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Abstract. Let M be a smooth submanifold of a smooth manifold V .
Bursztyn, Lima and Meinrenken defined a concept of Euler-like vector
field on V associated to the embedding of M into V , and proved that
there is a bijection between germs of tubular neighborhoods of M
and germs of Euler-like vector fields. We shall present a new view
of this result by characterizing Euler-like vector fields algebraically
and examining their relation to the deformation to the normal cone
from algebraic geometry. Then we shall extend our algebraic point of
view to smooth manifolds that are equipped with Lie filtrations, and
define deformations to the normal cone and Euler-like vector fields in
that context. Our algebraic construction of the deformation to the
normal cone gives a new approach to Connes’ tangent groupoid and
its generalizations to filtered manifolds. In addition, Euler-like vector
fields give rise to preferred coordinate systems on filtered manifolds.
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1 Introduction

The purpose of this paper is to examine from an algebraic point of view the
concepts of Euler-like vector field and deformation to the normal cone in the
theory of smooth manifolds. We shall relate the two, and then extend them
from smooth manifolds to so-called filtered manifolds. As an application, we
shall obtain new views of Connes’ tangent groupoid and its generalizations.
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Recall that the Euler vector field on a finite-dimensional real vector space V

is the infinitesimal generator of scalar multiplication. Thus if f is a smooth
function on V , then its derivative in the direction of the Euler vector field is

E(f)(v) =
d

dt

∣∣∣
t=0

f(etv). (1.1)

If x1, . . . , xn is any linear coordinate system on V (or in other words, a basis
for the dual vector space V∗), then

E = x1
∂

∂x1
+ · · · + xn

∂

∂xn
. (1.2)

The Euler vector field is also characterized by the property that if f is a smooth
homogeneous polynomial on V of degree q, then

E(f) = q · f. (1.3)

The concept of Euler vector field extends easily to vector bundles: if V is the
total space of a smooth, real vector bundle over a smooth manifold M, then
the Euler vector field on V is given by the formula (1.1) above, or equivalently
by the obvious variations of (1.2) or (1.3). On each fiber, the Euler vector field
of the bundle restricts to the Euler vector field of the fiber.
We shall be concerned with an extension of the concept of Euler-vector field to
manifolds. Recall first that a smooth function f on V vanishes to order q ≥ 1
on a submanifold M if Df vanishes on M for every linear differential operator
D on V of order q−1 or less.

1.1 Definition (See [BLM16, Definition 2.5]1). If M is a smooth embedded
submanifold of a smooth manifold V, then an Euler-like vector field for the
embedding of M into V is a vector field E on V with the property that if f is a
smooth function on V that vanishes on M to order q ≥ 1, then

E(f) = q · f+ r,

where the remainder r is a smooth function that vanishes to order q+1 or
higher.

1.2 Remark. Actually the above condition for q = 1 implies the conditions
for all q. But for later purposes it will be convenient to phrase the definition
as we did.

If V is the total space of a vector bundle over M, then the Euler vector field
on V is Euler-like for the embedding of M into V as the zero section. More
generally, recall that a tubular neighborhood of M in V is a diffeomorphism

1In [BLM16] it is required that Euler-like vector fields be complete. That is not necessary
for our purposes, and does not affect the results below, which concern germs of Euler-like
vector fields near M. See also Remark 2.8 in [BLM16].
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from an open neighborhood of the zero section in the total space of the normal
bundle

NVM = TV
∣∣
M

/
TM

to an open neighborhood of M in V such that:

(1.1) the diffeomorphism is the identity on M (where M is embedded in the
normal bundle as the zero section), and

(1.2) the differential of the diffeomorphism, restricted to vertical tangent vec-
tors, induces the identity map from NVM to itself.

If E is the Euler vector field on the normal bundle, then any tubular neighbor-
hood embedding carries E to an Euler-like vector field defined in a neighborhood
of M in V . Let us call this the Euler-like vector field associated to the tubular
neighborhood embedding.
Bursztyn, Lima and Meinrenken proved the following attractive result:

1.3 Theorem (See [BLM16, Proposition 2.6]). The correspondence that assoc-
iates to a tubular neighborhood embedding its associated Euler-like vector field
determines a bijection from germs of tubular neighborhoods to germs of Euler
vector fields.

The theorem has a number of applications, and reader is referred to [BLM16]
for full details, but here is a simple example. Let (M,ω) be a symplectic
manifold and let m be a point in M. By the Poincaré lemma there is a 1-form
α on M such that dα = ω near m. In addition, α can be chosen so that
the vector field X defined by ιXω = 2α is Euler-like for the embedding of {m}

into M (note that this is a first-order condition on the coefficients of α at m;
simple linear algebra shows it can be satisfied). The corresponding tubular
neighborhood identifies ω with a 2-form on TmM having constant coefficients
in any linear coordinate system. This proves the Darboux theorem.
Other applications stem from the fact that any affine combination, with C∞-
function coefficients, of Euler-like vector fields is again an Euler-like vector
field. So for example equivariant tubular neighborhood embeddings for com-
pact group actions can be constructed by averaging Euler-like vector fields.
In addition, equivariant forms of the Darboux theorem, and more generally
equivariant normal form theorems, can be proved this way.
We shall examine Theorem 1.3 from the perspective of the deformation to the
normal cone that is associated to the embedding of M into V , which in this
paper we shall simply call the deformation space associated to the embedding.
Among other things, the deformation space NVM is a smooth manifold that
is equipped with a submersion onto R. The fibers of this submersion over all
nonzero x ∈ R are copies of V , while the fiber over x = 0 is the normal bundle
for the embedding of M into V . So the deformation space may be described,
as a set, as a disjoint union

NVM = NVM×{0} ⊔
⊔

λ∈R×

V×{λ}.

Documenta Mathematica 23 (2018) 293–325



296 Haj Saeedi Sadegh and Higson

See Section 3 for further details, including, most importantly, a review of the
smooth manifold structure on NVM.
Here is a sketch of the proof of Theorem 1.3. If E is an Euler-like vector field
for M ⊆ V , then there is an associated vector field E on NVM that is vertical
for the submersion to R, restricts to a copy of E on each fiber V×{λ}, and
restricts to the Euler vector field on the zero fiber NVM×{0}. See Lemma 5.2
(this property characterizes Euler-like vector fields).
There is also a canonical vector field C on the deformation space that restricts
to λ · ∂/∂λ on the open set

V×R× = NVM
∣∣
R×

(moreover C is vertical on the fiber over 0 ∈ R, and is the negative of the Euler
vector field there). The formula

λ · T = C+ E

defines a third “translation” vector field T on the deformation space. The time
t flow map associated to the vector field T sends the fiber of the deformation
space over λ=0 to the fiber over λ=t, and its differential in the vertical direction
is t times the identity (compare condition (1.2) above). The t=1 map is defined
in a neighborhood of the zero section in the normal bundle, and is a tubular
neighborhood embedding. This associates a tubular neighborhood embedding
to the Euler vector field E, which is the main issue in proving Theorem 1.3.
Our approach throughout will be algebraic, treating vector fields very explicitly
as derivations of algebras of smooth functions, and so on. In addition we shall
follow the algebraic-geometric approach and define the deformation space NVM

to be the spectrum of the Rees algebra associated to the filtration of smooth
functions on V by order of vanishing on M. This point of view fits very well
with our second purpose, which is to study deformation spaces in the context
of filtered manifolds.
A filtered manifold is a smooth manifold that is equipped with an increasing
filtration on its tangent bundle which is compatible with Lie brackets of vector
fields; see Definition 6.1 for details. This concept has arisen in a number of
interrelated areas, including partial differential equations and sub-Riemannian
geometry. More recently, filtered manifolds have received attention in noncom-
mutative geometry thanks to work in index theory by Connes and Moscovici
[CM95], Ponge [Pon00, Pon06] and Van Erp [Erp05, Erp10a, Erp10b].
Prominent in these noncommutative-geometric works are generalizations of
Connes’ tangent groupoid [Con94], which is the deformation space associated
to the diagonal embedding of an ordinary smooth manifold into its square.
Our algebraic point of view leads to a new perspective on the tangent groupoid
(new at least in index theory), and a new construction of its generalizations in
filtered manifold theory.
A recurring theme in the theory of filtered manifolds is the importance of a
family of unipotent “osculating groups” parametrized by the points of a filtered
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manifold. These are central to the theory of deformation spaces and the tangent
groupoid, since the counterpart in the filtered manifold context of the normal
bundle from ordinary smooth manifold theory is a bundle of homogeneous
spaces of unipotent groups. One of our main observations (which is very simple)
is that the osculating groups emerge naturally from the algebraic approach
that we are taking here; see Section 6. Once the unipotent groups have been
understood, the construction of the tangent groupoid (or any other deformation
space) for filtered manifolds is a near-verbatim copy of the construction for
ordinary manifolds.
At the end of the paper we shall return to Euler-like vector fields, but now in
the context of filtered manifolds, and examine the preferred coordinate systems
on filtered manifolds that they give rise to—see Remarks 6.23 and 10.9.
We are grateful to Raphael Ponge for comments concerning the literature, and
to Robert Yuncken and Erik van Erp for several enlightening conversations.
In addition we thank Eckhard Meinrenken, Ralf Meyer and the referee for
suggesting many corrections to, and improvements of, the original manuscript.

2 Smooth Manifolds From Algebras

In this section we shall give some elementary algebraic definitions that we
shall use throughout the paper, give criteria guaranteeing that the spectrum
of an algebra carries a smooth manifold structure, and compare derivations on
algebras to vector fields on spectra in the manifold case.

2.1 Definition. Let A be an associative and commutative2 algebra (with a
multiplicative identity) over the field of real numbers. A character of A is a
nonzero algebra homomorphism

ϕ : A −→ R.

The spectrum of A is the set of all characters. We equip it with the topology
of pointwise convergence, that is, the topology having the fewest open sets so
that the evaluation maps

â : ϕ 7−→ ϕ(a)

are continuous functions on the spectrum, for every a ∈ A.

2.2 Definition. Let A be as above. Denote by SA the smallest subsheaf of the
sheaf of continuous real-valued functions on the spectrum of A that includes
all global sections of the form

f = g(â1, . . . , âk),

where k ∈ N, where a1, . . . , ak ∈ A, and where g is a smooth, real-valued
function on Rk.

2It is not necessary to assume commutativity, but the definitions that follow are not very
interesting in the noncommutative case.
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2.3 Definition. Let S be a sheaf of real-valued functions on a topological space
X. LetΩ ⊆ X be an open subset. We shall say that functions h1, . . . , hn ∈ S(Ω)

smoothly generate S(Ω) if for every f ∈ S(Ω) there is a smooth function g on
Rn such that

f = g(h1, . . . , hn).

In the case where X = Spectrum(A) and S = SA, we shall also say that elements
a1, . . . , an ∈ A smoothly generate SA(Ω) if the functions hj = âj|Ω satisfy the
above condition.

2.4 Lemma. Let A be a commutative algebra over the real numbers. The spec-
trum of A is a smooth manifold of dimension n, with SA equal to its sheaf of
smooth functions, if and only if for every point in the spectrum there is an open
neighborhood Ω of that point, and there exist a1, . . . , an in A, such that

(i) the elements a1, . . . , an smoothly generate SA(Ω), and

(ii) the map
(â1, . . . , ân) : Spectrum(A) −→ Rn

is a homeomorphism from Ω to an open set in Rn.

Proof. If a1, . . . , an exist for every point in the spectrum, as in the statement
of the lemma, then the spectrum is certainly a smooth n-manifold with local
coordinates â1, . . . , ân. Conversely, suppose that the spectrum is a smooth
n-manifold in such a way that SA is the sheaf of smooth functions. Let ϕ
be a point in the spectrum and let x1, . . . , xn be local coordinates at ϕ. By
definition of SA, there are elements a1, . . . , aN ∈ A and smooth functions gi

on RN for i = 1, . . . , n such that

xi = gi(â1, . . . , âN)

near ϕ. We can assume that âj(ϕ) = 0, for all j. Since the xi are local
coordinates, there are smooth functions hj on Rn for j = 1, . . . , N such that

âj = hj(x1, . . . , xn)

near ϕ. If g : RN → Rn and h : Rn → RN are the smooth functions whose
components are gi and hj, then g ◦ h = idRn near 0. So g is a submersion at
0. By linear algebra and the inverse function theorem, there is an inclusion k

of Rn into RN as a coordinate subspace so that the composition

Rn k
−→ RN g

−→ Rn

is a local diffeomorphism at 0. If k maps the i’th standard basis vector of Rn

to the ki’th standard basis vector of RN, then the elements ak1
, . . . , akn

have
the properties (i) and (ii) in the statement of the lemma.

For the rest of this section we shall assume that the spectrum of A is indeed a
smooth manifold, with SA the sheaf of smooth functions.
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2.5 Definition. Let X be a derivation of the algebra A, and let Ω be an open
subset of the spectrum of A. We shall say that X is compatible with a vector
field X̂ on Ω if the diagram

A

X

��

a 7−→â
// C∞(Ω)

X̂

��

A
a 7−→â

// C∞(Ω)

commutes.

An obvious necessary condition for X to be compatible with a vector field on
Ω is that if Λ ⊆ Ω is any open subset, if

a, a1, . . . , ak ∈ A,

if g is a smooth function of k variables, and if

â|Λ = g(â1, . . . , âk)|Λ, (2.1)

then

X̂(a)|Λ =

k∑

i=1

X̂(ai)|Λ · gi

(
â1, . . . , âk

)
|Λ (2.2)

where gi denotes the i’th partial derivative of g.

2.6 Definition. If Ω is an open subset of the spectrum, then we shall say
that a derivation X of A is smooth over Ω if (2.2) holds for every open subset
Λ ⊆ Ω, all a, a1, . . . , ak ∈ A, and all g as in (2.1).

2.7 Lemma. If the spectrum of A is a smooth manifold, then every derivation
of A that is smooth over an open subset Ω of the spectrum of A is compatible
with a unique vector field on Ω.

Proof. By Lemma 2.4, around every point of the spectrum there is a neigh-
borhood Λ, and elements a1, . . . , an of A, so that â1, . . . , ân are coordinate
functions on Λ. Since any vector field on Λ is completely determined by its
action on a system of coordinate functions, we see that there is at most one
vector field on Ω that is compatible with any given derivation X.
As for existence, given local coordinates of the type â1, . . . , ân on some open
subset Λ of Ω, we can define X̂ on Λ by

X̂
(
g(â1, . . . , ân)

)
=

n∑

i=1

X̂(ai) · gi

(
â1, . . . , ân

)
.

This is a vector field, it is compatible with X onΛ by (2.2), and it is independent
of the choice of local coordinates, again by (2.2). So we obtain a vector field
defined on all of Ω, as required.

Documenta Mathematica 23 (2018) 293–325



300 Haj Saeedi Sadegh and Higson

In our calculations it will be helpful to observe the following fact:

2.8 Lemma. Let Ω be an open subset of the spectrum of A whose complement
has empty interior. Every derivation of A that is smooth over Ω is smooth
over the full spectrum.

Proof. Let Λ be an open subset of the spectrum. By hypothesis, any identity
of smooth functions (2.1) over Λ leads to an identity of the type (2.2) over
Λ ∩Ω. But Λ ∩Ω is dense in Λ, so the identity (2.2) holds over Λ.

3 The Deformation Space for Smooth Manifolds

Let V be a smooth manifold and let M be a smooth, embedded submanifold
(both of them without boundary, as will always be the case in this paper). In
this section we shall review the construction of the deformation to the nor-
mal cone, or deformation space, associated to the inclusion of M into V . See
[Ful98, Chapter 5] for the standard treatment in algebraic geometry and see
for example [Hig10] for the C∞-version.
We shall emphasize the algebraic aspects of the construction. These play only
a modest role for ordinary manifolds, but they will be helpful when we consider
filtered manifolds later on.
Here is a summary of what we shall do. The deformation space associated to
the embedding of M into V may be described, as a set, as a disjoint union

NVM = NVM×{0} ⊔
⊔

λ∈R×

V×{λ}, (3.1)

as we noted in the introduction. It is given the weakest topology so that the
obvious maps to R and to V are continuous, and so that, in addition, for every
smooth function a on V that vanishes on M, the function

(Xm, 0) 7−→ Xm(a)

(v, λ) 7−→ λ−1a(v)

is also continuous. Here Xm is a normal vector at m ∈ M, that is, a vector
in the quotient space TmV/TmM. The value Xm(a) is well defined because a

vanishes on M. We shall prove that the deformation space carries a smooth
manifold structure so that all the functions above are smooth (in fact they
smoothly generate the sheaf of all smooth functions on the deformation space
in the sense of Definition 2.3).
Now we proceed with the details.

3.1 Definition. Denote by A(V,M) the R-algebra of all Laurent polynomials

f(t) =
∑

q∈Z

aqt
−q
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whose coefficients aq are smooth, real-valued functions on V that satisfy the
condition

q > 0 ⇒ aq vanishes to order q on M

(we emphasize that by definition only finitely aq are nonzero). The space
A(V,M) is indeed an algebra, because if ap vanishes to order p on M, and aq

vanishes to order q on M, then the pointwise product apaq vanishes to order
p + q. The deformation space NVM is the spectrum of A(V,M).

Our first objective is to identify NVM, defined as a spectrum, with (3.1). As-
sociated to t ∈ A(V,M) is the continuous map

t̂ : NVM −→ R (3.2)

as in Definition 2.1, and we shall compute the fibers over each λ ∈ R. These
are the spectra of the following algebras:

3.2 Definition. For λ ∈ R denote by Aλ(V,M) the quotient of A(V,M) by
the ideal generated by t−λ.

3.3 Lemma. If λ ∈ R is nonzero, then Aλ(V,M) is isomorphic to C∞(V) via
evaluation of Laurent polynomials at t = λ.

Proof. If the element
∑

aqt
−q lies in the kernel of evaluation at λ, then

∑
aqt

−q = (t− λ) ·
∑

q

(∑

j≥0

aq−jλ
j
)
t−q−1,

and the right-most Laurent polynomial lies in A(V,M), as required.

To handle the case where λ = 0 we need some notation.

3.4 Definition. For each integer q > 0 denote by Iq(V,M) the ideal of smooth
functions on V that vanish to order q on M. Set I0(V,M) = C∞(V).

The spaces Iq(V,M) form a decreasing filtration of the algebra of smooth func-
tions on V , and we can form the associated graded algebra

⊕

q≥0

Iq(V,M)/Iq+1(V,M). (3.3)

If a ∈ Iq(V,M), then we shall write

〈a〉q ∈ Iq(V,M)/Iq+1(V,M) (3.4)

for the coset of a ∈ Iq(V,M) in the degree q component of (3.3).

3.5 Lemma. The algebra A0(V,M) is isomorphic to the associated graded al-
gebra (3.3) via the map

∑

q∈Z

aqt
−q 7−→

∑

q≥0

〈aq〉q.

Documenta Mathematica 23 (2018) 293–325



302 Haj Saeedi Sadegh and Higson

It is now easy to compute the spectrum of A0(V,M). The degree zero part of
A0(V,M) is C∞(M), and each character of A0(V,M) restricts to evaluation at
some point m ∈ M on the degree zero part. The character therefore factors
through the quotient algebra A0,m(V,M) by the ideal in A0(V,M) generated
by the vanishing ideal of m in C∞(M).

3.6 Lemma. There is a unique isomorphism from A0,m(V,M) to the algebra
of real-valued polynomial functions on the normal vector space TmV/TmM for
which

〈a〉1 7−→
[
Xm 7→ Xm(a)

]
.

for every normal vector Xm and every smooth function a on V vanishing on
M. The spectrum of A0,m(V,M) identifies in this way with TmV/TmM.

3.7 Remark. We shall prove a more general result in Theorem 7.8.

Returning to the deformation space, the above considerations identify the fibers
of (3.2) with V when λ6=0, and with the normal bundle NVM when λ=0. We
obtain the description (3.1), as required. As for the topology on NVM, since
A(V,M) is generated by:

(a) the element t ∈ A(V,M),

(b) the functions a · t0 ∈ A(V,M), where a ∈ C∞(V), and

(c) monomials a · t−1 ∈ A(V,M), where a vanishes on M.

we find that the topology on NVM, viewed as a spectrum, agrees with the
topology we described earlier.

3.8 Theorem. The deformation space NVM is a smooth manifold.

Proof. We shall use Lemma 2.4. The only nontrivial case is that of a character
ϕ in the fiber over λ=0, corresponding to a normal vector Xm. Introduce
smooth functions x1, . . . , xn on V that are local coordinates in a neighborhood
U of m in V , for which

M ∩U = {u ∈ U : xk+1(u) = · · · = xn(u) = 0 }.

Now define Λ ⊆ NVM to be the open set consisting of those elements of the
deformation space of the form (u, λ) for u ∈ U and λ 6= 0, or (Xu, 0) for
u ∈ M ∩U. The elements

t, x1, . . . , xk, xk+1t
−1, . . . , xnt

−1 ∈ A(V,M) (3.5)

satisfy the hypotheses of Lemma 2.4; if W ⊆ Rn is the image of U under the
coordinates {xj} on V , then the homeomorphic image of Λ under the functions
(3.5) is the open set

{
(λ, x1, . . . , xn) : (x1, . . . , xk, λxk+1, . . . , λxn) ∈ W

}

in Rn+1; and the smooth generation statement in the lemma follows from the
Taylor expansion for smooth functions on V .
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4 The Tangent Groupoid

In this section we shall briefly describe the special features of the deforma-
tion space associated to the diagonal embedding of a smooth manifold into its
square. This is in preparation for Section 9 where a more complicated version
of the same thing will be considered.

4.1 Definition. Let M be a smooth manifold. The tangent groupoid TM is
the deformation space associated to the diagonal embedding of M into M×M.

The name tangent groupoid is due to Connes, who explained the importance of
the tangent groupoid in index theory. See [Con94, Chapter 2, Section 5], and
see [CR08] for more details concerning the construction of the tangent groupoid
using smooth manifold techniques.
As the name promises, TM is not only a smooth manifold but a Lie groupoid
(see [MM03, Chapter 5] for background information on Lie groupoids). The
source, target and other structure maps are all obtained from the following
functoriality property of the deformation space construction: from a commu-
tative diagram of smooth manifolds and submanifolds

M1
//

��

M2

��

V1
// V2

(where the horizontal arrows are any smooth maps) we obtain a smooth map
NV1

M1 → NV2
M2. Moreover if the horizontal arrows are submersions, then

so is the map of deformation spaces.
In the case at hand, think of M as diagonally embedded in M×M and
M×M×M, and note that the deformation space for the identity embedding
of M in itself is simply M×R. The first and second coordinate projections

M

����

M

��

M×M
π2

//
π1

// M

determine target and source maps

TM
t

//
s

// M×R.

The unit map is determined by the diagonal inclusion of M into M×M, and
the inverse map is determined by the flip map on M×M. Finally the space of
composable elements in TM,

TM(2) =
{
(γ1, γ2) ∈ TM× TM : s(γ1) = t(γ2)

}
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is the deformation space for the diagonal embedding of M into M×M×M,
while the projection

M×M×M // M×M

onto the first and third factors gives the composition law for TM.
All these maps are easy to compute explicitly in terms of the description (3.1)
of the deformation space. The part of TM over each λ ∈ R is a subgroupoid,
and when λ 6= 0 we obviously obtain a copy of the pair groupoid of M. When
λ = 0 we obtain the tangent bundle TM, viewed as a bundle of abelian Lie
groups over M; this computation will be carried out in a more general context
in Section 9.

5 Vector Fields on the Deformation Space

In this section we shall give a proof of Theorem 1.3 (the theorem of Bursztyn,
Lima and Meinrenken) using vector fields on the deformation space. First we
shall prove the existence of compatible tubular neighborhood embeddings:

5.1 Theorem. If E is an Euler-like vector field for the inclusion of M into V,
then there is a tubular neighborhood diffeomorphism

Φ : NVM −→ V

(defined on a neighborhood of the zero section) that carries the Euler vector
field on the normal bundle to the germ of E near M.

The first step in our proof is to construct from E a vector field on the defor-
mation space. To start, let us denote by E the vector field on V×R× that is
tangent to the fibers of the projection map V×R× → R×, and that is a copy
of E on each fiber V×{λ}.

5.2 Lemma. If E is Euler-like, then the vector field E above extends uniquely to
a vector field on NVM. The extension is tangent to the fibers of the projection
NVM → R, and the restriction to the fiber over 0 ∈ R is the Euler vector field
on the normal vector bundle NVM.

Proof. The extension is unique, if it exists, because V×R× is dense in NVM.
The existence of the extension, and its properties, are easy to check in local
coordinates. Alternatively, if E is Euler-like, then, since E preserves the order
of vanishing of functions on M, the formula

∑
aqt

−q 7−→
∑

E(aq)t
−q

defines a derivation of A(V,M) that is compatible, in the sense of Definition 2.5,
with the vector field E on V×R×. We therefore obtain a smooth extension of E
from Lemmas 2.7 and 2.8. It follows from the definition of an Euler-like vector
field that the restriction of this smooth extension to NVM is the Euler vector
field.
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5.3 Remark. The lemma actually characterizes Euler-like vector fields: if X
is a vector field on V , and if the extension to a vector field X to V×R×, as
above, further extends a vector field on NVM that then restricts to the Euler
vector field on the vector bundle NVM, then X is Euler-like.

Next we shall introduce a canonical vector field on the deformation space.

5.4 Lemma. The formula

γs :

{
(v, λ) 7−→ (v, esλ)

(X, 0) 7−→ (e−sX, 0)

defines a smooth action of the Lie group R on the deformation space NVM.

Proof. This is again easy to check directly in the local coordinates of Theo-
rem 3.8. From the algebraic point of view, it suffices to note that the geometric
flow is associated to the morphism

γ : A(V,M) −→ A(V,M)⊗R C∞(R)

defined by the formula

γ :
∑

aqt
−q 7−→

∑
aqt

−q ⊗ e−tq

(the tensor product here is the ordinary algebraic tensor product).

5.5 Definition. We shall denote by C the vector field on NVM that generates
the flow {γs} above. Note that C restricts to the vector field λ ·∂/∂λ, on V×R×,
while on the zero fiber of NVM it agrees with the negative of the Euler vector
field on the normal bundle.

Now we shall combine E with C to obtain a new vector field T on NVM.

5.6 Lemma. Let E be an Euler-like vector field for the inclusion of M into V,
and let E be the associated vector field on NVM, as in Lemma 5.2. The vector
field

T = λ−1
E+

∂

∂λ

on the open subset V×R× ⊆ NVM extends to a (smooth) vector field on NVM

with
λ · T = C+ E.

Proof. If E is Euler-like, then the formula
∑

aqt
−q 7−→

∑
(E(aq) − qaq)t

−(q+1),

defines a derivation of A(V,M). The derivation is compatible with the vector
field T over the open set V×R× ⊆ NVM, and since the complement of this
open set has empty interior it follows from Lemma 2.8 that the derivation is
compatible (in the sense of Definition 2.5) with a unique vector field on all of
NVM.
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It is clear from its definition that the vector field T on NVM is t̂-related to the
vector field d/dλ on R (recall from (3.2) that t̂ is the natural projection from
NVM to R). As a result, the time t=1 flow map for the vector field T maps
the λ=0 fiber NVM ⊆ NVM to the λ=1 fiber M ⊆ V (although we need to be
a bit careful about the domain of definition of the flow map). We shall show
that this fiber mapping is a tubular neighborhood, and that it carries the Euler
vector field on the normal bundle to the Euler-like vector field E.

5.7 Definition. Denote by {τs} the local flow on NVM associated to the vector
field T in Lemma 5.6.

Recall that the maps τs assemble into a smooth map

τ : R× NVM −→ NVM

that is defined on some neighborhood of {0}×NVM in R×NVM, such that

T (f)(w) =
d

ds

∣∣∣
s=0

f(τs(w))

for all smooth functions f on NVM and all w ∈ NVM, and

τs+t(w) = τs(τt(w))

in a neighborhood of {0}×{0}×NVM in R×R×NVM. In all these formulas, we
are writing τs(w) = τ(s,w). For s 6= 0, then we shall write the restriction of
the flow τs to the fiber of NVM over λ=0 in the form

NVM ∋ (X, 0)
τs7−→ (ϕs(X), s) ∈ NVM.

For any open subset U ⊆ NVM with compact closure, and all sufficiently small
|s|, the map ϕs is a diffeomorphism from U to an open subset of V .

5.8 Lemma. Let f be a smooth function on V that vanishes on M. There is a
smooth function h : V → R that vanishes to order 2 such that

d

ds
f(ϕs(Xm)) = s−1f(ϕs(Xm)) + s−1h(ϕs(Xm))

for every Xm ∈ NVM and all sufficiently small |s|.

Proof. Since E is an Euler vector field, we can write

E(f) = f+ h,

where h vanishes on M to order 2. Now define f to be the composition

NVM −→ V × R −→ V
f

−→ R.
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Then by definition of ϕs and the flow τs,

d

ds
f(ϕs(Xm)) =

d

ds
f(τs(Xm, 0)) = Tτs(Xm,0)(f)

But it follows from the definition of T that

Tτs(Xm,0)(f) = s−1
E(ϕs(Xm),s)(f)

= s−1E(f)(ϕs(Xm)) = s−1f(ϕs(Xm)) + s−1h(ϕs(Xm)),

as required.

The map ϕs takes the zero section M ⊆ NVM identically to M ⊆ V , because
T restricts to ∂/∂λ on the submanifold M×R ⊆ NVM. So for every m ∈ M

and all sufficiently small |s| the derivative of ϕs induces a map

ϕs,∗ : TmV/TmM −→ TmV/TmM (5.1)

5.9 Lemma. The mapping (5.1) is s · id.

Proof. We shall calculate the linear algebraic adjoint ϕ∗
s of the linear transfor-

mation (5.1). The vector space of smooth functions on V that vanish to first
order on M surjects onto the vector space dual of TmV/TmM via the usual
pairing of functions and tangent vectors, and functions that vanish to second
order are in the kernel of the surjection. Applying Lemma 5.8 we find that

d

ds
ϕ∗

s = s−1ϕ∗
s : (TmV/TmM)∗ −→ (TmV/TmM)∗,

and so by calculus s−1ϕ∗
s is a constant family of linear maps. To evaluate

the constant we shall compute the limit of s−1ϕ∗
s as s → 0. The function

s 7→ τs(Xm, 0) is a smooth curve in NVM, with value (Xm, 0) at s = 0, and the
function (v, s) 7→ s−1f(v) is smooth on NVM, with values (Xm, 0) 7→ Xm(f)
when s = 0. So

lim
s→0

s−1f(ϕs(Xm)) = Xm(f).

As a result, if [f] denotes the class in (TmV/TmM)∗ determined by f, namely

[f] : Xm 7−→ Xm(f)

then
ϕ∗

s([f]) = [f ◦ϕs] : Xm 7−→ s · Xm(f)

and so ϕ∗
s = s · id, as required.

Lemma 5.9 tells us that for any s the map Xm 7→ ϕs(s
−1Xm) is a tubular

neighborhood mapping on the domain where it is defined, but this may not be
a neighborhood of the full zero section of NVM. To remedy this problem, we
shall use the Lie bracket relations among E, C and T , which are as follows:

[T ,C] = T , [T ,E] = 0, and [C,E] = 0 (5.2)

(note that it suffices to verify these relations on the dense set V×R× ⊆ NVM).
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5.10 Lemma. If K is a compact subset of NVM and k > 0, then there exists
ε > 0 so that

ϕets(X) = ϕs(e
tX)

for all X ∈ K, all |t| < k, and all s ∈ (−ε, ε).

Proof. It follows from the first relation in (5.2) that

τets = γt ◦ τs ◦ γ−t (5.3)

(to be precise, the identity is well-defined and correct on any given compact
set K, and for |t| bounded by any given k, as long as |s| is sufficiently small).
The formula in the lemma follows by evaluating both sides on (X, 0).

Proof of Theorem 5.1. Choose a neighborhood of the zero section in NVM and
a smooth positive function s(m) so that ϕs(Xm) is defined for all Xm ∈ U and
all |s| < 2s(m). Using Lemma 5.10, we find that the germ of the map

Φ(Xm) = ϕs(m)(s(m)−1Xm)

near the zero section of NVM is independent of the map m 7→ s(m) and is a
tubular neighborhood. The second relation in (5.2) implies that Φ carries the
Euler vector field on the normal bundle to E.

Theorem 1.3 also asserts that there is a unique (germ of a) tubular neighbor-
hood embedding that carries the Euler vector field to any given Euler-like vector
field. We have nothing really new to say about this uniqueness statement, but
for completeness here is a proof.

5.11 Lemma. Let V be a finite-dimensional vector space and let Ψ : U → W be a
diffeomorphism from one open neighborhood of 0 ∈ V to another, with Ψ(0) = 0.
If Ψ carries the Euler vector field to itself, near 0, and if the derivative of Ψ at
0 is the identity, then Ψ is the identity near 0.

Proof. Let v be an element in a ball around 0 (with respect to some norm) that
is contained in U ⊆ V . Both of the curves Ψ(e−tv) and e−tΨ(v) (t ≥ 0) have
the same derivatives for all t, given by the negative of the Euler vector field,
and the same initial point at t = 0. Hence

Ψ(e−tv) = e−tΨ(v) ∀t ≥ 0. (5.4)

Now by calculus, if Ψ∗ is the derivative of Ψ at 0, then there is a positive
constant so that

‖Ψ(u) − Ψ∗u‖ ≤ constant · ‖u‖2 (5.5)

for all u ∈ U sufficiently close to 0. Writing u = e−tv, multiplying (5.5) by et,
and using (5.4), we obtain

‖Ψ(v) − Ψ∗v‖ ≤ e−t · constant · ‖v‖2,

and so Ψ(v) = Ψ∗v = v.
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Proof of the uniqueness statement in Theorem 1.3. If two tubular neighbor-
hood embeddings are given, under both of which E identifies with the Euler
vector field, then the composition the first with the inverse of the second is
a diffeomorphism Ψ from one neighborhood of the zero section in the normal
bundle NVM to another that fixes the zero section, and carries the Euler vec-
tor field to itself. By repeating the argument in Lemma 5.11 we find that if
Xm ∈ NVM is contained in a ball around 0 that is contained in the domain of
definition of Ψ, then

Ψ(e−tXm) = e−tΨ(Xm) ∀t ≥ 0.

Applying the projection NVM → M to this equation and taking the limit as
t → −∞, we find that Ψ : NVM → NVM is fiber-preserving near the zero
section. Now apply the previous lemma fiberwise, using the condition (1.2)
in the definition of tubular neighborhood embedding to verify that lemma’s
derivative hypothesis.

6 Lie Filtrations and Unipotent Groups

In this section we shall review the definition of a Lie filtration on the tangent
bundle of a smooth manifold, due to Tanaka [Tan70] (although the name for the
concept that we use here was chosen by Melin [Mel82]) and give an algebraic
description of the unipotent osculating groups that are attached to the points
of a filtered manifold.

6.1 Definition. Let V be a smooth manifold. A Lie filtration on the tangent
bundle TV is an increasing sequence of smooth vector subbundles

H1 ⊆ H2 ⊆ · · · ⊆ Hr = TV

with the property that if X and Y are vector fields on V , and also sections of
Hp and Hq, respectively, then the Lie bracket [X, Y] is a section of Hp+q (we
set Hp+q = TV if p+q ≥ r). An r-step filtered manifold is a smooth manifold
whose tangent bundle is equipped with a Lie filtration of length r, as above.

6.2 Remark. The concept of filtered manifold arises in a number of places.
Apart from [Tan70] and [Mel82], see also [Mor93] and [ČS09], for instance.
Some of the treatments of filtered manifolds in sub-Riemannian geometry are
particularly close to the perspective of this paper; see for example [Bel96, Secs.
4,5] and [ABB16, Ch. 10].

We shall usually write (V,H) to make explicit reference to the Lie filtration. For
simplicity we shall assume throughout that the bundles Hq in Definition 6.1
have constant rank, which of course they must have if V is connected.

6.3 Example. An ordinary smooth manifold is obviously a 1-step filtered
manifold. In the 1-step case the constructions in this and the next two sections
will be identical with the constructions in Section 3.
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6.4 Example. In the 2-step case the Lie bracket condition in Definition 6.1 is
vacuous, so a 2-step filtered manifold is simply a smooth manifold together with
a smooth vector subbundle of the tangent bundle (Beals and Greiner [BG88]
coined the term Heisenberg manifold for the special case in which this bundle
has codimension one in the tangent bundle). The calculations in this and the
following sections are very easy in the 2-step case.

For our purposes, the significant features of a filtered manifold (V,H) will be
accessed through the algebra of linear partial differential operators on V , and
in particular through an increasing filtration on differential operators that is
determined by the Lie filtration on TV .
We begin with some generalities on differential operators, unrelated to Lie
filtrations. If X1, . . . , Xn is any local frame for the tangent bundle of a smooth
manifold, then any linear partial differential operator D can be expressed in a
unique way as a linear combination

D =
∑

α

fαX
α, (6.1)

where

(i) the sum is over all multi-indices α = (α1, . . . , αn) with nonnegative inte-
ger entries,

(ii) Xα = Xα1

1 · · ·Xαn
n (note that the order of X1, . . . , Xn is fixed), and

(iii) the coefficients fα are smooth functions, all but finitely many of them
zero.

6.5 Lemma. Let v be a point in a smooth manifold V, let {X1, . . . , Xn} be a local
frame for TV, defined near v. If a linear differential operator D is expressed
in terms of the frame as in (6.1), and if D vanishes at v in the sense that
(Df)(v) = 0 for every smooth function f on V, then all the functions fα vanish
at v.

The following two definitions are taken from the work of Choi and Ponge [CP15,
Section 2] (which in turn adapts terminology from [Bel96, Section 4]).

6.6 Definition. Let (V,H) be an r-step filtered manifold. A local H-frame
for V is a local frame X1, . . . , Xn for the tangent bundle such that for every
q = 1, . . . , r, the vector fields

X1, . . . , Xrank(Hq)

are sections of Hq, and so constitute a local frame for Hq.

6.7 Definition. The weight sequence of V is the sequence

(q1, . . . , qn) = (1, . . . , 1, 2, . . . , 2, . . . , r, . . . , r)

in which each integer q is repeated rank(Hq) − rank(Hq−1) times.
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6.8 Remark. With this terminology, if {Xa} is a local H-frame, then Xa is a
section of the vector bundle Hqa .

6.9 Definition ([Mel82, Section 3]). Let (V,H) be an r-step filtered manifold.
Let D be a linear differential operator and let s be a nonnegative integer. We
shall write

orderH(D) ≤ s,

and say that the H-order of D is no more than s, at a point v ∈ V , if for some
(or equivalently every) local H-frame X1, . . . , Xn defined near v, the operator
D can be expressed as a sum

D =
∑

α

fαX
α1

1 · · ·Xαn
n , (6.2)

in such a way that

q1α1 + · · ·+ qnαn > s ⇒ fα = 0,

where {qa} is the weight sequence for (V,H).

6.10 Example. In the 1-step case (see Example 6.3) this is of course the usual
notion of order of a differential operator.

6.11 Definition. Let (V,H) be a filtered manifold and denote by D(V) the
algebra of linear partial differential operators on V . We shall denote by

Ds(V) ⊆ D(V)

the linear space of all operators that are of H-order no more than s at every
point of V .

It is evident that if p and q are any nonnegative integers, then

Dp(V) ·Dq(V) ⊆ Dp+q(V),

so the concept of H-order defines an increasing filtration on the algebra D(V).
If X is a vector field on V , then X has H-order no more than q as a differential
operator if and only if it is a section of Hq.
The notion of H-order on differential operators leads to the following notion of
order of vanishing of a function at a point in a filtered manifold:

6.12 Definition. Let V be a filtered manifold and let v be a point in V . Let
q be a positive integer. A smooth function f on V vanishes to H-order q at v if
the function Df vanishes at v for every differential operator D of H-order q−1

or less. We shall denote by

Iq(V, v) ⊆ C∞(V)

the ideal of smooth, real-valued functions on V that vanish to H-order q. For
convenience we shall also write I0(V, v) = C∞(V).
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Of course, even though the notation does not indicate it, the ideals Iq(V, v)

depend on the filtration H. The spaces Iq(V, v) decrease as q increases, and in
addition

Ip(V, v) · Iq(V, v) ⊆ Ip+q(V, v)

for all p, q ≥ 0. So we obtain a decreasing filtration of the algebra C∞(V) by
ideals.

6.13 Definition. Let v be a point in a filtered manifold (V,H). Denote by
A0(V, v) the associated graded algebra

A0(V, v) =
⊕

q≥0

Iq(V, v)/Iq+1(V, v).

In the context of ordinary manifolds this naturally identifies with the algebra of
polynomial functions on the tangent space TvV . Our objective in the remainder
of this section is to show that A0(V, v) naturally identifies with the algebra of
polynomial functions on a real unipotent groupHv attached to the Lie filtration
and the point v ∈ V .

6.14 Definition. Let (V,H) be a filtered manifold and let v ∈ V . Denote by
hv the direct sum

hv =

r⊕

q=1

Hq
v/H

q−1
v .

Equip hv with a graded Lie algebra structure, as follows. Given elements 〈Xv〉p
and 〈Yv〉q in degrees p and q, represented by tangent vectors Xv ∈ Hp

v and
Yv ∈ H

q
v , extend both to sections of Hp and Hq and define

[
〈Xv〉p, 〈Yv〉q

]
= 〈[X, Y]v〉p+q.

For further details, and examples, see [Mel82], [CP15] or [EY15].

6.15 Lemma. The graded Lie algebra hv acts as derivations on the graded
algebra A0(V, v) via the formula

δ〈Xv〉p :
∑

q≥0

〈aq〉q 7−→
∑

q≥p

〈X(aq)〉q−p,

where Xv is extended to a section X of Hp, as in Definition 6.14 (and where
the angle-bracket notation 〈a〉q is as in (3.4)).

6.16 Definition. We shall denote by Hv the unipotent group with Lie algebra
hv. This is the osculating group attached to the point v. Denote by A(Hv) the
algebra of real-valued polynomial functions on Hv.

6.17 Remark. In the present context, unipotent group means the same thing
as simply connected nilpotent Lie group, while A(Hv) is the algebra of functions
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on the group that correspond to polynomial functions on the Lie algebra hv
under the exponential map

exp : hv −→ Hv,

which, we recall, is a diffeomorphism. See for example [Hoc81, Chapter XVI,
Section 4] for a more algebraic construction of Hv.

Now if A is an algebra that is equipped with a locally finite-dimensional and
locally nilpotent action of a finite-dimensional real nilpotent Lie algebra h by
derivations, then the action of h exponentiates to an action of the associated
unipotent group H by algebra automorphisms. And if ε is any character of A,
then there is an orbit homomorphism3

A −→ A(H) (6.3)

into the algebra of real-valued polynomial functions on the associated unipotent
group that is defined by the formula

a 7−→
[
h 7→ ε(h−1(a))

]
(a ∈ A, h ∈ H). (6.4)

It is an H-equivariant algebra homomorphism if we let H act on A(H) by the
left regular representation.

6.18 Definition. We shall call the character

A0(V, v) ∋
∑

〈aq〉q
ε

7−→ a0(v) ∈ R

the counit of A0(V, v).

We shall prove the following result.

6.19 Theorem. Let (V,H) be a filtered manifold, and let v be a point in V.
The orbit homomorphism

A0(V, v) −→ A(Hv)

associated to the counit of A0(V, v) is an Hv-equivariant algebra isomorphism.

6.20 Remark. The orbit homomorphism in the theorem is the unique Hv-
equivariant homomorphism for which the composition

A0(V, v) // A(Hv)
eval. at e

// R

is the counit of A0(V, v).

6.21 Lemma. Let V be a filtered manifold of rank r, and let v be a point in
V. Let {q1, . . . , qn} be the weight sequence for (V,H) and let {Xa} be a local
H-frame, defined near v. There are local coordinates {xa} defined near v such
that

3It is dual to the orbit map H → Spectrum(A) given by h 7→ h(ε).
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(i) each xa vanishes at v to H-order qa, and

(ii) Xa(xb) = δab at the point v, for all a, b = 1, . . . , n.

Proof. Define a linear transformation from D(V) into the vector space dual of
C∞(V) by the formula

D 7−→
[
f 7→ (Df)(v)

]
.

It induces a linear map

Dr(V) −→
(
C∞(V)

/
Ir+1(V, v)

)∗
. (6.5)

Note that the quotient C∞(V)
/
Ir+1(V, v) is a finite-dimensional vector space.

It follows from Lemma 6.5 that the images under (6.5) of the monomial differ-
ential operators Xα of H-order no more than r are linearly independent. So by
linear algebra there are functions fβ ∈ C∞(V) with

(Xαfβ)(v) = δαβ

The members {xa} of this list of functions that correspond to the vector fields
{Xa} form a local coordinate system of the required type.

6.22 Remark. The coordinates provided by the lemma above are called priv-
ileged coordinates in [CP15, Definition 4.9] and [Bel96], and their existence is
proved in [CP15, Proposition 4.13] and in [Bel96, Theorem 4.15]. Our argument
is only slightly different.

Proof of Theorem 6.19. Equip the algebra A(Hv) with the decreasing filtration
given by order of vanishing, in the ordinary sense unrelated to Lie filtrations, at
e ∈ Hv. The associated graded algebra is the symmetric algebra on its degree
one part, which identifies with h∗v.
The algebra A0(V, v) also carries a decreasing filtration, in which an element
has order j or more if it can be represented as a sum

∑
〈aq〉q, with each

aq vanishing, also in the ordinary sense, to order j or more. The associated
graded algebra is a symmetric algebra on the degree-one classes determined by
the elements 〈xa〉qa

, where {xa} is any coordinate system as in Lemma 6.21.
The filtrations of A0(V, v) and A(Hv) are compatible with one another under
the map (6.3), and the generators 〈xa〉qa

map to the dual basis elements

〈Xa,v〉
∗
qa

∈ h∗v,

with {Xa} the local H-frame in Lemma 6.21. This proves the theorem.

6.23 Remark. Let {Xa} be a local H-frame near v ∈ V , and let {xa} be an
associated system of privileged coordinates, as in Lemma 6.21. The frame
determines a basis {〈Xa,v〉qa

} for the Lie algebra hv and the local coordinates
determine a local diffeomorphism

w 7−→
∑

a

xa(w)〈Xa,v〉qa
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from V to hv, and hence, by exponentiation, a local diffeomorphism

V
∼=

−→ Hv.

This in turn induces an isomorphism of algebras

A(Hv)
∼=

−→ A0(V, v).

The algebra isomorphism depends on the choice of coordinate systems {xa}, in
general, and is not in general inverse to the canonical isomorphism of Theo-
rem 6.19. Those coordinates for which the two isomorphisms are inverse to one
another are called Carnot coordinates in [CP15].

7 Normal Spaces for Filtered Manifolds

In this section we shall construct the filtered manifold analogue of the normal
bundle. Its fibers will be most naturally viewed as unipotent homogeneous
spaces rather than as quotients of tangent vector spaces.

7.1 Definition. Let (V,H) be an r-step filtered manifold. An embedded sub-
manifold M ⊆ V is a filtered submanifold if the intersections

Gq = Hq|M ∩ TM (q = 1, . . . , r)

are smooth vector subbundles of TM.

IfM is a filtered submanifold of (V,H), then the bundles Gq form a Lie filtration
of TM, so that (M,G) is a filtered manifold in its own right.

7.2 Definition. Let (M,G) be a filtered submanifold of a filtered manifold
(V,H), and denote by Iq(V,M) the ideal of smooth functions on V that vanish
to H-order at least q on M. We shall denote by A0(V,M) the associated graded
algebra

A0(V,M) =
⊕

q≥0

Iq(V,M)/Iq+1(V,M)

The normal space NH
VM is the spectrum of A0(V,M).

7.3 Theorem. Let (M,G) be a filtered submanifold of a filtered manifold
(V,H). The normal space NH

VM is a smooth manifold in such a way that
the sheaf of smooth functions is the sheaf from Definition 2.2.

The proof is not difficult, but it requires some information about vector fields
and local coordinates adapted to the inclusion of M into V .

7.4 Definition. Let (M,G) be a filtered submanifold of a filtered manifold
(V,H). A local (G,H)-frame for TV at a point of M is a local H-frame for V

with the additional property that the vector fields in the frame that are tangent
to M (upon restriction to M) form a local G-frame for M.
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The vector fields in the local frame divide into two sets:

(i) vector fields tangent to M upon restriction to M, which restrict to give a
G-local frame for M, and

(ii) vector fields not tangent to M.

We shall call the latter the normal vector fields in the local frame. The normal
vector fields Xa for which a ≤ rank(Hp) restrict to give a local frame for the
quotient bundle Hp

∣∣
M

/
Gp.

7.5 Lemma. Let (V,H) be an r-step filtered manifold with order sequence {qa},
and let (M,G) be a filtered submanifold of V. Let {Xa} be a local (G,H)-frame
defined near a point m ∈ M. There are smooth functions zc defined near m,
one for each normal vector field Xc in the frame, such that

(i) zc vanishes on M to H-order qc.

(ii) Xc(zd) = δcd on M.

To prove this generalization of Lemma 6.21 we shall use the following general-
ization of Lemma 6.5.

7.6 Lemma. Let M be an embedded submanifold of a smooth manifold V, and
let m be a point in M. Let {Z1, . . . , Zk} be vector fields on V, defined in some
neighborhood of m ∈ V, and assume that their values at m project to linearly
independent vectors in the normal space TV |M/TM. If a linear differential
operator of the form

D =
∑

fαZ
α

has the property that (Df)(m) = 0 for every smooth function f on V that
vanishes on M, then all the coefficient functions fα vanish at m.

Proof of Lemma 7.5. Acccording to Lemma 7.6 the monomial operators Xα

that use only normal vector fields in the local (G,H)-frame map by evaluation
at m to a linearly independent set in Hom(I1(V,M),R). If we consider only
monomial operators of H-order r or less, then this linearly independent set lies
in the finite-dimensional vector space

Hom(I1(V,M)/Ir+1(V,M),R) ⊆ Hom(I1(V,M),R)

and so, by linear algebra, associated to this finite linearly independent set
in a finite-dimensional vector space there are functions gβ ∈ I1(V,M) with

Xα(gβ) = δ
β
α at the point m.

We want to adjust the functions gβ so that this relation holds near m in M,
not only at the single point m. Let hαβ = Xα(gβ). This matrix of functions
is the identity at m, and so is invertible near m. Let hαβ be the entries of the
inverse matrix and define

fβ =
∑

γ

hβγgγ.
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Then Xα(fβ) = δαβ on M, near m. Now, if we define zc to be the function
fβ associated to the vector field Xc ∈ {Xβ}, then the functions {zc} have the
required properties.

Proof of Theorem 7.3. We shall use the vector fields and functions obtained
above to show that the criteria in Lemma 2.4 are satisfied for every character
ϕ of A0(V,M).
The degree zero part of A0(V,M) is C∞(M), and ϕ restricts there to evaluation
at some m ∈ M. Let {Xa} be a local (G,H)-frame near m. Choose smooth
functions {zc} on V as in Lemma 7.5. In addition, choose smooth functions {ya}

on V , indexed by the members Ya of the local (G,H)-frame that are tangent
to M, so that

Ya(yb) = δab at m ∈ V.

There is a neighborhoodU ofm ∈ V such that functions {ya, zc} are coordinates
for U, while the functions {ya} restrict to coordinates for M ∩U.
Now let Λ be the open set in NH

VM consisting of all those characters whose
restriction to the degree zero part of A0(V,M) is evaluation at some point of
M ∩U. It follows from Taylor’s theorem that the elements

〈ya〉0 and 〈zc〉qc
(7.1)

smoothly generate A0(V,M) over Λ.
Moreover A0(U,M ∩ U) is freely generated as an algebra over its degree zero
part C∞(M ∩ U) by the classes 〈zc〉qc

. So if dim(M)=k and dim(V)=n, then
the map

Spectrum(A0(V,M)) −→ Rk × Rn−k

given by evaluation on the generators (7.1) sends Λ homeomorphically to the
open set W × Rn−k, where W ⊆ Rk is the range of the coordinates {yc} on
M ∩U.

We shall now calculate the normal spaceNH
VM in terms of the osculating groups

introduced in the last section. There is a natural map

NH
VM −→ M (7.2)

corresponding to the inclusion of C∞(M) as the degree zero subalgebra of
A0(V,M), and fiber of NH

VM over m ∈ M identifies with the spectrum of the
following algebra.

7.7 Definition. If m ∈ M, then we shall denote by A0,m(V,M) the quotient
of A0(V,M) by the ideal in A0(V,M) generated by the vanishing ideal of m in
C∞(M). The formula

εm :
∑

〈aq〉q 7−→ a0(m)

defines a character of A0,m(V,M) that we shall call the counit.
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7.8 Theorem. Let (M,G) be a filtered submanifold of a filtered manifold (V,H)

and let m be a point in M. Let Hm and Gm be the osculating groups for
m ∈ V and m ∈ M, respectively. There is a unique Hm-equivariant algebra
isomorphism

A0,m(V,M) −→ A(Hm/Gm)

whose composition with evaluation at the identity coset in Hm/Gm is the counit
εm of A0,m(V,M).

7.9 Remark. Here A(Hm/Gm) is the algebra of polynomial functions on the
unipotent homogenous spaceHm/Gm, or equivalently the algebra of polynomial
functions on Hv that are invariant under right translations by elements of Gm.

Proof. The Lie algebra hm acts on A0,m(V,M) by derivations according to
the formula in Lemma 6.15, and this action exponentiates to a locally finite-
dimensional action of Hv by automorphisms. The image of the orbit map

A0,m(V,M) −→ A(Hm)

associated to the counit εm is included in the right Gm-invariant functions on
A(Hm); this is a consequence of the fact that if X ∈ gm, then

εm(δX(a)) = 0

for every a ∈ A0,m(V,M). So we obtain an orbit homomorphism

A0,m(V,M) −→ A(Hm/Gm),

and it remains to show that it is an isomorphism. We shall use a variation on
the argument used to prove Theorem 6.19.
Filter A0,m(V,M) by order of vanishing of functions in the ordinary sense at
m. Using the coordinates of the previous lemma, the associated graded algebra
is freely generated by the classes 〈zc〉qc

.
Filter A(Hm/Gm) by order of vanishing in the ordinary sense at the basepoint
in Hm/Gm. The associated graded algebra is freely generated by the normal
dual vectors 〈Zc〉

∗ ∈ (hm/gm)∗.
Our orbit map is filtration preserving, we find that it induces an isomorphism
on associated graded algebras; indeed it maps 〈zc〉qc

to 〈Zc〉
∗.

7.10 Remark. The algebraA0(V,M) consists of those smooth functions on the
normal spaceNH

VM whose restrictions to all of the fibers of (7.2) are polynomial
functions.

8 Deformation Spaces for Filtered Manifolds

In this section we shall construct the deformation space associated to a filtered
submanifold of a filtered manifold. We shall copy Section 3 almost verbatim.
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8.1 Definition. Let (M,G) be a filtered submanifold of a filtered manifold
(V,H). Denote by A(V,M) the algebra of Laurent polynomials

∑

n∈Z

aqt
−q

whose coefficients are smooth, real-valued functions on V that satisfy the con-
dition

q > 0 ⇒ aq vanishes to H-order q on M.

The deformation space NH
VM is the spectrum of A(V,M).

As is the case for ordinary manifolds, the deformation space is a union

NH
VM = NH

VM×{0} ⊔
⊔

λ∈R×

V×{λ},

(but of course with the normal space from the previous section).

8.2 Theorem. The deformation space NH
VM is a smooth manifold in such a

way that the sheaf of smooth functions is the sheaf from Definition 2.2.

Proof. We shall follow the proof of Theorem 3.8, and we shall use the same
coordinate functions {ya} and {zc} as in the proof of Theorem 7.3, defined in
a neighborhood U of m ∈ V . Let Λ ⊆ NVM be the open subset consisting of
all (u, λ) with u ∈ U and λ 6= 0, together with all the elements (Xm, 0), with
Xm ∈ Hm/Gm. The elements

t, ya, and zct
−qc (8.1)

of A(V,M) satisfy the conditions of Lemma 2.4. If W ⊆ Rn is the image of the
coordinates {ya, zc}, then the functions (8.1) map Λ homeomorphically to the
open subset { (

λ, {ya}, {zc}
)
:
(
{ya}, {λ

qczc}
)
∈ W

}

of Rn+1.

9 The Tangent Groupoid for Filtered Manifolds

In this section we shall briefly discuss the diagonal embedding of a filtered
manifold into its square, where the deformation space carries a Lie groupoid
structure. We shall describe this groupoid structure in terms of the osculating
groups in Definition 6.16.

9.1 Definition. Let (M,G) be a filtered manifold, and define a Lie filtration
of M×M by defining Hp ⊆ TM×TM to be Gp×Gp. The tangent groupoid of
(M,G) is the deformation space

TGM := NH
M M×M.

associated to the diagonal embedding of M in M×M.
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The tangent groupoid for filtered manifolds was previously constructed by Van
Erp [Erp05] and Ponge [Pon06] in the 2-step case, and then by Choi and Ponge
[CP15], and also by Van Erp and Yuncken [EY16], in the general case. Connes
gave a proof of the Atiyah-Singer theorem using the standard tangent groupoid
considered in Section 4 [Con94, Chapter 2, Section 5]. See [Erp10a] for a proof
of an index theorem for contact manifolds using a similar approach.
As in Section 4, the tangent groupoid has a natural Lie groupoid structure
with object space M×R. The part of TM over each λ 6= 0 is a copy of the pair
groupoid of M, as before, and it remains to describe the groupoid structure
over λ = 0.
If Gm is the osculating group at m ∈ M, as in Definition 6.16, then the isomor-
phism of Theorem 7.8 gives an identification

TGM|(m,0)
∼= (Gm×Gm) /Gm

∼= Gm. (9.1)

Here Gm is embedded diagonally as a subgroup of Gm×Gm, and the second
isomorphism is induced from (g1, g2) 7→ g1g2

−1.

9.2 Proposition. The multiplication on the fiber of TGM over (m, 0) that is
induced from the groupoid structure on TGM is the same as the group multi-
plication operation that is induced from the identification (9.1).

To prove the proposition, let us return to the functoriality of the deformation
space that was mentioned (for ordinary manifolds) in Section 4. Suppose given
a commutative diagram

M1
//

��

M2

��

V1 ϕ
// V2

in which the columns are inclusions of filtered manifolds, as in Definition 7.1,
and the differentials of the horizontal maps are filtration-preserving on tangent
spaces. There is an induced map on deformation spaces, and in particular on
normal spaces. Indeed if ϕ(m1) = m2 then composition with ϕ induces a
morphism of algebras

ϕ∗ : A0,m2
(V2,M2) −→ A0,m1

(V1,M1). (9.2)

In addition, the differential of ϕ induces a Lie algebra homomorphism

ϕ∗ : h1,m1
−→ h2,m2

(9.3)

and so a group morphism

ϕ∗ : H1,m1
−→ H2,m2

. (9.4)

The morphisms (9.2) and (9.3) are related as follows: if f ∈ A0,m2
(V2,M2),

then
δξ1

ϕ∗f = ϕ∗δϕ∗ξ1
f ∀ξ1 ∈ hm1

(9.5)
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(for ordinary manifolds this is simply the definition of the differential ϕ∗).
Consider now the induced map on normal spaces

ϕ∗ : N
H1

V1
M1

∣∣
m1

−→ NH2

V2
M2

∣∣
m2

(recall that the normal spaces are the spectra of the algebras in (9.2)). Identify
the normal spaces with unipotent homogeneous spaces, as in Theorem 7.8, to
obtain a map

ϕ∗ : H1,m1
/G1,m1

−→ H2,m2
/G2,m2

. (9.6)

We find from (9.5) that (9.6) is induced from (9.4).

Proof of Proposition 9.2. It follows from (9.5) that the groupoid operation

TGM|(m,0) × TGM|(m,0) −→ TGM|(m,0),

when viewed as a map
Gm × Gm −→ Gm

using (9.1), is equivariant for the left and right multiplication actions of Gm

(on the left and right factors, respectively, in the case of the left-hand side).
In addition, the groupoid operation maps (e, e) to e. So it must be group
multiplication.

10 Euler-Like Vector Fields on Filtered Manifolds

10.1 Definition. Let (M,G) be a filtered submanifold of a filtered manifold
(V,H). An Euler-like vector field for the embedding of M into V is a vector
field E with the property that if f is a smooth function on V that vanishes on
M to H-order q, then

E(f) = q · f+ r

where r is a smooth function that vanishes on M to H-order q+1 or higher.

10.2 Example. If m ∈ M and if {ya, zc} is the local coordinate system defined
near m ∈ V , that was used in the proofs of Theorems 7.3 and 8.2, then formula

E =
∑

c

qc · zc ·
∂

∂zc

defines an Euler-like vector field near m. A global Euler-like vector field can
be assembled from locally defined Euler-like vector fields of this type using a
partition of unity.

Our aim is to relate Euler-like vector fields to tubular neighborhood embed-
dings, as in Theorem 1.3. An interesting feature of the filtered manifold case
that we are now considering is that it is not immediately clear what the appro-
priate notion of tubular neighborhood embedding should be (for instance, the
normal space NH

VM is not itself a filtered manifold, so we cannot insist that
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tubular neighborhood embeddings be isomorphisms of filtered manifolds). So
we shall let the analogue of Theorem 1.3 determine the definition of a tubular
neighborhood embedding.
To define the appropriate notion of a tubular neigborhood embedding we shall
need to define a “zero section” of the normal space, and then examine the
vertical tangent bundle for the submersion

NH
VM −→ M

at the zero section. First, the homomorphism

A0(V,M) −→ C∞(M)
∑

〈aq〉q 7−→ 〈a0〉0

defines an inclusion of M into NH
VM that will be our zero section. Next,

the vertical tangent space at a point m in the zero section identifies with the
quotient of Lie algebras hm/gm. Each of hm and gm is a graded Lie algebra,
and we shall write

hqm = Hq
m/Hq−1

m and gqm = Gq
m/Gq−1

m .

10.3 Definition. Let (M,G) be a filtered submanifold of a filtered manifold
(V,H). A tubular neighborhood embedding of NH

VM into V is a diffeomorphism
from a neighborhood of M ⊆ NH

VM to a neighborhood of M ⊆ V with the
following properties:

(a) The diffeomorphism is the identity on M

(b) At each point of M the differential maps the vertical space h
q
m/g

q
m into

Hq
m, and the composition

hqm/gqm −→ Hq
m −→ hqm/gqm

with the natural projection is the identity.

The normal space NH
VM carries a natural vector field, which we shall call the

Euler vector field, as follows:

10.4 Definition. The Euler vector field on NH
VM is the vector field associated

to the smooth derivation of A0(V,M) given by

∑

q

〈aq〉q 7−→
∑

q

q · 〈aq〉q.

10.5 Remark. The normal space NH
VM is not naturally a filtered manifold,

in general. But if M is a point, then NH
VM is simply the unipotent group Hv

and this is a filtered manifold. In this case, the Euler vector field is Euler-like
in the sense of Definition 10.1.
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The Euler vector field generates a flow {ρs} on NH
VM that is easy to describe

in group-theoretic terms. First, there is a one-parameter group of Lie algebra
automorphisms of the graded Lie algebra

hm =

r⊕

q=1

Hq
m/Hq−1

m

that multiplies the degree q summand by etq. This one-parameter group expo-
nentiates to a one-parameter group of automorphisms of the unipotent group
Hm that maps the subgroup Gm to itself, and therefore induces a flow {ρs} on
the homogeneous space Hm/Gm, as required.

10.6 Definition. Denote by C the vector field on NH
VM that generates the

flow

γs :

{
(v, λ) 7−→ (v, esλ)

(X, 0) 7−→ (ρ−sX, 0)

10.7 Lemma. If E is an Euler-like vector field for the inclusion of M into V,
then the vector field

T = λ−1E+
∂

∂λ

on the open subset V×R× ⊆ NH
VM extends to a vector field on NH

VM with

λ · T = C+ E,

where E smoothly extends the λ-independent vector field on V×R× that is de-
fined by E.

Repeating the argument from Section 5 we find that:

10.8 Theorem. Let (M,G) be a filtered submanifold of a filtered manifold
(V,H). The correspondence that associates to each tubular neighborhood em-
bedding the associated Euler-like vector field on V is bijection from germs of
tubular neighborhood embeddings to germs of Euler-like vector fields.

10.9 Remark. In the case where M is a point, the inverse

V −→ Hm

of the tubular neighborhood embedding corresponds to a system of Carnot
coordinates, as in [CP15, Section 7] and Remark 6.23.
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