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Abstract. We introduce the notion of differential torsors, which
allows the adaptation of constructions from algebraic geometry to
differential Galois theory. Using these differential torsors, we set up
a general framework for applying patching techniques in differential
Galois theory over fields of characteristic zero. We show that patch-
ing holds over function fields over the complex numbers. As the main
application, we prove the solvability of all differential embedding prob-
lems over complex function fields, thereby providing new insight on
the structure of the absolute differential Galois group, i.e., the funda-
mental group of the underlying Tannakian category.
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Introduction

This paper concerns embedding problems in differential Galois theory. Our
main result generalizes two classical results over one-variable complex function
fields:
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• the solution of the inverse problem in differential Galois theory, and

• the solvability of all embedding problems in ordinary Galois theory.

Inverse problems in Galois theory ask for the existence of Galois extensions
of a given field with prescribed Galois group. Embedding problems general-
ize this and are used to study how Galois extensions fit together in towers.
In other words, the inverse problem asks which groups are epimorphic im-
ages of the absolute Galois groups, whereas solutions to embedding problems
yield epimorphisms that in addition factor over a given epimorphism of groups.
Therefore, solvability of embedding problems provides additional information
about the structure of the absolute Galois group. This applies to both classical
and differential Galois theory, where the absolute differential Galois group of a
differential field F is the fundamental group of the Tannakian category of all
differential modules over F .
In the arithmetic context, the study of embedding problems has led to real-
izing all solvable groups as Galois groups over Q ([Sha54]), and determining
the structure of the maximal prosolvable extension of Qab ([Iwa53]). Solving
embedding problems led to the proof of freeness of the absolute Galois group
of a function field over an algebraically closed base field ([Hrb95], [Pop95]),
and contributed to the proof of Abhyankar’s conjecture on fundamental groups
in characteristic p (see [Ser90], [Ray94], [Hrb94]). See [NSW08, Chapter IX]
and [Hrb03, Section 5] for more about the arithmetic and geometric cases,
respectively.

Differential Galois theory is an analog of Galois theory for (linear homogeneous)
differential equations, over fields of characteristic zero. The symmetry groups
that occur are no longer finite (or profinite), but rather are linear algebraic
groups over the field of constants of the differential field. The corresponding
inverse problem has been studied by a number of researchers. It was first solved
for function fields of complex curves by Tretkoff and Tretkoff ([TT79]), as a
relatively straightforward consequence of Plemelj’s solution of the Riemann-
Hilbert problem ([Ple08]). More generally, it has been solved when the base
field is the field of functions of a curve over an algebraically closed field. See
[Hrt05] for the case of rational function fields; the general case, which appeared
in [Obe03], is based on the rational case and on Kovacic’s trick (see also Propo-
sition 3.1). This solution built on prior work by Kovacic, Mitschi, and Singer
([Kov69], [Kov71], [Sin93], [MS96], [MS02]). The differential inverse problem
has also been solved for function fields over certain non-algebraically closed
fields, including over the real numbers ([Dyc08]) and over fields of Laurent
series ([BHH16]).

Embedding problems in differential Galois theory have been considered by sev-
eral researchers ([MvdP03], [Hrt05], [Obe03], [Ern14]). In fact, they were al-
ready used by Kovacic in his seminal work ([Kov69], [Kov71]) on the inverse
problem and played a crucial role in the solution of the inverse problem over
algebraically closed constant fields. In his thesis, Oberlies solved some types of
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differential embedding problems over function fields of curves over algebraically
closed fields, including all differential embedding problems with connected cok-
ernel ([Obe03]). However, the general solvability of embedding problems re-
mained open, even in the classical case where the base field is C(x), although
the inverse problem there had long been solved. In this paper, we close this
gap and prove the following (see Theorem 3.7):

Theorem. Every differential embedding problem over a one-variable complex
function field (equipped with any nontrivial derivation), has a proper solution.

To prove the theorem, we first introduce the notion of differential torsors.
Differential torsors generalize Picard-Vessiot rings (the differential analogues of
finite Galois extensions). We use a criterion given in [AMT09] to characterize
those differential torsors that are Picard-Vessiot rings. This can be viewed as a
converse to a well-known theorem of Kolchin. One advantage of working with
differential torsors is that we can adapt constructions from algebraic geometry,
such as passing to quotients, inducing differential torsors from subgroups, and
transporting differential structures along morphisms.
The other main advantage of working with differential torsors is that this allows
us to apply patching. We first deduce a patching result for differential torsors
from the corresponding assertion for torsors without differential structure in
[HHK15]. Building on this, we prove a patching result for Picard-Vessiot rings
(Theorem 2.5) and another patching result designed for solving embedding
problems (Theorem 2.14). These results are stated in a very general framework
amenable to further applications.
We then show that our patching results apply over finite extensions of C(x) by
proving a factorization statement for matrices whose entries are meromorphic
functions on connected metric open subsets of a compact Riemann surface
(Lemma 3.4). Similar factorization results were an important ingredient in the
solution of the Riemann-Hilbert problem.
The strategy of using torsors for the purpose of Galois realizations has previ-
ously been employed by other researchers, e.g. [Jua07], [JL07], [JL08], usually
to produce generic extensions for specific groups (see also the references there).
We expect that the finer notion of differential torsors may be a new tool in
finding further generic differential Galois extensions. It is already applied in an
upcoming preprint on differential Galois theory over large fields of constants
([BHHP17]). Moreover, our patching results (Theorem 2.5, 2.14) are used in
a second upcoming preprint on that topic ([BHH17]). The explicit framework
for applying patching to differential Galois theory over C(x) that we develop
in Section 3 is used in another project ([BW17]).

The organization of the paper is as follows. In Section 1, we define the notion of
differential torsors over a differential field of characteristic zero. We show that
differential structures on a torsor correspond to derivations that are invariant
under translation. It is then shown that a differential structure can be detected
locally, by relating invariant derivations to certain point derivations. Using this,
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differential structures can be transported along morphisms of torsors, under
certain additional conditions. Finally, we show that simple differential torsors
with no additional constants correspond to Picard-Vessiot rings. Section 2
extends the patching result for torsors from [HHK15] to differential torsors,
and deduces a patching result for Picard-Vessiot rings. This is applied to
give a result on split differential embedding problems, under the hypothesis
that kernel and cokernel have suitable realizations as differential Galois groups
(Theorem 2.14). In Section 3, we describe a patching setup where the base
field F is the function field of a complex curve, and use Theorem 2.14 to show
that every split differential embedding problem over F has a proper solution.
Finally, using the results from Section 1 on transporting differential structures
along morphisms, we show that the solution of arbitrary differential embedding
problems can be reduced to the split case. The appendix collects definitions
and results about group actions, torsors, quotients, and induction of torsors
from a subgroup, for affine group schemes of finite type over an arbitrary field.

We thank Phyllis Cassidy, Thomas Dreyfus, Ray Hoobler and Michael Singer
for fruitful discussions. The authors also received helpful comments on an
earlier version of the manuscript during the conference DART VII.

1 Differential torsors

This section introduces the notion of differential torsors. We show that their
differential structure is determined locally, and that it is possible to transport
a differential structure along a morphism of torsors, under certain conditions.
This will be used in Section 3 to reduce the solution of all differential embedding
problems (over complex function fields) to that of all split differential embed-
ding problems. We also prove that simple differential GF -torsors correspond
to Picard-Vessiot rings over F with differential Galois group G. For notation
and basic facts about torsors, see the the appendix to this manuscript.

Recall that a differential ring is a commutative ring R equipped with a deriva-
tion ∂ : R→ R. A differential homomorphism is a ring homomorphism between
differential rings that commutes with the derivations. The ring of constants of
R is defined to be CR := {f ∈ R | ∂(f) = 0}. If R is a field then so is CR. We
call R simple if it has no non-trivial differential ideals (i.e., ideals closed under
∂).

Throughout this section, (F, ∂) is a differential field of characteristic zero, and
we let K denote its field of constants CF , which is algebraically closed in F .
The letter G denotes an affine group scheme of finite type over K. Since K
has characteristic zero, G is smooth and we will refer to G as a linear algebraic
group.

We will often consider the base change GF from K to F and we will view
F [GF ] = F ⊗K K[G] as a differential ring extension of F by considering all
elements in K[G] as constants. We write F [G] := F [GF ].
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1.1 Differential torsors and invariant derivations

Definition 1.1. A differential GF -space is an affine GF -space X equipped
with an extension of the given derivation ∂ from F to F [X ], such that the co-
action ρ : F [X ]→ F [X ]⊗F F [G] corresponding to the action α of GF on X is
a differential homomorphism (a definition of the terms GF -space and co-action
is given in A.1). We also call such an extension a differential structure on X .
A morphism of differential GF -spaces φ : X → Y is a morphism of affine vari-
eties that is GF -equivariant and such that the corresponding homomorphism
F [Y ] → F [X ] is a differential homomorphism. A differential GF -space X is
simple if F [X ] is a simple differential ring. Note that a GF -space X is a differ-
ential GF -torsor (i.e., a differential GF -space that is a GF -torsor) if and only if
the left F [X ]-linear extension F [X ]⊗F F [X ]→ F [X ]⊗F F [G] of ρ is a differ-
ential isomorphism, or equivalently (α, pr1) : X ×G→ X ×X is a differential
isomorphism.

The next lemma gives a criterion for when a derivation on a GF -torsor defines
a differential torsor.
Let F̄ denote an algebraic closure of F . Note that ∂ : F → F uniquely extends
to a derivation ∂ : F̄ → F̄ . Let K̄ denote the algebraic closure of K = CF in
F̄ and note that CF̄ = K̄. In particular, if K is algebraically closed, CF̄ = K.
Let Γ denote the Galois group of F̄ over F .

Lemma 1.2. Let X be a GF -torsor, and let ∂ : F [X ] → F [X ] be a derivation
extending ∂ : F → F . Then X is a differential GF -torsor if and only if g ◦ ∂ =
∂ ◦ g on F [X ] ⊗K K̄ for all g ∈ G(K̄). Here g ∈ G(K̄) is viewed as the
automorphism g : F [X ]⊗KK̄ → F [X ]⊗KK̄ corresponding to X → X, x 7→ x.g,
and ∂ : F [X ]⊗K K̄ → F [X ]⊗K K̄ is the unique extension of ∂.

Proof. Assume that X is a differential GF -torsor. Let g be an arbitrary element
of G(K̄). Then the left square in

F [X ]
ρ //

∂

��

F [X ]⊗K K[G]

∂⊗idK[G]

��

idF [X] ⊗g // F [X ]⊗K K̄

∂⊗idK̄
��

F [X ]
ρ // F [X ]⊗K K[G]

idF [X] ⊗g // F [X ]⊗K K̄

commutes. Since the right square commutes, the outer rectangle also com-
mutes; i.e., g ◦ ∂ = ∂ ◦ g for all g ∈ G(K̄).
Conversely, if g◦∂ = ∂ ◦g for all g ∈ G(K̄), then the outer rectangle commutes.
So ρ(∂(f)) and ∂(ρ(f)) ∈ F [X ]⊗K K[G] have the same image in F [X ]⊗K K̄
for all g ∈ G(K̄) and f ∈ F [X ]. Since G is reduced this implies that ρ(∂(f)) =
∂(ρ(f)); i.e., X is a differential torsor.

If K is algebraically closed, G(K̄) = G(K) ⊂ G(F ), and Lemma 1.2 simplifies
to

Documenta Mathematica 23 (2018) 241–291



246 Bachmayr, Harbater, Hartmann, Wibmer

Corollary 1.3. Assume K = K̄, let X be a GF -torsor and let ∂ : F [X ] →
F [X ] be a derivation extending ∂ : F → F . Then X is a differential GF -torsor
if and only if g ◦ ∂ = ∂ ◦ g on F [X ] for all g ∈ G(K).

Thus a derivation ∂ : F [X ] → F [X ] that extends ∂ : F → F is G-invariant
(i.e., g ◦ ∂ = ∂ ◦ g for all g ∈ G(K̄)) if and only if it turns the GF -torsor X into
a differential GF -torsor.

1.2 Point derivations

Our next goal is to show that a differential structure on a torsor can be detected
locally, i.e., at a point. For a linear algebraic group G, the space of G-invariant
derivations on the coordinate ring of G is isomorphic to the tangent space at
the identity ([?, Theorem 9.1]). A similar construction applies in our setting,
as we now discuss.
Let R be a ring and let M be an R-module. A derivation ∂ : R → M is an
additive map that satisfies the Leibniz rule ∂(r1r2) = r1∂(r2)+r2∂(r1). Notice
that it is necessary to specify an R-module structure on M for the Leibniz rule
to make sense.
Let L be any differential field (e.g., F or F̄ ). Given an affine variety X over L,
together with an L-algebra A and an A-point x ∈ X(A), the map L[X ] → A
given by f 7→ f(x) defines an L[X ]-module structure on A. A point derivation

∂̃ : L[X ]→ A at x is a derivation (with respect to this L[X ]-module structure)
that extends ∂ : L→ L.
Let G be a linear algebraic group over K and let X be a GF -torsor. Consider
an element x ∈ X(F̄ ) and a point derivation ∂̃ : F [X ] → F̄ at x. If R is an

F̄ -algebra and y ∈ X(R), we may define a point derivation ∂̃y : F [X ] → R at
y as follows. Let g ∈ G(R) = GF̄ (R) = HomF̄ (F̄ ⊗K K[G], R) be the unique

element such that y = x.g. Now define ∂̃y as the composition

∂̃y : F [X ]
ρ−→ F [X ]⊗F F [G] = F [X ]⊗K K[G]

∂̃⊗idK[G]−−−−−−→ F̄ ⊗K K[G]
g−→ R.

Note that ∂̃ ⊗ idK[G] is a derivation, where F̄ ⊗K K[G] is considered as a

F [X ] ⊗K K[G]-module via F [X ] ⊗K K[G]
x⊗idK[G]−−−−−−→ F̄ ⊗K K[G]. Therefore

∂̃y is a derivation with respect to the F [X ]-module structure on R given by
g ◦ (x⊗ idK[G]) ◦ ρ = x.g = y ∈ G(R) = HomF (F [X ], R).

For τ ∈ Γ := Gal(F̄ /F ), the map τ(∂̃) := τ ◦ ∂̃ : F [X ]→ F̄ is a point derivation

at τ(x). We call ∂̃ Galois-equivariant if (τ(∂̃))x = ∂̃ for all τ ∈ Γ.
The next lemma lists some basic properties of point derivations.

Lemma 1.4. With notation as above, suppose ∂̃ : F [X ]→ F̄ is a point deriva-
tion at x ∈ X(F̄ ). Then the following hold:

(a) ∂̃x = ∂̃.
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(b) If y, z ∈ X(F̄ ) then (∂̃y)z = ∂̃z.

(c) If ∂̃ is Galois-equivariant and y ∈ X(F̄ ), then τ(∂̃)y = ∂̃y for all τ ∈ Γ.

(d) For y ∈ X(F̄ ) and τ ∈ Γ we have τ(∂̃)τ(y) = τ(∂̃y). In particular,

τ(∂̃τ
−1(y)) = τ(∂̃)τ(τ

−1(y)) = τ(∂̃)y.

Proof. To prove (a) note that x = x.1. The assertion now follows from the fact
that the two inner diagrams in

F [X ]
ρ //

idF [X] &&▼▼
▼▼

▼▼
▼▼

▼▼
▼

F [X ]⊗K K[G]
∂̃⊗idK[G] //

idF [X] ·1

��

F̄ ⊗K K[G]

idF̄ ·1

��
F [X ]

∂̃ // F̄

commute, where 1 denotes evaluation at 1 ∈ G(K).

To prove (b), first note that the two inner diagrams in

F [X]

ρ //

ρ

��

F [X] ⊗K K[G]

∂̃⊗idK[G] //

idF [X] ⊗∆

��

F̄ ⊗K K[G]

id
F̄

⊗∆

��
F [X] ⊗K K[G]

ρ⊗idK[G] //
F [X] ⊗K K[G] ⊗K K[G]

∂̃⊗idK[G]⊗K[G] //
F̄ ⊗K K[G] ⊗K K[G]

commute. Therefore the outer rectangle also commutes. Let g ∈ G(F̄ ) such
that y = x.g and let h ∈ G(F̄ ) such that z = y.h. Then z = x.gh; and we see

that ∂̃z is the upper right path from F [X ] to F̄ ⊗K K[G]⊗K K[G] composed

with g ◦ (h ⊗ id) : F̄ ⊗K K[G] ⊗K K[G] → F̄ , whereas (∂̃y)
z is the lower left

path composed with g ◦ (h⊗ id). This proves (b).

To prove (c), note that by Galois-equivariance and (a) we have τ(∂̃)x = ∂̃x.

Therefore τ(∂̃)y = (τ(∂̃)x)y = (∂̃x)y = ∂̃y by (b).

Finally for (d), note that if y = x.g, then τ(y) = τ(x).τ(g). Since the diagram

F [X ]⊗K K[G]
∂̃⊗idK[G] //

τ(∂̃)⊗idK[G]

��

F̄ ⊗K K[G]

g

��
F̄ ⊗K K[G]

τ(g)

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚
F̄

τ

��
F̄

commutes, the claim follows.
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If X is a GF -torsor as above and ∂ : F [X ]→ F [X ] is a derivation that extends
the given derivation ∂ : F → F , then there is an induced point derivation ∂x

at x ∈ X(F̄ ) obtained by evaluation at x; i.e., ∂x : F [X ]
∂−→ F [X ]

x−→ F̄ .
The following explains the connection between differential structures on a torsor
and point derivations.

Proposition 1.5. Let x ∈ X(F̄ ) be a fixed element. The assignment ∂ 7→ ∂x
induces a bijection between the derivations ∂ : F [X ]→ F [X ] that endow X with

the structure of a differential GF -torsor and the point derivations ∂̃ : F [X ]→ F̄
at x that are Galois-equivariant. In particular, (∂x)

y = ∂y for all y ∈ Y (F̄ ).

Proof. Given a derivation ∂ on F [X ] which endows X with the structure of a

differential GF -torsor, let ∂̃ = ∂x. This is a point derivation at x by definition.
To see that ∂̃ is Galois-equivariant, let τ ∈ Γ and let g ∈ G(F̄ ) be such that
x = τ(x).g. The square in

F [X ]
ρ //

∂

��

F [X ]⊗K K[G]

∂⊗idK[G]

��
F [X ]

ρ // F [X ]⊗K K[G]
τ(x) // F̄ ⊗K K[G]

g // F̄

commutes. The upper path all the way to F̄ is τ(∂̃)x and the lower path is ∂̃

because x = τ(x).g. Thus ∂̃ is Galois-equivariant.

Conversely, given a point derivation ∂̃ that is Galois-equivariant, we want to
associate to ∂̃ a derivation on F [X ] that extends ∂ on F . Let j : F̄ [X ] →
F̄ [G] correspond to the scheme isomorphism GF̄ → XF̄ defined by g 7→ x.g;
and let id ∈ HomF̄ (F̄ [X ], F̄ [X ]) = XF̄ (F̄ [X ]) be the identity map on F̄ [X ],

corresponding to an F̄ [X ]-point y0 on X . Consider the point derivation ∂̃y0 :

F [X ] → F̄ [X ]. If f ∈ F [X ], then ∂̃y0(f) ∈ F̄ [X ] defines a morphism ∂(f) :
XF̄ → A1

F̄
. There is a unique g0 ∈ G(F̄ [X ]) satisfying x.g0 = y0; i.e., such that

the composition F̄ [X ]
j−→ F̄ [G]

g0−→ F̄ [X ] is equal to id : F̄ [X ] → F̄ [X ]. Thus
j = g−10 .

We claim that if R is any F̄ -algebra and if y ∈ XF̄ (R), then ∂(f)(y) = ∂̃y(f).

By the definition of ∂̃y, it suffices to show that the composition F̄ [G]
g0−→

F̄ [X ]
y−→ R is equal to g : F̄ [G]→ R, where g ∈ G(R) is the element satisfying

x.g = y. This last equality says that the composition F̄ [X ]
j−→ F̄ [G]

g−→ R is
equal to y : F̄ [X ]→ R. Hence g = y ◦ g0 : F̄ [G]→ R, proving the claim.

Using the Galois-equivariance of ∂̃, we will check that ∂(f) is in fact in F [X ].
For this, it suffices to show that ∂(f) ∈ F [X ] ⊗F F̄ is fixed by the Γ-action.
For y ∈ X(F̄ ) and τ ∈ Γ we find

τ(∂(f))(y) = τ(∂(f)(τ−1(y))) = τ(∂̃τ
−1(y)(f))

= τ(∂̃τ
−1(y))(f) = ∂̃y(f) = ∂(f)(y)
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using Lemma 1.4(c) and (d). Thus ∂(f) ∈ F [X ] and we have constructed a
well-defined map

∂ : F [X ]→ F [X ],

as desired. It is now straightforward to check that ∂ is a derivation and extends
∂ : F → F .
Our next goal is to show that ∂ : F [X ] → F [X ] endows X with the structure
of a differential G-torsor using Lemma 1.2. For g ∈ G(K̄) and y ∈ X(F̄ ) the
square in

F [X ]
ρ // F [X ]⊗K K[G]

idF [X]⊗g //

∂̃y⊗idK[G]

��

F [X ]⊗K K̄

∂̃y⊗idK̄
��

F̄ ⊗K K[G]
idF̄ ⊗g // F̄ ⊗K K̄ // F̄

commutes. Tracking an element f ∈ F [X ] from the upper left to the lower
right along both paths, we find that

∂̃y.g(f) = ∂̃y(g(f)),

where we extend ∂̃y : F [X ]→ F̄ to ∂̃y : F [X ]⊗K K̄ → F̄ by K̄-linearity. Now

g(∂(f))(y) = ∂(f)(y.g) = ∂̃y.g(f) = ∂̃y(g(f)) = ∂(g(f))(y).

Hence by Lemma 1.2, X is a differential GF -torsor with respect to ∂.
It remains to see that the constructed maps are inverse to each other. If
we start with ∂̃ : F [X ] → F̄ and construct ∂ : F [X ] → F [X ] as above, then

∂(f)(x) = ∂̃x(f) = ∂̃(f) for f ∈ F [X ] by Lemma 1.4(a). So ∂x is the given ∂̃.

Conversely, if we start with ∂ : F [X ] → F [X ] and define ∂̃ := ∂x, it remains

to be seen that ∂̃y(f) = ∂(f)(y) for all f ∈ F [X ] and y ∈ X(F̄ ). That is, we
want to check that (∂x)

y = ∂y. Let g ∈ G(F̄ ) be such that y = x.g. Since the
two inner diagrams in

F [X ]
ρ //

∂

��

F [X ]⊗K K[G]

∂⊗idK[G]

��
F [X ]

ρ //

y

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂

F [X ]⊗K K[G]

x⊗idK[G]

��
F̄ ⊗K K[G]

g

��
F̄

commute, the outer diagram also commutes. This shows that (∂x)
y = ∂y.
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1.3 Transport of differential structures

In this subsection, we study how differential structures behave under morphisms
of torsors.

Definition 1.6. Let φ : G → G′ be a morphism of linear algebraic groups
over K, let X be a differential GF -torsor, and let X ′ be a differential G′F -
torsor. A GF -equivariant morphism ψ : X → X ′ is called differential if the
corresponding dual morphism ψ∗ : F [X ′]→ F [X ] is differential (i.e., commutes
with the derivation).

The following lemma gives a local criterion for a morphism to be differential.

Lemma 1.7. Consider the situation of Definition 1.6, and fix x ∈ X(F̄ ). The
morphism ψ is differential if and only if

F [X ′]
ψ∗ //

∂ψ(x) ""❉
❉❉

❉❉
❉❉

❉
F [X ]

∂x}}④④
④④
④④
④④

F̄

(1)

commutes (for this fixed x).

Proof. Unraveling the definitions shows that ψ is differential if and only if
the diagram (1) commutes for all x ∈ X(F̄ ). It remains to show that the
commutativity for one fixed x is sufficient. For x̃ ∈ X(F̄ ), there exists g ∈ G(F̄ )
such that x̃ = x.g; and then ψ(x̃) = x′.φ(g), where x′ = ψ(x). Since the three
inner diagrams in

F [X ′]
ψ∗

//

��

F [X ]

��
F [X ′]⊗K K[G′]

ψ∗
⊗φ∗

//

∂x′⊗idK[G′]

��

F [X ]⊗K K[G]

∂x⊗idK[G]

��
F̄ ⊗K K[G′]

idF̄ ⊗φ
∗

//

φ(g)
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
F̄ ⊗K K[G]

g

yyrrr
rr
rr
rr
rr

F̄

commute, the outer diagram also commutes. That is,

F [X ′]
ψ∗

//

(∂x′ )
ψ(x̃)

""❉
❉❉

❉❉
❉❉

❉
F [X ]

(∂x)
x̃

}}④④
④④
④④
④④

F̄
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commutes. By Proposition 1.5, (∂x′)ψ(x̃) = ∂ψ(x̃) and (∂x)
x̃ = ∂x̃, hence both

paths from the upper left to the lower right in

F [X ′]
ψ∗

//

∂

��

F [X ]

∂

��
F [X ′]

ψ∗

// F [X ]

x̃
��
F̄

yield the same result; i.e., ψ∗(∂(f))(x̃) = ∂(ψ∗(f))(x̃) for all f ∈ F [X ′] and
x̃ ∈ X(F̄ ). Thus ψ is differential.

Proposition 1.8. Let φ : G → G′ be a morphism of linear algebraic groups
over K and let ψ : X → X ′ be a GF -equivariant morphism from a GF -torsor
X to a G′F -torsor X

′ (where G acts on X ′ via φ). Then:

(a) If X is differential, then there exists a unique differential structure on X ′

such that ψ is differential.

(b) If X ′ is differential, K is algebraically closed, and φ is surjective, then
there exists a differential structure on X such that ψ is differential.

Proof. For part (a), let x ∈ X(F̄ ) and set x′ = ψ(x) ∈ X ′(F̄ ). Define ∂x′ :=
∂x ◦ ψ∗ : F [X ′] → F̄ . We next show that ∂x′ is Galois-equivariant. If τ ∈ Γ
and g ∈ G(F̄ ) such that x = τ(x).g, then x′ = τ(x′).φ(g). Since the three inner
diagrams in

F [X ′]
ψ∗

//

��

F [X ]

��
F [X ′]⊗K K[G′]

ψ∗
⊗φ∗

//

τ(∂x′)⊗idK[G′]

��

F [X ]⊗K K[G]

τ(∂x)⊗idK[G]

��
F̄ ⊗K K[G′]

idF̄ ⊗φ
∗

//

φ(g)
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
F̄ ⊗K K[G]

g

yyrrr
rr
rr
rr
rr

F̄

commute, the outer diagram also commutes. So τ(∂x′ )x
′

= τ(∂x)
x ◦ ψ∗ =

∂x ◦ ψ∗ = ∂x′ , using that ∂x is Galois-equivariant by Proposition 1.5. Thus
∂x′ is Galois-equivariant, as asserted. Hence by Proposition 1.5, ∂x′ defines
a differential structure on X ′. By Lemma 1.7 the morphism ψ is differential.
The uniqueness is clear from Proposition 1.5 and Lemma 1.7.
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To prove (b), we first assume that F = F̄ is algebraically closed. Let x ∈
X(F ). Since F is algebraically closed, every point derivation at x is Galois-
equivariant. Hence Proposition 1.5 implies that the differential structures on
X are in bijection with the set Der∂,x(F [X ], F ) of point derivations at x. Let
Mx ⊆ F [X ] be the maximal ideal corresponding to x and let OX,x = F [X ]Mx

,
the local ring at x. Recall that the (Zariski) tangent space TxX at x is the
dual F -vector space of mx/m

2
x where mx ⊆ OX,x is the maximal ideal. We then

have a chain of bijections:

Der∂,x(F [X ], F ) ∼= Der∂,x(OX,x, F ) ∼= TxX. (2)

(Note that while TxX is an F -vector space, Der∂,x(F [X ], F ) is not closed under
addition of derivations, since the sum of two derivations extending ∂ : F → F
extends 2∂ rather than ∂.) Although ∂̃ ∈ Der∂,x(OX,x, F ) need not be F -

linear, the induced map mx/m
2
x → F given by f mod m

2
x 7→ ∂̃(f) is well

defined and F -linear by the Leibniz rule; and this gives the forward direction
of the second bijection in (2). For the reverse direction, a tangent vector

v : mx/m
2
x → F defines a derivation ∂̃ : OX,x = mx⊕F → F in Der∂,x(OX,x, F )

by f 7→ v((f − f(x)) mod m
2
x) + ∂(f(x)).

Let x′ = ψ(x) ∈ X ′(F ) and define ∂x′ : F [X ′]
∂−→ F [X ′]

x′

−→ F . Since φ : G→ G′

is surjective and the groups G,G′ are smooth, it follows from [DG70, Chapter
II, §5, Prop. 5.3] that the induced map on the Lie algebras is surjective. Since
F is assumed to be algebraically closed for now, X and X ′ are trivial torsors
and it follows that the tangent map TxX → Tx′X ′ is surjective. Therefore the
image of ∂x′ in Tx′X ′ lifts to a tangent vector in TxX which corresponds to a
derivation ∂x : F [X ]→ F . Chasing through the bijections in (2) we see that

F [X ′]
ψ∗

//

∂x′ ""❊
❊❊

❊❊
❊❊

❊
F [X ]

∂x}}③③
③③
③③
③③

F

commutes. Thus, if we define a differential structure on X via ∂x by virtue of
Proposition 1.5, it follows from Lemma 1.7 that ψ is differential. This proves
(b) in case that F is algebraically closed.
Now let F be arbitrary again. Since φ : G → G′ is surjective we can iden-
tify F [X ′] with a subring of F [X ]. As XF̄ is a differential GF̄ -torsor, it fol-
lows from what we proved previously that there exists a G-invariant derivation
∂F̄ [X] : F̄ [X ]→ F̄ [X ] that extends the given derivation ∂F [X′] : F [X

′]→ F [X ′].

We next show that ∂F̄ [X] : F̄ [X ] → F̄ [X ] restricts to a G-invariant deriva-
tion ∂E[X] : E[X ] → E[X ], where E is a suitable finite Galois extension
of F . Namely, suppose that f1, . . . , fn ∈ F [X ] generate F [X ] as an F -
algebra. Then there exists a finite Galois extension E of F such that
∂F̄ [X](f1), . . . , ∂F̄ [X](fn) ∈ E[X ] and thus ∂F̄ [X] restricts to a derivation ∂E[X]

on E[X ].
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For τ ∈ Gal(E/F ), the restriction of τ(∂E[X]) = τ◦∂E[X] to F [X ] is a derivation
from F [X ] into E[X ], where E[X ] is considered as an F [X ]-module via the
inclusion F [X ] ⊆ E[X ]. Moreover, τ(∂E[X]) agrees with ∂F [X′] on F [X

′], and
τ(∂E[X]) is G-invariant, since the G(K)-action commutes with the Gal(E/F )-
action (using here that K is algebraically closed).
This implies that

R(∂E[X]) :=
1

|Gal(E/F )|
∑

τ∈Gal(E/F )

τ(∂E[X])

defines a derivation from F [X ] into E[X ] that agrees with ∂F [X′] on F [X ′].
By definition, an element in the image of R(∂E[X]) is fixed by the Gal(E/F )-
action and thus lies in F [X ]. Therefore R(∂E[X]) actually defines a derivation
R(∂E[X]) : F [X ]→ F [X ]. As τ(∂E[X]) is G-invariant for every τ ∈ Gal(E/F ),
the derivation R(∂E[X]) is also G-invariant and thus defines the desired dif-
ferential structure on X by Corollary 1.3. Here ψ is a differential morphism
over F because it is the restriction of a differential morphism over F̄ (cf. the
algebraically closed case).

Example 1.9. Let X = GF be a trivial GF -torsor. Then the derivations
∂ : F [X ]→ F [X ] that turn X into a differential GF -torsor are in bijection with
the Lie algebra of GF .
To see this, let x = 1 ∈ X(F ) ⊆ X(F̄ ) be the identity element and let

∂̃ : F [X ] → F̄ be a derivation extending ∂ : F → F . Since τ(x) = x for

τ ∈ Γ we see that τ(∂̃) : F [X ] → F̄ is a derivation with respect to the F [X ]-
module structure on F̄ given by f 7→ f(x). From Lemma 1.4(a) it follows that

τ(∂̃)x = τ(∂̃). Thus ∂̃ is Galois-equivariant if and only if τ(∂) = ∂ for all τ ∈ Γ;
i.e., ∂(F [X ]) ⊆ F . So by Proposition 1.5 the derivations ∂ : F [X ]→ F [X ] that
turn X into a differential GF -torsor are in bijection with the point derivations
∂̃ : F [X ]→ F at x. As in (2) above, the latter set is in bijection with TxX .

Example 1.10. In particular, consider the group GLn and let X = GLn,F
be the trivial GLn,F -torsor, with coordinate ring F [X ] = F [T, det(T )−1] :=
F [tij , det(T )

−1 | 1 ≤ i, j ≤ n]; here T = (tij) is an n× n-matrix of indetermi-
nates tij over F . We can turn X into a differential GLn,F -torsor by defining
a derivation ∂A : F [X ] → F [X ] extending ∂ : F → F by ∂(T ) = AT for a
fixed A ∈ Fn×n, the Lie algebra of GLn,F . Conversely, if X is a differential
GLn,F -torsor, then X is a trivial torsor since H1(F,GLn,F ), which classifies
GLn,F -torsors, is trivial by Hilbert’s Theorem 90 (e.g., see [Ser97, Chapter III,
Sect. 1.1, Lemma 1]). It follows from Example 1.9 that the derivation on F [X ]
is of the above form ∂A. Thus differential GLn,F -torsors correspond to univer-
sal solution rings for linear differential equations ∂(z) = Az with A ∈ Fn×n
(and where z is an n-tuple of indeterminates).
Distinct choices of A can lead to non-isomorphic differential torsors. For exam-
ple, if n = 1, F = C(x) with derivation d/dx, then A = (0) defines the trivial
differential Gm-torsor (i.e., its constants are C[Gm]), whereas A = (1) defines a
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simple differential torsor, with constants C. In particular, a differential torsor
can be trivial as a torsor but non-trivial as a differential torsor.

Remark 1.11. Let H be a closed subgroup of G and let Y be a differential HF -
torsor. Recall that there is an induced GF -torsor Ind

GF
HF

(Y ) (see the appendix,

Subsection A.3). Since Y → IndGFHF (Y ) is HF -equivariant, it follows from

Proposition 1.8(a) that there exists a unique differential structure on IndGFHF (Y )

such that Y → IndGFHF (Y ) is differential. In the sequel we will always consider

IndGFHF (Y ) as a differential GF -torsor by virtue of this differential structure.

In view of Proposition A.8, this structure can be made explicit: IndGFHF (Y ) =

(Y ×G)/H = Spec((F [Y ]⊗KK[G])H), and the derivation on (F [Y ]⊗KK[G])H

is the restriction of the one on F [Y ]⊗K K[G] induced from F [Y ] by declaring
the elements of K[G] to be constant.

1.4 Simple differential torsors and Picard-Vessiot rings

As before, (F, ∂) is a differential field of characteristic zero with field of con-
stants K = CF , and G is a linear algebraic group over K.

Recall that a Picard-Vessiot ring over F is a differential ring extension R/F of
the form R = F [Z, det(Z)−1] := F [zij , det(Z)

−1 | 1 ≤ i, j ≤ n] for some matrix
Z = (zij) ∈ GLn(R) with ∂(Z)Z

−1 ∈ Fn×n, such that R is a simple differential
ring and CR = K. (The elements zij need not be algebraically independent over
F .) Equivalently, a Picard-Vessiot ring over F is a differential ring without zero
divisors of the form R = F [Z, det(Z)−1] with ∂(Z)Z−1 ∈ Fn×n and such that
CFrac(R) = K. In this situation, we also say that R is a Picard-Vessiot ring for
the linear differential equation ∂(z) = Az, where A = ∂(Z)Z−1 ∈ Fn×n and z
is an n-tuple of indeterminates. A Picard-Vessiot extension of F is the fraction
field of a Picard-Vessiot ring over F . If E/F is an extension of differential
fields that is finitely generated as a field extension, then E is a Picard-Vessiot
extension of F if and only if CE = CF , E = Frac(R) for some differential ring
extension R of F , and the left R-module R⊗F R is generated by its constants
(see Definition 1.8 and Theorem 3.11 of [AMT09]). In this situation, R is the
associated Picard-Vessiot ring.

The differential Galois group of a Picard-Vessiot ring R is defined as the group
functor Aut∂(R/F ). It is an affine group scheme of finite type over K rep-
resented by the K-algebra CR⊗FR = K[Z−1 ⊗ Z, det(Z−1 ⊗ Z)−1], where
Z−1 ⊗Z is a short-hand notation for the matrix product (Z−1 ⊗ 1) · (1⊗Z) ∈
GLn(R ⊗F R). For more details about differential Galois theory, see [vdPS03]
for the case that the constant field K is algebraically closed; and see [Dyc08]
and [AMT09] for the general case. In particular, there is a differential analog
of the usual Galois correspondence; see [Dyc08, Theorem 4.4] and [AMT09,
Theorem 2.11]. (In the former reference, one must be more careful in defining
the invariant subfield EH of a Picard-Vessiot extension, because E ⊗K A is
not necessarily H-stable in the total ring of fractions of R ⊗K A, for A a K-
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algebra. Instead, one can use the definition given at the beginning of Section 3
of [BHH16].) See also the observation after the proof of Proposition 1.17 below.
In the above situation, there is a linearization Aut∂(R/F ) →֒ GLn that depends
on the choice of a fundamental solution matrix Z ∈ GLn(R). Details can be
found in [BHH16] and [Dyc08]. The following proposition explains the relation
between Picard-Vessiot rings and differential torsors.

Proposition 1.12. Let F,K,G be as above.

(a) Let R/F be a Picard-Vessiot ring with differential Galois group G. Then
Spec(R) is a simple differential GF -torsor.

(b) Let X = Spec(R) be a differential GF -torsor such that R is an integral
domain and assume that CFrac(R) = K. Then R/F is a Picard-Vessiot
ring with differential Galois group G.

Proof. (a) By definition, R is a simple differential ring. By Kolchin’s Theorem,
X = Spec(R) is a GF -torsor. (See [vdPS03, Theorem 1.30] in the case that
K is algebraically closed, or [AMT09, Proposition 2.13] for the general case.)
Therefore we have isomorphisms R ⊗F R ∼= R ⊗K K[G] and CR⊗FR

∼= K[G]
(using CR = K). The homomorphism corresponding to the GF -action X ×
GF → X is

ρ : R→ R⊗F R ≃−→ R⊗K K[G]
≃−→ R⊗F F [G]

where the first map is the inclusion into the second factor. (Cf. [AMT09,
Lemma 1.9].) Clearly this is a differential morphism, and so X is a differential
torsor.

(b) Let ρ : R→ R ⊗F F [G] ≃−→ R ⊗K K[G] be the differential homomorphism
corresponding to the GF -action on X . Since X is a GF -torsor, the left R-
linear extension R ⊗F R → R ⊗K K[G] is a differential isomorphism; and as
K[G] is constant, we see that R ⊗F R is generated by constants as a left R-
module. Since CFrac(R) = K and since Frac(R)/F is a finitely generated field
extension, it follows that Frac(R)/F is a Picard-Vessiot extension with Picard-
Vessiot ring R (using the equivalent criterion given in [AMT09, Definition 1.8]).
Moreover, the differential Galois group of R/F is G. Indeed, the isomorphism
R⊗F R→ R⊗KK[G] identifies CR⊗FR with K[G], and it is easy to check that
this is an isomorphism of Hopf algebras.

Remark 1.13. The close relationship between Picard-Vessiot rings and dif-
ferential torsors explained in Prop. 1.12 has a parallel in Kolchin’s approach
to differential Galois theory in [Kol73]; see his Theorem VI.10.9. There, the
Galois groups are assumed connected but not necessarily linear, and the cor-
responding field extensions (which are Picard-Vessiot extensions in the case of
linear groups) are called strongly normal. We note that Kolchin’s framework
uses universal domains rather than scheme theory, and so his principal homo-
geneous spaces (see [Kol73, V.3]) are not exactly the same as torsors in our
sense.
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In the case that G is a connected linear algebraic group, both our Prop. 1.12 and
Theorem 9 of [Kol73, VI.10] relate Picard-Vessiot extensions with differential
Galois group G to differential G-torsors with no new constants in their function
field.

Corollary 1.14. Let F,K,G be as above, and let R/F be a differential ring
extension.

(a) Suppose that CR = K. Then R/F is a Picard-Vessiot ring with dif-
ferential Galois group G if and only if Spec(R) is a simple differential
GF -torsor.

(b) Suppose that R is an integral domain and that CFrac(R) = K. Then R/F
is a Picard-Vessiot ring with differential Galois group G if and only if
Spec(R) is a differential GF -torsor.

Proof. The forward direction of (a) was given in Proposition 1.12(a), while the
reverse direction follows from (b) because a simple differential K-algebra R is
an integral domain that satisfies CR = CFrac(R). The forward direction of (b)
follows from Proposition 1.12(a), while the reverse direction is immediate from
Proposition 1.12(b).

One advantage of working with differential torsors as compared to Picard-
Vessiot rings is that for subgroupsH of G, we can induce differentialHF -torsors
to differential GF -torsors, which will allow us to apply patching techniques. See
Remark 1.11.

Proposition 1.15. Let X be a differential GF -torsor. If K is algebraically
closed, then there exists a closed subgroup H of G and a simple differential
HF -torsor Y with CFrac(F [Y ]) = K such that X ∼= IndGFHF (Y ) (as differential
torsors).

Proof. Let I ⊳ F [X ] be maximal among the proper differential ideals in F [X ]
and let Y ⊆ X be defined by I. By [vdPS03, Lemma 1.17]), the ideal I is
prime, and in particular radical. So F [Y ] ∼= F [X ]/I, and this is an integral
domain. Moreover, also by [vdPS03, Lemma 1.17], there are no new constants
in the field of fractions E of F [Y ].
Let B ⊆ F [Y ]⊗F F [Y ] denote the image of K[G] in F [Y ]⊗F F [Y ] under

F [X ]⊗K K[G] ∼= F [X ]⊗F F [X ]→ F [Y ]⊗F F [Y ]. (3)

Since F [X ]→ F [Y ] is a surjective differential homomorphism so is the map in
(3). Therefore the elements of B are constants, and F [Y ]⊗F F [Y ] is generated
by B as a left F [Y ]-module. Hence E ⊗F F [Y ] is generated by B as an E-
module. It is a general fact that the constants of a differential E-algebra are
linearly disjoint from E over CE ([Kol73, Chapter II, Section 1, Corollary 1, p.
87]). Thus E ⊗F F [Y ] ∼= E ⊗K B. It follows that F [Y ]⊗F F [Y ] ∼= F [Y ]⊗K B
and that the constants of F [Y ]⊗F F [Y ] equal B.
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We have seen that E = Frac(F [Y ]) satisfies CE = K and that F [Y ]⊗F F [Y ] is
generated by its constants as a left F [Y ]-module. Thus E is a Picard-Vessiot
extension of F by the criterion in [AMT09, Definition 1.8], with Picard-Vessiot
ring F [Y ]. By [AMT09, Lemma 1.9] and the discussion on pages 137-138 there,
the associated differential Galois group is H := Spec(B). Hence Y is an HF -
torsor, by Corollary 1.14(b). Since K[G] → B = K[H ] is surjective, H is a
closed subgroup of G.
We have a commutative diagram:

F [X ]⊗F F [X ]

��

∼= // F [X ]⊗K K[G]

��
F [Y ]⊗F F [Y ]

∼= // F [Y ]⊗K K[H ]

(4)

The morphisms dual to the action of GF and HF on X and Y , respectively,
are obtained from the horizontal isomorphisms in (4) by precomposing with the
inclusions into the second factor. Thus the commutativity of (4) shows that
the inclusion morphism Y → X is HF -equivariant. Thus X and IndGFHF (Y )
are isomorphic as GF -torsors by Remark A.9(a), and as differential torsors by
Remark 1.11.

Lemma 1.16. Let H be a closed subgroup of the linear algebraic group G, and let
Y be a differential HF -torsor. If IndGFHF (Y ) is a simple differential GF -torsor,
then H = G.

Proof. Since Y → X := IndGFHF (Y ) is differential, the morphism F [X ]→ F [Y ]
is differential. It is surjective by Lemma A.10, and injective because F [X ] is
simple. Thus F [X ] ∼= F [Y ]. This implies F [X ]⊗K K[G] ∼= F [Y ]⊗K K[H ] and
therefore H = G.

The following proposition concerns the passage from a linear algebraic group
G to its quotient by a normal subgroup N . See Subsection A.2 for a discussion
of quotients of torsors.

Proposition 1.17. Let N E G be a normal closed subgroup. If X is a differ-
ential GF -torsor, then Y := X/N is a differential (G/N)F -torsor. Moreover,
if X is a simple differential GF -torsor, then Y is a simple differential (G/N)F -
torsor.

Proof. First recall that X/N exists as an affine variety and is a (G/N)F -torsor

by Proposition A.6(b); viz. X/N = X̃//NF = Spec(F [X ]NF ). Applying Propo-
sition 1.8(a) to the quotient morphism ψ : X → Y = X/N yields a unique
differential structure on Y that is compatible with that of X .
Next, assume that X is a simple differential GF -torsor; i.e., that F [X ] has
no non-trivial differential ideals. Let I E F [X ]NF be a non-zero differential
ideal. Then J = I · F [X ] is a non-zero differential ideal of F [X ], hence J =
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F [X ]. By Proposition A.6(b), F [X ] is faithfully flat over F [X ]NF and thus
I = J∩F [X ]NF (see [Mat89, Thm. 7.5.(ii)]). Hence I = F [X ]NF . Thus F [X ]NF

is differentially simple, and so Y is a simple differential (G/N)F -torsor.

Observe that Corollary 1.14 and Proposition 1.17 provide a partial version of
the Galois correspondence in differential Galois theory, via torsors. Namely,
if R is a Picard-Vessiot ring over F with differential Galois group G, and if
N is a closed normal subgroup of G, then RN is a Picard-Vessiot ring over F
with differential Galois group G/N , by considering the corresponding torsors
X = Spec(R) and X/N = Spec(RN ). Also, if X = Spec(R) is as above and
H is any closed subgroup of G such that F (X/H) = F , then H = G. To
see this, first recall that X/H is an integral quasi-projective F -variety (by
Proposition A.6(a) and the integrality of X); so if its function field is F then
it is isomorphic to a single F -point Spec(F ). Thus Spec(F̄ ) = (X/H)(F̄ ) =
X(F̄ )/H(F̄ ) ∼= G(F̄ )/H(F̄ ); i.e. H(F̄ ) = G(F̄ ), and hence H = G since F̄ -
points are dense. The above facts will be useful later.

Lemma 1.18. Let H be a closed subgroup of the linear algebraic group G, let
Y be a differential HF -torsor, and write X = IndGFHF (Y ). Then

ψ : Y ×GF → Y ×X, (y, g) 7→ (y, y.g)

is an isomorphism. If L is a differential field containing R := F [Y ] as a
differential subring, the pullback of ψ via Spec(L)→ Y yields an isomorphism
of differential GL-torsors GL → XL. With S := F [X ] = IndGFHF (R), the dual
isomorphism on coordinate rings

Θ : L[X ] = L⊗F S = L⊗F (R ⊗F F [G])H −→∼ L[G]

is given by Θ(
∑
i ai⊗ri⊗fi) =

∑
i ai ·ri ·fi, for all elements ai ∈ L ⊆ L[G], ri ∈

R ⊆ L ⊆ L[G], fi ∈ F [G] ⊆ L[G] such that
∑

i ai⊗ri⊗fi ∈ L⊗F (R⊗F F [G])H .

Proof. Since X = IndGFHF (Y ) is a GF -torsor, the morphism X ×GF → X ×X
given by (x, g) 7→ (x, x.g) is an isomorphism. Restricting to Y × GF yields
the isomorphism ψ. As ψ is GF -equivariant (where GF is acting on the
right factors), GL → XL is an isomorphism of GL-torsors. The inclusion
(F [Y ] ⊗F F [G])H ⊆ F [Y ] ⊗F F [G] corresponds to the morphism Y × GF →
IndGFHF (Y ), (y, g) 7→ y.g, and so the dual map of ψ is given by

F [Y ]⊗F (F [Y ]⊗F F [G])H −→ F [Y ]⊗F F [G],
∑

i

ai⊗ ri⊗ fi 7→
∑

i

ai · ri⊗ fi

for all ai ∈ F [Y ], ri ∈ F [Y ], fi ∈ F [G] such that
∑

i ai ⊗ ri ⊗ fi ∈ F [Y ] ⊗F
(F [Y ]⊗F F [G])H . Tensoring over F [Y ] with L yields the last assertion.
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2 Differential patching and embedding problems

In this section, we construct differential torsors over a given field F by using
differential torsors over larger fields, and patching them. This builds on the
method of patching over fields (see [HH10]), and in particular on a result in
[HHK15] on patching torsors. The new aspect in our situation is the differential
structure on the torsors. Using this approach and the correspondence between
simple differential torsors and Picard-Vessiot extensions from the previous sec-
tion, we can construct Picard-Vessiot extensions with desired properties. This
is useful both in the inverse differential Galois problem and for solving embed-
ding problems in differential Galois theory.

2.1 Patching differential torsors

The basic situation is the following: We have a quadruple of fields (F, F1, F2, F0)
together with inclusions F →֒ Fi →֒ F0 for i = 1, 2, such that the diagram

F0

F1

>>⑥⑥⑥⑥⑥⑥⑥⑥
F2

``❆❆❆❆❆❆❆❆

F

``❇❇❇❇❇❇❇❇

>>⑤⑤⑤⑤⑤⑤⑤⑤

commutes and such that F is the intersection of F1 and F2 taken inside F0.
(Thus F is the inverse limit of the finite inverse system consisting of the fields
Fi.) We refer to such a quadruple as a diamond. We say that a diamond has
the factorization property if for every n > 0, every element A ∈ GLn(F0) can
be written as A−12 A1 with Ai ∈ GLn(Fi).
It has been useful in applications (e.g. in Section 9 of [HHK15]) to consider
more general collections of fields and inclusions; and the applications in that
more general situation do not seem to follow easily from the case of diamonds
of fields. More precisely, as in [HHK15], a factorization inverse system over a
field F is a finite inverse system {Fi}i∈I of fields whose inverse limit (in the
category of rings) is F , whose index set I has a partition I = Iv ∪ Ie into a
disjoint union such that for each index k ∈ Ie there are exactly two elements
i, j ∈ Iv for which the inverse system contains maps Fi, Fj → Fk, and such
that there are no other maps given in the inverse system. If there is a map
Fi → Fk in the inverse system, we write i ≻ k; this defines a partial ordering
on I.
A factorization inverse system determines a (multi-)graph Γ whose vertices are
the elements of Iv and whose edges are the elements of Ie. The vertices of
an edge k ∈ Ie correspond to the elements i, j ∈ Iv such that i, j ≻ k. Note
that the graph Γ is connected (otherwise, the inverse limit F would have zero
divisors). For every k ∈ Ie, we fix a labeling l = lk and r = rk of its vertices
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l and r (i.e., we assign each edge a left vertex and a right vertex). Note that
an element i ∈ Iv can be a left vertex of an edge and a right vertex of another
edge. When working with factorization inverse systems, we always assume
that such an orientation of the edges has been fixed. A factorization inverse
system {Fi}i∈I has the simultaneous factorization property if for any collection
of matrices Ak ∈ GLn(Fk), for k ∈ Ie, there exist matrices Ai ∈ GLn(Fi) for
all i ∈ Iv such that Ak = A−1rk ·Alk for all k ∈ Ie, where we view Ark and Alk as
matrices with entries in Fk via the inclusions Frk , Flk →֒ Fk. In the case that
Ie has just one element 0, and Iv has two elements lk = 1, rk = 2, we recover
the notions of a diamond and of a diamond with the factorization property.
Turning now to our situation, a differential factorization inverse system over a
field F is a factorization inverse system over F , such that all fields Fi, i ∈ I, are
differential fields of characteristic zero and such that the inclusions Flk , Frk →֒
Fk are differential homomorphisms for all k ∈ Ie. Note that then F inherits
a structure as a differential field (of characteristic zero) and the embeddings
F →֒ Fi given by mapping to the i-th component in the inverse limit are
differential homomorphisms for all i ∈ I. In the case of a diamond, we call the
quadruple a differential diamond. A differential factorization inverse system
(and in particular a differential diamond) may have the factorization property,
as defined above.

Example 2.1. (a) Let F = C(x), the field of rational functions over C, or
equivalently the field of meromorphic functions on the Riemann sphere
P1
C
. Choose open discs U1 centered at the point x = 0 and U2 centered

at x =∞, such that U1 ∪ U2 = P1
C
. Let U0 be the annulus U1 ∩ U2, and

write Fi for the field of meromorphic functions on Ui for 0, 1, 2. Then
(F, F1, F2, F0) is a differential diamond with the factorization property
with respect to the derivation d/dx. See Lemma 3.4 for a more general
statement concerning open subsets of Riemann surfaces. This will be
used in solving differential embedding problems over complex function
fields.

(b) There are also examples of factorization inverse systems with the simul-
taneous factorization property over function fields over a complete dis-
cretely valued field K; see [HHK15, Corollary 3.4, Proposition 2.2]. In
the case of the function field K(x) together with the derivation d/dx in
characteristic zero, we obtain differential factorization inverse systems.
Such examples can be viewed as rigid analytic analogs of Example 2.1(a).

Following [HHK15, Section 2], for a linear algebraic group G over F and a
factorization inverse system of fields {Fi}i∈I with inverse limit F , we define a
G-torsor patching problem to be a system ofGFi -torsorsXi = Spec(Si) together
with Fk-isomorphisms of GFk -torsors νik : Fk ×Fi Xi → Xk for all pairs of
distinct indices with i ≻ k (i.e., such that Fi ⊆ Fk). Here νik corresponds to
an isomorphism of coordinate rings ν∗ik : Sk → Fk ⊗Fi Si that respects the G-
actions. A solution to the patching problem is a torsor over F that induces the
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torsorsXi compatibly via base change. That is, a solution is given by aG-torsor
X = Spec(S) over F together with Fi-isomorphisms of GFi -torsors γi : Fi ×F
X → Xi for all i ∈ Iv such that the two maps νik◦(idFk ⊗Fiγi) : Fk×FX → Xk

agree, for i = lk, rk. Patching problems and solutions can also be described
on the level of coordinate rings. If we write Θki = (ν∗ik)

−1 : Fk ⊗Fi Si → Sk
and Φi = (γ−1i )∗ : Fi ⊗F S → Si, the compatibility condition is that the two
isomorphisms Θklk ◦ (idFk ⊗FlkΦlk), Θkrk ◦ (idFk ⊗FrkΦrk) : Fk ⊗F S → Sk
coincide.

It was shown at [HHK15, Proposition 2.2, Theorem 2.3] that if the factorization
inverse system above has the simultaneous factorization property, then up to
isomorphism there is a unique solution X = Spec(S), given on the level of
coordinate rings by the inverse limit. That is, S = lim

←
Si, where the limit is

over all i ∈ I; and Φi is induced by the canonical map S → Si for i ∈ Iv. Thus
for j ∈ Iv, the map Φj sends a⊗(xi)i∈I ∈ Fj⊗F S to axj in Sj . Also, since each
γi is an isomorphism of torsors, the co-action homomorphism ρ : S → S⊗FF [G]
corresponding to the G-action on X is the restriction of the product map
(
∏
ρi) :

∏
Si → (

∏
Si)⊗F F [G], where ρi : Si → Si ⊗Fi Fi[G] ∼= Si ⊗F F [G] is

the co-action map corresponding to the GFi -action on Spec(Si) for i ∈ I.
The notions of patching problems and solutions carry over to the differential
situation. Namely, consider a differential factorization inverse system {Fi}i∈I
over a differential field F of characteristic zero, and let G be a linear algebraic
group overK := CF . A system of differentialGFi -torsorsXi such that the maps
νik as above are differential isomorphisms will be called a patching problem
of differential GF -torsors. (Recall that in our setup, G is defined over the
constants K of F . Also, recall that the derivation on Fi[G] is defined to extend
the given derivation on Fi and to be constant on K[G].) Similarly, if X is a
differential GF -torsor and each γi as above is an isomorphism of differential
torsors, we have a solution to this differential patching problem. The result
from [HHK15] cited above then carries over to this situation, since the solution
given by [HHK15] inherits a unique compatible derivation on the coordinate
ring by restriction:

Theorem 2.2. Let {Fi}i∈I be a differential factorization inverse system
over F with the simultaneous factorization property and let K = CF be
the field of constants of F . Let G be a linear algebraic group over K and
let ({Si}i∈I , {Θklk ,Θkrk}k∈Ie) define a patching problem of differential GF -
torsors. Then up to differential isomorphism, there exists a unique solution
(S, {Φi}i∈Iv), given by S = lim

←
Si, with Φi induced by the natural map S → Si,

and with the G-action and derivation on S given by restriction from those on
the rings Si.

In particular, this holds in the case of differential diamonds (F, F1, F2, F0) with
the factorization property. There, we may identify S with the intersection
Θ01(S1) ∩Θ02(S2) ⊆ S0. With this identification, the isomorphism Φi : Fi ⊗F
S → Si sends a⊗ s to a ·Θ−10i (s) for i = 1, 2, for a ∈ Fi and s ∈ S.
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2.2 Patching Picard-Vessiot rings

Using the above theorem, we prove a result about patching Picard-Vessiot rings,
by relying on the relationship between Picard-Vessiot rings and differential
torsors. This enables us to construct Picard-Vessiot extensions of F with a
given group G, by using Picard-Vessiot extensions of appropriate overfields Fi
with differential Galois groups Gi that generate G.

Lemma 2.3. Let R be a simple differential ring with field of constants K and let
A be a K-algebra. We consider A as a constant differential ring. Then there is
a bijection between the differential ideals in R⊗K A and the ideals in A, given
by I 7→ I ∩A for differential ideals I E R⊗K A, with inverse J 7→ R⊗K J for
ideals J E A.

Proof. This is a well-known statement in differential algebra and it follows as
in [Kov03, Prop. 5.6]. See also [Mau10, Lemma 10.7].

In the following, we use the notation IndGH(R) for the coordinate ring of
IndGH(Spec(R)), when H is a subgroup of G and Spec(R) is an H-torsor. By the
comment before Remark A.12, IndGH(R) is the ring of invariants (R⊗KK[G])H

with respect to a certain H-action on Spec(R)×G. A definition of the ring of
invariants can be found in the second paragraph of Section A.1. For a G-space
Spec(R) (and in particular for G itself) we also use the notion ofH-stable ideals
in R for subgroups H of G (see Lemma A.1 and the subsequent paragraph).

Lemma 2.4. Let F ⊆ F1 ⊆ F0 be extensions of differential fields, and let G be
a linear algebraic group over K := CF . Let S be a differential ring containing
F , and for i = 0, 1 write Si = Fi ⊗F S. Let H1 be a closed subgroup of G,
and suppose that S1 = IndGH1

(R1) for a Picard-Vessiot ring R1 ⊆ F0 over F1

with differential Galois group (H1)CF1
. Let I be a differential ideal of S, and

for i = 0, 1 write Ii := Fi ⊗F I ⊆ Si. View I0 as an ideal in F0[G] via the
isomorphism Θ : S0 = F0 ⊗F1 Ind

G
H1

(R1) → F0[G] given in Lemma 1.18. For
i = 0, 1, consider the right action of GFi on itself given by (g′, g) 7→ g−1g′.
Then

(a) For every closed subgroup H ⊆ G, the ideal I0 ⊆ F0[G] is H-stable if and
only if I0 ∩ F1[G] ⊆ F1[G] is H-stable.

(b) The ideals I0 ⊆ F0[G] and I0 ∩ F1[G] ⊆ F1[G] are H1-stable.

Proof. The forward direction of part (a) is clear. For the converse direction, it
suffices to show that (I0 ∩ F1[G])F0[G] = I0.

Let ϑ : R1 ⊗F1 F1[G] → F0[G] be the differential homomorphism induced by
the inclusions of R1 and F1 into F0. By Lemma 1.18, Θ|S1 = ϑ|S1 . Since
IndGH1

(R1) = (R1 ⊗F1 F1[G])
H1 by Proposition A.8, we have the following

commutative diagram of differential F -algebras, where Φi : S → Si is the
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natural map for i = 0, 1:

F0[G] F1[G]? _oo
� _

ι

��
S0

≀ Θ

OO

R1 ⊗F1 F1[G]

ϑ

hh◗◗◗◗◗◗◗◗◗◗◗◗◗

S

Φ0

OO

Φ1 // S1 = (R1 ⊗F1 F1[G])
H1

5 U

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗ � ?

OO

Note that Ii is the ideal of Si generated by Φi(I), for i = 0, 1. Write J̃1 for the
ideal of R1⊗F1 F1[G] generated by I1. If we identify S0 with F0[G] via Θ, then
I0 is identified with the ideal of F0[G] generated by Θ(I1), or equivalently the
ideal generated by ϑ(J̃1).
Let K1 = CF1 . As R1 is differentially simple, every ideal in R1 ⊗F1 F1[G] ∼=
R1 ⊗K1 K1[G] is generated by its intersection with K1[G] by Lemma 2.3; and
in particular it is generated by its intersection with F1[G]. Thus J1 := J̃1 ∩
F1[G] generates J̃1 as an ideal of R1 ⊗F1 F1[G]. But ϑ(J̃1) generates I0 as
an ideal of F0[G]; hence I0 = J1F0[G]. Also, J1 = I0 ∩ F1[G] since F0[G] ∼=
F0 ⊗F1 F1[G] is faithfully flat over F1[G] (see [Mat89, Theorem 7.5(b)]). Thus
(I0 ∩ F1[G])F0[G] = I0, proving part (a).
The ideal J̃1 ⊆ R1 ⊗F1 F1[G] is H1-stable (with respect to the action given
in Proposition A.8) since it is the extension of the ideal I1 ⊆ S1 = (R1 ⊗F1

F1[G])
H1 . Since the projection morphism ι∗ : (SpecR1) ×F1 GF1 → GF1 is

H1-equivariant, and since J̃1 is the extension of J1 ⊆ F1[G] with respect to ι,
it follows that J1 is H1-stable (by stability condition (b) of Lemma A.1). The
H1-stability of J1 = I0 ∩ F1[G] ⊆ F1[G] implies the H1-stability of I0 ⊆ F0[G],
by part (a). This proves part (b).

Theorem 2.5. In the context of Theorem 2.2, suppose that G is generated by
a set of closed K-subgroups Hi, for i ∈ Iv; and that for each i ∈ Iv there
is a Picard-Vessiot ring Ri/Fi with differential Galois group (Hi)Ki such that
Si = IndGHi(Ri), where Ki = CFi . Suppose also that Sk = Fk[G] for all k ∈ Ie;
and suppose that for each i ≻ k there is an embedding Ri →֒ Fk of differential
rings. Suppose moreover that the map Θki : Fk⊗Fi Si → Sk is the isomorphism
of differential GFk -torsors given in Lemma 1.18 with respect to that embedding
(for all i). Then S/F is a Picard-Vessiot ring with differential Galois group G.

Proof. By Theorem 2.2, Spec(S) is a differential GF -torsor and S is the inverse
limit of {Si}i∈I with respect to the maps Θki. As in Theorem 2.2, we write
Φi : S → Si for the projection onto the i-th component. We identify S with
F ⊗F S ⊆ Fi ⊗F S ⊆ Fk ⊗F S, and similarly identify Si with Fi ⊗Fi Si ⊆
Fk ⊗Fi Si. By Proposition A.8, Si = IndGHi(Ri) consists of the invariants of
Ri ⊗Fi Fi[G] under the (Hi)Fi -action on Spec(Ri)×GFi given by the formula
(x, g).h = (x.h, h−1g). This action restricts to an Hi-action on G given by
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g.h = h−1g, which is also the restriction of the (right) G-action on G given by
g.g′ = g′−1g.
To prove the theorem, it suffices to show that CS = K and that S is differen-
tially simple, by Corollary 1.14(a).

First step: We show CS = K.
Let x ∈ S be constant, and write x = (xi)i∈I with xi ∈ Si constant. We wish
to show that x ∈ K. For i ∈ Iv, the constants of Ri ⊗Fi Fi[G] = Ri ⊗Ki Ki[G]
equalKi[G], since CRi = Ki; and thus CSi = Ki[G]

(Hi)Ki ⊆ Fi[G](Hi)Fi . Hence
xi ∈ Fi[G](Hi)Fi ⊆ Fi[G]. Suppose that i ≻ k. Then xk is the image of xi under
the natural inclusion Fi[G]→ Fk[G] (see Lemma 1.18). The co-action on Fi[G]
is the restriction of the co-action on Fk[G]; so xi is invariant under a given
subgroup H ⊆ G if and only if xk is invariant under H . Since the graph Γ
associated to {Fi}i∈I is connected, it follows that all the xi (for i ∈ I) are
invariant under the same subgroups of G. As a consequence, each of these
elements is invariant under Hj for every j ∈ Iv, since xj is.
Thus xi ∈

⋂
j∈Iv

Fi[G]
(Hj)Fi for all i ∈ Iv, and this intersection equals Fi by

Lemma A.2(a). Hence x = (xi)i∈I ∈ lim←−
i∈I

Fi = F and thus x ∈ CF = K.

Second step: We show that S is differentially simple. Let I be a proper differ-
ential ideal of S. It suffices to show that I = (0).
For an edge k ∈ Ie and a vertex i ∈ Iv of k, let Ii be the ideal of Si generated
by Φi(I), and let Ik be the ideal of Sk = Fk[G] generated by Θki(Ii) (which
is independent of the choice of vertex i of k). Let Ji = Ik ∩ Fi[G]. We may
now apply Lemma 2.4, with Fi, Fk playing the roles of F1, F0, and where we
consider the right action of G on itself given by (g′, g) 7→ g−1g′. By part (a) of
the lemma, for any subgroup H of G, Ji is H-stable under this action if and
only if Ik is. Since this holds for all such pairs (k, i), and since the graph is
connected, it follows that all the ideals Ji E Fi[G] (for i ∈ Iv) and Ik E Fk[G]
(for k ∈ Ie) are stabilized by the same subgroups of G. But by part (b) of
the lemma, Ji and Ik are Hi-stable, with respect to the above action. Thus
for every k′ ∈ Ie, the ideal Ik′ E Fk0 [G] is stable under Hi for all i ∈ Iv.
But the subgroups Hi generate G. So Ik′ is GFk′ -stable by Lemma A.2(b)
and thus Ik′ = (0) by Lemma A.2(c). Hence I ⊆ Ik′ is also the zero ideal, as
asserted.

As an example application, we show how Theorem 2.5 can be applied to show
that SL2 is a differential Galois group over F under the assumption that there
exists a differential diamond (F, F1, F2, F0) with the factorization property such
that F0 contains “logarithmic elements” over F1 and F2.

Example 2.6. Let (F, F1, F2, F0) be a differential diamond with the factoriza-
tion property. Assume that there exist Picard-Vessiot rings R1/F1 and R2/F2

with differential Galois groups the additive group Ga and such that R1 ⊆ F0

and R2 ⊆ F0. Then there is a Picard-Vessiot ring S/F with differential Galois
group SL2. Indeed, let H1 and H2 be the subgroups of SL2 of upper and lower

Documenta Mathematica 23 (2018) 241–291



Complex Differential Embedding Problems 265

triangular matrices whose diagonal entries are equal to 1. These are known to
generate SL2 over any field. The groups H1 and H2 are isomorphic to Ga and
the Tannaka formalism implies that there are (2×2)-fundamental solution ma-
trices for R1/F1 and R2/F2 such that the corresponding representations of the
differential Galois groups of R1/F1 and R2/F2 yield H1 and H2 (see [BHH16,
Prop. 3.2]). Since SL2 is generated by H1 and H2, Theorem 2.5 implies that
there exists a Picard-Vessiot ring S/F with differential Galois group SL2.
Note that the assumptions on the existence of R1/F1 and R2/F2 are equivalent
to the existence of “logarithmic elements” y1, y2 ∈ F0 such that y1 /∈ F1 and
∂(y1) ∈ F1 and similarly y2 /∈ F2 and ∂(y2) ∈ F2.

Remark 2.7. If F = k((t))(x) for some field k of characteristic zero and ∂ =
d/dx, a weaker version of Theorem 2.5 was proven in [BHH16, Thm 2.4(a)]
using ad-hoc methods, on the way to solving the inverse differential Galois
problem over F . However, that theorem only applies to factorization inverse
systems {Fi}i∈I over F where the corresponding graph Γ is star-shaped, where
all fields of constants CFi equal CF and where the Picard-Vessiot ring over Fi
is trivial for the internal node i of the star. Theorem 2.5 does not rely on any
of these assumptions and it can also be applied to more general factorization
inverse systems, e.g. of the sort that arise in [HHK15].

2.3 Embedding problems

As in ordinary Galois theory, one can consider embedding problems in dif-
ferential Galois theory. Using the above ideas, we prove a result about split
differential embedding problems.
Let F be a differential field with field of constants K. In analogy with the case
of ordinary Galois theory, a differential embedding problem over F consists of
an epimorphism of linear algebraic groups G → H over K, say with kernel
N , together with a Picard-Vessiot ring R/F with differential Galois group H .
(Notice that we work with Picard-Vessiot rings here rather than Picard-Vessiot
extensions, because those rings are needed to define the differential Galois
groups as group schemes.) If the short exact sequence 1→ N → G→ H → 1 is
split (i.e., if G is a semi-direct product N⋊H), then we say that the embedding
problem is split and abbreviate it by (N ⋊H,R).
A proper solution of a differential embedding problem as above is a Picard-
Vessiot ring S/F with differential Galois group G and an embedding of differ-
ential rings R ⊆ S such that the following diagram commutes:

G

∼=
��

// // H

∼=
��

Aut∂(S/F )
res // // Aut∂(R/F )

Lemma 2.8. Let G→ H and R/F determine a differential embedding problem
as above and let S/F be a Picard-Vessiot ring with differential Galois group
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G. Then there exists an embedding of differential rings R ⊆ S constituting a
proper solution to the differential embedding problem if and only if there exists
an isomorphism of differential HF -torsors Spec(R) ∼= Spec(SNF ).

Proof. If R ⊆ S constitutes a proper solution, then we have isomorphisms of
differential HF -torsors Spec(R) ∼= Spec(S)/NF ∼= Spec(SNF ) by Proposition
1.17 and Lemma A.6(b).
Conversely, an isomorphism of HF -torsors Spec(R) ∼= Spec(SNF ) gives rise to
a commutative diagram

Aut∂(SNF /F )
∼= // Aut∂(R/F )

H

∼=

::tttttttttt
∼=

ee▲▲▲▲▲▲▲▲▲▲▲

(5)

As the inner diagrams in

Aut∂(R/F )

Aut∂(S/F )

77♦♦♦♦♦♦♦♦♦♦♦
// Aut∂(SNF /F )

∼=

OO

G // //

∼=

OO

H

∼=

OO

commute, also the outer diagram commutes. It follows from (5) that we have
solved the embedding problem.

Differential embedding problems not only provide information about which
differential Galois groups arise over a given differential field, but also encode
information about how the Picard-Vessiot extensions of that field fit together.
As in ordinary Galois theory, the assertion that all split embedding problems
over some field F have proper solutions implies that all groups occur as (dif-
ferential) Galois groups, since one can take H to be trivial. In Theorem 2.12
below we show that proper solutions to split differential embedding problems
can be obtained from solutions to patching problems.

Lemma 2.9. Let (F, F1, F2, F0) be a differential diamond such that CF0 = CF .
Let R/F be a Picard-Vessiot ring such that R ⊆ F1. Then the compositum
F2R ⊆ F0 is a Picard-Vessiot ring over F2 with the same differential Galois
group as R/F . Moreover, F2R is isomorphic to F2⊗F R under the natural map
F2 ⊗F R→ F2R.

Proof. Let G be the differential Galois group of R/F . By [BHH16, Lemma
1.7], the compositum F2R is a Picard-Vessiot ring over F2 and its differential
Galois group H is a subgroup of G. By the differential Galois correspondence
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(see [Dyc08, Theorem 4.4] and the discussion at the beginning of Section 1.4),
in order to prove H = G it suffices to show that Frac(R)H = F . This equality
follows from the containments Frac(R)H ⊆ Frac(R) ⊆ F1 and Frac(R)H ⊆
Frac(F2R)

H = F2, since F1 ∩ F2 = F . So the first assertion of the lemma
holds. The final assertion follows from the fact that the natural surjection
F2 ⊗F R → F2R corresponds to a homomorphism of GF2 -torsors, which must
therefore be an isomorphism.

Note that instead of citing the Galois correspondence from [Dyc08, Theo-
rem 4.4] in the above proof, one could use the observation after Proposi-
tion 1.17. Namely, X := Spec(R) is a G-torsor over F and X2 := Spec(F2R) is
an H-torsor over F2, where the actions of H ⊆ G are compatible. By Proposi-
tion A.6(a) we may consider the quotient schemesX/H and X2/H = Spec(F2).
These are quasi-projective varieties, and are integral since X and X2 are the
spectra of integral domains. We have an inclusion of function fields F (X/H) ⊆
F (X) = Frac(R) ⊂ F1, as well as an inclusion F (X/H) ⊆ F2(X2/H) = F2.
Thus F ⊆ F (X/H) ⊆ F1 ∩ F2 = F ; i.e., F (X/H) = F . By the second part of
the observation after Proposition 1.17), H = G.

To avoid burdening the notation, we sometimes drop the base change subscripts
on groups in the remainder of this section if there is no possibility of confusion,
especially when the group appears in a subscript or superscript. For example,
for field extensions L/F , we write expressions such as IndGH(YL) for Ind

GL
HL

(YL).
We consider the following situation:

Hypothesis 2.10. Let (F, F1, F2, F0) be a differential diamond with the fac-
torization property and write K = CF . Let G be a linear algebraic group
over K of the form N ⋊H . Let S1 = IndGN (R1) for some Picard-Vessiot ring
R1/F1 with differential Galois group NCF1

such that R1 ⊆ F0. Let R/F be a
Picard-Vessiot ring with differential Galois group H such that R ⊆ F1 ⊆ F0;
write R2 = F2 ⊗F R; and let S2 = IndGH(R2) = F2 ⊗F IndGH(R). For i = 1, 2
let Θi : F0 ⊗Fi Si → F0[G] be the induced differential isomorphism defined in
Lemma 1.18, using Ri ⊆ F0.

Proposition 2.11. In the situation of Hypothesis 2.10, let (S,Φ1,Φ2) be the
solution of the patching problem (S1, S2, F0[G],Θ1,Θ2) of differential G-torsors
over (F, F1, F2, F0) (see Theorem 2.2). Then the ring of NF -invariants S

NF is
isomorphic to R as a differential HF -torsor.

Proof. By taking N -invariants, the given patching problem gives rise to
a patching problem (SN1 , S

N
2 , F0[H ], Θ̄1, Θ̄2) of differential H-torsors over

(F, F1, F2, F0), and the given solution gives rise to a solution (SN , Φ̄1, Φ̄2) to
that patching problem. We also have a patching problem of differential H-
torsors given by (F1 ⊗F R,F2 ⊗F R,F0 ⊗F R,Ω1,Ω2), where Ωi is the natural
isomorphism F0 ⊗Fi (Fi ⊗F R)→ F0 ⊗F R. A solution to this latter patching
problem is (R,Ψ1,Ψ2), where Ψi is the identity on Fi ⊗F R, for i = 1, 2. But
solutions to patching problems are unique up to isomorphism (given by inverse
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limit, and the restriction of the derivations; see Theorem 2.2). So it suffices to
show that the above two patching problems of differential H-torsors are iso-
morphic. That is, for j = 0, 1, 2 we want to find differential isomorphisms Λj
between the respective rings in the two H-patching problems that carry Ωi to
Θ̄i for i = 1, 2.
By Corollary A.14(a), SN1 = (IndGN (R1))

N = F1[H ], where we identify F1[H ]
with F1 ⊗F1 F1[H ] ⊆ R1 ⊗F1 F1[G]. The differential isomorphism Θ̄1 is given
by F0 ⊗F1 S

N
1 = F0 ⊗F1 F1[H ] → F0[H ]. Meanwhile, since R2 = F2 ⊗F R,

we have S2 = F2 ⊗F IndGH(R) = (R2 ⊗F F [G])HF2 = IndGH(R2), and so SN2 =
(IndGH(R2))

N = IndHH(R2) by Corollary A.14(b). The differential isomorphism

Θ̄2 is given by F0⊗F2 S
N
2 = F0⊗F2 Ind

H
H(R2) = F0⊗F IndHH R

Θ̃0→ F0[H ], where

Θ̃0 is the differential isomorphism given by Lemma 1.18 using that R ⊆ F0.
Also, since R ⊆ F1, Lemma 1.18 yields a differential isomorphism Θ̃1 : F1 ⊗F
IndHH(R)→ F1[H ] = SN1 ; and this map is the restriction of Θ̃0. Let Θ̃2 be the
identity map F2 ⊗F IndHH(R)→ IndHH R2 = SN2 . We then have a commutative
diagram

F0 ⊗F1 S
N
1

Θ̄1 // F0[H ] F0 ⊗F2 S
N
2

Θ̄2oo

F0 ⊗F1 (F1 ⊗F IndH
H(R))

∼ //

idF0
⊗Θ̃1

OO

F0 ⊗F IndH
H(R)

Θ̃0

OO

F0 ⊗F2 (F2 ⊗F IndH
H(R))

∼oo

idF0
⊗Θ̃2

OO

F0 ⊗F1 (F1 ⊗F R)

idF0
⊗ idF1

⊗ρH

OO

Ω1 // F0 ⊗F R

idF0
⊗ρH

OO

F0 ⊗F2 (F2 ⊗F R)

idF0
⊗ idF2

⊗ρH

OO

Ω2oo

of differential isomorphisms, where ρH : R → IndHH(R) is the co-action map

associated to H (see Remark A.12). Setting Λi = Θ̃i ◦ (id⊗ρ) for i = 0, 1, 2
then yields the assertion.

Theorem 2.12. In the situation of Hypothesis 2.10, let (S,Φ1,Φ2) be a solution
of the patching problem (S1, S2, F0[G],Θ1,Θ2) of differential G-torsors. Then
S/F is a Picard-Vessiot ring with differential Galois group G, and hence is a
proper solution to the split differential embedding problem given by G = N ⋊H
and the Picard-Vessiot ring R/F .

Proof. Once the first assertion is shown, the second assertion follows from
Proposition 2.11 together with Lemma 2.8. By Corollary 1.14(a), to prove
the first assertion it suffices to show that S has no new constants and is differ-
entially simple.

We first prove that CS = K. Recall that S1 = Ind
GF1

NF1
(R1) = (R1 ⊗F1

F1[G])
NF1 = (R1 ⊗CF1

CF1 [G])
NF1 . By the assumptions, R1/F1 is a Picard-

Vessiot ring, hence CR1 = CF1 and thus the ring of constants of R1⊗CF1
CF1 [G]

equals CF1 ⊗CF1
CF1 [G]. So CS1 = (CF1 ⊗CF1

CF1 [G])
NCF1 , and the explicit

description of Θ1 in Lemma 1.18 implies Θ1(CS1) = CF1 [G]
NCF1 . Hence
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CΘ1(S1) = Θ1(CS1) = CF1 [G]
NCF1 ⊆ F0[G]

NF0 . Here the invariants are taken
with respect to the action given in Lemma A.3(ii). But by Lemma A.3(b), since
N is normal these are the same as the N -invariants under the action given
in Lemma A.3(i) (which agrees with the torsor action on S). We thus have
CS ⊆ S ∩CΘ1(S1) ⊆ S ∩ F0[G]

NF0 = SNF and hence CS = CSNF . By Proposi-
tion 2.11, there is a differential isomorphism SNF ∼= R, hence CSNF = CR. By
the assumptions, R/F is a Picard-Vessiot ring, so CR = K and we conclude
CS = K.

Next, we show that S is a simple differential ring. Let I be a maximal differen-
tial ideal of S. By Lemma 2.4 (with H1 = N), the ideal I0 := F0⊗F I ⊆ F0⊗F S
is N -stable with respect to the action considered there; or equivalently with
respect to the torsor action, by Lemma A.3(b). Since F0⊗F S is faithfully flat
over S, the ideal I is the contraction of its extension I0 to F0 ⊗F S, and it is
therefore N -stable. Moreover, I ∩SNF is a proper differential ideal in SNF and
so I ∩ SN = (0), since SN ∼= R is differentially simple. Therefore, Lemma A.7
implies I = (0) and thus S is differentially simple.

Remark 2.13. In the situation that CF0 = CF , Theorem 2.12 follows from
Theorem 2.5 (in the case of a differential diamond) via Lemma 2.9, since that
lemma implies thatR2/F2 is a Picard-Vessiot ring with differential Galois group
H .

We conclude this section by summarizing the content of Proposition 2.11 and
Theorem 2.12 in the following

Theorem 2.14. Let (F, F1, F2, F0) be a differential diamond with the factor-
ization property and let (N ⋊ H,R) be a split differential embedding prob-
lem over F with the property that R ⊆ F1. Assume further that there ex-
ists a Picard-Vessiot ring R1/F1 with differential Galois group NCF1

and with
R1 ⊆ F0. Then there exists a proper solution to the differential embedding
problem (N ⋊H,R) over F .

Proof. Let S1 = Ind
GF1

NF1
(R1), let R2 = F2 ⊗F R, let S2 = Ind

GF2

HF2
(R2) = F2 ⊗F

IndGFHF (R), and let Θi : F0 ⊗Fi Si → F0[G] be the isomorphisms as explained
in Hypothesis 2.10. Then (S1, S2, F0[G],Θ1,Θ2) defines a patching problem of
differential GF -torsors; and this has a solution (Z,Φ1,Φ2) that is unique up to
isomorphism, by Theorem 2.2. Write Z = Spec(S). Then Theorem 2.12 asserts
that S is a Picard-Vessiot ring over F with differential Galois group G, and it
is a proper solution to the given split differential embedding problem.

3 Differential embedding problems over complex function fields

Results about differential embedding problems, as considered in Section 2.3,
were obtained in [Obe03] for the case F = C(x) with ∂ = d/dx and C al-
gebraically closed, by building on results of Kovacic ([Kov69], [Kov71]). In
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[Obe03], it was shown that there are proper solutions to certain types of differ-
ential embedding problems, including all those whose kernel is connected; but
the general case has remained open.
As an application of Theorem 2.14, we show in this section that the assumption
that H is connected can be dropped for F = C(x), and that more generally
every differential embedding problem can be solved over the field of functions
F of any compact Riemann surface (i.e., complex curve). Here we can take
any non-trivial C-linear derivation on F , or equivalently any derivation on F
for which the constants are C.
The next result, based on an idea that is often called the “Kovacic trick”, is a
more precise version of an assertion in [BHH16].

Proposition 3.1. Let F be a differential field of characteristic zero and write
K = CF . Let L/F be a differential field extension that is finitely generated over
F with CL = K. Let L′ be the algebraic closure of F in L and let L′′ be the
normal closure of L′ in F̄ . Set d = [L′′ : F ] and m = trdeg(L/F )+1. Let G be
a linear algebraic group defined over K and let R/F be a Picard-Vessiot ring
with differential Galois group G2m+2d. Then there is a subring R0 of R such
that R0/F is a Picard-Vessiot ring with differential Galois group G, and such
that R0 ⊗F L is a Picard-Vessiot ring over L with differential Galois group G.

Proof. This assertion was shown in the proof of Theorem 4.12 of [BHH16],
though the statement of that result asserted a bit less. Namely, in the first
step of that proof of that theorem, it was shown that with notation as above,
R contains a subring R′ which is a Picard-Vessiot ring having differential Galois
group G2m, with the additional properties that F ′ ⊗F L′ is a field, where F ′ is
the algebraic closure of F in E := Frac(R′); and that K is algebraically closed
in F ′ ⊗F L′. In the second step of that proof, it was shown that E ⊗F L is
an integral domain and that K is algebraically closed in the fraction field Ẽ of
that domain. In the third step, it was shown that R′ contains a Picard-Vessiot
ring R0/F (called Ri there) with differential Galois group G, such that the

fraction field Ẽ0 of R̃0 := R0⊗F L ⊆ Ẽ is the compositum E0L ⊆ Ẽ, and such
that CẼ0

= K. Finally, in the conclusion of the proof, it was observed that R̃0

is a Picard-Vessiot ring over L with differential Galois group G.

We also recall the following from [BHH16] (see the statement and proof of
Lemma 4.2 there):

Lemma 3.2. Let (F, ∂) be a differential field, let a ∈ F×, let ∂′ = a∂, and
let K be the constants of (F, ∂) (or equivalently, of (F, ∂′)). Let G be a linear
algebraic group over K, let A ∈ Fn×n, and let R be a Picard-Vessiot ring
over (F, ∂) for the differential equation ∂y = Ay with differential Galois group
G. Then R is a Picard-Vessiot ring over (F, ∂′) for the differential equation
∂′y = aAy with differential Galois group G.

In order to prove our main result, we consider fields of meromorphic functions
on open subsets of Riemann surfaces, especially the Riemann sphere P1

C
=
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C∪{∞}, and we will apply our patching and embedding problem results using
these fields. Consider the open disc U ⊂ C of radius c > 0 about the origin, and
let F1 be the field of meromorphic functions on U . Thus C(x) ⊂ F1 ⊂ C((x)),
and the standard derivation d/dx on C((x)) restricts to the complex derivative
d/dx on F1 and to the standard derivation d/dx on C(x).

Lemma 3.3. Let c > 0, and let ∂ be the derivation d/dx on the field F1 of
meromorphic functions on the open disc U = {x ∈ C | |x| < c}. Let F be
a differential subfield of F1 with CF = C, let A ∈ Fn×n, and let R/F be a
Picard-Vessiot ring for the differential equation ∂(y) = Ay. If all the entries
of A are holomorphic on U , then R embeds as a differential subring of F1.

Proof. By [For77, Theorem 11.2], there exists a fundamental solution matrix
Z for A with entries in F1 (in fact holomorphic on U). Since CF1 = C, which
equals the field of constants of F , the ring F [Z, det(Z)−1] ⊆ F1 is a Picard-
Vessiot ring over F for the differential equation ∂(y) = Ay (notation as in
Section 1.4). The assertion then follows from the uniqueness of Picard-Vessiot
rings over algebraically closed fields of constants.

Lemma 3.4. Let F be a one-variable function field over C, or equivalently the
field of meromorphic functions on a compact Riemann surface X . Let O1, O2

be connected metric open subsets of X such that Oi 6= X , O1 ∪ O2 = X , and
O0 := O1 ∩ O2 is connected. Let Fi be the field of meromorphic functions on
Oi. Then

(a) As subfields of F0, F1 ∩ F2 = F , the field of meromorphic functions on
X .

(b) For every n ≥ 1, every element of GLn(F0) can be written as A−12 A1 with
Ai ∈ GLn(Fi).

Proof. Since being meromorphic is a local property, and since O1 ∪ O2 = X ,
the first assertion follows from the fact that every meromorphic function on X
is a rational function on X . For the second assertion, let H be the sheaf of
holomorphic functions on X in the complex metric topology. Then Fi is the
fraction field of Ri := H(Oi), the ring of holomorphic functions on Oi. Let
A ∈ GLn(F0).

Case 1: A ∈ GLn(R0).
Let Mi be a free Ri-module of rank n, for i = 1, 2, say with bases B1, B2.
Thus Bi is also an Fi-basis of the vector space Mi⊗Ri Fi. Consider the locally
free H-module M on X with M(Oi) = Mi for i = 1, 2, and with transition
matrix A ∈ GLn(R0) on O0 between B1, B2 (i.e., B1 = B2A). Since H is
coherent, so is M, being locally free of finite rank. By [Ser56, Définition 2,
Proposition 10, Théorème 3], there is an equivalence of categories F 7→ Fh

from the coherent O-modules on X to coherent H-modules on X , satisfying
Fh(U) = H(U) ⊗O(U) F(U) for every Zariski open subset U ⊆ X . (Here O is

the sheaf of regular functions on X in the Zariski topology.) ThusM = Fh for
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some coherent sheaf F of O-modules on X . Moreover, sinceM is locally free,
so is F (see [Ser56], bottom of page 31).

For i = 1, 2 choose a point Pi ∈ X r Oi, and let Ui = X r {Pi}. Also let
U0 = U1 ∩ U2 = X r {P1, P2}. Since F is locally free, there is a non-empty
Zariski open subset U ⊂ U0 such that F(U) is free of rank n over O(U), say
with basis B. Each element of B has only finitely many poles on Ui, viewing
F ⊗O(U) F(U) = F ⊗O(Ui) F(Ui). By Riemann-Roch, for i = 1, 2 there exists
a non-zero element fi ∈ O(Ui) ⊂ F such that the elements of fiB lie in F(Ui).
Here fiB is an F -basis of F ⊗O(Ui) F(Ui). Since Oi ⊂ Ui, the set fiB is
also an Fi-basis of Fi ⊗H(Oi) M(Oi). Let Ci ∈ GLn(Fi) be the transition
matrix between the bases Bi and fiB of Fi ⊗H(Oi)M(Oi); i.e., Bi = (fiB)Ci.

Thus B1 = f1BC1 = f1(f
−1
2 B2C

−1
2 )C1 ∈ GLn(F0). Taking A1 = f1f

−1
2 C1 ∈

GLn(F1) and A2 = C2 ∈ GLn(F2) yields A−12 A1 = B−12 B1 = A, completing
the proof of Case 1.

Case 2: General case.

The entries of A are meromorphic functions on O0, as is det(A). So the set
Σ ⊂ O0 consisting of the poles of the entries of A and the zeroes of det(A) is a
discrete subset of O0. Thus the limit points of Σ in X lie in ∂O1 ∪ ∂O2, where
∂Oi = Ōi r Oi is the boundary of Oi. Since Oi is open and O1 ∪ O2 = X ,
it follows that ∂O1 and ∂O2 are disjoint closed subsets of X , with ∂O1 ⊂ O2

and ∂O2 ⊂ O1. Using the collar neighborhood theorem, we see that there are
metric open neighborhoods Ni ⊂ X of ∂Oi (for i = 1, 2) such that the following
properties hold:

• N̄1 is disjoint from N̄2;

• the open sets Õi := Oi r (Oi ∩ N̄i) are connected for i = 1, 2;

• the three intersections Õ0 := Õ1 ∩ Õ2, Õ1 ∩ O2, and O1 ∩ Õ2 are each
connected;

• Õ1 ∪ Õ2 = X ; and

• Σ̃ := Σ ∩ Õ0 is finite.

Let O′i := Õi r Σ̃ for i = 0, 1, and let O′2 := Õ2. Then O′i is a connected
open set for i = 0, 1, 2; O′1 ∩ O′2 = O′0; O

′
1 ∪ O′2 = X ; and Σ is disjoint from

O′0. Thus A ∈ GLn(R
′
0), where R

′
0 = H(O′0). Let O− = O′1 ∩ O2 and let

O+ = O1 ∩ O′2; these are connected open subsets of X . Write F ′i , F
± for the

field of meromorphic functions on O′i, O
±, respectively. By Case 1, there exist

Ai ∈ GLn(F
′
i ), for i = 1, 2, such that A = A−12 A1 in GLn(F

′
0). It remains

to show that Ai ∈ GLn(Fi). Now A ∈ GLn(F0) ⊂ GLn(F
+); A1 ∈ GLn(F

′
1);

and A2 ∈ GLn(F
′
2) ⊂ GLn(F

+). Since A1 = A2A ∈ GLn(F
+), and since

F ′1 ∩ F+ = F1, it follows that A1 ∈ GLn(F
′
1 ∩ F+) = GLn(F1). Similarly,

F ′2 ∩ F− = F2; so A2 = A1A
−1 lies in GLn(F

′
2 ∩ F−) = GLn(F2).
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Proposition 3.5. Let F be a one-variable function field over C, and let ∂ be a
derivation on F with constant field C. Then every split differential embedding
problem over (F, ∂) has a proper solution.

Proof. A given split differential embedding problem consists of a semi-direct
product G = N ⋊H of linear algebraic groups and a Picard-Vessiot ring R/F
with differential Galois group H for some differential equation ∂(y) = Ay over
F .

Consider the smooth complex projective curve X with function field F ; we may
also view this as a compact Riemann surface. By taking a non-constant rational
function on X , we obtain a finite morphism φ : X → P1

C
, corresponding to a

branched cover of Riemann surfaces, and also corresponding to an inclusion ι :
C(x) →֒ F of function fields. If we write ∂′ for the derivation on F induced via ι
from the derivation d/dx on C(x), then ∂ = g(x)∂′, where g(x) := ∂(ι(x)) ∈ F
is non-zero (and where we use that the space of derivations of F over K is one
dimensional). So by Lemma 3.2, in order to prove the result we may assume
that ∂ is the derivation on F that extends the derivation d/dx on C(x).
Away from a finite subset of X , φ is unramified and the entries of A are holo-
morphic. After a translation x 7→ x+ c, we may assume that the fiber over the
point (x = 0) on P1

C
does not contain any point in that finite set. So there is

an open disc D around 0 ∈ P1
C
such that φ−1(D) also does not meet that finite

set; and then φ−1(D) ⊂ X , being unramified over D, consists of finitely many
disjoint copies of D. Call one of those copies Ô, and let P be the unique point
in Ô ∩φ−1(0). The map φ then defines a differential isomorphism between the
fields of meromorphic functions on Ô and on D, which we identify and call F̂ .
Applying Lemma 3.3 to the inclusion of differential fields F ⊂ F̂ , we obtain an
inclusion R ⊆ F̂ .
Choose a non-constant regular function on the complex affine curve X r {P};
this defines a finite morphism π : X → P1

C
such that P is the unique point

mapping to ∞ ∈ P1
C
. So there is an open disc D′ ⊂ P1

C
centered about ∞,

whose closure contains no branch point of π other than ∞, such that O1 :=
π−1(D′) is homeomorphic to an open disc, and such that the closure of O1 is
contained in Ô. Since O1 is contained in Ô, the field of meromorphic functions
F1 on O1 contains F̂ ; and thus R ⊆ F1. Also, the map π defines an inclusion
j : C(x) →֒ F (not the same as the above inclusion ι defined by φ). With
respect to this inclusion, we may view F as a finite extension of C(x); let d be
the degree of its Galois closure over C(x).
It is known that every linear algebraic group over C is a differential Galois
group over C(x) ([TT79]; see also [vdPS03, Theorem 5.12]). So there is a

matrix A′ over C(x), and a Picard-Vessiot ring R̃′ over (C(x), d/dx) for the
differential equation ∂y = A′y, with differential Galois group N2d. Here A′ is
holomorphic on some open disc in A1

C
. A transformation of the form x 7→ ax+b

(with a ∈ C×, b ∈ C) takes this open disc to an open disc D′′ that is centered
at the origin and contains P1

C
rD′. Thus D′ ∪ D′′ = P1

C
. Note that D′ ∩D′′

is homeomorphic to an annulus, as is its inverse image O0 under π. Also,
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P1
C
r D′′ is homeomorphic to a closed disc, as is its inverse image under π.

Hence O2 := π−1(D′′), which is the complement in X of this inverse image, is
connected.
The above transformation x 7→ ax+ b carries d/dx to a · d/dx; carries A′ to a

matrix A′′ whose entries are holomorphic on D′′; and carries R̃′ to a Picard-
Vessiot ring R̃′′ over (C(x), a · d/dx) with differential Galois group N2d. By

Lemma 3.2, R̃′′ is also a Picard-Vessiot ring over (C(x), d/dx) for the differen-
tial equation dy/dx = a−1A′′y, with differential Galois group N2d. Since the
entries of a−1A′′ are also holomorphic on the open disc D′′, it follows from
Lemma 3.3 that R̃′′ is contained in the field of meromorphic functions on D′′.
By Proposition 3.1, there is a subring R̃0 of R̃′′ such that R̃0 is a Picard-
Vessiot ring over (C(x), d/dx) with differential Galois group N , and such that

R′ := R̃0 ⊗C(x) F is a Picard-Vessiot ring over (F, ∂) with differential Galois

group N . Since R̃′′ is contained in the field F ′′ of meromorphic functions on
D′′, so is its subring R̃0. Tensoring this latter containment of C(x)-algebras
with F (which is flat over C(x)), we obtain an inclusion R′ ⊆ F ′′⊗C(x)F = F2,
where F2 is the field of meromorphic functions on O2 = π−1(D′′).
Let F0 denote the field of meromorphic functions on O0 := O1 ∩ O2. By
Lemma 3.4, (F, F1, F2, F0) is a differential diamond with the factorization prop-
erty. Since R′ ⊆ F2 and CF = CF0 = C, we may apply Lemma 2.9 and obtain
that the compositum R1 = F1R

′ ⊆ F0 is a Picard-Vessiot ring over F1 with
differential Galois group N . Recall that R ⊆ F1. We conclude that by The-
orem 2.14, the differential embedding problem given by G = N ⋊H together
with R has a proper solution.

Proposition 3.6. Let F be a one-variable function field over an algebraically
closed fieldK of characteristic zero, and let ∂ be a derivation on F with constant
field K. Suppose that every split differential embedding problem over F has a
proper solution. Then the same holds for every differential embedding problem
over F .

Proof. Consider a differential embedding problem given by an exact sequence of
linear algebraic K-groups 1→ N → G→ H → 1 and a Picard-Vessiot ring R
for H over F . As in Proposition 1.12, Z := Spec(R) is a simple differential H-
torsor over F , corresponding to an element α ∈ H1(F,H) under the functorial
bijection between torsors and cohomology classes (e.g. see [Ser97, I.5.2 and
III.1.1]). Since K is algebraically closed, it follows from [Ser97, II.3.3.Ex. 3
and II.3.1.Proposition 6(a)] that F is a field of dimension one (or equivalently,
of cohomological dimension one, since char(F ) = 0 [Ser97, II.3.1]). Hence F
satisfies the hypotheses of [Ser97, III.2.4, Theorem 3]. Thus Corollary 2 of that
theorem applies; i.e., the surjection G → H induces a surjection H1(F,G) →
H1(F,H).
Let α̃ ∈ H1(F,G) be an element that maps to α, and let X be the corre-
sponding G-torsor over F . We thus have a morphism of G-spaces X → Z
that is constant on N -orbits (since G acts on Z through H = G/N). By the
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universal mapping property of the quotient torsor (see Proposition A.6 and
the discussion just before), this morphism factors through X/N . The result-
ing map ι : X/N → Z is an H-torsor morphism, which is automatically an
isomorphism. The isomorphism ι defines a differential structure on X/N . By
Proposition 1.8(b), there is a differential structure on X with respect to which
the quotient morphism ψ : X → X/N is differential. Let π : X → Z be the
composition ι ◦ ψ, which is then also differential.
By Proposition 1.15, there is a closed subgroup J ofG such thatX = IndGJ Y for
some simple differential J-torsor Y such that the fraction field of the coordinate
ring S = F [Y ] has no new constants. Thus S is a Picard-Vessiot ring for J
over F , by Proposition 1.12(b). By the defining property of induced torsors,
we have a J-equivariant inclusion Y →֒ X . Applying π gives a J/(N ∩ J)-
equivariant inclusion Y/(N ∩ J) → X/N −̃→Z. Here Y/(N ∩ J) is a torsor
under J/(N ∩ J) = JN/N , and Z is a torsor under H = G/N , and the above
injection is equivariant with respect to the natural inclusion JN/N ⊆ G/N .
(Here JN is the closed subgroup of G generated by J and N .) Also, Z ∼= X/N

is of the form (IndGJ Y )/N = Ind
G/N
J/(N∩J)

(
Y/(N ∩ J)

)
= Ind

G/N
JN/N

(
Y/(N ∩ J)

)
,

using Proposition A.13. But Z = Spec(R) is a simple differential H-torsor
with no new constants, since R is a Picard-Vessiot ring for H . So Lemma 1.16
implies that JN/N = G/N ; i.e., JN = G and the restriction of G→ G/N = H
to J is surjective. So the above JN/N -equivariant inclusion Y/(N ∩ J) → Z
is actually an inclusion of G/N -torsors, and it is therefore an isomorphism.
Hence the composition Y → Y/(N ∩J) −̃→Z is surjective; i.e., Z is a quotient
of Y as a differential torsor.
Let G̃ be the semi-direct product N ⋊ J , where J acts on N via conjugation
(as subgroups of G). Let M be the kernel of the surjection φ : G̃ → G given
by (n, j) 7→ nj. Let φ̄ : J → H be the composition J →֒ G → G/N = H . We
then have the following commutative diagram of groups with exact rows and
columns, and where the middle row is split exact:

1

��

1

��
1 //

��

M //

��

N ∩ J //

��

1

1 // N //

=

��

G̃ //

φ

��

J //

φ̄

��

1

1 // N //

��

G //

��

H //

��

1

1 1 1

Here the map M → N ∩ J is an isomorphism, given by (a−1, a) 7→ a for
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a ∈ N ∩ J .
Consider the split differential embedding problem given by the middle row and
the Picard-Vessiot ring S for J . By the hypothesis of the proposition, this
has a proper solution, given by a Picard-Vessiot ring R̃ for G̃ that contains
S as a differential subring. Its spectrum is a differential G̃-torsor W̃ such
that W̃/N −̃→Y as differential J-torsors. Since Y/(N ∩ J) → X/N −̃→Z,
and since the above diagram commutes, the differential G-torsor W := W̃/M
satisfies W/N −̃→Z. By the Galois correspondence ([Dyc08, Thm. 4.4] or the
observation after Proposition 1.17), the coordinate ring R̃M of W is a Picard-
Vessiot ring for G = G̃/M over F , and (R̃M )N −̃→R. So R̃M is a proper
solution to the given differential embedding problem.

Combining Proposition 3.5 with Proposition 3.6, we obtain:

Theorem 3.7. Let F be any one-variable complex function field, together with
a non-trivial C-linear derivation ∂. Then every differential embedding problem
over (F, ∂) has a proper solution.

Example 3.8. Let Γ be a lattice and let F be the field of elliptic functions
with respect to Γ. Then every differential embedding problem over F has a
proper solution.

Proof. Recall that F is generated over C by the Weierstraß function ℘ and its
derivative ℘′ which satisfy the equation (℘′)2 = 4℘3−g2(Γ)℘−g3(Γ). Therefore,
F is a one-variable function field over C and it has a non-trivial derivation, so
the claim follows from Theorem 3.7.

A Torsors, quotients, and induction

This appendix contains basic results about torsors, group actions, and quo-
tients, which are used in the body of the paper in a differential context. Many
of these results are known, but for lack of a good reference we include them
here. Throughout this appendix, K is an arbitrary field, and G is an affine
group scheme of finite type over K.

A.1 G-spaces

An affine G-space over K is an affine scheme X of finite type over K together
with a morphism α : X×KG→ X such that αR : X(R)×G(R)→ X(R) defines
a right group action of G(R) on X(R) for every K-algebra R. We will usually
write x.g for αR(x, g) when x ∈ X(R) and g ∈ G(R). A morphism of G-spaces
is a G-equivariant morphism of schemes. The G-space structure X corresponds
to a co-action homomorphism ρ : K[X ]→ K[X ]⊗K K[G] (where K[X ] is the
affine coordinate ring of X , and similarly for K[G]).
In addition to this co-action ρ, there is also a functorial left group action of G
on the coordinate ring K[X ]. That is, for every K-algebra R, there is a left
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action
G(R)× (K[X ]⊗K R)→ K[X ]⊗K R, (h, f) 7→ h(f) (6)

of the groupG(R) onK[X ]⊗KR, and these are compatible. To define the action
in (6), first note that we can identify K[X ] ⊗K R with the morphisms from
XR to A1

R. Namely, an element f ∈ K[X ]⊗K R is interpreted as a morphism
f : XR → A1

R by sending an element x ∈ XR(S) = HomR(K[X ] ⊗K R,S) to
x(f) for every R-algebra S. So for g ∈ G(R) and f as above, we can define
g(f) by

g(f)(x) = f(x.g)

for every R-algebra S and every x ∈ XR(S). Alternatively, g(f) can be de-
scribed as the image of f ∈ K[X ]⊗K R under the composition

K[X ]⊗K R
ρ⊗idR−−−−→ K[X ]⊗K K[G]⊗K R→ K[X ]⊗K R, (7)

where the last map is given by a⊗ b ⊗ r 7→ a⊗ g(b)r for a ∈ K[X ], b ∈ K[G],
r ∈ R and g ∈ G(R) = HomK(K[G], R), and where g(b) denotes the image of
b under g : K[G]→ R.
Given an affine G-space X and a closed subgroup H of G, we may consider X
as an H-space. We then obtain a functorial left action of H on K[X ]; this is
the restriction of the above functorial action of G. An element f ∈ K[X ] is
H-invariant if h(f⊗1) = f⊗1 under the left action ofH(R) on K[X ]⊗KR, for
every K-algebra R and h ∈ H(R). These H-invariant elements form a subring
denoted by K[X ]H , the (functorial) invariants in K[X ].
Observe that f ∈ K[X ] is invariant under H if and only if ρH(f) = f⊗1, where
ρH : K[X ]→ K[X ]⊗K K[H ] is the co-action corresponding to the action of H
on X . The co-action maps for G and H are related by the identity ρH = π ◦ ρ,
where π : K[G] → K[H ] is the homomorphism corresponding to the inclusion
of H into G. This identity shows that the map in the display (7) above agrees
with the corresponding map with G replaced by H and ρ by ρH , if the element
g ∈ G(R) that is used in (7) lies in H(R).

Lemma A.1. For an ideal J E K[X ] the following conditions are equivalent:

(a) H(R)(J ⊗K R) ⊆ J ⊗K R for all K-algebras R.

(b) Z = Spec(K[X ]/J) is H-stable; i.e., Z(R).H(R) ⊆ Z(R) for all K-
algebras R.

(c) ρH(J) ⊆ J ⊗K K[H ].

Proof. To see (a) ⇒ (b), let R be a K-algebra and let z ∈ Z(R), h ∈ H(R)
and f ∈ J ⊗K R. Since

Z(R) = {x ∈ X(R) | f(x) = 0 for all f ∈ J ⊗K R}

and h(f) ∈ J ⊗K R, we have f(z.h) = h(f)(z) = 0. Therefore z.h ∈ Z(R).
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To prove (b) ⇒ (a), note that

J ⊗K R = {f ∈ K[X ]⊗K R | f(z) = 0 for all R-algebras S and all z ∈ Z(S)}

If f ∈ J ⊗K R, h ∈ H(R), z ∈ Z(S), then h(f)(z) = f(z.h) = 0 because
z.h ∈ Z(S). Therefore h(f) ∈ J ⊗K R.
In order to prove (a) ⇒ (c), consider display (7) with G replaced by H , taking
R = K[H ], and letting g be the element h ∈ H(R) that corresponds to the
identity map in HomK(K[H ], R). Taking j ∈ J and using the display in that
situation, we see that h(j ⊗ 1) = ρH(j). But part (a) says in particular that
h(j ⊗ 1) ∈ J ⊗K R. So (c) follows.
Finally, (c) ⇒ (a) follows from the description of the H-action in (7) with G
replaced by H .

An ideal J E K[X ] satisfying the equivalent conditions of Lemma A.1 is called
H-stable. We will frequently use that every ideal generated by elements in
K[X ]H is H-stable.
If H1, . . . , Hm are closed subgroups of G, the smallest closed subgroup of G
that contains all Hi’s is called the closed subgroup generated by the Hi’s.

Lemma A.2. Consider X = G as a G-space via the action given by the formula
x.g = g−1x. Let H be the closed subgroup of G generated by the closed subgroups
H1, . . . , Hm of G. Then the following holds:

(a)
m⋂
i=1

K[G]Hi = K[G]H and K[G]G = K.

(b) Every ideal in K[G] that is Hi-stable for all i = 1, . . . ,m is H-stable.

(c) The only proper G-stable ideal in K[G] is the zero ideal.

Proof. For part (a), observe that K[G]H ⊆
m⋂
i=1

K[G]Hi . For any K-algebra R

write

H ′(R) :=

{
h ∈ G(R) |h(f ⊗ 1) = f ⊗ 1 for all f ∈

m⋂

i=1

K[G]Hi

}
.

We claim that H ′ is a closed subgroup of H . To see this it suffices to show
that the condition h(f ⊗ 1) = f ⊗ 1 is a closed condition for any non-zero
f ∈ K[G]: Let (fi) be a K-basis of K[X ] = K[G] such that f0 = f and
write ρ(f) =

∑
fi ⊗ gi ∈ K[X ] ⊗K K[G]. Then h(f ⊗ 1) =

∑
fi ⊗ h(gi) for

h ∈ G(R) = HomK(K[G], R). Therefore, h(f ⊗ 1) = f ⊗ 1 if and only if
h(g0) = 1 and h(gi) = 0 for i 6= 0. Thus H ′ is the closed subscheme of G
defined by g0 − 1 and gi for i 6= 0, proving the claim.
Because H ′ is a closed subgroup of G containing H1, . . . , Hm we must have

H ⊆ H ′; i.e.,
m⋂
i=1

K[G]Hi ⊆ K[G]H . This proves the first part of (a). For the
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second part of (a), if f ∈ K[G]G, then f(g) = f(1.g−1) = g−1(f)(1) = f(1) ∈ K
for all g ∈ G(R). So f ∈ K.
To prove (b), let J E K[G] be an ideal, and for any K-algebra R write

Z(R) := {h ∈ G(R)| h(J ⊗K R) ⊆ J ⊗K R}.
We claim that Z is closed in G, and hence so is Z ∩ Z−1 ⊆ G. But

(Z ∩ Z−1)(R) = {h ∈ G(R)| h(J ⊗K R) = J ⊗K R}
for any K-algebra R; so Z ∩Z−1 is a subgroup of G. Thus if J is Hi-stable for
all i then J is also H-stable, by definition of H ; and (b) would then follow.
To prove the claim, let (fi)i∈I be a K-basis of K[G] such that I = I1 ∪ I2
is the disjoint union of I1 and I2 and (fi)i∈I1 is a basis of J . Let f ∈ J and
write ρ(f) =

∑
fi ⊗ gi ∈ K[G] ⊗K K[G]. Then h(f ⊗ 1) =

∑
fi ⊗ h(gi) for

h ∈ G(R) = HomK(K[G],K). Therefore h(f ⊗ 1) ∈ J ⊗K R if and only if
h(gi) = 0 for i ∈ I2. This proves the claim, and part (b).
Part (c) is clear from Lemma A.1(b), since G is the only G-stable closed sub-
scheme of G.

Lemma A.3. Let N be a normal closed subgroup of G. We consider two right
actions of N on G:

(i) G×N → G given by the formula (g, n) 7→ g ·n
(ii) G×N → G given by the formula (g, n) 7→ n−1 ·g.
Let ρ1 : K[G] → K[G] ⊗ K[N ] and ρ2 : K[G] → K[G] ⊗ K[N ] denote the ho-
momorphisms corresponding to (i) and (ii). Then the following hold.

(a) The two actions give rise to the same ring of invariants K[G]N ⊆ K[G]:

{f ∈ K[G] | ρ1(f) = f ⊗ 1} = {f ∈ K[G] | ρ2(f) = f ⊗ 1}.

(b) Let J E K[G] be an ideal. Then J is N -stable with respect to the action
(i) if and only if J is N -stable with respect to the action (ii), that is,
ρ1(J) ⊆ J ⊗K[N ] if and only if ρ2(J) ⊆ J ⊗K[N ].

Proof. To prove (a) we have to show that for f ∈ K[G] we have f(gn) = f(g)
for all n ∈ N(R) and g ∈ G(S) for all K-algebras R and R-algebras S if and
only if f(n−1g) = f(g) for all n ∈ N(R) and g ∈ G(S) for all K-algebras R
and R-algebras S.
First assume that f(gn) = f(g). Since g−1n−1g ∈ N(S) we find f(n−1g) =
f(gg−1n−1g) = f(g). Conversely, if f(n−1g) = f(g), then f(gn) =
f(gng−1g) = f(g) because gng−1 ∈ N(S).
To prove (b), according to Lemma A.1, we have to show that for a closed
subscheme Z of G we have Z(R)N(R) ⊆ Z(R) for all K-algebras R if and only
if N(R)Z(R) ⊆ Z(R) for all K-algebras R.
First assume that Z(R)N(R) ⊆ Z(R). For z ∈ Z(R) and n ∈ N(R) the
element z−1nz belongs to N(R) and therefore nz = zz−1nz ∈ Z(R).
Conversely, assume that N(R)Z(R) ⊆ Z(R), then zn = znz−1z ∈ Z(R) be-
cause znz−1 ∈ N(R).
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A.2 Quotients

In order to discuss the quotient of a G-space X by the action of G, we recall
some basic facts about sheaves in the faithfully flat topology. Let K be a
field and let F be a functor from the category of K-algebras to the category
of sets. Then F is a sheaf if F(A × B) = F(A) × F(B) for every pair of
K-algebras A,B, and if for every faithfully flat homomorphism R → S of K-
algebras the sequence F(R) → F(S) ⇒ F(S ⊗R S) is exact (i.e., an equalizer
of sets). Morphisms of sheaves are defined as morphisms of functors. Every
quasi-projective scheme overK (in particular, every affineK-scheme) is a sheaf.

If F is a functor from the category of K-algebras to the category of sets, then
there exists a sheaf F̃ and a morphism ι : F → F̃ that is universal among
morphisms from F to sheaves; i.e., for every morphism φ : F → F ′ from F to
a sheaf F ′, there exists a unique morphism φ̃ : F̃ → F ′ such that φ = φ̃ ◦ ι. See
for example [DG70, III, §1, Theorem 1.8] for a proof. The sheaf F̃ is called the
sheafification of F . If φ : F → F ′ is a morphism of functors, then the universal
property of F̃ applied to the morphism F → F ′ → F̃ ′ yields a morphism
φ̃ : F̃ → F̃ ′ that is called the sheafification of φ.
Let G be an affine group scheme of finite type over K and let X be an affine
G-space over K. We view X as a sheaf. A morphism π : X → Y of sheaves is
constant on G-orbits if the following diagram commutes:

X ×G

π◦pr1 ##❋
❋❋

❋❋
❋❋

❋❋

α // X

π
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

Y

We writeX//G for the functor of G-orbits onX ; i.e., (X//G)(R) = X(R)/G(R)
for every K-algebra R. Let pr: X → X//G be the canonical projection. Set

Y = X̃//G and let π = p̃r : X → Y be the sheafification of pr. It is easy to
see that Y together with π : X → Y is the universal quotient in the category
of sheaves, that is, π is constant on G-orbits and for every other morphism
φ : X → Y ′ of sheaves that is constant on G-orbits, there exists a unique

morphism ψ : Y → Y ′ such that ψ ◦ π = φ. In the situation where X̃//G is
represented by a quasi-projective F -scheme, we will write X/G for that scheme.
A case of particular interest in where X/G is an affine scheme; in that situation
we have the following result:

Proposition A.4. Let G be an affine group scheme of finite type over K and
let X be an affine G-space over K. If the quotient

Y = X̃//G

is an affine scheme, then K[Y ] ∼= K[X ]G, and the projection π : X → Y is
given by the inclusion K[Y ] ∼= K[X ]G ⊆ K[X ].
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Proof. Let ρ : K[X ]→ K[X ]⊗KK[G] be the homomorphism corresponding to
the action α : X ×G→ X ; i.e., α∗ = ρ.

Set Z = Spec(K[X ]G) and let πZ : X → Z be the morphism defined by the
inclusion π∗Z : K[X ]G →֒ K[X ]. By definition of K[X ]G, the composition ρ◦π∗Z
maps f to f ⊗ 1 for every f ∈ K[X ]G. Hence πZ ◦ α : X × G → Z equals
πZ applied to the first factor, and πZ is thus constant on G-orbits. It is easy
to check that Z is the universal quotient of X by G in the category of affine
schemes.

By assumption, Y is an affine scheme and it is the universal quotient in the
category of sheaves, therefore it is also the universal quotient in the category
of affine schemes. We conclude Y ∼= Z and thus K[Y ] ∼= K[Z] = K[X ]G.

Remark A.5. For every affine G-space X , there exists a universal quotient of
X mod G in the category of affine schemes, namely Spec(K[X ]G). However,
this does not imply that this is a quotient with “good properties”, since the
category of affine schemes is in general too small for “good quotients”. For
example the multiplicative group G = Gm acts on the affine line X = A1, but
K[X ]G = K, so the affine quotient Spec(K[X ]G) is trivial and does not contain
any information on the G-orbits.

A non-empty affine G-spaceX is called a G-torsor if for everyK-algebra R and
all x, y ∈ X(R) there exists a unique g ∈ G(R) with y = x.g. Equivalently, the
condition is that the morphism (α, pr1) : X ×G→ X ×X is an isomorphism,
where pr1 is the projection onto the first component. A torsor is called trivial
if it is isomorphic to the G-torsor G (where the G-action on G is defined by
right multiplication). A torsor X is trivial if and only if X(K) 6= ∅. Over an
algebraically closed field, every torsor is trivial; and so for general K, there is
a finite extension L/K such that the base change XL is trivial as a GL-torsor.

The next proposition assures that certain quotients of torsors are well-behaved.
We first recall the basics of flat descent theory for schemes, in the special case
of field extensions. Let L/K be a field extension. Then descent data for an
L-scheme Z consists of an isomorphism φ : Z ×K L → L ×K Z such that
φ2 = φ1 ◦φ3, where φ1 = idL×φ : L×K Z ×K L→ L×K L×K Z and similarly
for φ2 : Z ×K L×K L→ L×K L×K Z and φ3 : Z ×K L×K L→ L×K Z ×K L
(where idL is inserted into the second or third factor respectively). AK-scheme
Y induces an L-scheme Z := Y ×KL together with descent data; and conversely
an L-scheme Z together with descent data is induced by a K-scheme Y that is
unique up to isomorphism. See [Gro71, VIII] and [Mil80, I.2] for more details.
Similarly, a sheaf over K induces a sheaf over L together with descent data
in the analogous sense. Concerning uniqueness, the sheaf axiom implies that
a sheaf F over K is determined by its base change to L together with the
induced descent data, since for any K-algebra A, the set F(A) is the equalizer
of F(A⊗KL) ⇒ F(A⊗KL⊗KL) and similarly for morphisms. See also [DG70,
III, Section 3.4, Proposition 6.2].
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Proposition A.6. Let X be a G-torsor for an affine group scheme G of finite
type over K.

(a) If H is a closed subgroup of G, then X/H exists; i.e., X̃//H is represented
by a quasi-projective scheme.

(b) Let N E G be a closed normal subgroup. Then X/N is isomorphic to the
affine scheme Spec(K[X ]N ), and it is a (G/N)-torsor. In addition, the
homomorphism ρX : K[X ]→ K[X ]⊗K[G] corresponding to the G-action
on X restricts to a homomorphism ρY : K[X ]N → K[X ]N ⊗K[G]N and
this homomorphism corresponds to the (G/N)-action on Y . Furthermore,
K[X ] is faithfully flat over K[X ]N .

Proof. For part (a), the sheaf G̃//H is represented by a K-scheme (see [DG70,
III, Section 3.5, Théorème 5.4]), and this scheme is quasi-projective by [Ray70,
Corollaire VI.2.6]. That is, the quotient G/H exists. The G-torsor X becomes
trivial over some finite field extension L/K, and this induces an isomorphism

of sheaves between (X̃//H)L and (G/H)L. The extension of constants from K

to L induces descent data for the sheaf (X̃//H)L. Since (X̃//H)L is isomorphic
to a quasi-projective L-scheme (viz. (G/H)L), it follows from faithfully flat de-
scent for schemes ([Gro71, VIII, Corollaire 7.7]) that there is a quasi-projective
K-scheme Y that induces this L-scheme together with the above descent data.

But Y and X̃//H are then both sheaves that induce YL together with the
above descent data. So by the uniqueness assertion before the statement of the

proposition, it follows that Y and X̃//H are isomorphic as sheaves. That is,
Y = X/H . This proves part (a).
Next we turn to part (b). Since N is normal, the quotient G/N is an affine K-
group scheme of finite type (see [DG70, III, Section 3.5, Théorème 5.6]); hence
so is (G/N)L. Thus in the argument above (with H = N), the descended
scheme Y = X/N is also affine, by [Gro71, VIII, Théorème 2.1] (or [Mil80, I.2,
Theorem 2.23]).
For every K-algebra R, the image of an element x ∈ X(R) in X(R)/N(R) will
be denoted by [x], and the image of g ∈ G(R) in G(R)/N(R) will be denoted
by ḡ. Thus

X(R)/N(R)×G(R)/N(R)→ X(R)/N(R), ([x], ḡ) 7→ [x].ḡ := [x.g]

is a well-defined group action for every K-algebra R and it defines a morphism
of functors (X//N)× (G//N)→ (X//N). The sheafification X/N × (G/N)→
X/N of this morphism defines a group action of G/N on X/N . For every K-
algebra R, and for all [x], [y] ∈ (X//N)(R), there exists a unique ḡ ∈ (G//N)(R)
with [x] = [y].ḡ. Therefore,

(X//N)(R)× (G//N)(R)→ (X//N)(R)× (X//N)(R), ([x], ḡ) 7→ ([x], [x].ḡ)

is bijective for every K-algebra R. Hence the sheafification X/N × (G/N) →
X/N ×X/N is an isomorphism, and we conclude that X/N is a (G/N)-torsor.
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Proposition A.4 implies that K[X/N ] = K[X ]N (i.e., X/N ∼= Spec(K[X ]N))
and that the quotient map π : X → X/N is induced from the inclusion
K[X ]N ⊆ K[X ]. Similarly, the quotient map πG : G → G/N is induced from
the inclusion K[G/N ] = K[G]N ⊆ K[G]. By construction of the (G/N)-action
on X/N , the following diagram commutes:

X ×G //

π×πG

��

X

π

��
(X/N)× (G/N) // X/N

and we conclude that the homomorphism ρX : K[X ] → K[X ] ⊗ K[G] corre-
sponding to the G-action on X restricts to a homomorphism ρX/N : K[X ]N →
K[X ]N ⊗K[G]N corresponding to the (G/N)-action on X/N .

Finally, we show that K[X ] is faithfully flat over K[X ]N . Fix a finite field
extension L/K such that X(L) is non-empty. Let x ∈ X(L) and define y =
π(x) ∈ (X/N)(L). Then g 7→ x.g defines an isomorphism GL → XL, and ḡ 7→
y.ḡ = π(x.g) defines an isomorphism (G/N)L → (X/N)L, in each case between
trivial torsors. The isomorphism (L⊗K K[X ])→ (L⊗K K[G]) corresponding
to GL → XL restricts to the isomorphism (L ⊗K K[X ]N) → (L ⊗K K[G]N )
corresponding to (G/N)L → (X/N)L. By [DG70, III.3, Proposition 2.5], K[G]
is faithfully flat over K[G]N . So L⊗KK[G] is faithfully flat over L⊗KK[G]N ,
and therefore L⊗K K[X ] is faithfully flat over L⊗K K[X ]N . Using that L/K
is faithfully flat, we conclude that K[X ]/K[X ]N is faithfully flat.

The next result is used in Section 2.

Lemma A.7. Let G be a smooth affine group scheme of finite type over a field K
and let N be a normal closed subgroup. Let X be a G-torsor, and let I E K[X ]
be an N -stable, non-zero ideal. Then I ∩K[X ]N 6= 0.

Proof. First note that by flatness of K̄ over K, we may assume that K is
algebraically closed. Hence X is a trivial G-torsor and we may assume X = G.
Let I E K[G] be an N -stable, non-zero ideal. We need to show that I ∩
K[G]N 6= 0. Let Z ( G be the closed subset defined by I. By Proposition A.4,
the quotient morphism π : G → G/N corresponds to the inclusion K[G]N ⊆
K[G] on the level of coordinate rings. Furthermore, π is open (see Theorem
5.5.5 in [Spr09] and its proof), so π(GrZ) is an open and non-empty subset of
G/N . Also note that Z is a union of N -orbits, since I is N -stable. However, the
fibers of π are the N -orbits in G ([Spr09, Cor. 5.5.4]) and so π(Z)∩π(GrZ) =
∅. Therefore, π(Z) ⊆ (G/N) r π(G r Z) is not dense in G/N and hence√
I ∩K[G]N 6= 0. Choose 0 6= f ∈

√
I ∩K[G]N . Then some power fn lies in

I ∩K[G]N . But G is reduced, so fn 6= 0 and thus I ∩K[G]N 6= 0.

Documenta Mathematica 23 (2018) 241–291



284 Bachmayr, Harbater, Hartmann, Wibmer

A.3 Induced torsors

Let H be a closed subgroup of G and let Y be an H-torsor. There is a natural
way to construct a G-torsor

X = IndGH(Y )

from Y ([DG70, III, §4, 3.2]) which we recall in the proof of Proposition A.8
below. This follows directly from the identification of isomorphism classes of
torsors with equivalence classes of 1-cocycles, and the fact that the inclusion
mapH →֒ G induces a mapH1(K,H)→ H1(K,G). Alternatively, the induced
torsor IndGH(Y ) can be characterized by a universal property:

Proposition A.8. Let H be a closed subgroup of G and let Y be an H-torsor.
Then there exists a G-torsor IndGH(Y ) together with an H-equivariant mor-
phism Y → IndGH(Y ) such that for every H-equivariant morphism Y → Z from
Y to some affine G-space Z, there exists a unique G-equivariant morphism
IndGH(Y )→ Z making the diagram

Y

��❃
❃❃

❃❃
❃❃

❃
// IndGH(Y )

{{
Z

(8)

commutative. This G-torsor is unique up to a unique isomorphism, and it
is given by the quotient (Y × G)/H, where Y × G is an H-space under the
action given by (y, g).h = (y.h, h−1g) for every K-algebra R, and all y ∈ Y (R),
g ∈ G(R), and h ∈ H(R).

Proof. Set F = (Y × G)//H , and write [y, g] ∈ F(R) for the H(R)-orbit of
an element (y, g) ∈ Y (R)×G(R), where R is a K-algebra. We define a group
action of G on the functor F by

F(R)×G(R)→ F(R), ([y, g], g̃) 7→ [y, gg̃] for y ∈ Y (R) and g,g̃ ∈ G(R).

Letting X be the sheafification ((Y ×G)//H)˜, we obtain a group action of G
on X given by the sheafification X×G→ X of the above morphism. For every
K-algebra R and every two elements [y, g], [y′, g′] ∈ F(R), there exists a unique
g̃ ∈ G(R) with [y, gg̃] = [y′, g′], since Y is an H-torsor. Therefore, the map
F(R) ×G(R) → F(R)× F(R) given by ([y, g], g̃) 7→ ([y, g], [y, gg̃]) is bijective
for every K-algebra R. Thus F ×G → F × F is an isomorphism of functors,
and so its sheafification X ×G→ X ×X is an isomorphism (here we used the

canonical isomorphisms F̃ × F̃ ∼= F̃ × F and F̃ ×G ∼= F̃ × G̃ ∼= F̃ ×G).
Since Y is non-empty, X is non-empty and we may fix a field extension L/K
such that X,Y have an L-point. Pick such a point x ∈ X(L). Then the formula
g 7→ x.g defines an isomorphism GL ∼= XL. In particular, the base change XL

of X from K to L is an affine scheme. As L is faithfully flat over K and X is a
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sheaf, it follows that X is an affine scheme, via faithfully flat descent, as in the
proof of Proposition A.6(a). It also follows thatX is of finite type overK. So we
may writeX = (Y ×G)/H . Proposition A.4 impliesK[X ] = (K[Y ]⊗KK[G])H .
(Recall that (K[Y ]⊗K K[G])H = {f ∈ K[Y ]⊗K K[G] | ρ(f) = f ⊗ 1}, where
ρ : K[Y ] ⊗K K[G] → K[Y ] ⊗K K[G] ⊗K K[H ] is the co-action corresponding
to the action of H on Y ×G.) The isomorphism X ×G→ X ×X shows that
X is a G-torsor.

We define a morphism Y → F by sending y ∈ Y (R) to the equivalence
class [y, 1] of (y, 1) ∈ (Y × G)(R) for any K-algebra R. Composing with
F → IndGH(Y ) yields a morphism ψ : Y → IndGH(Y ). Since [y.h, 1] = [y, h]
for h ∈ H(R), we see that ψ is H-equivariant. Now let ψ′ : Y → Z be any
H-equivariant morphism from Y to an affine G-space Z. The G-equivariant
morphism Y ×G→ Z, (y, g) 7→ ψ′(y).g is constant on H-orbits and therefore
induces a unique G-equivariant morphism IndGH(Y ) → Z making (8) commu-
tative, by the universal property of the quotient. This proves the universal
property of induced torsors that was stated in the proposition.

Finally, the universal property satisfied by IndGH(Y ) shows that this is unique
up to a unique isomorphism.

Remark A.9. (a) Let H be a closed subgroup of G. If Y → X is an H-
equivariant morphism from an H-torsor Y to a G-torsor X then X =
IndGH(Y ). This is clear because G-equivariant morphisms between G-
torsors are isomorphisms.

(b) Consider the special case that G is a semi-direct product N⋊H of closed
subgroups with N normal; i.e., G(A) = N(A)⋊H(A) for every K-algebra
A. Here we may take Z = Y and Y → Z the identity map in Proposi-
tion A.8, where G acts on Y through H = G/N . The proposition then
yields a canonical G-equivariant morphism IndGH(Y )→ Y , for which the
given morphism Y → IndGH(Y ) is a section.

(c) Using the universal property, it is immediate that the G-torsor induced
from the trivial H-torsor is trivial.

(d) As above, let H be a closed subgroup of G defined over K, and let Y be
an H-torsor over K. If L is a field extension of K, the universal property
of induced torsors implies that

(
IndGH(Y )

)
L
is canonically isomorphic to

IndGLHL(YL).

Lemma A.10. The morphism ψ : Y → X = IndGH(Y ) given by Proposition A.8
is a closed embedding; i.e., the dual map ψ∗ : K[X ]→ K[Y ] is surjective.

Proof. By flatness, we may assume thatK is algebraically closed. Let y ∈ Y (K)
and define an isomorphism H → Y by h 7→ y.h. Similarly, let x = ψ(y) and
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define an isomorphism G→ X by g 7→ x.g. Then

Y // X

H //

∼=

OO

G

∼=

OO

commutes. Since H → G is a closed embedding, Y → X is also a closed
embedding.

Since Y → IndGH(Y ) is a closed embedding, we will in the sequel identify Y
with a closed subscheme of IndGH(Y ).
Let G be a finite (abstract) group. Recall (see e.g., [KMRT98, Section 18.B])
that a finite separable (commutative) K-algebra L equipped with a G-action
from the left is called a G-Galois algebra if dimK L = |G| and the invariant
subfield LG equals K. As noted there, these algebras are precisely the coordi-
nate rings of G-torsors over K, where we view G as a constant group scheme
over K (i.e., with trivial action of the absolute Galois group of K). The fol-
lowing example shows that the notion of induced Galois algebra can be seen as
a special case of inducing torsors.

Example A.11. Let G be a finite group with a subgroup H . For an H-Galois
algebra L, there exists an induced G-Galois algebra IndGH(L) together with an
H-equivariant morphism π : IndGH(L)→ L; and moreover the pair (IndGH(L), π)
is unique up to isomorphism (see [KMRT98, Prop. 18.17] for details). Consider
G and H as constant group schemes over K and let Y = Spec(L) denote the
H-torsor corresponding to L. We claim that

K
[
IndGH(Y )

]
∼= IndGH(L) as G-Galois algebras.

To see this, note that if H → G is a morphism of algebraic groups, Y an
H-torsor, X a G-torsor and ψ : Y → X an H-equivariant morphism, then
ψ∗⊗K R : F [Y ]⊗K R→ F [X ]⊗K R is H(R)-equivariant for any K-algebra R.
So, as Y → IndGH(Y ) is H-equivariant (choosing R = K), so is the dual map

K
[
IndGH(Y )

]
→ L. Therefore K

[
IndGH(Y )

]
∼= IndGH(L).

Motivated by this example, if more generally Y = Spec(R) in the situation of
Proposition A.8, we will write IndGH(R) for the coordinate ring K[IndGH(Y )].
Thus IndGH(Y ) = Spec(IndGH(R)). By Proposition A.8, IndGH(R) is the invariant
ring (R ⊗K K[G])H , where the action of H on R⊗K K[G] corresponds to the
geometric action of H on Y ×G given in that proposition.

Remark A.12. If Y = Spec(R) is a G-torsor over K, then by setting H = G
in Proposition A.8 we see that Y is canonically isomorphic to IndGG(Y ). The
isomorphism can be made explicit on the level of coordinate rings. Namely,
the co-action ρ : R → R ⊗K K[G] has image IndGG(R) = (R ⊗K K[G])G ⊆
R⊗K K[G], and ρ defines an isomorphism of R with IndGG(R).
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Proposition A.13. Let G be a smooth affine group scheme of finite type over a
field K, let E,N be closed subgroups of G with N normal, and let X = Spec(R)
be an E-torsor over K. Consider the functorial G-action on IndGE(R) corre-
sponding to the G-torsor structure of its spectrum. With respect to the restric-

tion of this action to N , (IndGE(R))
N = Ind

G/N
E/(E∩N)(R

E∩N) as subalgebras of

IndGE(R).

Proof. By Proposition A.8, IndGE(R) = (R⊗K K[G])E , where the E-invariants
are taken with respect to the group action given geometrically by (x, g).h =
(x.h, h−1g). By Proposition A.6, X/(E∩N) = Spec(RE∩N ), and this is a torsor

for E/(E∩N). Moreover, Ind
G/N
E/(E∩N)(R

E∩N ) = (RE∩N ⊗KK[G/N ])E/(E∩N),

with respect to the corresponding group action of E/(E∩N). Observe that the

rings (IndGE(R))
N and Ind

G/N
E/(E∩N)(R

E∩N ) in the statement of the proposition

are indeed both contained in IndGE(R), whose spectrum is a G-torsor. The
restriction to N of the corresponding functorial G-action on IndGE(R) extends
to R⊗KK[G], and is given geometrically by right multiplication on the second
factor. Note that this action of N commutes with the above action of E.
Hence (IndGE(R))

N is the ring of E-invariants of the K-algebra R ⊗K K[G]N .
Equivalently, it is the ring of E-invariants of (R⊗K K[G]N )E∩N , where E ∩N
acts via the restriction of the above action of E. But (R ⊗K K[G]N )E∩N =
RE∩N ⊗KK[G]N , since the right-invariant subring K[G]N is also left-invariant
under N by Lemma A.3(a), by normality of N . The actions of E on the
spectra of RE∩N and on K[G]N are functorially defined over each K-algebra,
and their restrictions to E ∩ N are trivial. Hence the action of E factors
through E/(E ∩N), and the above E-invariant ring is the same as the ring of

E/(E ∩N)-invariants of RE∩N ⊗K K[G/N ], viz. Ind
G/N
E/(E∩N)(R

E∩N ).

Corollary A.14. Consider a smooth affine group scheme G of finite type over
a field K, with G a semi-direct product N ⋊H of a closed normal subgroup N
and a closed subgroup H.

(a) If Spec(R) is an N -torsor over K, then (IndGN (R))N equals K[H ]; i.e.,

it is the subalgebra Ind
G/N
1 (K) = K ⊗K K[H ] of IndGN (R) ⊆ R⊗K K[G].

(b) If Spec(R) is an H-torsor over K, then (IndGH(R))N equals R; i.e., it is
the subalgebra IndHH(R) ⊆ R⊗KK[H ] of IndGH(R) ⊆ R⊗KK[G] (where R
maps isomorphically to IndHH(R) by the co-action map ρH corresponding
to the action of H; cf. Remark A.12).

Proof. These are special cases of Proposition A.13, with E equal to N or H ,
respectively.

Documenta Mathematica 23 (2018) 241–291



288 Bachmayr, Harbater, Hartmann, Wibmer

References

[AMT09] Katsutoshi Amano, Akira Masuoka, Mitsuhiro Takeuchi. Hopf al-
gebraic approach to Picard-Vessiot theory. In: Handbook of algebra.
Vol. 6, 127–171, Elsevier/North-Holland, Amsterdam, 2009.

[BHH16] Annette Bachmayr, David Harbater, and Julia Hartmann. Differ-
ential Galois groups over Laurent series fields. Proceedings of the
London Mathematical Society, 112(3) (2016), 455–476.

[BHHP17] Annette Bachmayr, David Harbater, Julia Hartmann, and Florian
Pop. Differential Galois theory over large fields. Preprint.

[BHH17] Annette Bachmayr, David Harbater, and Julia Hartmann. Differ-
ential embedding problems over Laurent series fields. Preprint.

[BW17] Annette Bachmayr and Michael Wibmer. σ-parameterized differ-
ential Galois groups over C(x). Preprint.

[DG70] Michel Demazure and Pierre Gabriel. Groupes Algébriques. Tome
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& Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam,
1970.

[Dyc08] Tobias Dyckerhoff. The inverse problem of differential Galois theory
over the field R(z). 2008 manuscript, available at arXiv:0802.2897.

[Ern14] Stefan Ernst. Iterative differential embedding problems in positive
characteristic. J. Algebra 402 (2014), 544–564.

[For77] Otto Forster. Lectures on Riemann Surfaces. Translated from the
German by Bruce Gilligan. Graduate Texts in Mathematics, vol. 81.
Springer-Verlag, New York-Berlin, 1981.

[Gro71] Alexander Grothendieck. Revêtements étales et groupe fondamen-
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