; Xes > Hompgaor (B, X)
s,t

s given by

lpllz[+(Jal+[a])]ol

a®z > (Yage: a® @@’ = (-1) ap(a)za’).
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124 V. MiemMiETZ, W. TURNER

Proof. The second and third isomorphisms hold by definition. The first holds
by a sequence of adjunctions:

Hom ag 400 (A ® 40 A™ ® 40 A, X)) = Hom gog 4000 (A", X)
= }{OIIL40®1400p(/4O,I{OITL40(14!*,)())
~ Hoon®A00p(AO,A! ® 40 X).

Tracing these adjunctions, we obtain the desired isomorphism

@esA!et ®p et Xes > Homagaor (B, X)

s,t
as the composition of the isomorphism

@eSA!et ®rerXeg _>HOmA0®A00p(A!*,X) (2)

s,t

given by
a®x e (p (D))
and the isomorphism
HOmAU®A00p(A!*,X) — Hom gg Aop (A ® g0 A ® g0 A,X)
given by
fr(apea = (-1 IMlaf(p)a’),

which is the composition of the morphism in (1) and the natural projection
A®A0A!*®A0X—>X. O

SETUP 5. In addition to keeping the conventions from Setup 3, we now further
assume we are in one of the following cases:

1. Ais jk-graded such that A'® = A0 and (A')7!* = (A")™'!. This implies
in particular that A is concentrated in k-degree 0, and A' is concentrated
in non-negative k-degrees.

2. Ais jk-graded such that A'® = A and (A')7'* = (A")710. This implies
in particular that A' is concentrated in k-degree 0, and A is concentrated
in non-negative k-degrees.

In particular, assuming Setup 5 (1), the differential on B = A ® 40 A™ ® 40 A
specialises to

a®p®d > > (ap@ppea + (- ® pp* @ pa’)
peBl

and, assuming Setup 5 (2), the differential on B specialises to specialises to

a®peda (-1 Y (p®pa®a —a®pp ®pa).
peBl
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THEOREM 6. Assume we are in the situation of Setup 5(2) and let X be a
differential jk-bigraded A-A-bimodule. Then we have an isomorphism

HH(A,X)=H (@ esAle; ® etHXes)
s,t

where the differential on @, , esAle; ® e,HX e, is given by

a®x -y (ap* ®pr - (-1)p*a® zp).
peBl

Proof. In Setup 5(2), the jk-graded vector space isomorphism

@eSA!et ®r et Xeg — HOI’IIA@AOD(A ® 40 A ® 40 A,X)
s,t

from Lemma 4 is now given by
a8z~ (Yasr: a®p®a’ = (-1)"lap(a)za’), 3)

which, wanting this to be an isomorphism of jk-graded differential bimodules,
forces the differential on @ ¢ esA'e; ®F e X e, to be given by

da®zr~ (l®dx)(a®z)- Y. (ap* ® px - (-1)*lp*a ® zp)
peBl
where dx again denotes the differential on X.

Indeed, we compute the differential of y,g, which is the map
a®ped (Dl (1) ap(a)dy (z)a!

— (-1)"Yogn ((—1)‘“| Y (apep p@d —avpp*® pa’))
peBl

- (-1 D ag(a)d (w)a’
- (D) FFDEL S () (0

peBlt

# (1)) Y a(pp*) (@)apa’

peBl
= (-l D ag(a)dx (x)a’

— (— 1)l ( > apw(ap*)m)

peBl

_ (=1)Ulals 1) (el ) ( 5 w(p*a)xpa) :

peBl
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126 V. MiemMiETZ, W. TURNER
On the other hand, with the prescribed differential d,

Xd(a®z) = Xa®dx (z) ~ Z (Xap*@pz - (_1)|I|Xp*a®mp) )
peBl

which is the map

a®pea — (-1 a00)d, (2)a!
= (=)D S ap(ap*) pra’

peBl

# (DD EID S gt a)apa’

peBlt
= (-1 W ag(a)dx (2)o!
(1)l S p(ap®)pal

pEB1
_ (<)l Y a0t a)apa’
peBl
which equals the expression for the differential of yug.( ® @ ® ') term by
term.

We write d = 1 ® dx + d for the differential on Ds.¢ e.Ae; @ ex Xe,. We are
interested in the homology of this complex. Notice that the map (which is in
itself a differential) a® x = a® dx («) has j-degree 0 on each tensor factor, and
the remaining part of the differential has j-degree —1 on the first and j-degree
1 on the second tensor factor. We now consider the spectral sequence induced
by the radical filtration of A'. Then it follows immediately from the definition
that dy = 1®dx, di =d and d; = 0 for all [ > 2 and consequently

H(P esA'e ® e Xes) 2 H(EP esAle ® etHXey)
s,t s,t

where the differential on the latter complex is precisely given by d. O

We now consider the cup product in Hochschild cohomology.

PROPOSITION 7. Assume we are in the situatiom of Setup 5(2) and let X andY
be differential jk-bigraded A-A-bimodules. Under the isomorphism in Theorem
6, the cup product

HH(A,X)®HH(A,Y) > HH(A,X®Y)

is translated to
(@ esAle; ® etHXes) ® (@ esAle; ® etHYes) - @esA!et e H(X ®4Y)es
s,t s,t s,t
(a®2)® (b®y) ~ ba® xy.
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Proof. Recall from (1) the isomorphism of dg vector spaces
T: Hom 40 400p (A", X) — Hom ggaer (A ®40 A ® 40 A, A® 40 A ® 40 X)
given by
fs (a ®p®a (_1)\f|(\a|+|w1\)a ® p1) ® f((p(z))o/) .

Notice that composing this with the natural projection A ® 40 A ® 40 X — X,
the only term in the sum that survives in T(f)(a® ¢ ® o) is (-1)/1I*Do g
1® f(p)a’ which maps to (-=1)/10*Dq f (o). Hence, if f is the image of a ® x
under the isomorphism (2), we precisely obtain our y,g. from (3) above.

The product
Hom 40 4000 (A", X) ® Hom gog 4000 (A, Y) - Hom 4o 4000 (A", X ® 4 Y)

induced by comultiplication on A** translates into the cup product HH(A, X) —
HH(A,Y) - HH(A, X ®Y) after taking homology. We thus consider the trans-
lation of the product

Hom 40g 4000 (A", X') ® Hom gog 4000 (A, Y) = Hom 4o 4000 (A", X ® 4 )
induced by comultiplication on A into a product
(A! ® A0g A0 0P X) ® (A' ® A0g A0 0P Y) - A! ® A0g A0 0P (X ® A Y) .

Denoting the image of a ® z under the isomorphism (2) by &ueqs: (¢ = ¢(a)x)
(using || = 0), we see that from ({age-Spey) (@) = ©1)(a)@(2)(b)z®y it follows
that the product of ¢ ® x and b ® y, being the preimage of ((u90 - pay) 1S
ba® (r®y), from the formula A(p)(a®b) = p(ba).

Since the splitting of the differential on A'® 40g 4000 X as d = dx +d is compatible
with the tensor product, the isomorphism obtained in Theorem 6 is compatible
with the cup product in homology and we obtain the desired multiplication
formula. |

5 SOME OLD THINGS.

Here we gather an assortment of notions and facts we have established in pre-
vious articles. More details can be found in those articles [15], [16].

5.1 THE 2-CATEGORY T

Let T denote the collection of pairs (A, M) where A is a differential k-graded
algebra and M is a differential k-graded A-A-bimodule.
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128 V. MiemMiETZ, W. TURNER

The collection 7T in fact forms the set of objects of a 2-category: 1-morphisms
from (A, M) to (B,N) are given by a pair (S, ¢g), consisting of a differential
(bi-)graded A-B-bimodule 4S5 and a quasi-isomorphism

¢ps: SO N > M®u S,

2-morphisms from (S, ¢s) to (T, ¢r) are given by homomorphisms of differen-
tial (bi-)graded A-B-bimodules f:S — T such that the diagram

SepN—>Me,S

lf@id lid@f

TegN—"> Me,T

commutes.

DEFINITION 8. We define a RICKARD OBJECT of T to be an object (A, M) of
T, where 4 M 4 is perfect as a left dg A-module and as a right dg A-module, the
natural morphism of dg algebras A - RHom4 (M, M) is a quasi-isomorphism,
there is a quasi-isomorphism A — HA, and HA is a finite-dimensional algebra of
finite global dimension. We call a Rickard object (A, M) a CLASSICAL RICKARD
OBJECT if A has zero differential, and 4 M, is projective on both sides.

DEFINITION 9. We define a j-GRADED OBJECT of T to be an object (a,m)
of T, where a = @D a’* is a differential bigradgd algebra, and m = P mi* a
differential bigraded a-a-bimodule, and a’® = m7® =0 for j < 0.

5.2 THE OPERATOR O.
Let (a,m) be a j-graded object of 7. We define
Oam O T
to be the operator given by
Oam(A, M) = (a(A, M), m(A, M)),

where
a(A,M)=(a"®A) e (Do’ @ M)
7>0

for o € {a,m}. The algebra structure on @ a’* ® p M®479 is the restriction of the
algebra structure on the tensor product of algebras a® T4 (M), where T 4(M)
denotes the tensor algebra of M over A. The k-grading and differential on the
complex @ a’/*®@M®4J are defined to be the total k-grading and total differential
on the tensor product of complexes. The bimodule structure, grading and
differential on @ m’* ® M®4J are defined likewise.

We remark that this extends to a 2-endofunctor of 7 (cf. [15, Lemma 9]).
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LEMMA 10. [16, Lemma 14] Let a,b,c be a differential bigraded algebras, pXa
and ayc differential bigraded modules, all concentrated in nonnegative j-degrees.

Let (A, M) be an object of T. Then
X(Aa M) ®a(A,]\/I) y(Aa M) = (X ®a y)(Av M)
as differential bigraded b(A, M)-c(A, M)-bimodules.

Given a differential bigraded a-module x, with components in positive and
negative j-degrees, we define x(A, M) to be the a(A, M )-module given by

x(A,M) = (@:cj' ® (M_l)‘g’*“j) ® (zo' QA) @ (@:cj' ® M®Aj),
7<0 7>0
where M ™! := Homa (M, A).
LEMMA 11. (c¢f.[16, Lemma 15]) Let c be a differential bigraded algebra with c°
a product of copies of F. Let x and 'y are differential bigraded c-modules, all
concentrated in nonnegative j-degrees, and let (A, M) be a Rickard object of T .

Then we have a quasi-isomorphism of differential bigraded (c’®A)® (c®® A)°P-
modules

Home(x,y)(A, M) — Homg(a,ary(x(A, M),y (A, M)).

Proof. This was proved in [15, Proof of Theorem 13] (though it was stated only
as a quasi-isomorphism of differential bigraded vector spaces there), but for the
convenience of the reader we recall the construction.

For notational simplicity, we write M7 := M®4J for j >0 and M7 := M®4~J for
j <0, and also write t1--t; :=t; ® - ®t; € M7 for j > 0.

We construct a map

B Home(x,y) (A, M) — Home(a, ary(x(A, M),y (A, M)).

For an element f; ® t1--t;, or f; ® h, where f; € Homgj)(x,y), and ty--t; € M7
if j >0, and where h € Homu (M7, A) if j <0, we define

B(fj ®tit) = (x @ty ty v fi(an) @ T tytr-t)),
0 if —j>k
®h) = | zk ® th-1; P
B(f@h) [wk vty e { Fi(@n) @ thtl h(th g t) i - <k
where we work with the convention that for all A-A-bimodules M and N
such that N is finitely generated and projective, we identify Homa (N, A) ® 4
Hom (M, A) with Hom 4 (M ®4 N, A) via the map sending any ¢ ® f to the
morphism from M ®4 N to A given by m®n — g(n)f(m). Using an explicit
quasi-isomorphism
Homa (M, A®s M7™') - Homa (M Hom (M, M) ® 4 M)
- Hom (M*, M?)
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given by

(trtics = 1® f(t1tic1)) = (tticn = (G 6) ® f(t1tio1))
= (tyty o £ f (Ey17))-
iteratively, and applying the technical result [15, Lemma 16], which computes

the space Home(a,ar)(x(A, M),y (A, M)) as a (c’®A)-(c” ® A)-bimodule, one
sees that 3 is a quasi-isomorphism of (¢’ ® A4)-(c” ® A)-bimodules. O

5.3 THE OPERATOR 9.

We now recall the definition of the operator O from [16]. Let T'= @T'“* be a
differential trigraded algebra. We have an operator

Or O {| ¥ = @ ¥’* a differential bigraded algebra }

given by . N ‘
Or(X)*= @ 1M gyt (4)
Jyk1+ko=k

The algebra structure and differential are obtained by restricting the algebra
structure and differential from I' ® ¥. If we forget the differential and the
k-grading, the operator Or is identical to the operator Or defined in the in-
troduction.

Suppose we are given (a;,m;) for 1 <i<n, and (A, M). Let us define (A4;, M;)
recursively via (Az; Mz) = @aiymi (Ai—la Mifl) and (Ao, Mo) = (A, M)

LEMMA 12. [16, Lemma 20]

(i) We have an algebra isomorphism
TAn (Mn) = D'ﬂ'an(mn)"'DTal(mﬂ(TA(M))-

(ii) We have an isomorphism of objects of T

(O)anamn“.@al,ml (A’ M)
2 (D1, (m1) O, (ma) (Ta(M))**, O, (my) O, () (Ta(M))).

6 ALGEBRAIC OPERATORS AND HOCHSCHILD COHOMOLOGY.

Given a Rickard object (a,m) in T, we define HH(a, m) = @z HH(a, m®"),
where for i < 0, we understand m®=' as (m™*)®>"* for m™! = Hom,(m,a) the
bimodule adjoint to m.

LEMMA 13. Let (a,m) be a j-graded classical Rickard object in T. Then the
space HH(a, m) has the structure of an ijk-trigraded associative algebra.
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Proof. Let a be a projective a-a-bimodule resolution of a and note that this im-
plies that m’ := a®,m®" is a complex of projective bimodules quasi-isomorphic
to m®=". In this case, we have natural isomorphisms

H Homagger (1", ") = H Homagaer (&, Homgaer (m®" 1))
= H Homa®aop (é, I:lv'lZ ®Ra HOmaop (IIl®a‘h7 m®ah))
= H Homggaor (&, ")

= HH(a, m®").

for any h € Z, where the first isomorphism is just adjunction, the second
relies on m®" being finitely generated projective as a right a-module, and
the third comes from (a,m) being Rickard. Identifying HH(a,m®") with

H Homgagace (0", M%) via this isomorphism gives us an associative product

HH(a,m®') ® HH(a, m®*") - HH(a, m®"*")

that equips HH(a, m) with the structure of an ijk-graded algebra. Note that
this is the algebra structure obtained from the general definition of the cup
product. O

THEOREM 14. Let (a,m) be a j-graded object in T with a concentrated in
k-degree zero and Koszul, and let (A, M) be a Rickard object in T. Then we
have

HH@a,m(Av M) = DHH(a,m) (HH(Av M))
as ijk-graded algebras.

Proof. Since a is Koszul, we have a projective a-a-bimodule resolution of a
given by

(a®u0 a™* @0 a) »a
by Section 4. Let now A be a projective A-A-bimodule resolution of A, and

in analogy to the above, M' = A®,y M®A' a corresponding A-A-bimodule
resolution of M®A* for any i € Z.

We now set a'*(A4, M) := (a*)’ 0 Ao ®;s0(a*) ® M?7. (Note that since a' is
negatively j-graded, its dual is again positively j-graded.) We claim that

a(Av M) ®ao(A,M) a!*(Aa M) ®ao(A,M) a(Av M) - a(Av M)

is a projective a(A, M)-a(A, M) bimodule resolution.

*

Indeed, as a™* is projective over a® ® a°P and M7 is projective over A ® A°P
for every j, we have that a'* (A4, M) is projective over

a’®Ae(a’®A)°P =a’(A, M) ®a’(A, M),

Furthermore, a(A, M) is projective over a’(A, M) = a’ ® A on both sides so
a(A, M)®a(A, M)°P is projective in a®( A, M) ® a’ (A, M)°P-mod. Therefore,

DOCUMENTA MATHEMATICA 23 (2018) 117-170



132 V. MiemMiETZ, W. TURNER

the induced module a(A, M) ®30(A7M)a!* (A, M) ®a0(a,m)a(A, M) is projective
in a(A, M) ® a(A, M)°?-mod. By construction, it is quasi-isomorphic to the
bimodule a(A, M) @404, a1y @™ (A, M) ®a0(a,11) (A, M), which by Lemma 10
is quasi-isomorphic to (a ®z0 a™* ®40 a)(A4, M) and hence to a(A, M).

Now, setting
a(A, M) = a(A, M) ®a0(A,M) a!*(A, M) ®a0(A,M) a(A, ]\4)7
we have isomorphisms

HH(a(A, M), m(A, M)®aa.an?)

I~ HHOIna(A7]\4)‘861(14,M)0p(a(A7 M), m(A, M)@a(A,M)i)

= HHomaO(AvM)‘gaU(AJM)Op (a!* (Aa M)7 m(A7 M)®8<A7M>i)
= HHomaO®A®(aO®A)0p(a!*(A7M—‘ )7m(A7M)®a(A,]w)i)

by projectivity of am) as an a(A, M)®a(A, M)°P-module and adjunctions.
Next, notice that, as an a’ ® A-a’ ® A-bimodule, a!*(M) > (2% ® A) ®u0p4
a'* (A, M), so we can use adjunction again and obtain
HHoma0®A®(a°®A)°P (a!* (m% m(A4, M)®a(A’M)i)
= H Homaog ag(ave.4)r ((2° ® A) ®a0p.4 2™ (A, M), m(A, M)®=4207)
= HHomaog ag(a4)er (aO ® A, Homa0g4)or (a!’r (A, M),m(A, M)®a<“vM>i))
()

We now claim that m(A, M)®aa.m? is quasi-isomorphic to m®¢(A, M) as
a’ ® A-a” ® A-bimodules. This follows directly from Lemma 10 for i > 0. For
1 <0, we obtain

I’I’I(A, M)®B(A'M)i = Homa(A,M) (m(A7 M)7 a(A7 M))®B(A'M)_i

= Homa(A,M) (m®a7i(Aa M)a a(Aa M))

<2 Hom, (m®* ™, a)(A, M)

= Hom,(m, a)®="" (A, M)

=m®(A, M)
where the first isomorphism comes from iterated adjunction and the fact that
for (a,m) Rickard, m(A, M) is again perfect as a left dg A-module and
as a right dg A-module, the second isomorphism is Lemma 10, the quasi-
isomorphism is Lemma 11 and the final isomorphism again uses iterated ad-

junction and the fact that m is perfect as a left dg a-module and as a right dg
a-module.
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Using this, we have a quasi-isomorphism of a’ ® A-a’ ® A-bimodules
Hom a0 )or (2" (A, M), m(A, M)®aca.mn?)
<4 Hom(qog ayor (2™ (4, M), m®*" (A, M))
= Hom(aO(A7M))op(a!*(A’ M), m®"(A,M))
<4 Homaoyor (2, m®") (A, M)
= (m® @0 a') (A4, M).

Putting this back into (5), we obtain
H HomaO®A®(aO®A)op (ao ® /i, Hom(a0®A)op (a!* (A, M), m(A, M)®a(A,M)i))
~ HHoma0g 4@ (a0 a)or (2° ® A, (m® @0 a') (A, M))
z HHOmaU®A®(aU®A)op (aO ® 121, @(m@)ai ®40 a!)j ® M®Aj)
J

= H @ Homgpogaoor (a°, (M®* ®40 a')7) ® Hom agaor (A, M®47)
J

= HE Homgogaoor (2, (m® @40 a'))7 ® Hom g a00 (A, M®47)
J

~ HEP Homagacr (a @40 a" ®,0 a,m®") ® Hom g a0r (A, M®47)
J

= HHomagaor (2 ®a0 a'* ®40 a, m®*) (HH(A, M))

= (O)HH(a,m) (HH(A7 M))i.o'
Summing over all i, we obtain the desired isomorphism as ijk-graded vector
spaces. In order to check that this is an isomorphism of ijk-graded algebras,

we set
~ 1 ~
ar=a®a’ ®upa, m':=a®,m

and
— h —
m(A,M) = A(A,M) ®a(A,M) m(A7M)®a(A’M)h.
One then constructs a similar isomorphism as above for

—— h ——— h+i
HHOIDa(A,I\/[)@a(A,M)OP(m(AaM) ,I’I’I(A,M) )

= H Homagaer (™, m"*) (HH(A, M))

and checks that due to the naturality of all constructions the isomorphisms in
the diagram

h+i

o L
HHoma(a, mrygaca, anyer (m(A, M), m(A, M)""") <= HHomagaop (ra", m"*") (HH(A, M))

| |

H Homa . ar)ga(a,anop (a{A, M), m(A, M)®a(4.M)") <> HHomagaor (&, m®2?) (HH(A, M))

commute. O
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Observe that for a j-graded Rickard object (a,m) in 7T, the differential tri-
graded a-a-bimodule @,z m®* (where m®? := a), obtains the structure
of an associative ijk-trigraded algebra when passing to homology, coming
from the natural (quasi-) isomorphisms m ®, m™' > a of evaluation and

m™!' ®, m > End,(m) %" a. We denote this ijk-trigraded algebra by HT,(m)
where m stands for (m,m™'). We define the ijk-graded vector space
H9(HTa(m)) = O HH(a, H(m®*")).
i€

LEMMA 15. Suppose (a,m) is a j-graded classical Rickard object in T such
that a is Koszul with a' concentrated in k-degree 0 (that is, the pair (a,a')
satisfy the hypotheses in Setup 5(2)). Set m = (m,m™) and X = HTa(m).
Then HH(a,m) is isomorphic to HH(HTa(m)) as ijk-graded vector spaces,
both being isomorphic to

H(Q?(es ®es)(a ®X)(er®er))

with differential

a®z— Y (ap* ®px - -Dklprae zp) .
peBl

Proof. Since HH(a, m) ¢ @,z HH(a, m®=") and each m®>* is a differential jk-
graded a-a-bimodule, we can apply Theorem 6 to obtain an isomorphism

HH(a,m) = PH(Pe.a'e; ® e;H(m®")e,) = H(P e.a'e; ® e H(@ m®=)e,)
s,t

1€ s,t i€Z

where the differential on @, , esa!et®etH(€Biez m®=%)e, is as given in the state-
ment of the lemma. Here we have used that homology and tensor products com-
mute with direct sums. Applying Theorem 6 to the ijk-graded a-a-bimodule
(with trivial differential) X, we obtain the same result. O

Note that via this isomorphism, $$(HT,(m)) is equipped with a structure of
associative algebra.

ProPOSITION 16. Under the assumptions of Lemma 15, the multiplicative
structure on HH(HTa(m)) 2 HH(a, m) is induced by the multiplicative struc-
ture on HT,(m).

Proof. By Proposition 7, the multiplicative structure on HH(a, m) under the
isomorphism to

H(@Pe.a'e; ® e, H(@m®)e,) 2 H(Pesa'e; ® e, PH(m®e,)
s,t

€L s,t 1€

is given by (a® z)(b® y) = ba ® xy, where zy is the multiplication induced in
homology from the tensor product structure. At the same time, this is precisely
the multiplication on HT,(m) and the claim follows. O
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7 REPRESENTATIONS OF GLo(F).

Let G = GLy(F). We study Ringel self-dual blocks of polynomial represen-
tations of G, where by a block of an abelian category A, we mean a Serre
subcategory B of A minimal such that, given a pair of objects L, M € A with
Ext’y (L, M) # 0, the conditions L € B and M € B are equivalent. According to
[7] a block of polynomial representations of G is Ringel self-dual if and only if
it has p' simple modules.

Let ¢ be the finite dimensional algebra given by the quotient of the path algebra
of

n n n

1 ——a 2 _— 3 p-1 ——xp

° ° ° ° °

-~ ~—
3 13 3

modulo the ideal
I=(nep, & m%, &n+nk).

The algebra c is jk-graded with 77 and ¢ having j-degree 1 and the whole algebra
being concentrated in k-degree 0. It is a Ringel self-dual algebra with tilting
bimodule t. Explicitly, ¢ can be defined as follows. We can realise the algebra c
as an idempotent subquotient of the infinite-dimensional (non-unital) algebra
Z given by the quiver

modulo relations €2 = 7% = én+n¢ = 0. Denote by 7 the algebra involution of Z
which sends vertex i to vertex p —i and exchanges £ and 7. Setting

t= Z e em,

1<l<p,0<¢m<p-1

t admits a natural left action of ¢ by the subquotient ¢ and a natural right
action by twisting the regular right Z-action by 7. In this way, ¢ is naturally a
c-c-bimodule.

We now let t be a Rickard tilting complex representing ¢ for ¢, and set t™* =
Home(t,c) to be its adjoint. It is then immediate that (c,t) is a classical
Rickard object in 7. Indeed, c is an algebra, t is projective on both sides
and the natural morphism ¢ — Endc(t) is a quasi-isomorphism by Ringel self-
duality.

By [15, Corollary 21], a block of polynomial representations of G with p'
simple modules is equivalent to the category of modules over the algebra
Op,00L ,(F,F). To compare to the notation used there, note that Qp,o sim-
ply picks out the algebra component of the resulting pair. By [16, Lemma
30], there is an quasi-isomorphism Q0O ((F, F) - Op,00. ,(F, F) and quasi-
isomorphic dg algebras share the same Hochschild cohomology, hence we define
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hh; to be the Hochschild cohomology of the algebra Qp,0O ((F,F). As we are
ultimately interested in hh; with k-grading given by the homological grading
on Hochschild cohomology, we work with the gradings that suit this purpose,
i.e. c is assumed to be concentrated in k-degree zero and ¢' is assumed to be
concentrated in positive k-degrees.

The aim of the rest of this article is to compute hh;.

8 REDUCTION.

The following Proposition demonstrates how our formalism of algebraic opera-
tors and homological duality reduce the computation of the algebra hh; to the
computation of the algebra H$(HT,:(t')), where t' = (t',t'~!) is the image of
(t,t71) under Koszul duality.

PROPOSITION 17. We have hh; ~ DFDiag(m ‘(t!))(F[z,zfl]).

Proof. We have algebra isomorphisms

hh; = HHOp,O., ((F, F)

2 O pHH(O (F, F))

= DFD]lHIH(c,t)(HH(Fa F))

= 9Dy (FL2,2 7))
by Theorem 14 and the observation that HH(F,0) 2 F and HH(F,F) =
Flz,z71].
Rather than computing HH(c,t) directly as @; HH(c,t%), we pull ¢ through
Koszul duality. We have derived equivalences ([17, Appendix B])

D(c-bigrj) = D(c'-bigrix), D(bigrj,-c) = D(bigrji-c')

1 1
cHc’ ®u cC, CH C®qC.

Here D(c-bigrjk) denotes the derived category of differential jk-bigraded left
c-modules and D(bigrjk-c) denotes the derived category of differential jk-
bigraded right c-modules. Putting these together (cf. [19, Theorem 2.1]) we
have

D(c-bigrijk-c) = D(c' -bigrj-c')

! !
cHCc ® C®C,

and since the equivalences (- ®¢ €'* ®co €, - ® c®co ¢') are adjoint equivalences
(cf. [17, Appendix B, Adjunction]) we have an isomorphism in the derived
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category between ¢ and ¢'* ®q0 ¢ ®co ¢', Furthermore, by definition t' is the
image of t under the above equivalence. We thus have an isomorphism

HH(c,t) = @HH(c,t&?i)
= (P HRHomcgeor (c,t®")
= (D HRHom, gt ov (c', ¢ ®co t%" @0 ')
= @HRHomc;mzop (c}, (¢ ®co t ®co c')®et?)
= (DHRHom getop (CRASD
= HH(c', t").
which implies
0 Dlngery (I 2'1) = DOl oy (F= 1),

But HH(c',t') is isomorphic to $$(HT (t')) by Lemma 15, which completes
the proof of the Proposition. O

The above Proposition leaves us with the problem of computing £ (HT,: (t'))
in the remaining sections. We compute HT (t') in Section 9, then the
Hochschild cohomology of the bimodules appearing in HH(c', H(t'®%)) for
various i in Section 10, and finally infer the multiplication on $H$(HT, (t'))

from that on HT, (t') in Section 11.

9 THE ALGEBRA A.

In this section we compute the algebra structure of A := HT.. (f)7 which en-
twines the algebra c', its dual, its tilting bimodule, and a preprojective algebra
O in a subtle way. We do this by first computing A~ = H(Tg (t'"')) and
A" :=H(T. (t')) separately and then investigating their interaction.

9.1 THE ALGEBRAS {2 AND O.

We first need some notation. The algebra c has generators £ and 7, and its
Koszul dual ¢' = Q has dual generators z and y; The quiver of € is given by

T T T
1k—\%/_/—\§ P_lk_\lz
~ 7 ~— 7 —
Y Y Y

and the relations for 2 are zye; = 0 and xy = yx. Since £ and 7 were assumed
to have j-degree 1 and k-degree 0, z and y now both have j-degree —1 and
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k-degree 1. For notational convenience we use a different convention for the
direction of arrows in § than we used in our previous article [16]. We denote
by e; the idempotent corresponding to vertex .

Note that morphisms from Qe; to Qe; are of the form -2'~%(2y)* if i < I, where
0 < s <i-1,or of the form -4 (xy)* if i > [, where 0 < s < [-1. Such morphisms
have (j, k) degree (—(1—i+2s),l—i+2s) and (-(i—1+2s),i—1+2s) respectively.
The algebra  has a simple preserving duality, interchanging = and y. It
is quasi-hereditary (with uniserial standard modules A; = Qe;/Qe;_1Qe;) and
Ringel self-dual (by [14, Theorem 1, Example 19] and Ringel self-duality of
c), and its tilting (bi-)module is easily seen to be isomorphic to Qe,2. This
bimodule is self-dual via the isomorphism

Qepd = (Qep2)"(2 - 2p)[2 - 2p] (6)
induced by the symmetric associative nondegenerate bilinear form

Qe 2 ® Qepd - F,

sending eszye; ® egx?y® ey to 1if s=t, t=s, andd+d =e+e =p-1,
and to zero otherwise. The degree shift comes from the bimodule socle of
Qe, Q) (which is given by e,y? taP~le,) having (j, k)-degree (2 - 2p,2p - 2),
and thus the bimodule top of (2e,Q)* having (j, k)-degree (2p - 2,2 - 2p).
Thus, with our grading conventions from Section 4.1, (£2e,2)*(2 - 2p)[2 - 2p]
indeed has top in degree (0,0). We furthermore claim that (€,Qe,Q) is a
Rickard object. Indeed, 2 is an algebra, $2e,() is perfect both as a left and as
a right Q-module, and RHomgq (Qe,$2, Qe,?) is in fact isomorphic to €, since
Extg, (Qe,Q, Qe,Q) = 0 for i > 0 thanks to Qe,Q being the tilting module for a
Ringel self-dual quasi-hereditary algebra.

We define the algebra © to be the quotient /{Qe,(2, where e; denotes the
idempotent at vertex ¢. The algebra © is called the preprojective algebra of
type A,-1. Let o be the involution of © which switching e; and e,_,, and = and
y. Then © is a self-injective algebra with Nakayama automorphism o. Indeed
we have an isomorphism of ©-0-bimodules

07 > 02 - p)[2-pl: ey > eu (3P ) . (7)

Indeed it is easy to check that this is an isomorphism of ungraded bimodules,
and the degree (0,0)-part of ©*(2 - p)[2 - p] is, according to our grading con-
ventions from Section 4.1, equal to (©%)P~227P = (©27PP=2)*  which indeed
contains the element es(y? 5125 1)*e,_;.
Viewed as a tilting complex of ungraded left Q-modules, t'~! is quasi-isomorphic
to the direct sum of

Qep, =0
with the direct sum over [ =1,...,p of two term complexes

1
y
Qe, = Qepy
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by [16, Lemma 34]. By [16, Lemma 37(iv)], the right action of £ on these
complexes is given by the action of e;ze;,1 respectively e;ye;—1 (whenever none
of involved idempotents are e,) as

l l

Qe — s Qep Qe,, —2 s Qep (8)
O

Ll -1
Qe, s Qep_1-1 Qe s Qep_i41,

while the action of the elements e,_1ze, and e,ye,_; is given by

p—1

Qe, 2L Qe Qe, 9)
| y
Qe Qe, v Qe

respectively.
Taking the adjoint and applying our simple-preserving duality, t' is, as a tilting
complex of ungraded left (2-modules, quasi-isomorphic to the direct sum of

0 — Qe

with the direct sum over [ =1,...,p of two term complexes

1
T
Qep_; = Qe

with the right action of the generators e;xe;,1 respectively e;ye;—; (whenever
none of involved idempotents are e,) given by

l 1

Qep) — Qe, Qep) —— Qe, (10)
VN
'ZHI .Zl—l
Qep_i—1 — Qe Qep_11 — Qe

respectively, while the action of the elements e,_1xe, and e,ye,_; is given by

Qe o Qe Qe (11)
lxy lil
Qe, Qe P Qe,

respectively.

To ease notation, we will, in the remainder of the article, write t' for (t')®? =
(t)®2" and t'77 for (t")® = (£'71)®27 for i > 0,
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9.2 RECOLLECTIONS OF THE HOMOLOGY H(Tq (t'71)).

Recall that, given a collection (Ms, fs)s where the M are differential (7, k)-
bigraded -modules, and the f; are morphisms of differential (j,k)-bigraded
Q-modules (preserving both j- and k-degrees), such that the sequence
M& is) Ms+1 f5_+>1 Ms+1"'

is a complex of (7, k)-bigraded vector spaces, we can associate a differential
(4, k)-bigraded Q-module, namely the iterated cone of the family of morphisms
(fs)s- In particular, if

f : M—s f__>s M—s+1 f—_s;l f__)l MO
is a complex of (_j, k)-bigraded vector spaces, the homology of this sequence is
given by @ H'(f)]i].
We now summarise the results of [16, Section 8], recalling that there x and y

were interchanged, and given j-degree 1, so in particular, all shifts in j-degree
from [16] appear as the negative here.

Consider the family (fl)l=1
modules

» of morphisms differential (j, k)-bigraded Q-

.....

fi:Qep(=0)[-1] = Qepy
given by right multiplication with ' for I =1,...,p -1 and by the zero map

Tp: Qep(-p)[-p] = 0.

By [16, Lemma 34], the differential (4,%)-bigraded Q-module t'! is quasi-
isomorphic to the cone X! of the direct sum GB’;:l f1 of these morphisms. By
[16, Lemma 37 (iv)], X ! has homology isomorphic to Q(-p)[1-p]®©7, coming
from a direct sum over [ of exact sequences of j-graded Q-modules [16, Lemma
35)
0 — Qe (—p) » Qep(-1) » Qepy > Oeppy — 0,

to which the homology of the isolated summand coming from f, is added. The
right action of € is induced by the diagrams (8) and (9).

For ¢ > 1, by [16, Lemma 38],t!_i is quasi-isomorphic to the direct sum X~ =
@], X 'e;, where X’e; is the iterated cone of the i + 1-term sequence gt of

morphisms of differential (j, k)-bigraded 2-modules (each sequence being a
complex of (7, k)-bigraded vector spaces), where g” is given by

Qep(-ip)[-ip] >0 - - >0,
and, for {=1,...,p—1, ¢' is the sequence

A p-l (x 1 Pl
O Qep(-1-p)-1-p] Y Qepll-p)i-p] > Qe

(zy)’
L

Qe,(1-3p)[1-3p]
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if 7 is even and

(zy)P! (zv)! (zy)P! ol
T g0 (ci-op)[-1-2p] Y Qe (i-2p)[1-20] L Qep(-1)[-1] % ey

if 7 is odd.
Furthermore X ~* has homology
(') = Q(-ip)[i(1-p)] @ ©°(~(i - DP)[(i - 1)(1-p)] @ ... ® ©7 (0)[0]

= Q(ip)[i(1 - p)] e@e“f<—<i—j)p>[<i—j)<1—p)J.

The structure of A~ = H(T. (t"!)) as a k-graded Q-Q-bimodule is therefore
given by
Q[o]
Qi-p]  ©700]
Q2-2p]  ©7[1-p]  O[0]
QB3-3p] ©7[2-2p] O[1-p] O7[0]
Q4-4p]  ©7[3-3p] O[2-2p] O©7[1-p]  O[0]

and the structure of A~ as a j-graded Q-Q-bimodule is given by

Q(0)

Q(-p)  ©7(0)

Q(-2p)  ©7(-p)  ©(0)

Q(-3p)  ©7(-2p) O(-p)  O7(0)
Q(-4p)  ©7(=3p)  ©(-2p) ©7(-p) ©(0).

By [16, Theorem 32], A~ is is isomorphic to the tensor algebra T (07) ® F[¢]
where ¢ is a variable of j-degree —p and k-degree p—1, so that Q& = Q(-p)[1-p].

9.3 HOMOLOGY OF THE BIMODULES t" FOR i > 0.

By definition, t' = Homsz(t!’l, ), so using our simple preserving duality, t' s
quasi-isomorphic to the direct sum X! = e, X'e;, where X'e;[1] is the cone
of the morphism

.Il
Qepy = Qep (D[]
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fori=1,...,p—1, and of

0= Qe (p)[p]
for [ = p. The homology of X'e; is easily seen to be Qe,Qe;(p)[p-1], so X! is
in fact quasi-isomorphic Qe,Q(p)[p - 1].
For t'2, we similarly see that this is quasi-isomorphic to X2 = X 2¢; where
X?¢[2] is the iterated cone of the sequence of morphisms

Azp*l (x l
Qe % Qep(p-Dp-1] Y Qep(p+ Dp+1]

fori=1,...,p—1, and of

0 — 0~ Qep(2p)[2p]

for [ = p.

Using that (2e,€) is the tilting module for the Ringel self-dual algebra € and
the isomorphism given in (6), we have a sequence of ungraded Q-Q-bimodule
isomorphisms,

e, ®a Ne,N = (Qe, )" ®q e,
* Homp(Homp((Q2e,Q)* ®q Qe F), F)
2 Homp (Homgq (Qe,9, Qe,2), F)
= Q"

(12)

as an ungraded -Q-bimodule. Explicitly, denoting by (-, —) the pairing ob-
tained from (6), an isomorphism is given by the assignment

u® v (W (u,vw)).

Thus we already know that the homology of X? is isomorphic to Q* as an
ungraded Q--bimodule, and we only need to determine the gradings. Direct
computation shows that the sequence of morphisms

(wy)!

P!
Qe; = Qey(p-U)[p-1] =" Qep(p+i)[p+1]

indeed has homology Q*¢;(2)[2] in the last place, via the isomorphism in ho-
mology induced by the morphism of left 2-modules Q2e;,, - Q*e; which sends e,
to (ery'~taP~te,)*. Hence the homology of X2e; is given by Q*e;(2)[0].

Again using the simple preserving duality, we see that for i > 2, t' is quasi-
isomorphic to X* = = X'e;, where X'e[i] is the iterated cone of the i + 1-
term sequence §' of morphisms of differential (j, k)-bigraded Q-modules (each
sequence being a complex of (7, k)-bigraded vector spaces), where gP is given
by

00— =0 - Qe,(ip)[ip],
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and, for [ =1,...,p-1, §" is the sequence

(zy)! (zy)?

Pt -l (z)!
Qe S Qeplp-Dp-11"D Qeyi+p)i+p] L Qep3p-)3p-1] L -

if 7 is even and

(wy)P! (wy)"t

.zl (x l
Qepr S e, (O] 2 Qep(20- 02011 Qepll + 20)[1 +2p] Y
if ¢ is odd.
Since {2 is a finite dimensional algebra which has finite global dimension (as the
Koszul dual of a finite-dimensional algebra, alternatively, as a quasi-hereditary

algebra), Q* ®%5 — is a Serre functor on D°(2) by [8, 4.6]. Hence we have, in
the ungraded setting, a quasi-isomorphism

£\ = Home (67, Q) %" Homg (2, Q* @ t')*
where we have used that
Homgq (Q,Q* ®5 )" 2 Homg (2, Q" ®q t7)*
since t' is projective as a left Q-module. Thus t'~* is quasi-isomorphic to
Q" 00 t!i)* _ (t!i+2)*'
Putting in gradings, this gives a quasi-isomorphism between
TR Homg (92, Q" ®q t')* = Homg (Q,t72(-2)[0])* = (£"*2)*(2)[0],
or, equivalently, for ¢ > 2, a quasi-isomorphism
€1 (670 -2)[0])* = (£702) (2)]0].
Therefore,
H(t") = (H(t072))*(2)

2 (-0 -2)p)[(i-2)(1-p)] EB@Bj@"j(—(i —2-7)p)(i-2-5)(1-p)])"(2)

= (@G- 20 -D(p- D] D™ ((i-2- N6 -2-)p- D)
20 {2+ (-2 [(- (- D] e D67 2+ (1-2- ol -2-)(p- D)

Using ©* 2 ©7(p-2)[p-2] coming from the isomorphism (7) and the fact that
the involution ¢ of © induces an isomorphism of bimodules 7© % 07 0%,
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we obtain
H(t")
= (2 + (i - 2)p)[(i-2)(p - 1)] e%pj@“j“((i—l—j)p)[(i— 1-)(p-1)-1]

= Q2+ (i~ 2p)[(i -2 (- 1] @ O((i - 2p)(i-2)(p-1) - 1] @
00 (p)[p-2].
(13)

Explicitly, the generator e, of the rightmost copy of Qe, in X‘e; corresponds
to the element (e;2P~1y'~te,)* € Q* in homology. The homology class of an
element ue, in a middle term of the form e, in X; annihilated by the morphism
given by right multiplication by (zy)! corresponds to the element u’e; in © such
that w'zP e, = ue,.

Hence the structure of A* as a k-graded -Q-bimodule is given by

Olp-2] ©7%2p-3] ©O[3p-4] Q*[3p-3]
©7[p-2] ©O[2p-3] Q*[2p-2]
olp-2] Q' [p-1]
Q*[0]
Qep,Qp-1]
Q

while the structure of A* as a j-graded Q-Q-bimodule is given by

ofp)  ©7(2p) ©(3p) Q7(2 + 3p)
0%(p)  O(2p) Q7 (2+2p)
o(p)  Q(2+p)
Q*(2)
Qepp)
0

9.4 THE PRODUCT ON A.

We now investigate the algebra structure on A. We recall from [16, Theorem
32] (or Section 9.2) that A~ is nothing but the tensor algebra To(07) ® F[{]
for a variable £ of j-degree —p and k-degree p — 1.
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In order to determine the products of two elements in A*, or mixed products
between A" and A~, we use an explicit right Q-module structure on the one-
sided tilting comlpexes described in the previous section.

In [16, Lemma 38 (ii), equations (9) and (10)], we gave the description of the
right Q-structure on X% in the example of i odd and not involving the pth
summand. For completeness, we include a full description here. The action of
the generators e;xe;,q respectively e;jye;—1 is induced by the diagrams

)p*l 1

(x l (x l (x .
Qe, G ) Qe, Sl Qe, ! Qepy (14)
e sl oo |
(z +1 (z 1+1 (z p-l-1 oI+
er( y) (zy) er( v) e y Qepin
(zy)’ (zy)’ (zy)P™! !
Qe Qe Qe Qepy
(zy)t (zy)L ()Pl -1
er( y) (zy) er( y) Qe, y Qepin
for 7 odd and
(zy)’ (zy)P! (zy)’ P!
Qey, Qe,, Qe,, Qe; (15)
o b o
(et (wy)Pll () p—l-1
ep( y) ...( y) Qe, (zy) Qe, Y Qepy
(zy)t (zy)P! (zy)! Pl
Qe, (zy) (zy) Qe, (zy) Qe, Y Qe
(zy)t ()P~ L ()T L p=l+1
er( y) ___( y) Qe, (zy) Qe, y Qery

for i even, wherever this makes sense for [ (i.e. the larger value being less than
or equal to p—1). The action of the elements e,_1ze, and e,ye,_1 is induced
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)

Qel

(zy) P!

for i odd and

(zy) ~(ry)p’IQ y

Qe, Qe Qeq

Qe

(zy

Qe

|
)p_l “ee

(zy) (zy

p €p

)

for 7 even.

Qe, Qe i Qep1

(16)

(17)

Similarly, the right Q-structure on t' s generated by the action of ejxer

respectively e;ye;—1 induced from the morphism of complexes

Qe, i ! er'(wy)p’l Qe, (@) () Qe,
Qep_1-1 @ Qeé(zy)pililﬂez,'(wy)m Gy ep
e, | ! er-(ry)p’l e, (@) (ay) e,

l.z l.l ly l.l
Qep i1 b1 Qep~(ﬂcy)”‘“lﬂep-(ﬂﬁy)l‘1 @) ¢
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for 7 odd and

e, Pl e, (zy)! er(ry)p’L ey Qe, (19)
e

Qe Ea. er.(zy)m Qe;zy)p_L_l... () €p

Qe 2P Qe, (wy)’ er'(wy)’)‘l ) Qe,
|

Qejq = er.(zy)k1 Qegzy)p%l... ey €p

for ¢ even. The action of the elements e,_1ze, and e,ye,_1 is induced by the
morphism of complexes

(zy)P ! _ (zy)P!

Qe, - Qe, (20)

|
er'(wy) (zy)

for 7 odd and

er—l

|
(zy)? -y ey

Qep1 —— Qe Qe, - Qe

for 7 even.
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Given these actions, we can now explicitly describe the quasi-isomorphism be-
tween X ®q Xt and X! Forl=1,...,p,

. . . i . . l .
X'®qX e = Xi@gcone(Qe,(-1)[-1] % Qe, ) = cone(X e, (-1)[-1] % X'e, )

is the iterated cone of the total complex of the double complex (where we omit
gradings for readability)

Qe,

lmp-l
@O @) @)

1
T
Qepy —= Qep, —> Qe —> - —> Qe

Qe
l‘(l)pl
=l (zy)' _ (zy)?t (zy)P
Qe; Qe (—yl 615 & (—y)> Qe

for 7 even and i odd respectively. The quasi-isomorphism of the total complex
to the lower one shortened by the right-most term is then obvious.

For the pth summand, we have natural isomorphisms

X'®q X e, = X' ®q cone(Qe,(—p)[-p]-0)
2 cone(X e, (-p)[-p]-0)
2 X'ep(-p)[1-p] 2 X" ey.

We now define a number of bimodule homomorphisms, which we then show
provide the multiplication maps between parts of A.

LEMMA 18. We have natural bimodule homomorphisms,
B: Qe ®q Qe,Q > QF,
G:0e,Q00 0 50 (10" ®g e, > QF,

e eSO,

0;: Q®q QF —»erQ, GTZQ* ®QQ—»Q€I)Q
LlIQ®QQ*—>Q, LT:Q*®QQ—>Q,
1:0007 -0, 1,:0700 - O,
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Proof. Firstly, 8 is nothing but the bimodule isomorphism constructed in (12).

The dual of the short exact sequence
0-Qe,Q>0Q-0-0

is isomorphic to
0->07 >0 > Qe,2 -0 (22)

using the bimodule isomorphisms (6) and (7). Applying the right exact functor
unctor Qe,Q ®q — to (22), we obtain an exact sequence

e, ®q 07 - Qe ®a N — Qe ®q Ve, — 0

and noting that e, ®q ©7 =0, the second map is an isomorphism. The map
(; is then the composition

Qe, @0 O 5 Qe @g e, 2 5 0F

of this isomorphism with .

Similarly ¢, is the composition
0 @0 26,0 5 Qe,Q @0 26,0 5 Q°

of the isomorphism obtained by applying the right exact functor — ®q {2e,£) to
(22) (noting that again © ®q Qe,2 = 0) with the bimodule isomorphism f.

Applying — ®q Q* to (22) gives an exact sequence
@a®QQ* - O ®QQ* —>Q€pQ®QQ* -0

and, noting that Q* is a quotient of (Qe,)®? and hence O7 ®q Q* = 0, the
second map is again an isomorphism. The map € is the composition

O 80 Q0 5 Qe,Q@g 0 S0

of this isomorphism with the isomorphism (.

The morphisms 6;,6, are just given by the compositions
Qoo 0" 20" > Qe and 0" ®qNz0" > Qe

of the quotient map Q% - Qe, from (22) with the canonical isomorphisms.

We define ¢, ¢, as the compositions

Qoo Q" % Qe 0

respectively
0 00 0% e, 0
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of 6;,0, with the natural embedding respectively.

The morphisms v; and v, are defined as the compositions
O -07 - OF and 0730 - 07 - QF

of the natural actions with the embedding from (22) respectively. O

To describe the product on A using our natural bimodule homomorphisms we
split the algebra into five parts:

e _ consisting of all copies of Q in A~ (with possible shifts Q(-ip)[I(1-p)]),

e O_, consisting of all copies of © or ©7 in A~ (of the form O (~ip)[I(1-
P,

o T:=Qe,Up)[p-1],,

e O, consisting of all copies of © or ©7 in A* (of the form () (Ip)[i(p -
1) -1]), and

e Q% consisting of all copies of Q* in A*,(with possible shifts Q* (2+Ip)[I(p-

D).

To ease checking of vanishing of multiplication due to degree reasons, we now
provide a table describing in which degrees each of the Q-Q-bimodule compo-
nents are concentrated. Here the first element in each list is the degree of the
generators, so j-degrees grow successively more negative, and k-degrees grows
successively more positive.

nonzero j-degrees nonzero k-degrees

U-Ip)[I(1-p)] =Ip, -, —(l+2)p+2 Ip=1,-(+2)(p-1)

OW{(-Ip)[i(1-p)] | ~lp,—(L+D)p+2 | l(p-1), (I+1)(p-1)-1
erﬂ(p>[p—1:| pv"'a_p+2 1_p7"'ap_1
O (p)i(p-1)-11 | Ip, (I-1)p+2 |I(1-p)+1, (I-1)(1-p)

Q@+ip)ilp-1)] | @+2)p,2+lp | ([(+2)(1-p),U(1-p).
With this information, we can now prove the following proposition.

PROPOSITION 19. The multiplication between these five parts is given by the
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following table:

Q_ o_ T O, Q7
Q_ a a a 0 NN
o_ a a 0 O,a,v 0
T a 0 B 0 ¢
CH 0 0,a,v 0 0
Qr t,0,a 0 ¢ 0 €

Here a is our generic notation for an action map. For the products where we
give several options, the choice depends on the component in which the product
lands. In the case of products between Q_ and §27 this is determined by

Component in which the product lands: Q- T  QF
Natural map describing the product: L 0 a

and in the case of products between ©_ and O, it is given by

Component in which the product lands: A~ T O, QF

Natural map describing the product: 0 0 a V.

Proof. The fact that the product on A~ is as given in the top left 2 x 2-corner
of our table we have already established in a previous paper [16, Theorem 32].

Thanks to our simple preserving duality, we can rephrase everything in terms
of right modules (obtaining a quasi-isomorphism between t'~! and

p-1
Y= cone((epQ)p - elQ)
I=1

and between t'* and

_ p-l1
Y" = cone ( S e > ()P o (e, )P (epQ)p)
1=1

respectively (with analogous actions to those given in (14),(15),(16),(17),(18),
(19),(20) and (21)), where we obtain an obvious quasi-isomorphism Y logY'=
Y* ! implying that it suffices to check multiplications in one order.

We next consider the bottom right 3 x 3 corner, which provides the multiplica-
tion on A,

Note that, Qe,) being the tilting bimodule and quasi-isomorphic to t', the
tensor algebra ToQe, ) is necessarily a subalgebra of A*. Thanks to the iso-

morphism e, ®q Qe 5 Q*, the multiplicative structure of this is given by
B,(, ¢ and €, providing the nonzero entries in this square.
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The product between O, and O, is zero by degree reasons. Indeed, the tensor
product of ©)(Ip)[I(p—1) —1] appearing in H(t") and @) (I'p)[I'(p-1) 1]
appearing in H(t"') is generated in j-degree (I +1')p and k-degree (I +1')(1 -
p) +2. The only nonzero component of H(t!(i”’)) in this j-degree is the top of
O ((1+1")p)[(1 +1")(p-1) — 1], but this has incorrect k-degree.

Both 2" and Qe,{2 are quotients of Qe;‘fp (and using the simple-preserving
duality on €, similarly Qf, and Qe, 2 are quotients of (¢,Q2)®?), and O ®q Ne,, =
07 ®q e, = 0 (and similarly €,Q ®q © = €, ®g O = 0), thus the remaining
zeros in this square follow from right exactness of ©(7) ®¢ — (respectively — ®q
o)),

It remains to confirm the bottom left 3 x 2 (or equivalently, top right 2 x 3)
rectangle of our table.

Repeating the argument about 2* and (e, being quotients of sums of the
pth projective, we obtain that mutliplications between ©_ and Q* respectively
Qe, ) in either order are again zero.

The fact that multiplication between H(t') = Qe,Q(p)[p-1] and Q_ is just the
normal action map follows immediately from the quasi-isomorphism between
t' and Qe,Q.

If the product between ©, and ©_ (in either order) lands in A~ or Qe,€2, it is
again zero by degree reasons. Indeed, the tensor product of ©()(Ip)[I(p—1)-1]
appearing in H(t'") and ©()(-1'p)[I'(1 - p)] appearing in H(t'""') is generated
in j-degree (I-1")p and k-degree (I-1")(1-p)+1. Since by assumption i’ > i, the
only subspace with this nonzero j degree in H(t'"""') is the top of ©()(~(I’ -
Dp)[(I"=1)(1-p)], but this again has the wrong k-degree.

For products involving €2_ and €27, note that Q] is a component of the subalge-
bra Tae,). Multiplications being induced by the action maps hence follows
from the same claim for {le,€).

In order to analyse the remaining multiplications, note that thanks to [16,
Theorem 32], which proves that A~ is indeed just a tensor algebra, it suffices
to consider the case where one is a component of H(t""!) and the other a
component of H(t") for i > 1, so consider multiplication H(t") ® H(t'"!) -
H(t""!) coming from the quasi-isomorphism X’ ®q X! — X! described
before Lemma 18.

Then products between ©, and O_ being as stated follows from ©_ appearing
as a quotient of Esz_ll Qe; in X1, the explicit maps, given in (14),(15),(18) and
(19), describing the right action of Q on X*, and the explicit description of how
elements in terms of X; correspond to elements in ©, following (13).

In order to verify that the product between O, and 2_, we again look at the
explicit action maps. Indeed, since Q2_ appears as a submodule of (Qe,)®” in
X1 alift of an element in Q_ to X! is necessarily of the form e;we, for some
w. Since in the right action of e;we, on X any lift of ©, in X' is annihilated,
the product between ©, and €)_ is zero as stated. O
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10 EXxpriciT HOCHSCHILD COHOMOLOGY OF SOME BIMODULES.

Here we describe the components of HH(c', A) as HH(c')-HH(c')-bimodules.
We fix the element z := Y.}, zye; in €.

Let us first describe the centres of our algebras ¢ and c'.

LEMMA 20. The centre of ¢ is Z(c) = F.1@c? = Zf;ll F-&ne;. The centre of §)
is Z(Q) = F[z]/2P where z = xzy has k-degree 2.

PROPOSITION 21. Suppose p > 2.

(i) HH(QY) is isomorphic to Z(c)® Z(Q) ® A(k)/(c?.z,ck, 2P~ k), where c?
has jk-degree (2,0), the z has jk-degree (-2,2) and x has jk-degree (0,1).

(1) HH(Q,©) s isomorphic to HH(Q)/(ZPT_I) as an HH(Q)-HH()-

bimodule.

(iii) HH(Q,O7) is isomorphic to HH(Q,©)*(4-p)[2-p] as an HH(Q)-HH(Q)-
bimodule.

(iv) HH(, Q*) is isomorphic to Q°, the degree O part of Q.

v) HH(,Qe,Q) is isomorphic to the kernel of the natural surjection
P
HH(Q) —» HH(Q)/(ZPE1 ).

Proof. (i) By Theorem 6, we need to compute the homology of D. :=
Ds, escer ® eifdes with differential sending o ® a to

af ®ya+an®ra— (—1)"1‘504 ®ay - (—1)'“'7704 ® ax.

The complex D, is Z2-graded, where we give e, degree (0,0), we give x and
y degree (0,1), and we give £ and 1 degree (-1,0). The differential therefore
has degree (-1,1). We remark that this is not our usual (7, k)-grading and
we still denote by |-| the k-degree of an element as before. We have a basis for
escer ® e;fleg given by those monomials es£"sn™e; ® erx™*y™ves which are
not zero in this space. We set,

l l I+1
as,1 = es§€s+1 ®es1Yz €s, bs,l =esMNes—1 ®es-1T2 €, Ws,| = 6557765 ®esz “eg

and note that ay; # 0 if and only if [+1 < s <p-1, bs; # 0 if and only if
l+2<s<pandws; #0if and only [ +2 < s <p-1. Moreover, a,;; and b, ;and
wg,; vanish for all s if [ > p—1. The nonzero graded subspaces of D are D;Q’O
(which is just ¢ ® 1o and isomorphic to ¢2), D32 for 0 <1 <p-1, D;1?*! and
DZ%2*2 for 0 <1 < p—2. The first is just c?® 1 and isomorphic to ¢2. For fixed
I, DY D712 and D;222 have bases given by {e, ® eszles|s = 1+1,...p},
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{asgls =1+ 1,...p =1} U{bsyls = 1+ 2,...p} and {wsyls = 1+2,...,p -1}
respectively. Our complex D, is then a sum of the complex

0-c*>-0
and the sum over [ of complexes, for 0 <[ <p-2,

(0 _)D((:O,Ql) — D(()*l,?li»l) — D£7272l+2) - 0)

~ (0 s Fp—l N F2p—2—2[ s Fp—2—l s 0)

(where we interpret spaces as zero if they have zero or negative dimensions,
which happens for D((;Q’QHQ) for [ > p—2 and for D((;LQZH) for I =p-1) and
the differential acts on the [-component by

l
es®egz eg > g+ bs,l —Qs-1,1 — bs+1,l;
As,] = Ws, ] — Ws+1,1

bs,l = —Wg |+ Ws-1,1

from where we see that in the sequence D% — D12+ . D72242 the last map
is surjective, the first has one-dimensional kernel spanned by »*_, | es®eszle, =
1 ® 2! (which lies in the centre of ), and one-dimensional homology in the
middle spanned by kz! where & := Zg;ll as,0. The homology H(D.) is therefore

p=2 p-1
Co@Frlo@F:

1=0 1=0
and the multiplication is obvious from this explicit description and Proposition
7. In our gradings, the j-grading sees 1, &, x, y in degrees 1,1, -1, -1 respectively,
and the k grading has 7,£, 2,y in degrees 0,0,1,1, so the factor ¢? has (j, k)-
degree (2,0), the element z has (4, k)-degree (-2,2) and the element s has
(4, k)-degree (0,1). This completes the proof of (i).
(ii) By Theorem 6, we need to compute the homology of D¢ e = @, ;esce; ®
e;Oe, with differential

a®@m—al@ym+an®rm — (—1)|m‘§a ®my — (—1)""'7704 ® ma.

Using the same grading and notation as in (i), the only nonzero graded com-
ponents are D;QéO (which, as before, is just ¢ ® 1o = ¢? and contributes to
homology), D(O::él, D:é%'l for0<i< % (recall that p is odd) and D;QéQl+2 for
0<l< pr“r’. When nonzero, the spaces Dg:g, D;lém+1 and D;Qém+2 have bases
given by {es ®eszles|s=1+1,...p—1-1}, {asls=1+1,...p—-1-2} u{bs|s =
I+2,...p—1-1} and {wsy|s =1+ 2,...,p—1 -2} respectively. Our complex
De g is then a sum of the complex

0->c2>0
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and the sum over [ of complexes for 0 <[ < 232,

0 —>D£O(’_)2l) N Di—églﬂ) N D£_§’2l+2) - 0)

~ (0 . FP—Qlfl = F2p—4l—4 N przlfg . 0)

and the differential acts as before on the basis elements. Again the last map is

surjective, the first has kernel Zf;l;ll es ®egzle, = 1® 2!, and homology in the

middle is spanned by k2! = Zg;ll;f as,;. The homology H(D. ) is therefore

p=3 p=3
2 2
CoPFlreo@FL.

1=0 1=0
By Proposition 7, the HH(Q)-HH(Q)-bimodule structure induced by multi-
plication in ¢°? and the Q-Q-bimodule structure on ©. Using the explicit
description of basis elements in terms of tensor products of elements in ¢ and
elements in O, (ii) follows.
(iii) Again by Theorem 6, in order to compute HH(2,©7) we need to compute
the homology of

Deor = Pesce; ® e,0%¢s,
s,t

with differential

||

a®m»—>a£®ym+an®xm—(—1)|m‘§a®m~y—(—1) nou@m-x

= af @ ym+an®@zm - (-1)Mca @ ma - (-1)™na @ my

where we denote by m-x the action of z € 2 on the element m € ©7 and by mx
the usual (untwisted) action of Q on ©. As a vector space, this is isomorphic to

Ds, esce;®e;Oe;,_s. This has nonzero components D((:?épf*m) forl=0,..., p—;3,
as well as Di_é;p_l_m) and Di_él,p_m) forli=1,..., p—;l, with bases given by
{es ® esxpfsflflysflflep,sb =l+1,...,p-1-1}
—s—1-1, s-1 —s—1-1, s-1
{65§€S+1 ®egrial ™" ys €p-s,€s+17€s ® esal™? ys ep,s,1|8 =l...,p-l- 1}

and

{esénes ® eca? "y e, |s=1,...,p-1}
respectively. As the differential has degree (-1,1), for [ = 0 we obtain homology
spanned by {es ® esaP*1y*te, s|s=1,...,p—1} in degree (0,p—2). This is
equal to 1® (©7)P~2. The rest of the complex is a sum over [ for [ =1,..., %
of

(0>DEg ) - DI > DS~ 0)

~ (0 N Fp—2[—1 N F2p—4l N Fp—2[+1 N O)
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Setting
—s—=1-1, s—1
fs,l =eslesi1 ® es+12? Y  Ep-s,

—s—1-1, s—1
Js,l = €s+1M€s ® esz? Y €p-s-1

—-s—1, s-1
Vsl = 6557765 ® eszp Y €p-s

respectively, the differential acts as

s—1-1

—-s—1-1
es ® es? Yy €p—s = fs,l + fs—l,l +09s,0t gs-1,1

fs,l = Vs 1+ Ust1,1

9s,0 > —Us,l = Us+1,1-

It is easy to see that the first map is injective. However, the image of the last
map is spanned by vs; +ves1, for s =1,...,p—1—-1 and is hence only p - 2[-
dimensional, leaving one-dimensional homology in both the middle (spanned
by p; = (pr—l,l +ng—1,l) say) and the end (spanned by v, = (0%171 —vau,l),
say). In order to describe the structure as HH()-HH(2)-bimodule, we need
to determine the action of the generators of HH({2) on this, and in light of
Proposition 7 this is induced by multiplication in ¢°? and the action of {2 on
either side of ©7, or, in other words, the natural action of D on D¢ g-. It
is clear that both 1, and j; are annihilated by ¢2. Direct computation shows
that k. = gk = %ul, Z.p = pi.z = -1 and z.p = vz = y—1. By graded

,p=2)
o

dimensions, the only other non-zero product could be c2.D£O , which lies in

degree (-2,p-2), where v also lives. Direct computation shows that with our
choice of representatives of homology, we obtain

(es€nes ®es)(es ® eszpfsflysflep,s) =(es® esxpfsflysflep,s)(esénes ®es)

1 P
=5(DF n

and all other product with non-matching idempotents are obviously zero. The
(j, k)-degrees of the basis elements are (—p+2,p—2) for es ® es2? 5 1y le, o
fors=1,...,p—1, then (-p+2+2l,p-20-1) for py and (-p+2+2l,p-2l) for
V.

This completes our combinatorial description of HH(€2,07). To define an iso-
morphism between HH(Q2,©7) and HH(2,©)* we now define a bilinear form

|-, - : HH(Q,07) ® HH(,0) - F
such that
R R N U MR G I

for h e HH(Q,07), h' e HH(Q), A" ¢ HH(Q,©). Indeed the form |-, -| which
pairs 2(—1)%1’5(65®eszp’5’1ys’1ep,s) e HH(Q,07) (of (4, k)-degree (2-p,p—
2)) with esén ® 1 € HH(,0) (which has (4, k)-degree (2,0)), which pairs 2!
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(of (j,k)-degree (-21,21)) with vj41 (of (j,k)-degree (20 —p +4,p — 2l - 2)),
and which pairs z'x (of (j,k)-degree (=21,21 + 1)) with g1 (of (j,k)-degree
(20-p+4,p—21-3)) has the required property; in fact all signs (—1)I"'le(rle+Ih"lx)
are +1 when |h'h, h"'| is nonzero for elements h,h’,h" of our canonical bases since
the super-commutation relations defining HH(2) are all commutation relations,
with z lying in degree 2. It follows that there is an isomorphism

HH(Q,07) = HH(Q,0)* (4 - p)[2 - p]

as claimed.

(iv) Similarly to the previous ones, we apply Theorem 6 and see that we need
to compute the homology of the complex D¢ g+ = @s ¢ escer ® €82 e, with
differential sending a ® ¢ to

al @y +an®Tp— (—1)"”'504 ® @y — (—1)'“'7704 ® Q.
The computation is similar to the one in (i). We set
Gs1-1 = es-16es ® es (27 x) ey b1 = essimes ® es(2' 7 y) Fesi.

The nonzero graded components of D¢ o« are DéOg,]O*)’ having basis given by

{es®@ei|s=1,...p}, as well as Dﬁo&m),Di_é;_QlH) and Déé,’:mﬂ) for 1 <1<

p—1 with respective bases given by
{es@es(2) ey |s=1+1,...,p}
{es-18es ® es(zlflsc)*es,l, €sNes_1 ® es,l(zl*ly)*eS |s=1+1,...,p}
{esénes ® es (27 e, |s=1,...,p—1}.
Our complex is isomorphic to the direct sum of p complexes
0 - Di?é?l) N D((;é;—QlJrl) N D((;éle”) 50

forl=1,..,p—-1and 0 - D((:?g’lo*) — 0. The last summand provides the homology
claimed in this case, so we need to show that the first p—1 summands are exact.
Indeed, the dimensions of Dﬁ?&m), D((;é;_mﬂ) and D(jé;_mﬂ) are p-1,2(p-1)
and p — [ respectively, so it suffices to show that the differential is injective on

the first and surjective on the last component. Since
~ _ 1-1_\* B _ -1 \*
As,1-1 = es—lges ® 65(2’ 1') €s-1 s,0-1 = €s+17)€5 ® GS(Z y) €s+1,
the differential acts as
1\ *
es ® 65(2 ) €s P> Ugy1,1-1 + bs—l,l—l —Qas]-1— bs,lfla

where summands are considered as zero if s falls outside of the range 1,...,p,
from which we see injectivity of the first differential. The basis element a, ;1 in
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Di_é;_m“) gets sent to es_1€nes 1 ®es 1(27 ) s —esénes®ey (2171 *e, where
again summands are considered as zero if s falls outside of the range 1,...,p,

from which we see surjectivity of the the second differential, completing the
proof of (iv).

(v) We have an exact sequence of Q-Q-bimodules,
0—- Qe > Q-0 -0.
Applying RHomggaor (2, —) gives us an exact triangle
RHomggaer (2, 2e,Q) -~ RHomogaer (2, 2) > RHomogaer (2, 0) ~

in the derived category of F-F-bimodules, which corresponds to an exact tri-
angle
HH(Q,Qe,?) - HH(Q,Q) - HH(Q,0) ~

We know HH(Q, Q) and HH((2, ©), and from our calculations the map between
them is visibly the canonical surjection. This completes the proof of (v). O

We give some pictures visualising the structure of the bimodules in case p =5
(the numbers down the left hand side denote the k-grading and along the top
the j-grading Here is HH(Q):
2 $1 0o -1 -2 -3 -4 -5 -6 -7 -8
1
F@pfl

coO g O Ot ks W NN O O
N

Here is HH(,0):

2 1 0 -1 -2 -3
0 1
— /

0 For-1

1 K

2 \ z

|
3 Kz
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Here is HH(2,07):

1 0 -1 -2 -3
0 H2
I
1 1) \
2 H1
3 F@pfl
3 " /
Here is HH(Q, Q*):
0 Fep

Here is HH(2, Qe,Q):

0 N O Ut e
N
w

REMARK 22. The bimodule isomorphism
HH(9, 67) = HH(2,0) (4 p)[2 - p]

of Proposition 21(iii) is striking, since we also have ©7 = ©* as bimodules. This
duality between Hochschild cohomologies does not follow from basic general
principles and therefore deserves further comment. We give a more conceptual
explanation of its origin here. Thanks to (6) and (7), the dual of the short
exact sequence

0-Qe,0>Q->0-0

is isomorphic to
0« Qe,Q2p-2)[2p-2] <« Q" <O (p-2)[p-2] < 0.
Applying derived Homggaoer (2, —) gives us an exact triangle
HH(Q,07)(p-2)[p-2] - HH(Q, Q") - HH(£, Qe,Q2)(2p - 2)[2p - 2] ~

We know from Proposition 21(v) that HH(, Qe,) is the kernel of HH(2,Q —
0), an extension of F[k, z]/(x?, P ){1-p)[1-p] by F(2-2p)[2-2p] and we
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know that HH(Q,Q*) is isomorphic to F®?(0)[0]. Two copies of F cancel in
the derived category in our triangle via the map HH(~) where 7 is the natural

surjection Q% — e, from (22) (see proof of Lemma 24, the product ¢;).
Using

Flr, 2]/ (5,25 ) (1= p)[1 - p)(2p - 2)[2p - 2] 2 Fw. 2]/ (5, 2"F ) (p - Dp-1],
this leaves us with an exact triangle
HH(,07)(p - 2)[p-2] > F¥™ = Flr,2)/(+*,2F ) (p - 1)[p - 1] ~,
which we can shift to a triangle
Flr,2]/(5% 2" )(1)[0] > HH(2,©7) > F**"}(2 - p)[2 - p] ~
Fls, 2]/(5%, 2" )(p - 3)[p - 2] » HH(Q,07)(p - 4)[p - 2] » F*"~(-2)[0] ~

This is dual to the exact triangle

-1

F®P712)[0] » HH(Q,0) > F[k,2]/(k%,27 ) ~ .

Here we use the self-injectivity of F[k, z]/(x?, s ), which is given by an iso-
morphism

2 Bl

Flw,2)/(s, 27 ) 2 Flr. 2]/ (6,25 ) (3= p) 2 -]
of F[n,z]/(/i2,sz_l)—F[n,z]/(n2,zp7_1)—bimodules. We thus have
HH(Q,0)" 2 HH(Q,07)(p — 4)[p - 2]

as jk-graded HH(Q)-HH(Q2)-bimodules.

REMARK 23. The spaces computed in Proposition 21 come with natural bases.
Denote x := HH(2) and Y := x/sz_l, and let y denote the kernel of the natural
surjection x — X, so we have isomorphisms HH(2,0) =Y, X® := HH(Q,07) =
X (4 -p)[2-p] and HH(Q,Qe,Q) = x. We have bases for these bimodules,
indexed by pairs (d,e) where d denotes a jk-degree and e an idempotent such
that emg.e = mq,. (as an example, m_g 9,1 corresponds to =1 zl, mM2,0,e,
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corresponds to esénes @ ey, ete):

By ={m_21,21,110 <l <p-1}u{m g 24110 <1 <p -2}
U {m270165|1 <s Sp— 1},

=
w

-3
BY :{m,2172171|0 << p—2 } U {m—Ql,2l+1,1|0 <l<

}

U {m270165|1 <s<p- 1},

[\
w

iS]

-3
By* :{m217_2171|0 <l< pT} U {mgl,_21_171|0 <l<

l\:) ‘

U{moggell<s<p-1}
BX :BX\BYQ

Bao ={mo,0,.|1 < s <p}.
More precisely we have

B, ={1,20<i<p-1}u{rll<i<p-2}u{esn®@lfl <s<p-1};
-3 -3
By® I{Vl+1|0 << pT}U{qu'OSlS pT}

s—1

U{es ® et Ty el < s < p=1} = {myrap kap-2.elmyh.e € By}

and we identify By and By with subsets of By in the natural way. The basis
Bgo is merely the set of idempotents e, for 1 < s < p.

11 THE ALGEBRA IT = 9H§(A).

Cute as A is, to compute the Hochschild cohomology of blocks of polynomial
representations of GLg we must diminish it, by taking Hochschild cohomology
with respect to £2. The resulting algebra we call II. In the remaining parts of
the paper we assume p > 2.

11.1 DESCRIPTION VIA BIMODULES.

Recall the notations from Remark 23. By taking componentwise Hochschild
cohomology we see that the structure of IT as an ungraded x-x-bimodule is
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given by

QO

>
=|

QO

=|

QO

[<

From the structure of A as bigraded (2-Q2-bimodule, we infer the structure of
II =9HH(A") as a k-graded x-y-bimodule

(1-p] X'[2-p]
x[2-2p] X[
x[3-3p] X'[4-3p] X[1-p] X'[2-p]
x[4-4p] X'[6-4p] X[2-2p] X'[3-2p]

=|

the structure of IT" as a j-graded y-x-bimodule

X
x{-p)  X'(4-p)

x{-2p)  X'(4-2p) X
x(=3p)  X{4-3p)  X{-p) X'{4-p)

x{-4p) X"(4-4p)  x(-2p) X'(4-2p) X

)
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the structure of IT* = §H(A™) as a k-graded y-x-bimodule

xXlp-2] X‘[p-11 Xx[Bp-4] Q°[3p-3]
X[0]  X[2p-3] Q°[2p-2]
xlp-21 Q[p-1]

and finally the structure of II" as a j-graded y-y-bimodule

X(p) X(4+p)  X@3p)  Q%2+3p)
X(4)  x(2p)  Q%2+2p)

X(p) Q%2+ p)

0%(2)

11.2 MULTIPLICATION.

In order to give the multiplication on II, which thanks to Propositions 7 and
16 is induced by multiplication in A, we first define a number of x-y-bimodule
homomorphisms between the various components of IT.

LEMMA 24. Let %, 01, Or, ¢, &, Oy, O, and A be the x-x-bimodule homo-
morphisms obtained by applying HH(Q,-) to a: ©7 ® ©7 - O, 0, 0., v, i,
vy, vp, and B from Lemma 18 respectively, which we identify with products of
components of H(c°®? ® A). Then the products of basis elements in these spaces
that are monzero are given as follows:
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* X OX X
fre ® ppy = En(epa —€epa)

p=3 p-1 p=3
(epr1 ®epn1 T2 Y 2 €p1) @ lp-1 = K2
2 2 2 2
p-l1 p=3 p=3
(Ep-1 ®€p12 2 Y2 €pr1) ® fp-1 = KZ 2
2 2 2 2

p=3 p—1 p=3
fp-1 ® (Eprn ®ep1 X 2 Y 2 ep1) > K2 2
2 2 2 2

p=1 p-3 p=3
pp1 ® (po1t ®ep1x 2 Y 2 epr1) > K 2
2 2 2 2

Or: X®XQO_’Ka O QO@xX_’K
1®ep'—>zp71 ep®1'—>zp71
¢ x> x, 4 Qe x-—x
1®e, > 2Pt ep® 1 2771

O: X8y X — Q7

1®(es®esaP sy e, 1<s<p-1
Yy

Or: X7 8y X~ 2,

es®esxP Iy Y @lme, 1<s<p-1
Yy

A : X®XX_)907

Proof. The product Y. Let us consider the element 2% of HH(Q,0). From

the proof of Lemma 21(ii) we find it is equal to Zg;ll as,oszig. We know that

p-1

p=3 .
as0z 2 is zero unless s = 55—; consequently

p=3 p-3 p—1
Kz 2 =ep1fepri ®€pr1Xk 2 Y 2 €p-1.
2 2 2

2

The image of ep-1 ® 2" under the differential is
2

p=3 p-1 Pl pe3
ep18epr1 ®€pr1 X 2 Y 2 €p1 —E€pr1N€p1 ®Ep1T 2 Y 2 Epi1,
2 2 2 2 2 2 2 2
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and therefore in homology we obtain

p=3 p-1 p-1 p-3

p=3 p=3 p-1 -1 p=3
Kz 2 =ep1fepnn ®EpniT 2 Y 2 €p1 =€pr1N)€p1 ®€p1T 2 Y 2 €pit.
2 2 2 2 2 2

2 2

We have e = epT-lfepTu ®€pn +eprifjer1 ®ep. Multiplying in c°? ® A
gives us .

The product ¢;. Consider the product 6; : Q ® Q* - Qe, Q. This factors
over the action map Q ® Qe,2 — Qe,(2, and consequently ¢; factors over the
action map x ® x - x. If we want to know ¢; it therefore suffices to know
HH(7y) : Q° » x where again v is the natural surjection Q* - e, from
(22). For every 1 < s <p- 1, the linear form e’ vanishes on Qe whereas the
restriction of e} to Qe,€2 is equal to (2P~!, ) (where (-, -) is the bilinear form
induced by (6)). Accordingly, the mapping HH(~y) vanishes on e, and maps e,
to zP~!, which fits with the stated structure of ¢;.

The product ¢;. The product ¢; is merely the composition of #; and the em-
bedding of Qe,2 in Q. Therefore ¢; is the composition of ¢; and the natural
embedding of x in y.
The product O;. Consider the product v;: © ® ©7 - Q. This is the composite
of the action of © on ©7 and the embedding p of ©7 in Q* using (7), in which
the socle of ©7 is identified with the socle of Q*. To know HH(1;) it therefore
suffices to know HH(p). Since in our computation of HH(, Q2*) the space 2°
is identified with the socle of 2* in the tensor product ¢®? ® Q*, and p identifies
es ® esxP~5 1y ! with the element of the socle of Q* corresponding to e, € Q°,
the product O; is as stated.
The products ¢,., 4., and O, are established similarly to ¢;, 4;, and 0.
The product A. We know that under A the radical of x must have product
zero with all elements since Q0 is semisimple. This leaves us with the problem
of finding the square of the element 255 of x in Q. We need to find the
p-1 p-1 p—1 p-1
element in Q° corresponding to (22 ®2°2 ), thatis ¥V, (272 ®272 )(es)es.
Now, by the explicit isomorphism described after (12) ﬂ(sz_l ® sz_l)(es) =
(esz%es,esz%es), which equals 1 if s > % and 0 otherwise. Thus the
resulting element in QY is Z’;_p_ﬂ es, as stated. O
-2

We use these maps to describe the product in IT, where we again gather together
components which are isomorphic (up to shift), according to whether they lie
in IT" or IT™, in a similar way as in Proposition 19.
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THEOREM 25. Products between the various components in Il are given by the
following table

X- X- XX X X: 0
X— a a a a 0 0 4. 0,a
X_ a a a 0 0,a 0,a,0 0
X: a a * 0 0,a,0 0,% 0
X a 0 0 A 0 0 0
X+ 0 0,a 0,a,0 0 0 0 0
X 0 0,a,0 0, % 0 0 0 0
Q) ¢,0,a 0 0 0 0 0 0

Possible ambiguities are covered by further tables. For the product of Q° and
X-
Component in which the product lands: x x

Natural map describing the product: ¢ O a
For the product of X, and X_:

Component in which the product lands: X, II”
Natural map describing the product: a 0

For the product of X*_ and X, :

Component in which the product lands: X",  x Q0 I

Natural map describing the product: a 0 O 0
For the product of X*, and X_:

Component in which the product lands: X",  x Q0 I

Natural map describing the product: a 0 m| 0
For the product of X; and X~ :

Component in which the product lands: X,  II”

Natural map describing the product: * 0

Proof. All the action products are inherited from action products in A; all other
nonzero products are inherited from nonzero products in A or via Lemma 24.
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The zero products are either inherited from zero products in A, or determined
by the fact that the products lie in degrees in which there are no nonzero
elements with respect to the various gradings; for example HH(e) = HH({) =0
by this reasoning. O

12 A MONOMIAL BASIS.

As any Ringel self-dual block of polynomial representations of G is equivalent
to @Fﬁ@f:,g(Fa (F, F))-mod for some [ >0, we have established the following:

THEOREM 26. We have isomorphisms of k-graded algebras
hh; = OpOL(F[z,271]).
Proof. This is a restatement of Proposition 17. O

We describe a basis for IT indexed by elements of a polytope. Roughly, we label
basis elements mg . for II by a pair (d,e) where d € 73 denotes a ijk-degree,
and e denotes an element of Q°, either 1 or an idempotent.

More precisely, here is our basis for II:

Bno =B, uBy uBsyp U B& U BY+ u BYH U Bgo
={Mab,ijrap,kra(1-p),elMj ke € By,a<0,b=0,i=a+b}
U{Ma i jrapk+a(i-p),elMjke € Bx,a <0,b<-2,b even ,i=a+b}
UM b0 j+(4-p)+ap, k+(p-2)+a(1-p),el M ke € Byr,a <0,b<~1,b odd,i=a+b}
U{ml,O,l,jer,kJrlfp,e|mj,k,e € B&}
U{Ma b4, j+(a-1)p, k+1+(a-1) (1-p),elMj ke € Bx,a 22,b>1,bodd ,i=a+b}
U{ma,b,i,j+4+(a—2)p,k+(a—2)(1—p),e|mj,k,e € By* ,a>2,b>2 beven i =a+ b}

U{Ma,b,i j+2+(a-2)p,k+(a-2)(1-p),e|Mj ke € Boo,a>2,b=0,i=a+b}

We describe the a,b grading as follows: in our pictures of IT a shift by a
corresponds to a move to the northeast by a and a shift by b corresponds to
a move to the north by b. The product of a pair of basis elements in IT is
either another basis element, or the sum of a basis element and the negative
of another basis element, or :I:% a basis element, or zero; when a product of
Meab,i,j,k,e-Ma’ b,i,j ke 15 nonzero, the basis elements in the product take the
form Mma+qr paby ivir j+j7 kek,y- Precise formulas for the product are given by
the formulas in the statement of Lemma 24 and the table in the statement of
Theorem 25.

We can now use this to construct a basis for hhy;.
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COROLLARY 27. The algebra hh; inherits an explicit basis from II.

Before proving this, we recall that the ¢k-homogeneous component of
OL(F[z,271]) is given by @ IT7'F @ TI717272 @ .. TT7-171% @ 2kt where the sum
runs over all integers ji,...,J; and kq,...,k; such that ky +---+ k; = k. The
operator O then projects onto the homogeneous component of i-degree 0.

Proof. We explicitly write down such a basis as follows: let Bry denote our
basis for II. We have a basis for the algebra ner @p F[z,27'] given by
B}l x {2%d € Z}; the product of basis elements is the super x product. We
define the weight of a monomial M1 ® ... ® My ® 2% in B x {2¢|d € Z} to be
2 1,3 02 1 -1 l I+1
(w; —wj,w; —wj, ..., w; —w; o —w,;) eZ,

where (w;,w;) denotes the ij-degree of m,,. We then have a basis for the
algebra O pO4 (F[z,271]) given by weight zero elements in By} x {2%|d € Z};
the product is the restriction of the product on By x {2%|d € Z}. O

COROLLARY 28. The map hh; — hh;_y is surjective for [ > 1.
Proof. The map Il - F is surjective, implying
On(a) = Or(a)
is surjective for any a, implying
OrOn(a) > O%(a) = Or(a)
is surjective for any a, implying
OrOn(Flz,27]) » OrOE (F[z,27'])

is surjective, implying hh; — hh;_; is surjective. O
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