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Abstract. In order to solve two problems in deformation theory,
we establish natural structures of homotopy Lie algebras and of ho-
motopy associative algebras on tensor products of algebras of differ-
ent types and on mapping spaces between coalgebras and algebras.
When considering tensor products, such algebraic structures extend
the Lie algebra or associative algebra structures that can be obtained
by means of the Manin products of operads. These new homotopy
algebra structures are proven to be compatible with the concepts of
homotopy theory: ∞-morphisms and the Homotopy Transfer The-
orem. We give a conceptual interpretation of their Maurer–Cartan
elements. In the end, this allows us to construct the deformation
complex for morphisms of algebras over an operad and to represent
the deformation∞-groupoid for differential graded Lie algebras.
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1 Introduction

In deformation theory, one essentially studies the spaces of Maurer–Cartan
elements of differential graded Lie algebras and homotopy Lie algebras —
which for example play a crucial role in Kontsevich’s celebrated proof of de-
formation quantization of Poisson manifolds [Kon03]. We will give a solution
to the first of the following two problems and outline a solution for the second
one, which is solved in the article [RN17] using the results of this paper in a
crucial fashion.

1. Given a type of algebras (encoded by an operad), what is the correct
homotopy Lie algebra encoding the deformation theory of morphisms
between two algebras of this type? This problem was mentioned by
Kontsevich in his recent talk at the Séminaire Bourbaki [Kon17].

2. A good model for the space of Maurer–Cartan elements of a homo-
topy Lie algebra is given by the Deligne–Hinich–Getzler∞-groupoid of
[Hin97a] and [Get09]. However, it is a really big object. A smaller, homo-
topy equivalent Kan complex was introduced by Getzler in [Get09], but
it is unfortunately difficult to manipulate directly. Is there a reasonably
small, homotopically equivalent Kan complex which can be described
explicitly?

Trying to solve the first problem, we are rapidly led to mapping spaces be-
tween certain coalgebras and algebras, while our approach to solve the second
problem requires a homotopy Lie algebra structure on the tensor products of
certain algebras.

Given two algebras of different types, a priori one cannot say much about the
algebraic structure induced on their tensor product. For example, there is no
canonical “easy” structure on the tensor product of two Lie algebras. How-
ever, when the two types of algebras are related in a certain way, one is often
able to get some kind of structure. One example of interest is when one of
the algebras is over a binary quadratic operad, and the other one is over the
Koszul dual operad. In this case, one can endow the tensor product with a
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natural structure of Lie algebra. This structure can in fact be interpreted in
terms of the black and white Manin products for operads. A similar story is
true for mapping spaces between coalgebras and algebras. In this paper we
will generalize these constructions to algebras up to homotopy.

We denote by L∞ the operad coding homotopy Lie algebras and by A∞ the
non-symmetric operad coding homotopy (non-symmetric) associative alge-
bras. Let Ψ : Q →P be a morphism of dg operads. Our first important result
states that we can naturally associate to Ψ a morphism from L∞ to the tensor
product of P with a quasi-free operad related to Q.

Theorem 3.6. Let Ψ : Q → P be a morphism of dg operads such that Q is
augmented. There is a morphism of operads

M

Ψ : L∞ −→ hom(B(S ⊗Q),P)

which is compatible with compositions in the sense that

M

Ψ(ℓ) = Ψ

M

Θ(ℓ) =

M

Ψ(ℓ)B(S ⊗Θ)

for any ℓ ∈ L∞.
Dually, if we also suppose that Q(n) is finite dimensional for all n ≥ 0, there is a
morphism of operads

MΨ : L∞ −→P ⊗ Ω((S −1)c ⊗Q
∨) ,

with a similar compatibility with respect to compositions.

When Q is binary Koszul, the last operad Ω((S −1)c ⊗ Q∨) is nothing but
the Koszul resolution Q!

∞ of the Koszul dual of Q. If the operads are non-
symmetric, then the morphisms have the operad A∞ as domain, instead of
the operad L∞. In particular, this tells us that if we are given an algebra over
the first operad P and a second algebra over the second operad Q!

∞, then we
can endow their tensor product with a natural structure of an L∞-algebra —
or an A∞-algebra in the non-symmetric case. We denote by ⊗Ψ this structure.
Dually, we associate to Ψ a morphism from L∞ to the convolution operad
of a cooperad related to Q and P . Therefore, the mapping space between a
B(S ⊗Q)-coalgebra and a P-algebra is an L∞-algebra, respectively an A∞-

algebra in the ns case, which we denote by homΨ.

An interesting example is the following one. Let A be a Lie algebra, and let
C be a commutative algebra up to homotopy. Then we obtain a natural L∞-
algebra structure on their tensor product A ⊗ C. This structure has already
appeared in the literature in the article [TW15] by V. Turchin and T. Willwacher
on Hochschild–Pirashvili homology.

Let us now focus on the case of binary quadratic operads. When working
with algebras up to homotopy, there is a natural extension of the notion of
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morphisms of algebras called∞-morphisms. They are a sensible homotopical
generalization of strict morphisms and they play a crucial role in Kontsevich’s
work [Kon03]. We show that our operator ⊗Ψ is functorial not only with re-
spect to strict morphisms of algebras, but also with respect to ∞-morphisms
on the second algebra. All together, the above mentioned results give the fol-
lowing theorem.

Theorem 4.5. The above mentioned L∞-algebra structure on the tensor product
of a P-algebra and a Q

!
∞-algebra induces a bifunctor

⊗Ψ : P-alg ×∞-Q!
∞-alg −→∞-L∞-alg ,

where∞-L∞-alg denotes the category of L∞-algebras with their∞-morphisms, and
similarly for∞-Q!

∞-alg.

Next, we study the compatibility of these new structures with an important
tool in homotopical algebra: the Homotopy Transfer Theorem, which tells us
that, given a retraction of chain complexes

B C
p

i

h

and a structure of an algebra of a certain kind on B, then there is a coherent
way to induce a homotopically equivalent structure of the same algebra but
now up to homotopy on C. Our construction ⊗Ψ of an L∞-algebra structure
is compatible with the Homotopy Transfer Theorem in the following sense.
Let A be a P-algebra and take a Q!-algebra B together with the data of a
retraction from B to a subcomplex C. Then there are two natural ways to
endow A ⊗ C with an L∞-algebra structure: one can either pull back the
natural P ⊗Q!-algebra structure on the tensor product A⊗B to a Lie algebra
structure and then use the Homotopy Transfer Theorem, or one can first use
the Homotopy Transfer Theorem to obtain a Q

!
∞-algebra structure on C and

then pull back the resulting algebraic structure on A⊗ C using Theorem 3.6.

Theorem 5.1. The two L∞-algebra structures thus obtained on the tensor product
A⊗ C are equal.

Let us now go back to the case of algebras over arbitrary operads. After us-
ing Theorem 3.1 or its dual version, Theorem 3.6, to endow a mapping space
hom(D,A), respectively a tensor productA⊗C with an L∞-algebra structure,
it is a natural question to ask what are the Maurer–Cartan elements of the re-
sulting L∞-algebra. To any morphism Ψ of dg operads, one can naturally
associate a twisting morphism ψ ∈ Tw(BQ,P), and thus a complete cobar
construction

Ω̂ψ : dgP̂-alg −→ dgBQ-cog .

This is a modification of a classical construction, where we go from BQ-coal-
gebras to complete P-algebras instead than from conilpotent BQ-coalgebras to
P-algebras. Using this, we are able to prove the following statements.
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Corollaries 6.5 and 6.6. Let A be a P-algebra, let C be a finite dimensional
Q

!
∞-algebra, and letD be a B(S ⊗Q)-coalgebra. IfA is a complete P-algebra, there

is a natural bijection

MC(homΨ(D,A)) ∼= homdgP-alg(Ω̂α(s
−1D), A) .

Similarly, if A is any P-algebra, but if we assume thatD is conilpotent, then there is
a natural bijection

MC(homΨ(D,A)) ∼= homdgP-alg(Ωα(s
−1D), A) .

Dually, assuming that A is complete, there is a natural bijection

MC(A⊗Ψ C) ∼= homdgP-alg(Ω̂α(s
−1C∨), A) .

We use the second bijection to construct the deformation complex for mor-
phisms of P-algebras in Section 7.1. The third one plays a crucial role in the
article [RN17], where we use it to represent the Maurer–Cartan space (i.e. the
Deligne–Hinich–Getzler ∞-groupoid) of dg Lie algebras. We outline this in
Section 7.2.

Structure of the paper

In Section 2, we give a not so short recollection on basic facts and constructions
about operads which we use throughout the paper. In Section 3, we state and
prove the central theorem of the present article, on which rest all other results.
In Section 4, we focus on the case where the operads into play are binary
quadratic and we study the compatibility of the main theorem with the Manin
products and with ∞-morphisms of homotopy algebras. We proceed with
Section 5, where we give two ways to use the Homotopy Transfer Theorem
to produce the structure of a Lie algebra up to homotopy on certain tensor
products of algebras, one using Manin products and the other using our main
theorem, and prove that they are actually equal. In Section 6, we go back
to general operads and study the set of Maurer–Cartan elements of the Lie
algebra up to homotopy produced via the main theorem. In Section 7, we give
two applications to deformation theory. To conclude the main body of the
article, we give some explicit examples of applications of the main theorem in
the dual case in Section 8. Additionally, in Appendix A we give some basic
definitions and results about complete and filtered algebras over an operad,
which we need in Section 6.

Notation and conventions

Throughout this paper, we work over a fixed field K of characteristic 0, with
the remarkable exception of whenever we give the results for non-symmetric
operads, where we admit any field. This is necessary, for example because
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we will often need to identify invariants and coinvariants for actions of the
symmetric groups. We recall how this is done in general: let G be a finite
group, and V a representation of G. Then the isomorphism

V G −→ VG

is given by sending an invariant v to 1
|G| [v], where [v] here denotes the class of

v in VG. Conversely, the isomorphism

VG −→ V G

is given by sending [v] to
∑

g∈G g · v, the sum of the elements of the orbit of a
representative of [v] under the action of G.

We always work over chain complexes unless otherwise specified. In partic-
ular, Maurer–Cartan elements of Lie algebras and L∞-algebras are of degree
−1. To take care of signs, we adopt the Koszul convention and the Koszul
sign rule, see [LV12, Sect. 1.5.3], and make heavy use of them throughout the
paper. All chain complexes are Z-graded.

We denote the symmetric group on n elements by Sn.

If V is a chain complex, we denote by V ∨ its linear dual chain complex. It is
given by (V ∨)n := (V−n)

∨. Its differential is equal to dV ∨ := −d∨V , so that the
natural pairing

〈 , 〉 : V ∨ ⊗ V −→ K

is a morphism of chain complexes, where the base field K is seen as a chain
complex concentrated in degree 0. More generally, if V,W are two chain com-
plexes, we will denote by hom(V,W ) the internal hom in chain complexes.
Its degree n elements are the linear maps of degree n from V to W , and the
differential is given by

∂(φ) := dWφ− (−1)|φ|φdV

on homogeneous elements.

Acknowledgments
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tions. I am as always also extremely grateful to my advisor Bruno Vallette for
the constant support, the always relevant comments and corrections, and the
many useful discussions.

2 Recollection on operads

In this section, we give a recollection on various notions in operad theory. We
make explicit certain objects that we will need in what follows, such as the
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structure of algebra over the convolution operad for the mapping space of a
coalgebra and an algebra. We also introduce some new notations that we will
use throughout the paper. We try to stay as close as possible to the conventions
of the book [LV12].

2.1 Operads

For more details about S-modules, the definition of operads, and algebras over
operads, see the book [LV12, Sect. 5.1–3].

Definition 2.1. An S-module over the field K is a collection

M = (M(0),M(1),M(2), . . .)

of right K[Sn]-modules, for all n ∈ N. If µ ∈ M(n), we say that µ has arity n.
A morphism of S-modules f : M → N is a collection of Sn-equivariant maps f :
M(n)→ N(n), for all n ∈ N.

Definition 2.2. Let M,N be two S-modules. Their composite is the S-module
M ◦N given by

(M◦N)(n) :=
⊕

k≥0

M(k)⊗Sk





⊕

n1+···+nk=n

N(n1)⊗ · · · ⊗N(nk)⊗Sn1×···×Snk
K[Sn]



 .

In order to work with the elements of this object, we introduce the following
notation. An element of (M ◦N)(n) can always be represented by an element
µ ∈ M(k), plus k elements ν1, . . . , νk with νi ∈ N(ni), and a shuffle σ ∈
Sh(n1, . . . , nk). We denote the resulting element by

µ⊗ (ν1 ⊗ · · · νk)
σ,

and write M ⊗σk,n1,...,nk
N for the collection of all such elements. We also use

the notation

M ⊗k,n1,...,nk
N :=

⊕

σ∈Sh(n1,...,nk)

M ⊗σk,n1,...,nk
N .

Notice that the module (M ◦N)(n) is given by the coinvariants with respect to
the action of Sn of the direct sum of all such vector spaces with n1+· · ·+nk = n
equipped with the obvious action of Sn, that is

(M ◦N)(n) =
⊕

k≥0

( ⊕

n1+···+nk=n

M ⊗k,n1,...,nk
N

)

Sn

.

Definition 2.3. The Hadamard tensor product of two S-modules M and N is
the arity-wise tensor product

M ⊗
H
N(n) :=M(n)⊗N(n) .
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In the rest of this paper, we will omit the H and simply write it as⊗whenever
we are talking about S-modules.

We will need the following S-modules:

• The unit S-module is
I = (0,K, 0, 0, . . .) .

It is the unit for composite product of S-modules.

• Associated to any chain complex V , there is a canonical S-module EndV
given by

EndV (n) := hom(V ⊗n, V ) .

The category of S-modules is made into a monoidal category by taking the
composite of S-modules as monoidal product and the unit S-module I as unit.

Definition 2.4. An operad P is a monoid in this monoidal category. More ex-
plicitly, it amounts to the data of an S-module, denoted again by P , together with a
composition map

γP : P ◦P −→P

and a unit map
ηP : I →P

satisfying certain compatibility conditions.

In this definition, we withheld an algebraic or a dg before the word operad.
They come about when we decide to work with S-modules over graded vector
spaces or chain complexes respectively.

For any chain complex V , the S-module EndV , equipped with the usual com-
position of functions, is a dg operad.

2.2 Algebras over an operad

Definition 2.5. Let P be a dg operad. A structure of an algebra over P (or a
P-algebra) on a chain complex A is a morphism of dg operads

P −→ EndA .

Recall that the structure of a P-algebra on a chain complex A is equivalent to
a linear morphism

ρA : P(A) −→ A ,

called the composition of A, making certain diagrams commute (see e.g. [LV12,
pp. 132–133]).

Proposition 2.6. The free P-algebra generated by a chain complex V is the P-
algebra

P(V ) :=
⊕

n≥0

P(n)⊗Sn V
⊗n.
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Being free means satisfying the following universal property: any morphism
from a free P-algebra to another P-algebra is completely determined by its
values on the generators.

2.3 Cooperads and coalgebras over a cooperad

For details about cooperads, see [LV12, Sect. 5.8].

Dual to the notion of an operad is the notion of a cooperad. Since we work
over a field of characteristic 0, we always identify invariants and coinvariants.
We consider the “completed” composite of S-modules:

(M ◦̂N)(n) :=
∏

k≥0

M(k)⊗Sn





∏

n1+···+nk=n

N(n1)⊗ · · · ⊗N(nk)⊗Sn1×···×Snk
K[Sn]



 .

Definition 2.7. A cooperad is an S-module C together with a decomposition map
∆C : C → C ◦̂C and a counit map ǫC : C → I satisfying analogous commutative
diagrams dual to the ones for operads. A cooperad is said to be conilpotent if the
decomposition map splits through C ◦ C .

Dual to the notion of an algebra over an operad, there is the concept of a
coalgebra over a cooperad.

Definition 2.8. A C -coalgebra C is said to be conilpotent if its decomposition
map

∆C : C −→ Ĉ (C) := C ◦̂C

splits through C (C) := C ◦ C.

Under the assumption that the underlying S-module is finite dimensional in
every arity, the linear dual of an operad becomes a cooperad, while the linear
dual of a cooperad is always an operad. Let P be such an operad. We will
use the notation

∆k,n1,...,nk,σ : P
∨ −→ (P ⊗σk,n1,...,nk

P)∨ ∼= P
∨ ⊗σk,n1,...,nk

P
∨

for the dual of the restriction of the composition map of P to P⊗σk,n1,...,nk
P .

If n1 + n2 = n + 1, 1 ≤ j ≤ n1, and σ ∈ Sh(n1 − 1, n2), then we use the
notation ⊗σn1,n2,j

to mean ⊗σ̃n1,1,...,1,n2,1,...,1, where the n2 is placed after j − 1
ones, and where σ̃ acts with the second of the two blocks of σ on the n2 slots
on the second level of the two-level tree, and with the other block on the other
variables. Similarly, ∆n1,n2,j,σ denotes the respective restriction of ∆.

2.4 The convolution operad and algebras over it

If C is a cooperad and P is an operad, then the S-action given by conjugation
makes

hom(C ,P)(n) := hom(C (n),P(n))
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into an S-module. It is an operad — the convolution operad — in a natural way
as detailed in [LV12, Sect. 6.4.1]. The composition map is defined as follows.
If we have µ ∈ hom(C ,P)(k) and νi ∈ hom(C ,P)(ni) for 1 ≤ i ≤ k, then
γhom(C ,P)(µ⊗ (ν1 ⊗ · · · ⊗ νk)) is the element of hom(C ,P)(n1 + · · ·+ nk) ob-
tained by first applying ∆C to C (n1+· · ·+nk), then projecting on the subspace
of C ◦ C with the underlying tree given by the k-corolla on the first level and
the n1-corolla, the n2-corolla and so on on the second level, applying µ at the
first level and (ν1, . . . , νk) at the second level, and finally composing with γP .
There is a passage from invariant to coinvariants here: the decomposition ∆C

lands in invariants, but the composition γP takes coinvariants as argument.
This is not done using the isomorphism described in the introduction, but by
identifying the invariants with a subspace of the tensor product and simply
taking the equivalence class.

In Section 6, we will be interested in certain algebras over this operad. Namely,
let D be a C -coalgebra, and let A be a P-algebra. Let µ ∈ hom(C ,P)(n) and
ϕ1, . . . , ϕn ∈ hom(D,A). We define

γhom(D,A)(µ⊗ (ϕ1 ⊗ · · · ⊗ ϕn))

to be the composite

D
∆D(n)
−−−−→ (C (n)⊗D

⊗n)Sn
µ⊗(ϕ1⊗···⊗ϕn)
−−−−−−−−−−→ (P(n)⊗A

⊗n)Sn −→ P(n)⊗SnA
⊗n γA

−−→ A ,

where once again the passage from invariants to coinvariants in not done us-
ing the isomorphism of the introduction, but as described above. Here, ∆D(n)
is the composite of ∆D followed by the projection onto C (n)⊗D⊗n.

Proposition 2.9. The map γhom(D,A) makes the chain complex hom(D,A) into a
hom(C ,P)-algebra.

Proof. It is straightforward to check the axioms for an algebra over an operad.
We leave the explicit computations to the reader.

2.5 Free operads

Definition 2.10. Let M be an S-module. A free operad over M is an operad
T (M) together with a morphism of S-modules η(M) : M → T (M) satisfying the
following universal property: for any operad P , every morphism f : M → P of

S-modules extends uniquely to a morphism of operads f̃ : T (M) → P such that

f̃ η(M) = f .

As usual with this sort of universal properties, the free operad over an S-
module is unique up to isomorphism. It can be explicitly described as follows.

Definition 2.11. Let M be an S-module. The tree module T (M) over M is the
S-module spanned in arity n by rooted trees of arity n with vertices of arity k labeled
by elements of M(k), together with the obvious right Sn-action.
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Theorem 2.12. Let M be an S-module. The free operad over M is the S-module
T (M) together with the grafting of trees as composition map.

In the dual picture, the cofree cooperad over M is the cooperad T c(M) given
again by the tree module module T (M) endowed with the decomposition of
trees as decomposition map. It satisfies the dual universal property to the one
for free operads.

If P is an operad, by iterated application if the composition map we obtain a
morphism of operads

T (P) −→P ,

which we denote by γ̃P . This yields the monadic definition of an operad. Du-
ally, if C is a cooperad, repeated applications of the decomposition map yield
a map

C −→ T c(C ) ,

which we denote by ∆̃C .

Given two S-modules M and N , there is a natural morphism of operads

Φ : T (M ⊗N) −→ T (M)⊗ T (N) .

It is induced by the map sending a tree with vertices indexed by elements of
M ⊗N to the tensor product of two copies of the same tree, the first one with
the vertices labeled by the respective elements of M , and the second one with
the vertices labeled with the elements of N , see [LV12, pp. 308–309]. For τ
a rooted tree, denote by T (M)τ the subspace of T (M) spanned by elements
having τ as the underlying tree. Then we can define a map

T τ : T (M)τ ⊗ T (N)τ −→ T (M ⊗N)τ

which is inverse to the restriction of Φ to T (M ⊗ N)τ . We often refer to it as
the switch map.

2.6 Operadic suspensions

We use the letter s to denote a formal element of degree 1, and denote by s−1

its dual. Therefore, if V is a graded vector space, its suspension is given by
sV , i.e. (sV )n ∼= Vn−1. Notice that the dual of s ⊗ s is then −s−1 ⊗ s−1, and
that s−1s ∼= 1 ∼= −ss−1. We denote by s−2 the element s−1 ⊗ s−1.

Let P be an operad. Then the suspension sP is not an operad in general.
However, there is an operadic version of suspension. Let S := EndKs be
the operad which is 1-dimensional in every arity, where it is spanned by the
degree 1− n map Sn sending s⊗n to s. Similarly, we define S −1 := EndKs−1 ,
and we denote by S

c the dual cooperad of S
−1, and by (S −1)c the dual

cooperad of S .
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Definition 2.13. Let P be an operad. The operadic suspension of P is the
operad S ⊗P . Similarly, the operadic desuspension of P is S −1 ⊗P .
Let C be a cooperad. Analogously to the above, the operadic suspension of C is the
cooperad S

c ⊗ C , and its operadic desuspension is (S −1)c ⊗ C .

Notice that on the level of the underlying S-modules, we have S
c ∼= S and

similarly S −1 ∼= (S −1)c. However, there is a sign (−1)ǫ due to the Koszul
sign convention appearing in the isomorphism. The correct sign can be found
by the following simple computation:

(−1)
n(n−1)

2 = s−nsn

= (−1)ǫS −1
n Sns

−nsn

= (−1)ǫS −1
n s−nSns

n

= (−1)ǫs−1s

= (−1)ǫ,

where in the third line we used the fact that (n − 1)n is always even. Here
— and in the rest of this paper as well — certain tensor products, maps and
identifications are left implicit. For example, in various places we identified
1 ∈ K with the element of V ⊗ V ∨ corresponding to the identity of V , where
V is a finite dimensional vector space.

2.7 Bar-cobar adjunction for operads

There is a pair of adjoint functors between conilpotent coaugmented dg coop-
erads and augmented dg operads, called the bar and the cobar construction,
respectively. See [LV12, Sect. 6.5.1–3] for details.

Definition 2.14. The cobar construction is the functor Ω taking a conilpotent
coaugmented dg cooperad C and giving the quasi-free dg operad

ΩC := (T (s−1
C ), d := d1 + d2) ,

where d1 is the unique derivation extending the differential of C , and d2 is the unique
derivation extending (a suspended version of) the infinitesimal decomposition map
∆(1).

Definition 2.15. Dually, the bar construction is the functor B taking an aug-
mented dg operad P and giving back the quasi-free dg cooperad

BP := (T c(sP), d := d1 + d2) ,

where d1 is the unique coderivation extending the differential of P , and d2 is the
unique coderivation extending (a suspended version of) the composition map of P on
trees with two vertices.
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Let C be a dg cooperad and let P be a dg operad, then a twisting morphism
from C to P is a degree −1 morphism of S-modules from C to P satisfy-
ing a certain version of the Maurer–Cartan equation. The set of all twisting
morphisms is denoted by Tw(C ,P), see [LV12, Sect. 6.4].

Theorem 2.16. Let C be a conilpotent, coaugmented cooperad, and let P be an
augmented operad. There are natural isomorphisms

homdg Op(ΩC ,P) ∼= Tw(C ,P) ∼= homdg coOp(C ,BP) .

In particular, the functors Ω and B form an adjoint pair.

2.8 Binary quadratic operads, Koszul duality and homotopy al-

gebras

Definition 2.17. An operadic quadratic data is a couple (E,R), where E is
an S-module and R is a sub-S-module of T (E)(2), the S-module of trees with two
vertices. If (E,R) and (F, S) are two operadic quadratic data, a morphism

f : (E,R) −→ (F, S)

of operadic quadratic data between them is a morphism of S-modules f : E → F such
that T (f)(R) ⊆ S.

To such a quadratic data, one can associate a quadratic operad P(E,R) by

P(E,R) := T (E)/(R) .

Such an operad is said to be binary if the generating S-module E is concen-
trated in arity 2. The category of binary quadratic operads is the subcate-
gory of the category of operads having as objects the quadratic operads and
as morphisms the morphisms of operads induced by morphisms of operadic
quadratic data. Dually, we can also associate a quadratic cooperad C (E,R) to
any operadic quadratic data. It is defined through a universal property and
does not admit a full description as simple as the one for P(E,R), see [LV12,
Sect. 7.1].

In the category of quadratic operads, we have the very useful tool of Koszul
duality.

Definition 2.18. Given a quadratic operad P := P(E,R), then its Koszul dual
cooperad is the quadratic cooperad

P
¡
:= C (sE, s2R) .

Definition 2.19. There is also the notion of the Koszul dual operad of P , which
is defined as

P
! :=

(
S

c ⊗P
¡)∨

.
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The following computation will be useful later on. We have

P
¡ ∼= (S −1)c ⊗

(
P

!
)∨
,

therefore, if we take P = Q! for some quadratic operad Q, then

(
Q

!
)¡
= (S −1)c ⊗Q

∨. (1)

Another useful fact is the following one.

Lemma 2.20. Let P := P(E,R) be a binary quadratic operad. Then P ! is again
binary quadratic, and has the explicit presentation

P
! = P(s−1

S
−1
2 E∨, R⊥) .

The category of dg operads admits a model structure, see for example
[Hin97b], and it can be shown that, for a dg operad P satisfying certain as-
sumptions, the dg operad ΩBP is a cofibrant resolution of P . However, the
dg operad ΩBP is a very big object. Thus we are often interested to find
smaller cofibrant resolutions. The most common one is the minimal model for
P (see [LV12, Sect. 6.3.4]). A quadratic operad is said to be Koszul if it satisfies
certain homological conditions, see [LV12, Sect. 7.4 and 8].

Theorem 2.21 ([GK94] and [GJ94]). When P is a Koszul operad, the dg operad
P∞ := ΩP

¡
is the minimal model for P .

Definition 2.22. Let P be a Koszul operad. A homotopy P-algebra is an alge-
bra over the operad P∞.

Remark 2.23. Many quadratic operads of interest are Koszul. Some examples are
the so-called three graces Lie , Com , and Ass, which will be introduced in Section
2.11.
Abusing notation, we denote by P∞ the dg operad ΩP

¡
even when P is not Koszul.

The operad P∞ is cofibrant, but the homotopy theory of P∞-algebras is not the same
as the homotopy theory of P-algebras when P is not Koszul.

A direct consequence of Theorem 2.16 is that the structure of a P∞-algebra on
a chain complex A is equivalent to the data of a twisting morphism

ϕA ∈ Tw(P
¡
,EndA) .

2.9 Infinity-morphisms

Let P be a quadratic operad, and let A be a P∞-algebra. One can endow the
cofree coalgebra P

¡
(A) with the unique coderivation dP

¡(A) extending d1+d2,
where

d1 :=
(
P

¡
(A)

proj
−−→ A

dA−−→ A
)
,

d2 :=
(
P

¡
(A)

∆(1)
−−−→ (P

¡
◦(1) P

¡
)(A)

1◦(1)γA
−−−−−→P

¡
(A)

proj
−−→ A

)
.

This is the (canonical) bar construction BιA for the P∞-algebra A.
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Remark 2.24. This construction is the relative bar construction of a P∞-algebra
with respect to the canonical twisting morphism

ι : P
¡
−→ ΩP

¡
= P∞ ,

see [LV12, Sect. 6.5.4, 11.2] for more details.

Definition 2.25. An∞-morphism of P∞-algebras from A to A′ is a morphism of
differential graded P

¡
-coalgebras

BιA −→ BιA
′ .

The composition of∞-morphisms is the composition of morphisms of P
¡
-coalgebras.

We use the notationA A′ to represent an∞-morphism fromA toA′. The category
of P∞-algebras with∞-morphisms is denoted by∞-P∞-alg.

The data of an∞-morphism g : A A′ is equivalent to a collection of maps

gn : P
¡
(n)⊗Sn A

⊗n −→ A′

for all n ≥ 0 satisfying certain relations.

While this might seem a peculiar notion at first, it is an important general-
ization of strict morphisms of algebras. For example, ∞-morphisms of L∞-
algebras play a fundamental role in Kontsevich’s proof of deformation quan-
tization of Poisson manifolds in [Kon03] and are generally an object of interest
in deformation theory.

2.10 The Homotopy Transfer Theorem

Let P be a Koszul operad, and let X be a P∞-algebra. If there is a retraction

X Y
p

i

h

of chain complexes, then the Homotopy Transfer Theorem tells us the follow-
ing.

Theorem 2.26 (Homotopy Transfer Theorem). The chain complex Y inherits a
P∞-algebra structure from X such that X and Y are homotopy equivalent as P∞-
algebras. Explicitly, the maps i and p can be extended to∞-quasi-isomorphisms i∞
and p∞ of P∞-algebras between them.

This deep theorem can be found in the book [LV12, Sect. 10.3], where its long
history and many facets are also elucidated. An explicit formula for the trans-
ferred structure is also given as follows. Let

ϕX ∈ Tw(P
¡
,EndX)
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be a P∞-algebra structure on X . Then a P∞-algebra structure on Y is given
by the twisting morphism ϕY ∈ Tw(P

¡
,EndY ) defined as the composite

P
¡ ∆

P
¡

−−−→ T c
(
P

¡) T c(sϕX )
−−−−−−→ T c(sEndX)

VdLY−−−−→ EndY ,

where the map VdLY , called the Van der Laan map, is given by sending a tree
with the vertices marked by elements of sEndX to the same tree with the sus-
pension s removed, and with i’s on the leaves, p at the root, and h applied
to every inner edge, and then taking the obvious composition in EndY . This
explicit expression for the transferred structure first appeared in [GCTV12]. A
detailed exposition of this map is given in [LV12, Sect. 10.3.2]. Explicit for-
mulæ for i∞ and p∞ are given in [LV12, Sect. 10.3.5–6].

2.11 Operads of main interest

The main symmetric dg operads appearing in this article are Lie, Com , and
Ass , coding Lie, commutative, and associative algebras respectively. They
will be described in more detail in Section 8.1. Their Koszul resolutions are
the dg operads L∞, C∞, and Ass∞ respectively. In the ns setting, we con-
sider principally As, also coding associative algebras. Its Koszul resolution is
denoted by A∞.

As already mentioned in the introduction, the operad of main interest to us is
the quasi-free dg operad L∞ encoding homotopy Lie algebras (also known as
strong homotopy Lie algebras in the literature). It is given by

L∞ := ΩLie
¡
.

It is a well known fact that Lie
¡ ∼= (S −1)c ⊗Com

∨. For each n ≥ 2, we denote
by µn the generating operation of Com(n), corresponding to the only way to
multiply n elements in a commutative algebra. We use the notation

ℓn := s−1
S

−1
n µ∨

n , n ≥ 2 ,

for the generators of the operad L∞.

Similarly, in the non-symmetric (ns) case we will be interested in the quasi-free
dg ns operad A∞ coding homotopy associative algebras. It is given by

A∞ := ΩAs
¡
.

Analogously to what happens in the symmetric case, we have As
¡ ∼= (S −1)c⊗

As
∨. For each n ≥ 2, we denote by mn the generating operation in As(n),

which corresponds to the unique way to multiply n elements in an associative
algebra (without changing their order). We use the notation

an := s−1
S

−1
n m∨

n , n ≥ 2 ,

for the generators of A∞.
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3 Convolution homotopy algebras

In this section, we state and prove the theorem which is the starting point for
all other results in this article. It says that if we are given an algebra over an
operad and a coalgebra over a cooperad, and if the operad and the cooperad
are related in a certain way by a morphism of dg operads, then we can put
a natural homotopy Lie algebra on the space of linear morphisms from the
coalgebra to the algebra. Dually, if we are given two algebras over dg operads
that are related by a morphism of dg operads, then we can put a natural L∞-
algebra structure on their tensor product.

3.1 Natural L∞-algebra structures

Let P and Q be dg operads, let Q be augmented, and suppose we have a
morphism of dg operads

Ψ : Q −→P .

Denote by Ψ(n) : Q(n) → P(n) the restriction of Ψ to arity n. Then we can
associate to Ψ a map

s−1
Lie

¡
−→ hom(B(S ⊗Q),P)

by sending ℓn to the element

s−1
S

−1
n Ψ(n) ∈ homK(sSnQ(n),P(n))

given by

(s−1
S

−1
n Ψ(n))(sSnq) = (−1)n−1+n(n−1)

2 Ψ(q)

and then precomposing with the projection

proj(1) : B(S ⊗Q)(n) −→ sSnQ(n)

onto the weight 1 part to get an element of hom(B(S ⊗Q),P)(n). We denote
by

M

Ψ : L∞ −→ hom(B(S ⊗Q),P)

the unique morphism of algebraic operads extending the map given above.
In can be described explicitly as follows. Let ℓ be an element of L∞ with
underlying rooted tree τ , then

M

Ψ sends ℓ to the morphism from B(S ⊗ Q)
to P given by first projecting to the submodule T (sS ⊗ Q)τ spanned by
elements having τ as underlying tree, then applying

M

Ψ(ℓn) to the vertices of
arity n (with the correct signs appearing because of the Koszul sign rule), and
finally composing the resulting tree in P .

Without further ado, we can now state the main theorem of this section.
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Theorem 3.1. Let Ψ : Q → P be a morphism of dg operads. Then the morphism
of algebraic operads

M

Ψ : L∞ −→ hom(B(S ⊗Q),P)

described above commutes with the differentials, i.e. it is a morphism of dg operads.
Moreover, it is compatible with compositions in the following sense. If we have a
second morphism Θ : R → Q of dg operads, then we have the following commutative
diagram

L∞

hom(B(S ⊗R),Q)

hom(B(S ⊗R),P)

hom(B(S ⊗Q),P)

M

Θ

M

ΨΘ

M

Ψ

Ψ∗

B(S ⊗Θ)∗

in the category of dg operads, that is:

M

Ψ(ℓ) = Ψ

M

Θ(ℓ) =

M

Ψ(ℓ)B(S ⊗Θ)

for any ℓ ∈ L∞.

Remark 3.2. The idea of this construction was already present in Ginzburg–
Kapranov [GK94, Prop. 3.2.18] and elaborated a bit in [BL15, Appendix C].

Remark 3.3. Thanks to the compatibility with the compositions, it is often only
necessary to compute

M

Q :=

M

idQ
or

M

P in order to find

M

Ψ for Ψ : Q → P .
Indeed, one can write Ψ = idPΨ or Ψ = ΨidQ and then use the relations given
above.

Remark 3.4. A slightly more general construction can be made in an analogous
way, as remarked independently in [Wie16]. Where our results construct a morphism
from the operad L∞ to a certain convolution operad starting from a morphism of dg
operads, in loc. cit. the same result is obtained starting from a twisting morphism.
One passes from the former to the latter by pulling back by the canonical twisting
morphism π : BQ → Q. More precisely, let C be a dg cooperad and let P be a dg
operad. Then by definition

Tw(C ,P) := MC (hom(C ,P)) ,

where hom(C ,P) here denotes the pre-Lie algebra associated to the convolution al-
gebra. As dg operads, we have

hom(C ,P) ∼= hom(Com∨, hom(C ,P))
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∼= hom((S −1)c ⊗ Com
∨, (S −1)c ⊗ hom(C ,P))

∼= hom((S −1)c ⊗ Com
∨, hom(S c ⊗ C ,P)) ,

where all the isomorphisms are canonical. Therefore,

Tw(C ,P) ∼=MC
(
hom((S −1)c ⊗ Com

∨, hom(S c ⊗ C ,P))
)

= Tw
(
(S −1)c ⊗ Com

∨, hom(S c ⊗ C ,P)
)

∼= homdg Op(L∞, hom(S c ⊗ C ,P)) ,

where in the last line we used Theorem 2.16. In our situation, we can then consider
C = BQ and the twisting morphism

ψ =
(
BQ

π
−→ Q

Ψ
−→P

)
,

which gives back Theorem 3.1 thanks to the canonical isomorphism S c ⊗ BQ ∼=
B(S ⊗Q). The explicit formulæ for the morphisms of operads associated to an arbi-
trary twisting morphism are analogous to the ones presented above.

Proof. To show that
M

Ψ commutes with the differentials, it is enough to check
on the generators ℓn of the operad L∞. The differential of the range of

M

Ψ is
given by

dhom(B(S⊗Q),P) = (dP)∗ − (d1 + d2)
∗,

with d1 and d2 as described in Subsection 2.7. Notice that dP

M

Ψ(ℓn) and

M

Ψ(ℓn)d1 can be non-zero only on elements of weight 1 of B(S ⊗Q), while

M

Ψ(ℓn)d2 vanishes everywhere except on the weight 2 part B(S ⊗ Q) ◦(1)
B(S ⊗Q), as does

M

Ψ(dL∞
ℓn). Let sSnq ∈ B(S ⊗Q)(1), then we compute

(
dP

M

Ψ(ℓn)− (−1)n

M

Ψ(ℓn)d1
)
(sSnq) =

= dP

(
(−1)n−1+b(n)Ψ(q)

)
− (−1)n

M

(ℓn)
(
(−1)nsSndQq

)

= (−1)n−1+b(n)
(
dPΨ(q)−Ψ(dQq)

)

= 0 ,

where b(n) := n(n−1)
2 . Here we used the fact that Ψ is a morphism of dg

operads, and thus commutes with the differentials dP and dQ. To complete
this part of the proof, we only have to check what happens on elements of
weight 2. So we consider

(sSn1q1 ⊗j sSn2q2)
σ
∈ B(S ⊗Q)⊗σn1,n2,j B(S ⊗Q) ,

where n1 + n2 = n+ 1 and σ ∈ Sh(n1 − 1, n2). Then we have
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−(−1)n

M

Ψ(ℓn)d2 (sSn1q1 ⊗j sSn2q2)
σ =

= (−1)n+1 M

Ψ(ℓn)
(
(−1)n2|q1|+n1−1+(j−1)(n2−1)+σsSnγQ(q1 ⊗j q2)

σ
)

= (−1)n2|q1|+n1−1+(j−1)(n2−1)+σ+b(n)Ψ(γQ(q1 ⊗j q2)
σ) .

The signs in the second line appear because of switches, the composition in
S , and because Sn carries the sign representation of Sn. At the same time,

M

Ψ(dL∞
ℓn) (sSn1q1 ⊗j sSn2q2)

σ =

=

M

Ψ




∑

ñ1+ñ2=n−1
˜σ+1∈Sh(ñ1−1,ñ2)

(−1)σ̃+ñ1(ℓñ1 ⊗1 ℓñ2)
σ̃


 (sSn1q1 ⊗j sSn2q2)

σ

=

M

Ψ

(
(−1)(j−1)(n2−1)+σ+n1(ℓn1 ⊗j ℓn2)

σ
)
(sSn1q1 ⊗j sSn2q2)

σ

= (−1)ǫγP

(
(−1)n2(n1+|q1|)

M

Ψ(ℓn1)(sSn1q1)⊗

M

Ψ(ℓn2)(sSn2q2)
)σ

= (−1)ǫ+n2|q1|+n1n2γP

(
(−1)n1−1+b(n1)Ψ(q1)⊗j (−1)

n2−1+b(n2)Ψ(q2)
)σ

= (−1)ǫ+n2|q1|+
n(n−1)

2 γP (Ψ(q1)⊗j Ψ(q2))
σ
,

where
ǫ := (j − 1)(n2 − 1) + σ + n1 .

Comparing the signs and using the fact that Ψ is a morphism of operads, we
see that the two expressions are equal. Therefore, the morphism of algebraic
operads

M

Ψ commutes with the differentials. Checking the compatibility with
compositions is straightforward and left to the reader.

Corollary 3.5. Let Ψ : Q → P be a morphism of dg operads, let A be a P-
algebra, and let D be a B(S ⊗ Q)-coalgebra. Then the chain complex hom(D,A)
carries the structure of an L∞-algebra by pulling back by the morphism

M

Ψ. We

denote the resulting L∞-algebra by homΨ(D,A).

Proof. This follows immediately from Proposition 2.9 and Theorem 3.1.

3.2 The dual case

Let P and Q be dg operads. If Q is reduced and finite dimensional in every
arity, then so is B(S ⊗Q) and we have a natural isomorphism of operads

hom(B(S ⊗Q),P) ∼= P ⊗ B(S ⊗Q)∨ ∼= P ⊗ Ω((S −1)c ⊗Q
∨) .

Under this correspondence, we get a morphism

MΨ : L∞ −→P ⊗ Ω((S −1)c ⊗Q
∨) .
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It can be described as follows. The data of a morphism of dg operads

Ψ : Q −→P

is canonically equivalent to a collection of elements Ψn ∈ P(n) ⊗Q(n)∨ for
n ≥ 0 satisfying certain conditions (given in Lemma 3.8). Therefore, we can
associate to Ψ a map

s−1
Lie

¡
−→P ⊗ (s−1(S −1)c ⊗Q

∨) ⊂P ⊗ Ω((S −1)c ⊗Q
∨)

by sending ℓn to s−1S −1
n Ψn, and then commuting s−1S −1

n with the part of
Ψn in P(n). Notice that as Ψ is equivariant under the action of the symmetric
group, the elements Ψn are invariant under the action of Sn. Thus the element
we obtain with this map carries the sign representation. We denote by

MΨ : L∞ −→P ⊗ Ω((S −1)c ⊗Q
∨)

the unique morphism of algebraic operads extending this map. Explicitly,
it is given by taking an element of the operad L∞, sending it to T (P ⊗
(s−1(S −1)c⊗Q∨)) using the map given above at every vertex, then applying
the morphism Φ described in Subsection 2.5 to obtain an element of the ten-
sor product T (P) ⊗ T (s−1(S −1)c ⊗Q∨), and finally applying the operadic
composition map of P to the first part.

In this dual setting, the main theorem (3.1) becomes as follows.

Theorem 3.6. Let Ψ : Q → P be a morphism of dg operads such that Q(n) is
finite dimensional for all n ≥ 0. Then the morphism of algebraic operads

MΨ : L∞ −→P ⊗ Ω((S −1)c ⊗Q
∨)

described above commutes with the differentials, i.e. it is a morphism of dg operads.
Moreover, it is compatible with compositions in the sense that, if we have a second
morphism of dg operads

Θ : R −→ Q

with R(n) finite dimensional for all n ≥ 0, then we get the following commutative
diagram

L∞

Q ⊗ Ω((S −1)c ⊗R∨)

P ⊗ Ω((S −1)c ⊗R∨)

P ⊗ Ω((S −1)c ⊗Q∨)

MΘ

MΨΘ

MΨ

Ψ⊗ 1

1⊗ Ω((S −1)c ⊗Θ∨)
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in the category of dg operads, that is:

MΨΘ = (Ψ⊗ 1)MΘ = (1 ⊗ Ω((S −1)c ⊗Θ∨))MΨ .

Corollary 3.7. Let Ψ : Q → P be a morphism of dg operads such that Q(n) is
finite dimensional for all n ≥ 0, let A be a P-algebra, and let C be a Ω((S −1)c ⊗
Q∨)-algebra. Then the tensor product A⊗ C carries the structure of an L∞-algebra
given by pulling back by the morphism MΨ. We denote the tensor product A ⊗ C
equipped with the induced L∞-algebra structure byA⊗ΨC. This is compatible with
Corollary 3.5 in the sense that, if D is a finite dimensional B(S ⊗Q)-coalgebra, then

homΨ(D,A) ∼= A⊗Ψ D∨

as L∞-algebras via the natural isomorphism.

Theorem 3.6 can be proven by using Theorem 3.1 and the natural isomorphism

hom(B(S ⊗Q),P) ∼= P ⊗ Ω((S −1)c ⊗Q
∨)

for Q reduced, but it can also directly be proven in this setting using the fol-
lowing lemma characterizing the sequence of elements Ψn associated to Ψ,
which will be used various times in the rest of the paper. This more direct
proof allows us to get rid of the assumption that Q be reduced that we need
for the above isomorphism to work.

Lemma 3.8. Let P and Q be two dg operads such that Q(n) is finite dimensional
in all arities. For each n ≥ 0, fix a homogeneous basis q1(n), . . . , qm(n)(n) of Q(n).
A morphism of dg operads Ψ : Q → P is equivalent, by setting pi(n) := Ψ(qi(n)),
to a collection of S-invariant elements

Ψn :=

m(n)∑

i=1

pi(n)⊗ qi(n)
∨ ∈P(n)⊗Q

∨(n) ,

where P(n) ⊗Q(n)∨ is equipped with the diagonal action of the symmetric group,
satisfying

m(n)∑

i=1

(
dP(pi(n))⊗ qi(n)

∨ + (−1)|pi(n)|pi(n)⊗ d
∨
Q(qi(n)

∨)
)
= 0 (2)

in P(n)⊗Q(n)∨ and

∑
m(n)
i=1 pi(n)⊗∆k,n1,...,nk,σ(qi(n)

∨) =

=
∑

1≤i≤m(k)
1≤ij≤m(nj)

(−1)ǫγP

(
pi(k)⊗ (pi1(n1)⊗ · · · ⊗ pik(nk))

σ
)
⊗

⊗
(
q∨i (k)⊗ (q∨i1(n1)⊗ · · · ⊗ q

∨
ik(nk))

σ
)
,

(3)
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whenever n1 + · · ·+ nk = n and σ ∈ Sh(n1, . . . , nk), where

ǫ = |qi(k)|

k∑

j=1

|qij (nj)|+

k∑

j=1

∑

j′>j

|qij (nj)||qij′ (nj′ )|

is the Koszul sign obtained by switching elements. This second equation holds in

P(n)⊗ (Q ⊗σk,n1,...,nk
Q)∨ ∼= P(n)⊗ (Q∨ ⊗σk,n1,...,nk

Q
∨) .

Notice that in this last isomorphism, signs may appear because of the Koszul conven-
tion.

From now on, we will ease notation by abstaining from indicating the arity
of an element of the basis refers to, and write simply qi for qi(n). The correct
arities can always easily be recovered from the context.

Proof. Fix n ≥ 0. Notice that, as Ψ has degree 0, we have |pi| = |qi| for all i.
Invariance of the Ψn under the Sn-action is equivalent to the fact that Ψ is
equivariant. Let q ∈ Q(n) and let σ ∈ Sn, then we have

m(n)∑

i=1

〈q∨i , q〉pi = Ψ(q) = Ψ
(
qσ

−1
)σ

=

m(n)∑

i=1

〈
q∨i , q

σ−1
〉
pσi =

m(n)∑

i=1

〈(q∨i )
σ, q〉 pσi ,

and thus
m(n)∑

i=1

pσi ⊗ (q∨i )
σ =

m(n)∑

i=1

pi ⊗ q
∨
i .

Equation (2) is nothing else than a restatement of the fact that dPΨ = ΨdQ.
Indeed, let q ∈ Q(n), then

0 = dPΨ(q)−Ψ(dQq)

=

m(n)∑

i=1

(〈q∨i , q〉dPpi − 〈q
∨
i , dQq〉pi)

=

m(n)∑

i=1

(
〈q∨i , q〉dPpi − (−1)|qi|+1〈d∨Qq

∨
i , q〉pi

)

=

m(n)∑

i=0

(
dP(pi)⊗ q

∨
i + (−1)|pi|pi ⊗ d

∨
Q(q∨i )

)
(q) .

Similarly, Equation (3) is equivalent to the fact that

γP(Ψ ◦Ψ) = ΨγQ .

Let
r ⊗ (r1, . . . , rk)

σ ∈ Q ⊗σk,n1,...,nk
Q ,
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then

Ψ
(
γQ

(
r ⊗ (r1, . . . , rk)

σ
))

=

m(n)∑

i=1

〈q∨i , γQ(r ⊗ (r1, . . . , rk)
σ)〉pi

=

m(n)∑

i=1

〈∆k,n1,...,nk,σ(q∨i ), r ⊗ (r1, . . . , rk)
σ〉pi

=



m(n)∑

i=1

pi ⊗∆k,n1,...,nk,e(q∨i )


(r ⊗ (r1, . . . , rk)

σ
)
.

On the other hand, using the shorthand

pi,i1,...,ik,σ := pi ⊗ (pi1 ⊗ · · · ⊗ pik)
σ

and similarly for q∨, we have

γP

(
(Ψ ◦Ψ)

(
r ⊗ (r1 ⊗ · · · ⊗ rk)

σ
))

= γP

(
Ψ(r)⊗ (Ψ(r1), . . . ,Ψ(rk))

σ
)

= γP




∑

1≤i≤m(k)
1≤ij≤m(nj)

〈q∨i , r〉〈q
∨
i1 , r1〉 · · · 〈q

∨
ik , rk〉pi,i1,...,ik,σ




=
∑

1≤i≤m(k)
1≤ij≤m(nj)

(−1)ǫ〈q∨i,i1,...,ik,σ, r ⊗ (r1, . . . , rk)
σ〉γP

(
pi,i1,...,ik,σ

)

=




∑

1≤i≤m(k)
1≤ij≤m(nj)

(−1)ǫγP

(
pi,i1,...,ik,σ

)
⊗
(
q∨i,i1,...,ik,σ

)

 (r ⊗ (r1, . . . , rk)

σ) ,

completing the proof.

3.3 The non-symmetric case

In the context of non-symmetric operads, our main theorem takes the follow-
ing form.

Theorem 3.9. Let Ψ : Q → P be a morphism of dg ns operads. Then there is a
canonical morphism of dg ns operads

Mns
Ψ : A∞ −→ hom(B(S ⊗Q),P) .

If moreover Q(n) is finite dimensional for all n ≥ 0, this can be dualized to give a
canonical morphism of dg ns operads

Mns
Ψ : A∞ −→P ⊗ Ω((S −1)c ⊗Q

∨) .
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Both are compatible with compositions, in the sense that if Θ : R → Q is a second
morphism of dg ns operads,

Mns
ΨΘ = Ψ∗ Mns

Θ = B(S ⊗Θ)∗

Mns
Ψ ,

and if moreover R(n) is finite dimensional for all n ≥ 2, then

Mns
ΨΘ = (Ψ⊗ 1)Mns

Θ = (1 ⊗ Ω((S −1)c ⊗Θ∨))Mns
Ψ .

The construction of the morphisms

Mns
Ψ and Mns

Ψ is analogous to the one for

M

Ψ and MΨ. At the level of algebras, this gives the following.

Corollary 3.10. Let Ψ : Q →P be a morphism of dg ns operads, let A be a P-
algebra, and let D be a B(S ⊗Q)-coalgebra. Then the chain complex of linear maps
hom(D,A) carries a structure of A∞-algebra by pullback by the morphism

Mns
Ψ . We

denote it again by homΨ(D,A). If furthermore Q(n) is finite dimensional for all
n ≥ 0 and C is a Ω((S −1)c ⊗Q

∨)-algebra, then the tensor product A ⊗ C carries
the structure of an A∞-algebra induced by pullback by the morphism Mns

Ψ . We denote
it by A ⊗Ψ C. Those two structures are compatible, in the sense that if Q is finite
dimensional in all arities and D is a finite dimensional B(S ⊗Q)-coalgebra, then

homΨ(D,A) ∼= A⊗D∨

as A∞-algebras via the natural isomorphism.

4 Binary quadratic operads and Manin morphisms

In this section, we restrict ourselves to binary quadratic operads and we ex-
plore the consequences of our main theorem in this context. We only work
in the dual setting, i.e. with tensor products. In the present situation, the
statement of Theorem 3.6 simplifies to the existence of a map of dg operads

L∞ −→P ⊗Q
!
∞ .

We start by recalling the notion of what we call the Manin morphisms, which
are morphisms arising from maps between operads via the adjunction be-
tween the black and white Manin products. We go on to prove that the mor-
phisms obtained through our main theorem lift the Manin morphisms to a
homotopical context. The principal result of this section lies in the fact that
the morphisms obtained through Theorem 3.6 are compatible with strict mor-
phisms of algebras on one side and ∞-morphisms on the other side (Propo-
sition 4.4). This amounts to the existence of a bifunctor given on objects by
taking a P-algebra and a Q!

∞-algebra and giving back their tensor product
with the L∞-algebra structure obtained through Theorem 3.6 and allowing
∞-morphisms in the second slot.
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4.1 Manin morphisms

In the category of operads given by binary quadratic data and morphisms in-
duced by morphisms of quadratic data, one can define two operations, called
the white and black Manin products and denoted by and respectively, both
taking two binary quadratic operads and giving back another one. These ob-
jects first appeared in the context of algebras in [Man87] and [Man88] and then
in [GK94] in relation to operads. For a more conceptual treatment, see [Val08]
or [LV12, Sect. 8.8].

Proposition 4.1. Fix a binary quadratic operad Q. Then there is a natural isomor-
phism

hombin. quad. op.(R Q,P) ∼= hombin. quad. op.(R,P Q
!) .

That is to say, the functors − Q and − Q! are adjoint. Moreover, the operad Lie

is a unit for the black product.

Therefore, any morphism

Ψ : Lie Q ∼= Q −→P

coming from a quadratic data is equivalent to a morphism

Lie −→P Q
! .

As explained in [Val08, Sect. 3.2], the white product is the best binary
quadratic approximation of the Hadamard product, and there is a canonical
morphism

P Q
! −→P ⊗Q

! .

Definition 4.2. We call the composite

mΨ :=
(
Lie −→P Q

! −→P ⊗Q
!
)

the Manin morphism associated to Ψ.

The Manin morphism mΨ has the following explicit description. Assume P =
P(E,R) and Q = P(F, S), fix a basis f1, . . . , fk of F , and let e1, . . . , ek ∈ E
be the images of the fi under Ψ. Then mΨ is the unique morphism of operads
extending

mΨ(b) :=
k∑

i=1

ei ⊗ s
−1

S
−1
2 f∨

i ,

where b ∈ Lie(2) is the Lie bracket. Here, we implicitly used Lemma 2.20.

For any quadratic binary operad Q, there is a canonical Manin morphism,
namely the one associated to the identity of Q, giving

mQ := midQ
: Lie −→ Q ⊗Q

! .

It is easy to see that
mΨ = (Ψ⊗ 1)mQ ,

so that it is often only necessary to know mQ to compute mΨ.
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4.2 Application of the main theorem to the binary quadratic case

For the rest of this section, we fix two binary quadratic data (E,R) and (F, S)
and denote by P = P(E,R) and Q = P(F, S) the two associated operads.
Furthermore, we assume that F is finite dimensional. We fix a morphism

Ψ : Q −→P

in the category of binary quadratic operads. By Equation (1) we have

Ω((S −1)c ⊗Q
∨) ∼= Ω

((
Q

!
)¡) ∼= Q

!
∞ .

Thus, we can apply Theorem 3.6 to the morphism Ψ to obtain a map

MΨ : L∞ −→P ⊗Q
!
∞ .

Here we used the fact that since F is finite dimensional, Q(n) is finite dimen-
sional for all n ≥ 0. The following proposition shows that in this situation,
Theorem 3.6 provides us with a lifting of the Manin morphisms to operads
coding homotopy algebras.

Proposition 4.3. The following square

L∞ P ⊗Q
!
∞

Lie P ⊗Q
!

MΨ

mψ

where the vertical maps are the canonical ones coming from the resolutions, is com-
mutative.

Proof. The left vertical arrow sends ℓ2 to b and ℓn to 0 for all n ≥ 3. Therefore,
the south–west composite is the map sends

ℓ2 7−→

k∑

i=1

ei ⊗ s
−1

S
−1
2 f∨

i

and all the higher ℓn to zero. On the other hand, the right vertical arrow is
given by tensoring the identity of P with the canonical resolution map

Q
!
∞ −→ Q

! ,

which is defined on the generators s−1(Q!)
¡ ∼= s−1(S −1)c ⊗Q∨ as being the

identity on arity 2 and zero on all higher arities, this because Q is quadratic.
By definition, the morphism MΨ sends ℓn to an element of P(n)⊗s−1(Q!)

¡
(n).

Therefore, the north–east composite gives zero on ℓn, for n ≥ 3 and sends

ℓ2 7−→
k∑

i=1

ei ⊗ s
−1

S
−1
2 f∨

i

just like the other map.
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4.3 Functoriality of the L∞-algebra structure on tensor prod-

ucts

The L∞-algebra structure on the tensor product of a P-algebra and a Q!
∞-

algebra is functorial in P-algebras. Indeed, given two P-algebras A and A′,
a Q!

∞-algebra C, and a morphism

f : A −→ A′

of P-algebras, there an obvious induced (strict) morphism of L∞-algebras

A⊗Ψ C −→ A′ ⊗Ψ C ,

given by
a⊗ c 7−→ f(a)⊗ c .

In fact, we have more than that: the functoriality also holds for Q!
∞-algebras

in a strong way, that is with respect to∞-morphisms.

Suppose we are given two P-algebras A and A′, as well as two Q!
∞-algebras

C and C′, a morphism of P-algebras f : A → A′, and an ∞-morphism of
Q

!
∞-algebras g : C  C′. Then we can use these objects to define a morphism

of Lie
¡
-coalgebras, i.e. suspended cocommutative coalgebras,

f ⊗Ψ g : Lie
¡
(A⊗ C) −→ Lie

¡
(A′ ⊗ C′)

as the unique morphism of suspended cofree cocommutative coalgebras ex-
tending the map sending

S
−1
n µ∨

n ⊗ (a1 ⊗ c1)⊗ · · · ⊗ (an ⊗ cn) ∈ Lie
¡
(n)⊗ (A⊗ C)⊗n

to

m(n)∑

i=1

(−1)(n−1)|pi|+ǫf
(
ρA(pi)(a1, . . . , an)

)
⊗ gn

(
S

−1
n q∨i ⊗ c1 ⊗ · · · ⊗ cn

)
,

where

ǫ =

n∑

i=1

∑

j<i

|ai||cj |+ (n− 1)

n∑

i=1

|ai|

is the sign obtained via Koszul rule by reordering terms, and ρA is the P-
algebra structure of A seen as a map

ρA : P −→ EndA .

This morphism can be seen as first sending S −1
n µ∨

n to P(n) ⊗ (Q!)
¡

using
sMΨs

−1, rearranging terms to get elements of (P(n)⊗Sn A
⊗n)⊗ ((Q!)

¡
(n)⊗Sn

C⊗n), and then applying f and the composition of A on the first part and gn
on the second part.
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Proposition 4.4. LetA,A′ be P-algebras, and letC,C′ be Q
!
∞-algebras. Further,

let f : A→ A′ be a morphism of P-algebras, and g : C  C′ be an∞-morphism of
Q

!
∞-algebras. The map defined above is a morphism

f ⊗Ψ g : Bι(A⊗
Ψ C) −→ Bι(A

′ ⊗Ψ C′)

of dg suspended cocommutative coalgebras, i.e. an ∞-morphism of L∞-algebras.
Moreover, if f ′ : A′ → A′′ is a second morphism of P-algebras and g′ : C′  C′′ is
another∞-morphism of Q

!
∞-algebras, then

(f ′ ◦ f)⊗Ψ (g′ ◦ g) = (f ′ ⊗Ψ g′) ◦ (f ⊗Ψ g) .

Proof. For this proof, let ρA be the algebraic structure of A seen as a map

ρA : P 7−→ EndA

and let ϕC be the algebraic structure on C, but seen as a twisting morphism

ϕC ∈ Tw((Q!)
¡
,EndC) ∼= Tw((S −1)c ⊗Q

∨,EndC) ,

and similarly for A′ and C′. The algebraic structure of A⊗Ψ C is also seen as
a twisting morphism

ϕA⊗C ∈ Tw(Lie
¡
,EndA⊗C) ∼= Tw((S −1)c ⊗ Com

∨,EndA⊗C)

and the same is true for the one of A′ ⊗Ψ C′. We denote by δ the differentials
of both Bι(A⊗

Ψ C) and Bι(A
′ ⊗Ψ C′).

To ease notation, we adopt the following conventions:

• We usually do not write the elements of the algebras, leaving them im-
plicit. For example, for the element

S
−1
n µ∨

n ⊗ (a1 ⊗ c1)⊗ · · · ⊗ (an ⊗ cn) ∈ Lie
¡
⊗ (A⊗ C)⊗n

we write just S −1
n µ∨

n . The reordering of the elements of the algebras are
also left implicit, so that S −1

n µ∨
n also denotes the element

(−1)ǫS −1
n µ∨

n ⊗ (a1 ⊗ · · · ⊗ an)⊗ (c1 ⊗ · · · ⊗ cn) ,

where ǫ is the appropriate Koszul sign. Notice that, with this convention,
we have for example that d(A⊗C)⊗n = dA⊗n⊗C⊗n .

• Whenever we have an element of EndA, EndC , or EndA⊗C , we implicitly
apply it to the elements of the respective algebra. For example, we write

(1⊗j ρA)(p1 ⊗j p2)

with p1 ∈P(n1) and p2 ∈P(n2), with n1 + n2 = n+ 1, for

(−1)|p2|
∑j−1

i=1
|ai|p1⊗(a1⊗· · ·⊗aj−1⊗ρ(p2)(aj⊗· · ·⊗aj+n2)⊗aj+n2+1⊗· · ·⊗an) .
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• We use the fact that

∆τ (S −1
n µ∨

n) = T τ(∆τ (S −1
n )∆τ (µ∨

n))

to avoid writing unnecessary signs. We abuse of notation and also use
T τ to identify (

(S −1)c
)τ
⊗ T (P)τ ⊗ T (Q∨)τ

with
T (P)τ ⊗ T ((S −1)c ⊗Q

∨)

and so on. To ease notation, we also just write T for T τ , as the underlying
tree can always easily be recovered from the context.

• Again as in the proof of Lemma 3.8, we use the shorthand

ph,i1,...,ik,σ := (ph ⊗ (pi1 ⊗ · · · ⊗ pik))
σ,

and similarly for q∨h,i1,...,ik,σ.

We start by proving that f ⊗Ψ g is an∞-morphism of L∞-algebras. We con-
sider

S
−1
n µ∨

n ⊗ (a1 ⊗ c1)⊗ · · · ⊗ (an ⊗ cn) ∈ Lie
¡
⊗ (A⊗ C)⊗n.

We have

δ
(
S

−1
n µ∨

n ⊗ (a1 ⊗ c1)⊗ · · · ⊗ (an ⊗ cn)
)
=

= (−1)n−1
S

−1
n µ∨

n ⊗ d(A⊗C)⊗n+

+
∑

n1+n2=n+1
1≤j≤n1

σ∈Sh(n1−1,n2)

(1⊗j ϕA⊗C)T
(
∆n1,n2,j,σ

(
S

−1
n

)
(µ∨
n1
⊗j µ

∨
n2
)σ
)
.

Writing out explicitly ϕA⊗C , the second term is

∑

n1+n2=n+1
1≤j≤n1

σ∈Sh(n1−1,n2)

(1⊗j (ρA ⊗ ϕC))T



∆n1,n2,j,σ
(

S
−1
n

)

m(n2)
∑

i2=1

(µ∨
n1

⊗j (pi2 ⊗ q
∨
i2))

σ



 .

Now we apply f ⊗Ψ g and then project onto A′ ⊗ C′ to obtain
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(proj◦(f ⊗Ψ g) ◦ δ)(S −1
n µ∨

n) =

=

m(n)∑

i=1

(−1)(n−1)(|pi|+1))(fρA ⊗ gn)(pi ⊗S
−1
n q∨i )dA⊗n⊗C⊗n

+
∑

n1+n2=n+1
1≤j≤n1

σ∈Sh(n1−1,n2)

∑

1≤i1≤m(n1)
1≤i2≤m(n2)

(−1)|pi2 ||qi1 |(fρA ⊗ (gn1 ⊗j ϕC))⊗

⊗ T
(
∆n1,n2,j,σ(S −1

n )γP(pi1 ⊗j pi2)
σ ⊗ (q∨i1 ⊗j q

∨
i2)

σ
)
.

Then, using Lemma 3.8 (3) and switching terms, remembering that |ϕC | = −1,
this equals

m(n)∑

i=1

(−1)(n−1)(|pi|+1))+(n−1+|qi|)fρA(pi)dA⊗n ⊗ gn(S
−1
n q∨i )

+

m(n)∑

i=1

(−1)(n−1)(|pi|+1))fρA(pi)⊗ gn(S
−1
n q∨i )dc⊗n

+

m(n)∑

i=1

(−1)n|pi|fρA(pi)⊗




∑

n1+n2=n+1
1≤j≤n1

σ∈Sh(n1−1,n2)

(gn1 ⊗j ϕC)∆
n1,n2,j,σ(S −1

n qi)




=

m(n)∑

i=1

(−1)n|pi|fρA(pi)dA⊗n ⊗ gn(S
−1
n q∨i )+

+

m(n)∑

i=1

(−1)n|pi|fρA(pi)⊗
(
proj ◦ g ◦ dBι(C)(S

−1
n q∨i )

)
,

where we used the fact that |pi| = |qi|. On the other hand,

(f ⊗Ψ g)
(
S

−1
n µ∨

n ⊗ (a1 ⊗ c1)⊗ · · · ⊗ (an ⊗ cn)
)
=

=
∑

k≥1
n1+...+nk=n
σ∈Sh(n1,...,nk)

∑

1≤h≤m(k)
1≤ij≤m(nj)

(−1)ǫ
′

(1 ◦ ((fρA)
⊗k ⊗ (gn1 ⊗ · · · ⊗ gnk

))⊗

⊗ T
(
∆k,n1,...,nk,σ(S −1

n )ph,i1,...,ik,σ ⊗ q
∨
h,i1,...,ik,σ

)
,

where ǫ′ is the sign appearing by rearranging the pij ’s and qij ’s. Now we
apply δ and project onto A′ ⊗ C′ to get
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dA′⊗C′(fρA ⊗ gn)



m(n)∑

i=1

(−1)(n−1)|pi|pi ⊗S
−1
n q∨i




+
∑

k≥1
n1+...+nk=n
σ∈Sh(n1,...,nk)

∑

1≤h≤m(k)
1≤ij≤m(nj)

(−1)ǫ
′

(ρA′ ◦ (fρA)
⊗k ⊗ ϕC′ ◦ (gn1 ⊗ · · · ⊗ gnk

))⊗

⊗ T
(
∆k,n1,...,nk,σ(S −1

n )ph,i1,...,ik,σ ⊗ q
∨
h,i1,...,ik,σ

)

=

m(n)∑

i=1

(−1)(n−1)|pi|dA′⊗C′

(
fρA(pi)⊗ gn(S

−1
n )

)

+
∑

k≥1
n1+...+nk=n
σ∈Sh(n1,...,nk)

∑

1≤h≤m(k)
1≤ij≤m(nj)

(−1)ǫ
′

fρA ⊗ (ϕC′ ⊗ (gn1 ⊗ · · · ⊗ gnk
))⊗

⊗ T
(
∆k,n1,...,nk,σ(S −1

n )ph,i1,...,ik,σ ⊗ q
∨
h,i1,...,ik,σ

)
,

where we used the fact that f is a strict morphism of P-algebras. By Lemma
3.8 (3) and a switch, the last term equals

∑

k≥1
n1+...+nk=n
σ∈Sh(n1,...,nk)

(−1)(n−1)|pi|fρA ⊗ (ϕC′ ⊗ (gn1 ⊗ · · · ⊗ gnk
))⊗

⊗

m(n)∑

1=1

pi ⊗∆k,n1,...,nk,σ(S −1
n q∨i ) ,

and so the whole expression evaluates to

m(n)
∑

i=1

(−1)(n−1)|pi|dA′fρA(pi)⊗ gn(S
−1
n q

∨
i ) +

m(n)
∑

i=1

(−1)n|pi|fρA(pi)⊗ dC′gn(S
−1
n q

∨
i )

+
∑

k≥1
n1+...+nk=n
σ∈Sh(n1,...,nk)

(−1)n|pi|fρA(pi)⊗

⊗





m(n)
∑

i=1

(ϕC′ ⊗ (gn1 ⊗ · · · ⊗ gnk
))



∆k,n1,...,nk,σ(S −1
n q

∨
i )

=

m(n)
∑

i=1

(−1)(n−1)|pi|dA′fρA(pi)⊗ gn(S
−1
n q

∨
i )

+
∑

k≥1
n1+...+nk=n
σ∈Sh(n1,...,nk)

(−1)n|pi|fρA(pi)⊗
(

proj ◦ dBι(C′) ◦ g(S
−1
n q

∨
i )

)

.
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As g is an∞-morphism of Q!
∞-algebras, comparison of the term we evaluated

above implies
(f ⊗Ψ g) ◦ δ = δ ◦ (f ⊗Ψ g) ,

so that (f ⊗Ψ g) is indeed an∞-morphism of L∞-algebras.
The proof of the fact that this assignment respects compositions can be proven
in a similar way, and is left as an exercise to the dedicated reader.

This result amounts to the following statement.

Theorem 4.5. There is a bifunctor

⊗Ψ : P-alg ×∞-Q!
∞-alg −→∞-L∞-alg

taking a P-algebra A and a Q
!
∞-algebra C and giving back A⊗Ψ C. The action on

maps is given by Proposition 4.4.

Remark 4.6. One can write an analogous version of the results presented in this
section and the next one for the homotopy algebra structures obtained on spaces of
linear maps through Theorem 3.1. The reason we have not done so is that the notion
of ∞-morphisms and the Homotopy Transfer Theorem for homotopy coalgebras —
which are expected to work in a similar way to the notion for algebras — have never
been developed in the literature, and it is not in the scope of the present article to do it.

4.4 The non-symmetric case

There is a theory of Manin products also in the ns case, see [LV12, Sect. 8.8.9],
with As taking the role of Lie as unit for the black product. As above, we can
use the adjunction between the products to associate to a morphism Ψ : Q →
P of ns binary quadratic operads (coming from a morphism of the underlying
quadratic data) a morphism

mns
Ψ : As −→P ⊗Q

! .

Proposition 4.7. The following square

A∞ P ⊗Q
!
∞

As P ⊗Q
!

Mns
Ψ

mns
ψ

where the vertical maps are the canonical ones coming from the resolutions, is com-
mutative.

The result analogous to the compatibility of MΨ with various notions of mor-
phisms into play takes the following form.
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Proposition 4.8. Let Ψ : Q → P be a morphism of dg ns binary quadratic
operads such that Q is finitely generated. Let A,A′ be P-algebras and let C,C′ be
Q

!
∞-algebras. Further, let f : A→ A′ be a morphism of P-algebras and g : C  C′

be an∞-morphism of Q
!
∞-algebras. Then there is a canonical∞-morphism of A∞-

algebras
f ⊗Ψ g : Bι(A⊗

Ψ C) −→ Bι(A
′ ⊗Ψ C′) ,

constructed analogously to the symmetric case. Moreover, if f ′ : A′ → A′′ is a second
morphism of P-algebras and g′ : C′  C′′ is another∞-morphism of Q

!
∞-algebras,

then
(f ′ ◦ f)⊗Ψ (g′ ◦ g) = (f ′ ⊗Ψ g′) ◦ (f ⊗Ψ g) .

Again as before, this amounts to the following statement.

Theorem 4.9. There is a bifunctor

⊗Ψ : P-alg ×∞-Q!
∞-alg −→∞-A∞-alg

taking a P-algebra A and a Q
!
∞-algebra C and giving back A⊗Ψ C, with the action

on maps being given by Proposition 4.8.

5 Compatibility with the Homotopy Transfer Theorem

In this section, we stay in the context of binary Koszul operads. Again, we
only work in the dual scenario, with tensor products. Recall the Homotopy
Transfer Theorem, which tells us that if we are given any homotopy algebra
whose underlying chain complex retracts to another chain complex, then we
can induce a natural homotopy algebra structure on the second chain complex
without losing any homotopical information. In particular, this is true when
the starting homotopy algebra is strict. Suppose we are given two algebras
over two operads related by a morphism as in the statement of the main theo-
rem (3.6). Consider a retraction of the underlying chain complex of the second
algebra. There are two ways to induce a homotopy Lie algebra structure on
the tensor product of the first chain complex and the retracted one: we can
either first use the Manin morphism and then the Homotopy Transfer The-
orem with the induced retraction on the tensor product, or we can first use
the Homotopy Transfer Theorem with the original retraction and then apply
the main theorem. We prove that the two structures obtained in this way are
equal.

5.1 Two ways to obtain a homotopy Lie algebra structure

Suppose Q is a binary Koszul operad, let A be a P-algebra and let B be a
Q

!-algebra. Suppose further that we have a retraction of chain complexes

B C
p

i

h
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from B to C. Then we have the following two natural ways to obtain an L∞-
algebra structure on the tensor product A⊗ C.

1. Pull back the (P⊗Q!)-algebra structure on A⊗B to a Lie algebra struc-
ture using the Manin morphism mΨ, then transfer this structure to an
L∞-algebra structure {ℓn}n≥2 on A⊗ C using the retraction

A⊗B A⊗ C .
1 ⊗ p

1 ⊗ i

1 ⊗ h

2. Use the retraction to transfer the Q!-algebra structure on B to a Q!
∞-

algebra structure on C, then pull back the (P ⊗Q!
∞)-algebra structure

on A⊗ C to an L∞-algebra structure {ℓ̃n}n≥2 using the morphism MΨ.

5.2 The two structures are equal

Theorem 5.1. Let Ψ : Q →P be a morphism of binary quadratic dg operads such
that Q is finitely generated and Koszul. Then the two L∞-algebra structures ob-
tained on A⊗C as described above are equal. Moreover, the respective∞-morphisms
extending the morphisms of the retraction are related by

(1⊗ i)∞ = 1⊗Ψ i∞ and (1⊗ p)∞ = 1⊗Ψ p∞ .

Proof. We begin by establishing a bit of notation. We denote by BRT the set of
binary rooted trees, and by BRTn the subset given by trees of arity n. We fix
a basis f1, . . . , fk of F and let ei := Ψ(fi). For all τ ∈ BRT, we fix once and
for all a numbering of the vertices. For τ ∈ BRTn+1 and binary operations
α1, . . . , αn, we denote by τ(α1, . . . , αn) the tree with the αi inserted at the ver-
tex i. Let P = P(E,R) and Q = P(F, S) be the quadratic presentations of
P and Q. We write

γ̃P : T (E) −→P = T (E)/(R)

for the composition map (i.e. the quotient map), and similarly for Q. No-
tice that this notation is consistent, because we can see T (E) as a subspace of
T (P) since E = P(2), and there the map γ̃P is exactly the usual operadic
composition map. We represent the P-algebra structure on A by the degree 0
map of operads

ρA : P −→ EndA

and similarly for A′, while all other algebra structures are given by twisting
morphisms and denoted by ϕB , ϕA⊗B and so on. Notice that as B is also a
strict Q! algebra, and that Q! is a binary operad, we have that

ϕB ∈ Tw((Q!)
¡
,EndB) ∼= Tw((S −1)c ⊗Q

∨,EndB)
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splits through (Q!)
¡
(2) ∼= S

−1
2 F∨. Finally, let

VdLC : T c(sEndB) −→ EndC

be the Van der Laan morphism associated to the retraction from B to C, and
similarly denote by VdLA⊗C the Van der Laan morphism associated to the
induced retraction from A⊗B to A⊗ C.

We start by unwinding the definitions to give an explicit formulation for the
second structure. For n ≥ 2, fix a basis q1, . . . , qm(n) of Q(n). As we have

(Q!)
¡ ∼= (S −1)c ⊗ Q∨, this also gives us the basis {S −1

n q∨i }i of (Q!)
¡
(n). By

the Homotopy Transfer Theorem, the Q!
∞-algebra structure on C is given by

the twisting morphism
ϕC ∈ Tw((Q!)

¡
,EndC)

equal to the composite

(Q!)
¡ ∆̃

(Q!)
¡

−−−−→ T c
(
(Q!)¡

)
T c(sϕB)
−−−−−→ T c(sEndB)

VdLC−−−−→ EndC .

Since the chain complex B has the structure of a strict Q!-algebra, and since
Q

! is a binary operad, the second arrow gives zero on all non-binary trees.
Therefore, we can rewrite the composite above as

(Q!)
¡

∆̃bin

(Q!)
¡

−−−−→ T c(S −1
2 F∨)

T c(sϕB)
−−−−−→ T c(sEndB)

VdLC−−−−→ EndC ,

where ∆̃bin
(Q!)¡ is the composite of ∆̃(Q!)¡ with the projection on binary trees.

Notice that it is dual to the composition map

γ̃S⊗Q : T (S2F ) −→ S ⊗Q .

Putting all of this together, we get

ϕC = VdLCT
c(sϕB)∆̃

bin
(Q!)¡ .

Using this, we obtain for the second L∞-algebra structure:

ℓ̃n := (ρAΨ⊗ ϕC)



m(n)∑

i=1

(−1)|qi|(n−1)qi ⊗S
−1
n q∨i




=
(
ρAΨ⊗ (VdLCT

c(sϕB))
)

 ∑

τ∈BRTn

m(n)∑

i=1

(−1)|qi|(n−1)qi ⊗ ∆̃τ (S −1
n q∨i )




=
(
ρAΨ⊗ (VdLCT

c(sϕB))
)

 ∑

τ∈BRTn

T


∆τ (S −1

n )

m(n)∑

i=1

qi ⊗ ∆̃τ (q∨i )




 ,
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where the correct switches are left implicit. In the second line, the map ∆̃τ is
the dual to the monadic composition map T (Q) → Q restricted to the sub-
space T (Q)τ with underlying tree τ .

Now we make explicit the first L∞-algebra structure. The Homotopy Transfer
Theorem gives

ℓn := VdLA⊗CT
c(sϕA⊗B)∆̃

bin
Lie

¡(S −1
n µ∨

n) .

Since the retraction of A ⊗ B to A ⊗ C is given by tensoring the maps of the
retraction ofB toC with the identity onA, the Van der Laan map VdLA⊗C can
be computed by first using Φ to double the tree in T c(sEndA⊗B), obtaining
an element of T c(EndA) ⊗ T

c(sEndB), then composing the operations at the
vertices of the first tree and applying the Van der Laan morphism VdLC to the
second tree. Writing this out, we have

VdLA⊗C = (γEndA
⊗VdLC)Φ .

Now, the map T c(sϕA⊗B) is given by applying mΨ at each vertex, and then
applying ρA ⊗ sϕB at each vertex. So it is straightforward to see that we have

ΦT c(sϕA⊗B) =
(
T c(ρA)⊗ T

c(sϕB)
)
ΦT c(mΨ) ,

that is to say, if we apply T c(sϕA⊗B) and then double the tree, we obtain
the same thing that we get by applying mΨ at each vertex, then immediately
doubling the tree, and only then applying ρA to the vertices of the first copy
of the tree and sϕC to the vertices of the second one. Now we use the fact that
mΨ = (Ψ⊗ 1)mQ and commute the (Ψ ⊗ 1) over the map Φ to obtain

ΦT c(sϕA⊗B) =
(
T c(ρAΨ)⊗ T c(sϕB)

)
ΦT c(mQ) .

Putting all of this together and writing ∆̃bin
Lie

¡ as a sum over all binary rooted
trees, we obtain

ℓn = (γ̃EndA
⊗VdLC)(T

c(ρAΨ)⊗ T c(sϕB))ΦT
c(mQ)

( ∑

τ∈BRTn

∆̃τ (S −1
n µ∨

n)

)

= (ρAΨγ̃Q ⊗VdLCT
c(sϕB))Φ(⋆̃)

= (ρAΨ⊗VdLCT
c(sϕB))(⋆) ,

where

(⋆̃) :=
∑

τ∈BRTn

T

(
∆̃τ (S −1

n )
∑

1≤i1,...,in−1≤k

τ(fi1 ⊗ f
∨
i1 , . . . , fin−1 ⊗ f

∨
in−1

)

)
,

and

(⋆) :=
∑

τ∈BRTn

T



∆̃
τ
(S

−1
n )

∑

1≤i1,...,in−1≤k

(−1)
ǫ
γ̃Q(τ(fi1 , . . . , fin−1

)) ⊗ τ(f
∨
i1
, . . . , f

∨
in−1

)



 .
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The sign (−1)ǫ comes from the map Φ doubling a tree and separating opera-
tions (as we have to switch some fi’s and f∨

i ’s). Now, noticing that that sign
is exactly the one coming from dualization, we have

(⋆) =
∑

τ∈BRTn

T



∆̃τ (S −1
n )

∑

1≤i1,...,in−1≤k

(−1)ǫγ̃Q(τ(fi1 , . . . , fin−1
)) ⊗ τ(f∨

i1
, . . . , f∨

in−1
)





=
∑

τ∈BRTn

T



∆̃τ (S −1
n )

∑

1≤i1,...,in−1≤k

γ̃Q(τ(fi1 , . . . , fin−1
)) ⊗ τ(fi1 , . . . , fin−1

)∨



 .

The equality of the two structures comes from the fact that

m(n)∑

i=1

qi ⊗ ∆̃τ (q∨i ) =
∑

1≤i1,...,in−1≤k

γ̃Q(τ(fi1 , . . . , fin−1))⊗ τ(fi1 , . . . , fin)
∨

for all τ ∈ BRTn. This can be seen by writing the composition map γQ on
T (F )τ in two ways. The formulæ for the ∞-morphisms extending the maps
in the retraction follow immediately from the explicit expressions for them
given in [LV12, Sect. 10.3.5–6] and the fact that the maps in the retraction act
by the identity on A.

5.3 The non-symmetric case

In the same situation as above, but with non-symmetric operads, the results
take the following form.

Theorem 5.2. The two A∞-algebra structures on A ⊗ C obtained by applying
the Homotopy Transfer Theorem in two different ways are equal, and the respective
∞-morphisms extending the morphisms of the retraction are related by

(1⊗ i)∞ = 1⊗Ψ i∞ and (1⊗ p)∞ = 1⊗Ψ p∞ .

6 Maurer–Cartan elements

Theorem 3.1 gives us a way to endow the hom space of certain coalgebras and
algebras with an L∞-algebra structure. It is then a natural question to ask
what the Maurer–Cartan elements of the resulting L∞-algebra represent. The
interest into this question is given by the following “philosophical” principle
attributed to Deligne and others, and made into a formal theorem using ∞-
categories by Pridham [Pri10] and Lurie [Lur14]:

“Every deformation problem in characteristic 0 is encoded
into the Maurer–Cartan elements of an L∞-algebra.”

In this section, we interpret the set of Maurer–Cartan elements of the homo-
topy Lie algebra obtained through the main theorem as the set of morphism
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between certain algebras. This will allow us to construct the deformation
complex for morphisms of algebras over an operad in the next section. The
dual setting, which will allow us to represent the Deligne–Hinich–Getzler∞-
groupoid for dg Lie algebras, is also treated.

6.1 Maurer–Cartan elements of L∞-algebras

Let (g, d, {ℓn}n≥2) be an L∞-algebra. Then, whenever it is defined, the
Maurer–Cartan equation is

dx+
∑

n≥2

1

n!
ℓn(x, . . . , x) = 0

for |x| = −1. In particular, if g is actually a dg Lie algebra (i.e. ℓn = 0 for all
n ≥ 3), then we recover the usual Maurer–Cartan equation

dx+
1

2
[x, x] = 0 .

Definition 6.1. The set of Maurer–Cartan elements of an L∞-algebra g is denoted
by MC(g).

6.2 Twisting morphisms and bar–cobar constructions

This part of the section is a slight variation of the material that can be found
in [LV12, Sect. 11.1–3], where we consider general coalgebras instead of just
conilpotent ones, which forces us to work with the complete algebras of Ap-
pendix A instead of general ones. Notice that we need the fact that the dg
operad P is reduced in order to have a well-defined notion of complete P-
algebras. The various results given in the book [LV12] keep holding in this
situation with only slight changes. For example, a morphism from a free com-
plete P-algebra to a complete P-algebra is completely determined by the im-
age of the generators.

Let C be a dg cooperad and let P be a dg operad. Suppose α : C → P

is a twisting morphism. Let A be a complete P-algebra and let D be a C -
coalgebra. Then a twisting morphism with respect to α is a linear map ϕ : D → A
of degree 0 satisfying the “Maurer–Cartan equation”

∂(ϕ) + ⋆α(ϕ) = 0 ,

where ⋆α is the unary operator of degree 0 defined by

⋆α(ϕ) :=
(
D

∆D−−→ C ◦̂D
α◦ϕ
−−→P ◦̂A

γA
−−→ A

)
.

Notice that there is a passage from invariants to coinvariants which is left
implicit. It is actuated using the isomorphism described in the introduction.
We denote the set of solutions of this equation by Twα(D,A).
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We can use α ∈ Tw(C ,P) to construct a functor from C -coalgebras to com-

plete P-algebras, which we call the complete cobar construction Ω̂α for obvious
reasons. It takes a C -coalgebra D and gives back the complete P-algebra

Ω̂αD :=
(
P̂(D), d := d1 + d2

)
,

where −d1 is the unique derivation extending the differentials of P and D,
and −d2 is the unique derivation extending the degree−1 map

D
∆D−−→ C ◦̂D

α◦̂idD−−−−→P ◦̂D = P̂(D) .

Proposition 6.2. There is a natural bijection

hom
dgP̂-alg

(Ω̂αD,A) ∼= Twα(D,A) .

Proof. The proof given in the book [LV12, Prop. 11.3.1] goes through basically
unchanged. Notice that it is crucial that A is complete, since for example we

need the fact that a morphism Ω̂α(D)→ A is equivalent to its restriction to D,
and if A is not complete we can only say that such a morphism gives a map
D → A, but not go in the other direction.

Recall that there is a canonical twisting morphism π : BQ → Q associated
to the counit of the bar–cobar adjunction, see [LV12, Sect. 6.5.4]. Given a
morphism Ψ : Q → P of dg operads, we can pull it back by π to obtain the
twisting morphism

ψ := π∗Ψ : BQ −→P ,

and thus the complete cobar functor

Ω̂ψ : dgBQ-cog −→ dgP̂-alg .

6.3 Maurer–Cartan elements

Let Ψ : Q →P be a morphism of dg operads, letD be a B(S ⊗Q)-coalgebra,
and let (A,F•A) be a filtered P-algebra as defined in Appendix A. Then s−1D
is canonically aBQ-coalgebra. We can then compare the Maurer–Cartan equa-

tion in homΨ(D,A) with the equation defining Twψ. We have a natural bijec-
tion

hom(D,A) −→ hom(s−1D,A)

given by sending ϕ ∈ hom(D,A) to the linear map sϕ ∈ hom(s−1D,A) de-
fined by

sϕ(s−1x) := (−1)|ϕ|+1ϕ(x)

for any x ∈ D. This assignment anticommutes with the differentials.
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Theorem 6.3. Let ϕ ∈ hom(D,A) be of degree −1. Then we have

∂(sϕ) + ⋆ψ(sϕ) = 0 ⇔ d(ϕ) +
∑

n≥2

1

n!
ℓn(ϕ, . . . , ϕ) = 0 .

In other words, there is a natural bijection

Twψ(D,A) ∼= MC(homΨ(s−1D,A)) .

Remark 6.4. Notice that, since A is filtered, we can define a descending filtration
by

Fn hom
Ψ(D,A) := hom(D,FnA) ⊆ hom(D,A) ,

which makes homΨ(D,A) into a filtered L∞-algebra. Then, by Proposition A.6 we

have that homΨ(D,A) is complete, so that it makes sense to speak of its Maurer–
Cartan elements.

Instead of taking A filtered, one can also consider arbitrary P-algebras but require
the coalgebra D to be conilpotent. This is equivalent to the coradical filtration Fn

C
D

of D being exhaustive, see [LV12, Sect. 5.8.4]. Then the L∞-algebra homΨ(D,A) is
again filtered by

Fn hom
Ψ(D,A) := {f ∈ hom(D,A) | FnCD ⊆ ker(f)} ,

and thus complete.

We will find ourselves in the first situation when speaking of the Deligne–Hinich–
Getzler∞-groupoid in the application presented in Section 7.2, while the second sit-
uation will make its appearance when defining the deformation complex of morphisms
of P-algebras in Section 7.1.

Proof. As already remarked above, we have

s(dϕ) = −∂(sϕ) .

Fix n ≥ 2, we will compare ℓn(ϕ, . . . , ϕ) with ⋆
(n)
ψ (sϕ), the part of ⋆ψ(sϕ)

passing through
BQ(n)⊗Sn D

⊗n ⊂ BQ◦̂D .

We start by computing

1

n!
ℓn(ϕ, . . . , ϕ) =

1

n!
γhom(D,A)

( M

Ψ(ℓn)⊗ ϕ
⊗n
)

= γA
( M

Ψ(ℓn) ◦ ϕ
)
∆D(n)

= γA
((
(s−1

S
−1
n Ψ(n))proj(1)

)
◦ ϕ
)
∆D(n)

= γA
(
(s−1

S
−1
n Ψ(n)) ◦ ϕ

)
∆D(n)

Starting from the second line we left implicit the passage from invariants to
coinvariants given by the usual isomorphism. The factor n! come from the fact
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that in the definition of the algebraic structure on hom(D,A) we used another
identification of invariants with coinvariants. In the last line, ∆D(n) denotes
(proj(1) ◦ 1)∆D(n), the part of ∆D living in sSnQ(n) ⊗ D⊗n. To compute

⋆
(n)
ψ (sϕ), notice that the canonical twisting morphism π : BQ → Q is nothing

else than the projection onto the weight 1 part sQ ⊂ BQ, so that we have

⋆
(n)
ψ (sϕ) = γA(ψ ◦ sϕ)∆s−1D(n)

= γA(Ψπ ◦ sϕ)∆s−1D(n)

= γA(Ψ ◦ sϕ)s
−1∆s−1D(n) ,

where ∆s−1D(n) is a notation for (π ◦ 1)∆s−1D, the part of ∆s−1D contained
in sQ(n) ⊗ (s−1D)⊗n. To finish the proof, we compare their actions on an
element of s−1D. Let x ∈ D, we use Sweedler’s notation and write

∆D(n)(x) = sSnq(0) ⊗ x(1) ⊗ · · · ⊗ x(n) .

We have

sℓn(ϕ, . . . ,ϕ)(s
−1

x) = −ℓn(ϕ, . . . , ϕ)(x)

= − γA
(

(s−1
S

−1
n Ψ(n)) ◦ ϕ

)

∆D(n)(x)

= − γA
(

(s−1
S

−1
n Ψ(n)) ◦ ϕ

)

(sSnq(0) ⊗ x(1) ⊗ · · · ⊗ x(n))

= (−1)n(n+|q(0)|)+ǫ+1
γA

(

(s−1
S

−1
n Ψ(n)(sSnq(0)))⊗ ϕ(x(1))⊗ · · · ⊗ ϕ(x(n))

)

= (−1)n|q(0)|+ǫ+
n(n−1)

2 γA
(

Ψ(q(0))⊗ ϕ(x(1))⊗ · · · ⊗ ϕ(x(n))
)

.

In the last two lines, the sign ǫ is such that

(ϕ⊗ · · · ⊗ ϕ)(x(1) ⊗ · · · ⊗ x(n)) = (−1)ǫϕ(x(1))⊗ · · · ⊗ ϕ(x(n)) .

For the other side of the equation, we have

∆s−1D(n)(s
−1x) = (−1)n|q(0)|+ǫ+1+n(n−1)

2 sq(0) ⊗ s
−1x(1) ⊗ · · · ⊗ s

−1x(n) .

Therefore, we have

⋆
(n)
ψ (sϕ)(s−1

x) = γA(Ψ ◦ sϕ)s−1∆s−1D(n)(s
−1

x)

= (−1)n|q(0)|+ǫ+1+
n(n−1)

2 γA(Ψ ◦ sϕ)(q(0) ⊗ s
−1

x(1) ⊗ · · · ⊗ s
−1

x(n))

= (−1)n|q(0)|+ǫ+
n(n−1)

2
+1

γA
(

Ψ(q(0))⊗ ϕ(x(1))⊗ · · · ⊗ ϕ(x(n))
)

.

The two terms differ by a sign, concluding the proof.

Corollary 6.5. Let A be a P-algebra, and let D be a B(S ⊗Q)-coalgebra. If A
is complete, we have a natural bijection

homdgP-alg(Ω̂ψ(s
−1D), A) ∼= MC(homΨ(D,A)) .

If D is conilpotent, we have natural bijections

homdgP-alg(Ωψ(s
−1D), A) ∼= MC(homΨ(D,A)) ∼= homdgBQ-cog(s

−1D,BψA) .
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6.4 The dual case

In the dual setting, let Ψ : Q →P be a morphism of dg operads such that Q is
finite dimensional in every arity, let A be a complete P-algebra, and let C be a
finite dimensional Ω((S −1)c⊗Q)-algebra. Then the dual C∨ of C is naturally
a B(S ⊗Q)-coalgebra. Corollary 6.5 translates as follows in this context.

Corollary 6.6. Let A be a complete P-algebra and let C be a finite dimensional
Ω((S −1)c ⊗Q∨)-algebra. We have a natural bijection

homdgP-alg(Ω̂ψ(s
−1C∨), A) ∼= MC(A⊗Ψ C) .

6.5 The non-symmetric case

There is a notion of Maurer–Cartan elements in an A∞-algebra, where the
relevant equation is

dx +
∑

n≥2

mn(x, . . . , x) = 0 .

We denote again the set of all such elements by MC. Notice that we do not
have any factor 1

n! appearing. This is related to the fact that we never need to
identify invariants and coinvariants in the ns setting, as we are not considering
any group action. It follows that all our results hold over any field. The same
reasoning as above gives the following statement.

Theorem 6.7. Let A be a P-algebra and let D be a hom(B(S ⊗Q),P)-algebra.
If A is complete, we have a natural bijection

homdgP-alg(Ω̂ψ(s
−1D), A) ∼= MC(homΨ(D,A)) .

If D is conilpotent, we have natural bijections

homdgP-alg(Ωψ(s
−1D), A) ∼= MC(homΨ(D,A)) ∼= homdgBQ-cog(s

−1D,Bψ(A)) .

Here the Maurer–Cartan elements are now taken in the A∞-algebra homΨ(D,A).
Dually, under the usual assumption that Q is finite dimensional in every arity, if C
is a finite dimensional Ω((S −1)c ⊗Q∨)-algebra and A is complete, then we have a
natural bijection

homdgP-alg(Ω̂ψ(s
−1C∨), A) ∼= MC(A⊗Ψ C) .

7 Applications to deformation theory

In this section, we apply the theorems we just proved to solve two problems
in deformation theory. The first application is the construction of the defor-
mation complex for morphisms of algebras over an operad. The second one
is the representation of the Deligne–Hinich–Getzler ∞-groupoid for dg Lie
algebras.
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7.1 First application: the deformation complex for morphisms of

algebras

Given an augmented dg operad P and two P-algebras X and Y , one might
ask what is the deformation complex coding morphisms of P-algebras from
X to Y . We solve this problem using Corollary 6.5.

Following Quillen [Qui70], the first step of the construction is to replace X
with a cofibrant replacement in the category of P-algebras. In order to do so,
one considers the canonical Koszul morphism

π : BP −→P

and the associated bar-cobar adjunction between P-algebras and BP-co-
algebras. One can then take ΩπBπX as a functorial resolution for X and try to
find the deformation complex for morphisms

ΩπBπX −→ Y .

Notice that BπX is a conilpotent BP-coalgebra, so that we can use the results
proved in Section 6.

Proposition 7.1. We have

homdgP-alg(ΩπBπX,Y ) ∼= MC
(
homP(sBπX,Y )

)
,

where homP := homidP .

Proof. This is direct consequence of Corollary 6.5.

This motivates the following definition.

Definition 7.2. Let P be a dg operad and let X,Y be two P-algebras. The de-
formation complex of morphisms of P-algebras from X to Y is the L∞-algebra

homP(sBπX,Y ).

Remark 7.3. In certain cases, one can find alternative versions for this object. For
example, if P is binary Koszul, then one can give the structure of a Lie algebra to
hom(sBκX,Y ), where

κ : P
¡
−→P

is the canonical twisting morphism, see [LV12, Sect. 7.4.1]. The Maurer–Cartan el-
ements of this Lie algebra correspond to the morphisms of P-algebras from ΩκBκX
to Y . The relation between this Lie algebra and the L∞-algebra introduced in Defi-
nition 7.2 is given by (the pre-dual version of) Proposition 4.3. Namely, we have the
commutative square
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L∞ hom(B(S ⊗P),P)

Lie hom(S ⊗P
¡
,P)

M

P

f∗
κ

where the map fκ : P
¡
→ BP is the quasi-isomorphism of [LV12, Prop. 6.5.8].

We can make BκX into a BP-coalgebra by pushing forward its structure along
fκ, and the resulting coalgebra is quasi-isomorphic to BπX . Then the two L∞-

algebras hom(sBκX,Y ) and homP(sBπX,Y ) are quasi-isomorphic, and the quasi-
isomorphism is filtered (e.g. with respect to the filtration induced by the coradical fil-
tration of the coalgebras). Thus, we can apply the Dolgushev–Rogers theorem [DR15,
Thm. 2.2] to show that the deformation problems associated to the two algebras are
the same.

7.2 Second application: a cosimplicial dg Lie algebra modeling

Maurer–Cartan elements

Here, we present an overview of how one can use the results given here to
associate to every complete dg Lie algebra a new, small∞-groupoid (i.e. Kan
complex) representing its Maurer–Cartan elements which is equivalent to the
well-known Deligne–Hinich–Getzler ∞-groupoid. The construction is func-
torial and the resulting functor from complete dg Lie algebra to simplicial sets
is represented by a cosimplicial dg Lie algebra. These results are presented
in full details (and more generality) in the article [RN17], where various the-
orems given here (namely, Theorems 3.6, and 5.1, as well as Corollary 6.6) are
used in a crucial manner.

The present article was written with the following application in mind. Let
(g, F•g) be a filtered dg Lie algebra. The Deligne–Hinich–Getzler∞-groupoid is
the Kan complex

MC•(g) := lim
←−
n

MC(g/Fng⊗ Ω•) ,

where Ω• is the Sullivan simplicial dg commutative algebra of the polynomial
differential forms on the geometric simplices. There is a simplicial contraction
due to Dupont of Ω• onto a sub-simplicial set C• which is finite dimensional
at every level, which is just the cellular cochain complex of the geometric sim-
plices. Using this retraction, one can obtain a filtered L∞-algebra structure on
g ⊗ C•. Using methods from homotopical algebra, we can prove that there is
a homotopy equivalence of simplicial sets

MC•(g) ≃ MC(g⊗ C•) .

Finally, using Corollary 6.6 on g ⊗ C• for the morphism Ψ being the identity
of the operad Lie , we have that

MC(g⊗ C•) ∼= homdgLie(Ω̂π(s
−1C∨

• ), g) ,
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which provides thus a new model mc• := Ω̂π(s
−1C∨

• ) for the space of Maurer–
Cartan elements of a dg Lie algebra. This leads to the following result.

Theorem 7.4 ([RN17, Cor. 5.3]). Let g be a complete dg Lie algebra. There is a
weak equivalence of simplicial sets

MC•(g) ≃ homdgLie(mc•, g) .

It is natural in g.

This, plus a study of the properties of the new∞-groupoid, is the content of
the article [RN17].

8 Examples

In this section, we will study the L∞-algebra structures obtained from our
main theorem (3.6) for some canonical morphisms between the three most
often appearing operads: the three graces Com , Lie and Ass. Namely, we will
study the identities of these operads and the sequence of morphisms

Lie
a
−→ Ass

u
−→ Com ,

where the first morphism corresponds to the antisymmetrization of the mul-
tiplication of an associative algebra, and where the second one corresponds to
forgetting that the multiplication of a commutative algebra is commutative to
get an associative algebra.

Many more examples of less common, but still very interesting operads, both
in the symmetric and in the ns case, as well as various morphisms relating
them, can be found in [LV12, Sect. 13].

8.1 Notations

We will denote by b ∈ Lie(2) the generating operation of Lie , i.e. the Lie
bracket. The operad Ass is the symmetric version the non-symmetric operad
As coding associative algebras. It is given by Ass(n) = K[Sn]. We denote the
canonical basis of Ass(n) by {mσ}σ∈Sn . The elementmσ ∈ Ass(n) corresponds
to the operation

(a1, . . . , an) 7−→ aσ−1(1) · · ·aσ−1(n)

at the level of associative algebras. The action of the symmetric group is of
course given by (mσ)

τ = mστ . As before, we denote by µn ∈ Com(n) the
canonical element. The morphism a : Lie → Ass is given by sending b to
mid − m(12), and corresponds to antisymmetrization at the level of algebras.
The morphism u : Ass → Com is given by sending both mid and m(12) to µ2.
For the homotopy counterparts of the operads mentioned above: as before
we denote by ℓn ∈ L∞(n) the element of L∞(n) corresponding to the n-ary
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bracket. We have Ass
¡ ∼= (S −1)c ⊗ Ass

∨, thus in each arity n ≥ 2 the operad
Ass∞ has n! generators

mσ := s−1
S

−1
n m∨

σ ∈ Ass∞ , σ ∈ Sn .

The action of the symmetric group on these generators is given by (mσ)
τ =

(−1)τmστ . Finally, the operad C∞ coding homotopy commutative algebras
the same thing as an A∞-algebra that vanishes on the sum of all non-trivial
shuffles, see [Kad88] or [LV12, Sect. 13.1.8].

8.2 The identity Com −→ Com

This is the simplest example. The identity of Com induces the morphism

MCom : L∞ −→ Com ⊗L∞

which sends the element ℓn to

µn ⊗ s
−1

Snµ
∨
n = µn ⊗ ℓn .

Therefore, it is the canonical isomorphism

L∞
∼= Com ⊗L∞ .

If A is a commutative algebra and C is an L∞-algebra, then the operations on
A⊗Com C are given by

ℓn(a1 ⊗ c1, . . . , an ⊗ cn) = (−1)ǫµn(a1, . . . , an)⊗ ℓn(c1, . . . , cn) ,

where (−1)ǫ is the sign obtained by commuting the ai’s and the ci’s.

8.3 The identity Ass −→ Ass

Since the operad Ass satisfies Ass ! = Ass, the induced morphism is

MAss : L∞ −→ Ass ⊗Ass∞ .

It sends ℓn to
∑

σ∈Sn

mσ ⊗ s
−1

Snm
∨
σ =

∑

σ∈Sn

mσ ⊗mσ =
∑

σ∈Sn

(−1)σ(mid ⊗mid) .

If A is an associative algebra and C is an Ass∞-algebra, then the L∞ opera-
tions on A⊗Ass C are given by

ℓn(a1⊗c1, . . . , an ⊗ cn) =

=
∑

σ∈Sn

(−1)σ+ǫme(aσ−1(1), . . . aσ−1(n))⊗me(cσ−1(1), . . . cσ−1(n)) ,

where ǫ is the sign obtained by switching the ai’s and the ci’s, and correspond
therefore to a kind of antisymmetrization of Ass∞.
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8.4 The identity Lie −→ Lie

The last identity we have to look at is the identity of the operad Lie . It gives
rise to a morphism of dg operads

MLie : L∞ −→ Lie ⊗ C∞ .

It is of more complicated description, but comparing formulæ we see that it
is the same structure that is used in a fundamental way in the article [TW15,
pp.19–20] on Hochschild–Pirashvili homology.

8.5 The forgetful morphism u : Ass −→ Com

This morphism is given by sending

mσ 7−→ µn

for all σ ∈ Sn. The corresponding morphism

Mu : L∞ −→ Com ⊗Ass∞
∼= Ass∞

is given by

Mu(ℓn) =
∑

σ∈Sn

µn ⊗ s
−1

Snm
∨
σ =

∑

σ∈Sn

µn ⊗mσ = µn ⊗
∑

σ∈Sn

(−1)σ(me)
σ.

Therefore, under the canonical identification Com ⊗ Ass∞
∼= Ass∞, it is the

standard antisymmetrization of an Ass∞-algebra structure giving an L∞-
algebra structure.

8.6 The antisymmetrization morphism a : Lie −→ Ass

The induced morphism is a morphism of dg operads

Ma : L∞ −→ Ass ⊗ C∞ .

It can be interpreted as follows: a C∞-algebra can be seen as an Ass∞-algebra
vanishing on the sum of all non-trivial shuffles (see [Kad88]). That is, we have
a natural morphism of dg operads

i : Ass∞ −→ C∞ ,

which is in fact given by Ω((S −1)c ⊗ a∨). Now we can use the second part of
Theorem 3.6 telling us that

Ma = M1Assa = (1 ⊗ i)MAss .

Therefore, the L∞-algebra structure on the tensor product of an associative
and a C∞-algebra is given by first looking at the C∞-algebra as an Ass∞-
algebra, and then antisymmetrizing the resulting (Ass ⊗ Ass∞)-algebra as
already done above.
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8.7 The non-symmetric case

The analogues to the three graces in the non-symmetric setting are the operad
As encoding associative algebras, which we already know well, the operad
Dend of dendriform algebras ([LV12, Sect. 13.6.5]), and the operad Dias en-
coding diassociative algebras ([LV12, Sect. 13.6.7]). They fit into a sequence of
morphisms

Dias −→ As −→ Dend .

We get induced morphisms from A∞ to

Dias ⊗Dend∞ , A∞ , Dend ⊗Dias∞ , Dend∞ and Dend ⊗A∞ .

We leave their explicit computation to the interested reader.

A Complete P-algebras

Fix a reduced operad P . We will give the definition of complete P-algebras
and filtered P-algebras, and state some basic facts about them, skipping most
proofs.

To the operad P we can associate the endofunctor on the category of (un-
bounded) chain complexes

P̂ : Chain −→ Chain

given by

P̂(V ) :=
∏

n≥1

P(n)⊗Sn V
⊗n.

Lemma A.1. The usual unit and composition of P induce the structure of a monad

on P̂ .

Proof. By inspection. Notice that, since P is reduced, every sum involved
finite and allows us to switch products and tensor products.

Lemma A.2. We have a canonical morphism of monads

P −→ P̂ .

In particular, every complete P-algebra is a P-algebra.

Proof. The morphism is induced by the natural inclusion of direct sums of
chain complexes into products.

Definition A.3. A complete P-algebra is an algebra over the monad P̂ , seen as
a P-algebra.
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Theorem A.4. The free complete P-algebra over a chain complex V is given by

P̂(V ). In other words, every morphism of P̂-algebras with P̂(V ) as domain is
completely characterized by its restriction to V .

One can also consider filtered (i.e. topological) P-algebras.

Definition A.5. A filtered P-algebra (A,F•A) is a P-algebra A together with
a descending filtration

A = F1A ⊇ F2A ⊇ F3A ⊇ · · ·

satisfying the following properties:

1. The filtration is closed under the differential of A, i.e.

dA(FnA) ⊆ FnA

for all n ≥ 1.

2. The composition map respects the filtration, that is

γA(P(k)⊗Sk
Fn1A⊗ · · · ⊗ Fnk

) ⊆ Fn1+···+nk
A

for any k ≥ 1 and n1, . . . nk ≥ 1.

3. The algebra A is complete with respect to the filtration, that is to say that

A ∼= lim
−→
n

A/FnA

as P-algebras via the natural morphism.

Proposition A.6. If (A,F•A) is a filtered P-algebra, then A is a complete P-
algebra.

Proof. Suppose (A,F•A) is filtered, then every a ∈ A can be written as

{an}n≥1 ∈ lim
−→
n

A/FnA ,

where an ∈ A/FnA is sent to am by the obvious projection whenever n ≥ m.
So let

x :=
(
pk ⊗ {a

k,1
n1
}n1 ⊗ · · · ⊗ {a

k,k
nk
}nk

)
k≥1
∈ P̂(A) .

Then we set

γ̂A(x) :=

{∑

k<m

γA/FmA(pk ⊗ a
k,1
m ⊗ · · · ⊗ a

k,k
m ) mod FmA

}

m≥1

,

which gives a well-defined element of lim
−→n

A/FnA ∼= A. It is straightforward
to check that this makes A into a complete P-algebra.
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Finally, the free complete P-algebra is canonically a filtered P-algebra.

Proposition A.7. Let V be a chain complex. Then the filtration

FnP̂(V ) :=
∏

k≥n

P(k)⊗Sk
V ⊗k

makes P̂(V ) into a filtered P-algebra.
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