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Abstract. We study the problem of whether a commutative nonar-
chimedean Banach ring which is algebraically a field can be topolo-
gized by a multiplicative norm. This can fail in general, but it holds
for uniform Banach rings under some mild extra conditions. Notably,
any perfectoid ring whose underlying ring is a field is a perfectoid
field.
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Just as classical (commutative) Banach algebras over the real and complex
numbers play a key role in analytic geometry, commutative nonarchimedean
Banach algebras lie at the heart of nonarchimedean analytic geometry. When
one compares algebraic geometry (in the form of the theory of schemes) to
nonarchimedean analytic geometry, the role of fields in the former is best analo-
gized in the latter by the role of fields complete with respect to multiplicative
norms (commonly known as nonarchimedean fields).
However, in certain settings, one naturally encounters a commutative nonar-
chimedean Banach ring whose underlying ring is a field, which for short we
call a Banach field. For example, if one starts with any commutative nonar-
chimedean Banach ring R, any maximal ideal of I is closed, so the quotient
R/I is a Banach field. One is thus led to ask whether any Banach field is a
nonarchimedean field. This fails in general (Example 2.15); however, we show
that this holds in some other classes of cases, such as uniform Banach alge-
bras over fields with nondiscrete valuations (Theorem 3.7) and perfectoid rings
(Theorem 4.2). The latter case resolves an issue dating back to Scholze’s intro-
duction of the term perfectoid [18]: a perfectoid field is by definition complete
with respect to a multiplicative valuation, so Theorem 4.2 is needed in order
to see that this is the same thing as a perfectoid ring which is a field (or more
precisely, whose underlying ring without topology is a field).
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1 Banach rings and fields

Definition 1.1. Let R be a ring. A submultiplicative (nonarchimedean) semi-
norm is a function |•| : R→ [0,∞) satisfying the following conditions.

(a) We have |0| = 0.

(b) For all x, y ∈ R, |x− y| ≤ max{|x| , |y|}.

(c) For all x, y ∈ R, |xy| ≤ |x| |y|.

If equality always holds in (c) and |1| 6= 0, we say that |•| is a multiplicative
seminorm. A (sub)multiplicative norm is a (sub)multiplicative seminorm for
which |x| 6= 0 for x 6= 0.

Remark 1.2. Let |•| be a submultiplicative norm on a nonzero ring R. Define
the operator norm induced by |•| as the function |•|′ given by

|x|′ := inf{c ∈ R : |xy| ≤ c |y| (y ∈ R)} (x ∈ R).

Then
|1|−1 |x| ≤ |x|′ ≤ |x| (x ∈ R),

so |•|′ is another submultiplicative norm defining the same topology as |•| and
satisfying |1|′ = 1. That is, provided that R 6= 0, there is no harm in adding the
condition that |1| = 1 to the definition of a submultiplicative norm. (Compare
[15, Remark 2.1.11].)

Definition 1.3. A commutative nonarchimedean Banach ring (or for short, a
Banach ring) is a complete topological commutative ring A whose topology is
induced by some submultiplicative norm |•| : A → [0,+∞). (By Remark 1.2,
if A 6= 0 then it is harmless to also assume that |1| = 1.) For example,
any f-adic ring in the sense of Huber is a Banach ring [15, Remark 2.4.4].
We say that A is discrete if it carries the discrete topology and nondiscrete
otherwise. (Beware that a complete topological field whose topology is induced
by a discrete valuation is nondiscrete in this sense!)

Remark 1.4. Let A be a Banach ring and choose a submultiplicative norm
|•| defining the topology of A. For x ∈ A×, let S be the open neighborhood

of x in A consisting of those y for which |y − x| <
∣∣x−1

∣∣−1
. For y ∈ S, we

have
∣∣x−1(y − x)

∣∣ < 1 and hence 1 + x−1(y− x) has an inverse z ∈ A given by
summing the geometric series. Since the map y 7→ z is evidently continuous,
the inversion map from S to A (given by y 7→ x−1z) is also continuous. We
deduce that A× is open in A and the inversion map defines a homeomorphism
from A× to itself.

Definition 1.5. For A a Banach ring, let A◦ be the set of power-bounded
elements of A and let A◦◦ be the set of topologically nilpotent elements of A.
Then A◦ is a subring of A, while A◦◦ is an ideal of A◦ which is nontrivial if A 6= 0
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and nonzero if A is nondiscrete. Moreover, A◦◦ contains {x ∈ A : |x| < 1} for
any submultiplicative norm |•| defining the topology of A, and hence is an open
subset of A.

Definition 1.6. By a Banach field, we will mean a Banach ring whose under-
lying ring is a field. By a nonarchimedean field, we will mean a nondiscrete
Banach field whose topology is induced by some multiplicative nonarchimedean
norm.

The distinction between Banach fields and nonarchimedean fields is important
in part because of the following basic fact.

Lemma 1.7. Let F be a field equipped with a nontrivial multiplicative nonar-
chimedean norm. Then the completion of F is a field (and hence a nonar-
chimedean field).

Proof. Let F̂ be the completion of F and let x ∈ F̂ be a nonzero element.
Choose a Cauchy sequence x1, x2, . . . in F converging to x. Since this sequence
does not converge to zero, the sequence |x1| , |x2| , . . . does not converge to
0 either; by passing to a subsequence, we may ensure that this sequence is
bounded away from 0. Since the norm is multiplicative, it follows that the
sequence

∣∣x−1
1

∣∣ ,
∣∣x−1

2

∣∣ , . . . is bounded. By writing

x−1
n − x−1

n+1 = (xn+1 − xn)x
−1
n x−1

n+1,

we see that x−1
1 , x−1

2 , . . . is also a Cauchy sequence, so it has a limit y ∈ F̂ ; we

must then have xy = 1. Hence F̂ is a field.

Remark 1.8. By contrast, completing a field with respect to a submultiplica-
tive norm generally does not yield a field. For example, the completion of Q
with respect to the supremum of the 2-adic and 3-adic absolute values yields the
direct sum Q2 ⊕ Q3. For a generalization of this observation, see Remark 2.3.
For a more exotic example, see Example 3.4.

Remark 1.9. An important, but not presently relevant, theorem of Schmidt
(e.g., see [6, Theorem 4.4.1]) asserts that a field which is not separably closed
can be topologized as a nonarchimedean field in at most one way.

2 Banach algebras and their spectra

Definition 2.1. Let A be a Banach ring with a specified submultiplicative
norm |•|. The Gel’fand spectrum of A is the setM(A) of multiplicative semi-
norms on A bounded above by the specified norm (note that the zero function
is excluded). It has been shown by Berkovich [2, Theorem 1.2.1] (see also [15,
§2.3]) thatM(A) 6= ∅ if A 6= 0, and moreover the spectral seminorm

|x|sp := lim
n→∞

|xn|1/n
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satisfies
|x|sp = max{α : α(x) ∈ M(A)} (x ∈ A); (2.1.1)

in particular, the maximum is achieved. For α ∈ M(A), define ker(α) :=
α−1(0); this is a prime ideal of A.
We say that A is uniform if A◦ is bounded in A. It is equivalent to require
that |x|sp is a norm defining the same topology as the originally specified norm;
compare Remark 2.10 [15, §2.8]. In general, the separated completion of A with
respect to the spectral seminorm is another Banach ring, denoted by Au and
called the uniformization of A; note that the natural map A → Au induces
a bijection M(Au) ∼= M(A) (which is a homeomorphism for the topology
described in Remark 2.3 below).

Remark 2.2. Note that while the definition of M(A) refers to a norm, the
underlying set of M(A) depends only on the underlying topology of A. This
may be seen by identifying the elements of M(A) with nonzero continuous
homomorphisms from A to nonarchimedean fields, as in [2, Remarks 1.2.2(ii)],
or with equivalence classes of continuous real semivaluations on A, as in Re-
mark 2.11 below.

Remark 2.3. The setM(A) may be viewed as a compact topological space via
the evaluation topology (see [15, §2.3]); as in Remark 2.2, this structure only
depends on the underlying topology of A and not a choice of norm. IfM(A) is
disconnected for the evaluation topology, then by [15, Proposition 2.6.4] A is
also disconnected (that is, it contains a nontrivial idempotent). In particular,
if A is a Banach field, thenM(A) is connected.

We will see shortly that the spectrum of a nonarchimedean field is a single
point (Remark 2.11). That statement has the following partial converse; note
that the conclusion must accommodate examples like A = F [T ]/(T 2) for some
nonarchimedean field F , for whichM(A) ∼=M(F ).

Lemma 2.4. IfM(A) consists of a single point α, then A/ ker(α) is a Banach
field and Au is a nonarchimedean field.

Proof. It is an easy consequence of [2, Theorem 1.2.1] that f ∈ A is invertible
if and only if α(f) 6= 0 for all α ∈ M(A) (see [2, Corollary 1.2.4] for the full
argument). This immediately implies the first assertion. The second assertion
follows from the first assertion plus (2.1.1).

Definition 2.5. A Banach algebra over a nonarchimedean field F is a Banach
ring A equipped with a continuous homomorphism F → A.

Lemma 2.6. Let A be a nondiscrete Banach field. Assume that either:

(i) A is of characteristic p;

(ii) A is of characteristic 0 and its topology is induced by some submultiplica-
tive norm under which Q is bounded; or
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(iii) A is of characteristic 0, the induced topology on Q is not discrete, and
case (ii) does not apply.

Then A is a Banach algebra over some nondiscrete nonarchimedean field.

Proof. In case (i), since A◦◦ is open in A and A is nondiscrete, we can find
some nonzero z ∈ A◦◦. We then obtain a continuous map Fp((z)) → A. Case
(ii) is similar.
In case (iii), we have Z ⊆ A◦. Since A◦◦ is open in A, the intersection I =
Z∩A◦◦ is a nonzero ideal of Z, which is thus generated by some positive integer
n. We cannot have n = 1 since 1 /∈ A◦◦. On the other hand, the completion of
Z with respect to I factors as the product of Zp over all prime factors p of n;
since A is an integral domain, this forces n to be a power of a single prime p,
and thus to equal p itself (since A◦◦ is a radical ideal). We may thus view A
as a Banach algebra over the nonarchimedean field Qp.

Remark 2.7. A typical example of a submultiplicative norm on Q which is
unbounded but induces the discrete topology is given by setting |x| := en(x) for
x 6= 0, where n = n(x) is the smallest nonnegative integer for which (n!)nx ∈ Z.
In Example 2.16 we will see an example of a nondiscrete Banach field whose
topology is induced by a submultiplicative norm restricting to this norm on Q;
this will show that the hypotheses of Lemma 2.6 are necessary.

In light of Lemma 2.6, we focus most of our attention on Banach algebras over
nonarchimedean fields.

Hypothesis 2.8. Hereafter, fix a nonarchimedean field F and a multiplicative
norm |•|F on F . Let κF denote the residue field of F . Let |F×| ⊆ R+ denote
the norm group of F .

Lemma 2.9. Let A be a Banach algebra over F . Then the topology of A is
induced by some submultiplicative norm |•|A satisfying |xy|A = |x|F |y|A for
all x ∈ F, y ∈ A. In particular, if A 6= 0, then we may further ensure that
|1|A = 1, and then |x|F = |x|A for all x ∈ F .

Proof. Start with any submultiplicative norm |•| defining the topology of A
and let M denote the unit ball in A for this norm. Let oF be the valuation
ring of F and define the function |•|A by the formula

|x|A = inf{|y| : y ∈ F, x ∈ yoFM}.

This then has the desired effect (see [17, §1.2]).

Remark 2.10. Suppose that A is both a nonarchimedean field and a Banach
algebra over F . Then the topology of A is defined both by a multiplicative
norm |•|1 and by a submultiplicative norm |•|A as in Lemma 2.9. One way this
can occur is if |•|1 and |•|A are norm-equivalent in the sense that there exist
constants c1, c2 > 0 such that

|x|1 ≤ c1 |x|A , |x|A ≤ c2 |x|1 ; (2.10.1)
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however, this need not be the case for the given norms. That said, the restric-
tion of |•|1 to F is a multiplicative norm defining the same topology as the
multiplicative norm |•|F , so there must exist a single constant c > 0 such that
|x|1 = |x|cA for all x ∈ F . By replacing the original norm |•|1 on A with the

new multiplicative norm |•|1/c1 , we may arrive at the situation where c = 1,
in which case |•|1 and |•|A are norm-equivalent in the sense of (2.10.1). In
particular, |•|sp = |•|1 is multiplicative, and moreover is uniquely determined
by the topologies on A and F and the norm on F .

Remark 2.11. In Remark 2.10, take A = F and suppose that α ∈ M(A).
From (2.1.1), we see that α(x) ≤ |x|1 for all x ∈ A. For x ∈ A×, the same
holds with x replaced by x−1; since α and |•|1 are multiplicative, this yields

α(x) ≤ |x|1 =
∣∣x−1

∣∣−1

1
≤ α(x−1)−1 = α(x).

We deduce thatM(A) consists of the single point α = |•|1, independent of the
choice of the norm |•|A. (Compare [2, Corollary 1.3.4].)

Remark 2.12. Let A be an affinoid algebra over F in the classical (Tate) sense
[4, §6.1]. By the Nullstellensatz for affinoid algebras [4, Corollary 6.1.2/3],
every maximal ideal of A has a residue field which is finite over F , and hence
a nonarchimedean field [4, Theorem 3.2.1/2]. In particular, if A is a Banach
field, then A is a nonarchimedean field.
Suppose now that A is an affinoid algebra over F in the more general sense of
Berkovich [2, Definition 2.1.1]. Then it is no longer the case that every maximal
ideal of A has residue field finite over F . For example, suppose that ρ > 0 is not
in the divisible closure of |F×|. Form the completion F{T/ρ, U/ρ−1} of F [T, U ]
for the weighted Gauss norm with weights ρ, ρ−1, then let A be the quotient of
this ring by the ideal (TU − 1); then A is itself a nonarchimedean field. Con-
sequently, the method of the previous paragraph does not suffice to show that
an affinoid algebra which is a Banach field is a nonarchimedean field; however,
this does turn out to be true by another argument (see Proposition 2.14).

The following lemma and proof were suggested by Gabber.

Lemma 2.13. Let A be a connected affinoid algebra over F in the sense of
Berkovich. Fix a homomorphism f : F{T } → A such that the image of T in A
is invertible. Let ρ, σ be the spectral norms of T, T−1 in A. Then there exists
a finite set S ⊂ R such that the image of the map f∗ : M(A) → M(F{T })
includes all points α with α(T ) ∈ [σ−1, ρ] \ S.

Proof. Suppose first that F is algebraically closed and that A is an affinoid
algebra in the sense of Tate. Since quotienting A by its nilradical does not
change M(A), we may assume that A is reduced. Since A is noetherian [2,
Proposition 2.1.3], A has finitely many minimal prime ideals; by applying the
following argument to the quotients by these ideals, we may reduce to the
case where A is an integral domain. There is nothing to check if A is a finite
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extension of F (as then σρ = 1). Otherwise, since F{T } is a principal ideal
domain, F{T } → A is flat and we may use the Bosch-Lütkebohmert flattening
method [5, Corollary 5.11] to see that the image U ofM(A) inM(F{T }) is a
(connected) finite union of affinoid subdomains. Since F is algebraically closed,
every connected affinoid subdomain ofM(F{T }) consists of some closed disc
minus a finite union of open discs. Since M(A) is connected by Remark 2.3,
the map U → [σ−1, ρ] taking α to α(T ) must be surjective; consequently, U
must be the complement in the annulus σ−1 ≤ |T | ≤ ρ of a finite union of open
discs, each of which is contained in the circle |T | = τ for some τ ∈ [σ−1, ρ].
This proves the claim.

We now treat the general case. Let F ′ be an algebraically closed nonar-
chimedean field containing F such that AF ′ := A⊗̂FF

′ is an affinoid algebra
in the sense of Tate. Since M(AF ′) has finitely many connected components
and M(AF ′) →M(A) is surjective, we may apply the previous paragraph to
each connected component of AF ′ to conclude.

Proposition 2.14. Let A be an affinoid algebra over F in the sense of
Berkovich which is a Banach field. Then A is a nonarchimedean field.

Proof. Since A is reduced, it is uniform [2, Proposition 2.1.4]; we may thus
equip A with its spectral norm. Suppose that there exists some nonzero T ∈ A
such that the quantities ρ := |T |, σ :=

∣∣T−1
∣∣ do not satisfy ρσ = 1. We

may then apply Lemma 2.13 to find some quantity τ ∈ [σ−1, ρ] in the divisible
closure of |F×| such that M(A) covers the circle |T | = ρ in the Berkovich
analytic affine T -line over F . Inside this circle, we may choose a point α
corresponding to the rigid-analytic point at which some irreducible polynomial
P ∈ F [T ] vanishes. But now for any lift β ∈ M(A) of α, we must have
β(P (T )) = 0 and so P (T ) cannot be a unit in A. We must therefore have
P (T ) = 0 in A; however, in this case the image of F [T ] in A would be a finite
extension of F and hence a nonarchimedean field, and so we would have ρσ = 1,
a contradiction.

From the previous paragraph, we see that |T |
∣∣T−1

∣∣−1
= 1 for all nonzero

T ∈ A. This implies that M(A) consists of a single point, so we may apply
Lemma 2.4 to deduce that A is a nonarchimedean field.

For a slightly more exotic example, consider the following example of a Banach
field which is not a nonarchimedean field, but whose spectrum is again reduced
to a single point.

Example 2.15. Let α be the Gauss norm on the rational function field
F (T1, T2, . . . ) in countably many variables. Define the function f :
F (T1, T2, . . . ) → Z taking x to the smallest nonnegative integer k such that
x ∈ F (T1, . . . , Tk). Let A be the completion of F (T1, T2, . . . ) for the norm

|x| = inf{max{2f(xi)α(xi) : i = 1, . . . , n} : x = x1 + · · ·+ xn}.
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For x ∈ F (T1, T2, . . . ), we have |x|sp = α(x), so the restriction of |•|sp to
F (T1, T2, . . . ) equals the multiplicative norm α. Hence Au equals the com-
pletion of F (T1, T2, . . . ) with respect to α, which by Lemma 1.7 is a nonar-
chimedean field.
Let Ak be the completion of F (T1, . . . , Tk) with respect to α, or equivalently
with respect to |•|. Let Bk be the ring of formal sums

∑
n∈Z

anT
n
k+1 with

an ∈ Ak such that α(an) remains bounded as n → ∞ and tends to 0 as
n → −∞; this ring is complete for the (multiplicative) Gauss norm. Identify
F [T1, . . . , Tk+1] with F [T1, . . . , Tk][Tk+1], then map the latter to Ak[Tk+1] and
on to Bk; the resulting map carries every nonzero element of F [T1, . . . , Tk+1]
to a unit in Bk. We thus obtain an isometric ring embedding Ak+1 → Bk.
The composition Ak → Ak+1 → Bk is split by the projection map Bk → Ak of
Ak-modules taking

∑
n∈Z

anT
n
k+1 to a0. The compositions Ak+1 → Bk → Ak

are submetric with respect to both α and |•|; by chaining these together, we
get a compatible family of submetric projections An → Ak for all n ≥ k, and
by continuity also a projection πk : A→ Ak.
For any x ∈ F (T1, T2, . . . ), we have

|π1(x)| ≤ |π2(x)| ≤ · · · , |π1(x)|sp ≤ |π2(x)|sp ≤ · · · , (2.15.1)

and the sequence π1(x), π2(x), . . . stabilizes at the constant value x. By
continuity, it follows that for any x ∈ A, (2.15.1) holds and the sequence
π1(x), π2(x), . . . is a Cauchy sequence with limit x. In particular, if x ∈ A
satisfies |x|sp = 0, then πk(x) = 0 for all k, so x = 0; that is, the map A→ Au

is injective. By Remark 2.11, M(A) =M(Au) consists of the single point α;
by Lemma 2.4, we deduce that A is a Banach field.
For each k, we have |Tk| = 2k while |Tk|sp = 1; hence |•|sp does not define the
topology of A, so A is not uniform. In particular, A is not a nonarchimedean
field.

Another example of a Banach field which is not uniform can be found in [9,
§8.3]. We include a modification of this example suggested by Gabber, to show
that the hypotheses in Lemma 2.6 cannot be weakened.

Example 2.16. Form the ring

A0 :=

{
∞∑

n=0

anT
n : an ∈

1

(n!)n
Z

}
⊆ Q[T ],

let A1 be the T -adic completion of A0, and put A := A1[T
−1]. For x ∈ A,

let |x|A be the infimum of e−n over all n ∈ Z for which T−nx ∈ A0; with the
topology induced by |•|, A is a Banach field. The unit ball for the spectral
seminorm equals A ∩ QJT K, which is not bounded under |•|A; hence A is not
uniform, and in particular not itself a nonarchimedean field.
Note that Q ·A0 is not a bounded subset of A; consequently, the topology on A
cannot be defined by any submultiplicative norm under whichQ is bounded. By
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Lemma 2.9, it follows that A is not a Banach algebra over any nonarchimedean
field.

Remark 2.17. The Banach field A constructed in [9, §8.3] has the additional
feature that A{T } is not noetherian. In particular, A cannot be a nonar-
chimedean field in light of the Hilbert basis theorem for Tate algebras over
nonarchimedean fields [4, Theorem 5.2.6/1]; it also provides an explicit exam-
ple of the failure of the general Hilbert basis theorem for commutative nonar-
chimedean Banach rings. By contrast, we do not know whether or not A{T }
is noetherian in the case where A is the field described in Example 2.15.

We leave the following question completely unaddressed.

Question 2.18. Does there exist an example of a Banach field whose uniform
completion is not a nonarchimedean field? (Note that we do not require the uni-
form completion to itself be a Banach field.) Gabber points out that Escassut
[7] has conjectured the negative answer for Banach fields over a nonarchimedean
field.

3 Uniform Banach fields

In light of the key role played in Example 2.15 by the failure of uniformity, we
consider the following question.

Question 3.1. Is every uniform Banach field a nonarchimedean field?

We will only treat this question for Banach algebras over a nonarchimedean
field, so let us immediately restrict to this case.

Hypothesis 3.2. Hereafter, let A be a uniform Banach algebra over F ,
equipped with a norm given by Lemma 2.9. Note that by Remark 2.10 the
associated spectral seminorm is independent of any choices (except for the
initial choice of the norm on F ). Moreover, since A is uniform, the spectral
seminorm itself is a norm defining the topology of A.

Remark 3.3. By Lemma 2.4 and Remark 2.11, A is a nonarchimedean field
if and only ifM(A) is a single point. In particular, if A is a uniform Banach
field, then A is a nonarchimedean field if and only if for every t ∈ A×, we
have |t|sp

∣∣t−1
∣∣
sp

= 1. Note that this condition may be checked within the

completion of F (t) inside A.

With Remark 2.3 and Remark 3.3 in mind, one is naturally led to try to
exhibit a negative answer to Question 3.1 by completing F (t) with respect to
a connected set of norms. However, a straightforward attempt of this sort fails
in an instructive way.

Example 3.4. Suppose that |F×| is dense in R+ (i.e., F is not discretely
valued). Choose a closed interval I = [γ, δ] ⊂ (0,+∞) of positive length. Let
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A be the completion of F (t) with respect to the supremum of the ρ-Gauss
norms |•|ρ for all ρ ∈ I. By construction, A is a uniform Banach ring, and it
can (but need not here) be shown that M(A) is homeomorphic to I via the
map taking the ρ-Gauss norm to ρ. However, despite the fact that A is the
completion of the field F (t), we will show that A is not a Banach field.
Choose a strictly increasing sequence ρ1, ρ2, . . . in |F×| ∩ I with limit δ, then
choose a sequence m1,m2, . . . of positive integers such that

ρn−1/ρn, ρn/ρn+1 ≤ 2−n/mn (n > 1).

For n ≥ 1, choose elements λn,1, . . . , λn,2mn−1 ∈ F of norm ρn, write

Pn(t) :=

2mn−1∏

i=1

(t− λn,i) =

2mn−1∑

j=0

Pn,jt
j ,

and consider the following sequences x1, x2, . . . and y1, y2, . . . in A:

xn :=

∑mn−1
j=0 Pn,jt

j

Pn(t)
, yn := x1 · · ·xn.

We make the following observations.

• If ρ < ρn, then |xn|ρ = 1, |1− xn|ρ ≤ (ρ/ρn)
mn < 1.

• If ρ > ρn, then |1− xn|ρ = 1, |xn|ρ ≤ (ρn/ρ)
mn < 1. In particular,

|xn|δ ≤ (ρn/δ)
mn < (ρn/ρn+1)

mn ≤ 2−n.

• If ρ = ρn, then |xn|ρ = |1− xn|ρ = 1. Hence for all n,

|xn|sp , |1− xn|sp , |yn|sp ≤ 1.

• For n > 1 and ρ ∈ [γ, ρn−1], we may write yn − yn−1 = yn−1(xn − 1) to
obtain

|yn − yn−1|ρ ≤ |1− xn|ρ ≤ (ρ/ρn)
mn ≤ (ρn−1/ρn)

mn ≤ 2−n.

• For n > 3 and ρ ∈ [ρn−1, δ], we may write yn − yn−1 = yn−3xn−1(xn −
1)xn−2 to obtain

|yn − yn−1|ρ ≤ |xn−2|ρ ≤ (ρn−2/ρ)
mn−2 ≤ (ρn−2/ρn−1)

mn−2 ≤ 2−n+2.

We now see that for all n > 3, |yn − yn−1|sp ≤ 2−n+2. In particular, the
sequence y1, y2, . . . is Cauchy and so has a limit y ∈ A. By construction, we
have |yn|δ → 0 as n → ∞, so |y|δ = 0. On the other hand, for ρ ∈ [γ, δ), the
sequence |yn|ρ is eventually constant, so |y|ρ > 0 and in particular y 6= 0. In
particular, y is neither zero nor a unit in A, and hence A is not a Banach field.
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Remark 3.5. The proof of Theorem 3.7 has its origins in the observation that
the construction of Example 3.4 is quite robust. For example, suppose that F
has infinite residue field, and replace A by the completion of F (t) with respect
to the supremum of the ρ-Gauss norms |•|ρ for all ρ ∈ I plus the (µρ)-Gauss

norms on F (t − λ) for all ρ ∈ I, λ ∈ F with |λ| = ρ and all µ ∈ [ 12 , 1]. In the
construction of xn, add the restriction that for each n, the ratios λn,i/λn,1 for
i = 1, . . . , 2mn − 1 represent distinct elements of the residue field of F . Then

|xn|ρ





= (ρ/ρn)
mn (ρ < ρn)

≤ 2 (ρ = ρn)

= (ρn/ρ)
mn (ρ > ρn),

from which it follows that again the sequence y1, y2, . . . converges to an element
y ∈ A which is neither zero nor a unit. As the details are quite similar to the
proof of Theorem 3.7, we omit them here.

By carrying this reasoning further, we obtain a substantial partial answer to
Question 3.1.

Lemma 3.6. Suppose that A (which by Hypothesis 3.2 is a uniform Banach
algebra over F ) is a Banach field but not a nonarchimedean field. Choose any
c > 1 such that (1, c] ∩ |F×| 6= ∅. Then there exist:

• a nonzero element t ∈ A with |t|sp
∣∣t−1

∣∣
sp

> 1;

• values γ, δ with
∣∣t−1

∣∣−1

sp
≤ γ < δ ≤ |t|sp and |F×| ∩ [γ, δ] 6= ∅;

such that for every λ ∈ F with |λ| ∈ [γ, δ], |λ|
∣∣(t− λ)−1

∣∣
sp
≤ c2.

Proof. We will assume the contrary and derive a contradiction. Since A is
not a nonarchimedean field, there must exist some nonzero t0 ∈ A for which
|t0|sp

∣∣t−1
0

∣∣
sp
6= 1; by replacing t0 with a suitable power, we may further ensure

that |t0|sp
∣∣t−1
0

∣∣
sp

> c. Put γ0 :=
∣∣t−1
0

∣∣−1

sp
, δ0 := cγ0.

For n = 0, 1, . . . , we construct elements µn ∈ F and real numbers γn, δn with
γn+1 < γn/c such that for tn = t0 − µn, we have

∣∣t−1
n

∣∣−1

sp
≤ γn, cγn = δn, δn < |tn|sp .

To begin with, put µ0 = 0 and consider γ0, δ0 as above. Given µn, γn, δn for
some n, note that by hypothesis, the conditions of the lemma do not hold for
t = tn, γ = γn, δ = δn; that is, there exists λn ∈ F with |λn| ∈ [γn, δn] such
that |λn|

∣∣(tn − λn)
−1

∣∣
sp

> c2. Put

µn+1 := µn + λn, γn+1 :=
∣∣t−1
n+1

∣∣−1

sp
, δn+1 := cγn+1.

From the construction, we have γn+1 < δn/c
2 = γn/c, so δn+1 ≤ γn < δn. Since

|tn+1|sp = |tn|sp, the elements µn+1, γn+1, δn+1 have the desired properties.
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Since |λn| ≤ δn and both γn and δn tend to 0 as n→∞, the sequence {µn}∞n=0

converges to a limit µ ∈ F . We cannot have t0 = µ, as this would imply t0 ∈ F
and hence |t0|sp

∣∣t−1
0

∣∣
sp

= 1. Consequently, t0 − µ is a unit in A, and so {(t0 −

µn)
−1}∞n=0 converges to (t0−µ)−1. However, the sequence

∣∣(t0 − µn)
−1

∣∣
sp

does

not converge to
∣∣(t0 − µ)−1

∣∣
sp
; instead, it diverges to +∞. This contradiction

yields the desired result.

Theorem 3.7. Suppose that |F×| is dense in R+. If A is a uniform Banach
field, then A is a nonarchimedean field.

Proof. Suppose by way of contradiction that A is a uniform Banach field but
not a nonarchimedean field. Set notation as in Lemma 3.6; we will use this
framework to carry out a variant of Example 3.4 in the manner of Remark 3.5.
Choose a strictly increasing sequence ρ1, ρ2, . . . in [γ, δ] with limit δ. Choose a
nondecreasing sequence m0,m1, . . . of positive integers such that

ρn−1/ρn, ρn/ρn+1 ≤ 2−n/mn−1 (n > 1).

Choose ρ−1 , ρ
+
1 , ρ

−

2 , ρ
+
2 . . . with ρ−1 < ρ1 < ρ+1 < ρ−2 < ρ2 < · · · and

ρn/ρ
−
n , ρ

+
n /ρn ≤ 21/mn .

For n ≥ 1, choose elements λn,1, . . . , λn,2mn−1 ∈ F whose norms are pairwise
distinct elements of [ρ−n , ρ

+
n ]. Write

Pn(t) :=

2mn−1∏

i=1

(t− λn,i) =

2mn−1∑

j=0

Pn,jt
j ,

and consider the following sequences x1, x2, . . . and y1, y2, . . . in A:

xn :=

∑mn−1
j=0 Pn,jt

j

Pn(t)
, yn := x1 · · ·xn.

For α ∈M(A) with α(t) = ρ, we make the following observations.

• If ρ < ρ−n , then with respect to α, the sums
∑mn−1

j=0 Pn,jt
j and∑2mn−1

j=mn
Pn,jt

j are dominated by the summands with smallest j, while
t− λn,i is dominated by λn,i. Consequently, α(xn) = 1 and α(1 − xn) ≤
(ρ/ρ−n )

mn < 1.

• If ρ > ρ+n , then with respect to α, the sums
∑mn−1

j=0 Pn,jt
j and∑2mn−1

j=mn
Pn,jt

j are dominated by the summands with largest j, while
t − λn,i is dominated by t. Consequently, α(1 − xn) = 1 and α(xn) ≤
(ρ+n /ρ)

mn < 1. In particular, |xn|δ ≤ (ρ+n /δ)
mn < (ρ+n /ρn+1)

mn ≤
2−n+1.
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• If ρ ∈ [ρ−n , ρ
+
n ], then

α




mn−1∑

j=0

Pn,jt
j


 , α




2mn−1∑

j=mn

Pn,jt
j


 ≤ (ρ+n )

2mn−1.

For i = 1, . . . , 2mn − 1, by Lemma 3.6 we have

α((t− λn,i)
−1) ≤

{
max{ρ−1, |λn,i|

−1} ρ 6= |λn,i|

c2 |λn,i|
−1

ρ = |λn,i| ;

moreover, the second case can occur for at most one value of i. Combin-
ing, we obtain

α(xn), α(1 − xn), α(yn) ≤ (ρ+n /ρ
−
n )

2mn−1c2 ≤ 16c2.

• For n > 1 and ρ ≤ ρn−1, we may write yn − yn−1 = yn−1(xn − 1) to
obtain

α(yn − yn−1) ≤ 16c2α(1− xn)

≤ 16c2(ρ/ρ−n )
mn

≤ 16c2(ρn−1/ρn)
mn(ρn/ρ

−
n )

mn

≤ 2−n+5c2.

• For n > 3 and ρ ≥ ρn−1, we may write yn−yn−1 = yn−3xn−1(xn−1)xn−2

to obtain

α(yn − yn−1) ≤ (16c2)3α(xn−2)

≤ (16c2)3(ρ+n−2/ρ)
mn−2

≤ (16c2)3(ρn−2/ρn−1)
mn−2(ρ+n−2/ρn−2)

mn−2

≤ 2−n+14c6.

We now see that for all n > 3, |yn − yn−1|sp ≤ 2−n+14c6. In particular, the
sequence y1, y2, . . . is Cauchy and so has a limit y ∈ A. By construction,
we have |yn|δ → 0 as n → ∞, so |y|δ = 0. On the other hand, for ρ ∈
[γ, δ), the sequence |yn|ρ is eventually constant, so |y|ρ > 0 and in particular
y 6= 0. In particular, y is neither zero nor a unit in A, yielding the desired
contradiction.

Remark 3.8. For A a Banach ring, any maximal ideal m of A is closed [4,
Corollary 1.2.4/5] (see also [15, Lemma 2.2.2]), so A/m (topologized using the
quotient norm) is a Banach field. If A is a uniform Banach algebra over a
nonarchimedean field F such that |F×| is dense in R+, then A/m is again a
Banach algebra over F , but it need not be uniform; consequently, Theorem 3.7
does not imply that A/m is a nonarchimedean field.
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Remark 3.9. Suppose that A is a uniform Banach field which is not a nonar-
chimedean field, but F is discretely valued. By Lemma 2.4, M(A) contains
more than one point. For any finite extension E of F , E⊗F A splits as a finite
direct sum, each term of which is again a Banach field which is not a nonar-
chimedean field. On the other hand, if E is the completion of a tower of finite
extensions F = E0 ⊆ E1 ⊆ · · · and is not discretely valued, then the maps
M(Ei+1 ⊗F A) → M(Ei ⊗F A) are all surjective; the uniform completion of
E⊗F A (i.e., the completed direct limit of the En⊗F A for their spectral norms)
has spectrum equal to lim

←−i
M(Ei ⊗F A), which then surjects ontoM(A) and

thus also contains more than one point. By Theorem 3.7, the uniform comple-
tion of E⊗F A cannot be a Banach field. One might hope that this observation
can be used to extend Theorem 3.7 to the case where F is discretely valued,
but we were unable to do so. (Beware that even in this case, it is not clear that
the ordinary completion of E ⊗F A is itself uniform.)
On a similar note, if ρ ∈ R+ is not in the divisible closure of |F×|, then
F{T/ρ, T−1/ρ−1} is a nonarchimedean field which is not discretely valued, so
Theorem 3.7 implies that A{T/ρ, T−1/ρ−1} cannot be a Banach field. Note
that by the latter, we mean the completion of A[T±] for the weighted Gauss
norm with |T | = ρ, which is also the quotient of the completion of A[T, U ]
for the weighted Gauss norm with |T | = ρ, |U | = ρ−1 by the ideal (TU − 1).
(The principal content of this statement is that the ideal is closed; see [13,
Lemma 1.5.26].)
In the same context, let S be the set of ρ > 0 which occur as |T |sp for some

T ∈ A× for which
∣∣T−1

∣∣
sp

= ρ−1; this is a group containing |F×|. By The-

orem 3.7, S cannot contain any element not in the divisible closure of |F×|.
(Namely, for any ρ in the intersection arising from T ∈ A, A contains the sub-
ring F{T/ρ, U/ρ−1}/(TU − 1), which as per Remark 2.12 is a nonarchimedean
field which is not discretely valued.) However, this argument does not suffice
to show in addition that S cannot have infinite index over |F×|.

Remark 3.10. Suppose that F is algebraically closed. In this case, in light of
Lemma 2.4, one may deduce the conclusion of Theorem 3.7 from an unpublished
result of the 1973 PhD thesis of Guennebaud [11, Proposition IV.1]: if A is a
uniform Banach ring which contains a dense subfield containing F andM(A)
consists of more than one point, then A contains a zero-divisor. (Thanks to
Gabber for providing this reference.)

Regarding the case where F is not discretely valued, we mention the following
result of Mihara [14, Theorem 3.7].

Theorem 3.11 (Mihara). For A a uniform Banach field over F , for each f ∈ A
the ring A{f} := A{T }/(T − f) is spectrally reduced; that is, the spectral norm
on A{f} is a norm. (However, it is not guaranteed that A{f} is either uniform
or a Banach field.)

Corollary 3.12. Let A be a uniform Banach field over F which is a comple-
tion of F (t) for some t ∈ A. Then A is sheafy as an f-adic ring. (That is, for
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any ring of integral elements A+ of A, the structure presheaf on Spa(A,A+) is
a sheaf. See [13, Lecture 1] for more discussion of this condition.)

Proof. Under the hypothesis on A, every rational localization of A can be
written as A{f} for some f ∈ A. By [15, Proposition 2.4.20], it then suffices
to check that for every f, g ∈ A, the sequence

0→ A{f} → A{f, g} ⊕A{f, g−1} → A{f, g±} → 0 (3.12.1)

is exact. (Note that a priori we must allow g ∈ A{f}, but since A has dense
image in A{f} we may replace g with a nearby element of A without changing
A{f, g} or A{f, g−1}.)
By Theorem 3.11, the sequence (3.12.1) is exact at the left. Since A{f}{T±} →
A{f, g±} is surjective (where A{f}{T±} is defined as in Remark 3.9), (3.12.1)
is exact at the right. To prove exactness at the middle, by [13, Lemma 1.7.2]
it suffices to check that the ideals (T − g)A{f}{T } and (1− gT )A{f}{T } are
closed; since the arguments are similar, we check only the first case in detail.
Note that by [13, Corollary 1.1.14], it suffices to check that the closure of
(T − g)A{f}{T } is finitely generated over A{f}{T }; it thus in turn suffices to
check that A{f, g} is a pseudocoherent module over A{S, T } via the map taking
S to f and T to g. As noted above, we can rewrite A{f, g} as A{h} for some h ∈
A; since A is uniform, by [13, Lemma 1.5.26] A{h} is a pseudocoherent module
overA{U} via the map taking U to h. Hence A{f, g} = A{h} is pseudocoherent
as a module over A{S, T, U}, and hence as a module over A{S, T }.

4 Perfectoid rings and fields

It is not clear whether one can adapt the proof of Theorem 3.7 to fully resolve
Question 3.1 one way or the other. However, we can now answer a foundational
question from the theory of perfectoid spaces, as in [15] or [18].

Definition 4.1. Fix a prime number p. A perfectoid ring is a uniform Banach
ring A containing a topologically nilpotent unit ̟ such that ̟p divides p
in A◦ and the Frobenius map ϕ : A◦/(̟) → A◦/(̟p) is surjective. This
definition is due to Fontaine [8] and matches the one used by Kedlaya–Liu
in [16]; the definitions used by Scholze in [18] and Kedlaya–Liu in [15] are
more restrictive. The definition used by Bhatt–Morrow–Scholze [3], modeled
on that of Gabber–Ramero [10], is (slightly) more permissive. See Remark 4.3
for further discussion.

Theorem 4.2. Any perfectoid ring which is a Banach field is a perfectoid field.

Proof. Let A be a perfectoid ring whose underlying ring is a field; then the
characteristic of A is either 0 or p. In the latter case, A is perfect, so as
in Lemma 2.6, for any z ∈ A◦◦ we may view A as a Banach algebra over
the completion of Fp((z))

perf for the z-adic norm (for some normalization).
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Since the latter is a nonarchimedean field whose norm group is dense in R+,
Lemma 2.9 and Theorem 3.7 together imply that A is a nonarchimedean field.
We may thus suppose hereafter that A is of characteristic 0; this implies that
A is a Banach algebra over Qp. Apply the perfectoid (tilting) correspondence
[15, Theorem 3.6.5] to A to obtain a perfectoid ring R = A♭ of characteristic
p with M(A) ∼=M(R) and a surjective homomorphism θ : W (R◦) → A◦. By
[15, Proposition 3.6.25], we have an identification of multiplicative monoids

R ∼= lim
←−

x 7→xp

A, r 7→ (. . . , θ([r1/p]), θ([r])).

In particular, if r ∈ R is nonzero, then θ([r1/p
n

]) 6= 0 for some n and hence for
all n, and (. . . , θ([r1/p])−1, θ([r])−1) is an element of lim

←−x 7→xp
A corresponding

to a multiplicative inverse of r. We conclude that R is a perfectoid ring of
characteristic p which is a Banach field; by the previous paragraph, R is a
perfectoid field. By Remark 2.11,M(R) is a single point, as then isM(A); by
Lemma 2.4, A is a nonarchimedean field, and hence a perfectoid field.

Remark 4.3. In [18], the only perfectoid rings considered are algebras over
perfectoid fields; one may apply Theorem 3.7 directly (without tilting) to show
that any such ring which is a field is a perfectoid field. However, a perfectoid
ring in Fontaine’s sense, or even in the sense of [15] (i.e., a Fontaine perfec-
toid ring which is also a Qp-algebra) need not be a Banach algebra over any
perfectoid field, so Theorem 3.7 cannot be applied directly.
One way to see this explicitly is to construct a perfectoid ring A admitting
quotients isomorphic to the completions of Qp(µp∞) and Qp(p

1/p∞

). If A is a
Banach algebra over some field F , then F must be isomorphic to a subfield of
the completion F1 of Qp(µp∞). Note that F1 must also be the completion of
F (µp∞), whose Galois group is a closed subgroup of Z×

p ; by applying the Ax–
Sen–Tate theorem [1] twice (to F1 as a completed algebraic extension of both
Qp and F ), we deduce that F equals either F1 or Qp(µpn) for some n. Similarly,
F must be isomorphic to a subfield of the completion F2 of Qp(p

1/p∞

), and so
must equal either F2 or Qp(p

1/pn

) for some n. The only choice consistent with
both constraints is F = Qp.
It remains to describe such a ring A explicitly. Let R1, R2 be the completed
perfect closures of FpJπ1K, FpJπ2K; we then have

F1
∼= W (R1)[p

−1]/([π1+1]p−1+ · · ·+[π1+1]+1), F2
∼= W (R2)[p

−1]/([π2]−p).

Let R3 be the completed perfect closure of FpJπ1, π2K; we may then take

A = W (R3)[p
−1]/([π1 + 1]p−1 + · · ·+ [π1 + 1] + 1− [π2]).

This ring is perfectoid and admits surjective morphisms A → F1, A → F2

induced by the respective substitutions π2 7→ 0, π1 7→ 0.

Remark 4.4. Suppose that A is a perfectoid ring andm is a maximal ideal of A.
As in Remark 3.8, A/m is a Banach field. If A/m is of characteristic p, then it
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is also perfect and uniform, so Theorem 4.2 implies that A is a nonarchimedean
field. By contrast, if A/m is of characteristic 0, then (A/m)u is perfectoid [15,
Theorem 3.6.17], but (again as in Remark 3.8) this is not enough to deduce
from Theorem 3.7 that A/m is a nonarchimedean field.
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