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Abstract. We study the minimal number of variables required by
a totally positive definite diagonal universal quadratic form over a
real quadratic field Q(

√
D) and obtain lower and upper bounds for

it in terms of certain sums of coefficients of the associated continued
fraction. We also estimate such sums in terms of D and establish
a link between continued fraction expansions and special values of
L-functions in the spirit of Kronecker’s limit formula.
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1 Introduction

The story of universal quadratic forms began with the four square theorem that
was proved by Lagrange and states that the quadratic form x2 + y2 + z2 +w2

represents all positive integers. This was followed by a large number of further
results over the ring of integers Z, such as the classification of all universal qua-
ternary diagonal forms by Ramanujan and Dickson, the 15-theorem of Conway,
Miller and Schneeberger (see [Bh] for a beautiful proof) and the 290-theorem
of Bhargava and Hanke [BH].
Maaß [Ma] proved that the sum of three squares is universal over Q(

√
5), and

then Siegel [Si] showed that over every other number field, the sum of any

1First author was partially supported by the DFG-SNF lead agency program grant BL
915/2-1. Second author was supported by Czech Science Foundation GAČR, grant 17-
04703Y, and by Charles University Research Centre, program UNCE/SCI/022.
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number of squares is not universal. This turned the attention to other quadratic
forms: Chan, Kim, and Raghavan [CKR] studied ternary universal forms over
real quadratic fields, and for example showed that diagonal ternary universal
forms exist only over Q(

√
2), Q(

√
3), and Q(

√
5). There were numerous other

results over specific real quadratic fields, e.g., Sasaki [Sa] found all universal
quaternary forms over Q(

√
13). For more general discriminants, Kim [Ki1,

Ki2] proved that there are only finitely many real quadratic fields that have a
diagonal universal form in 7 variables, but also constructed an 8-ary diagonal
universal form over each field Q(

√
n2 − 1) (when n2 − 1 is squarefree).

For a general number of variables m, the present authors [BK, Ka1] con-
structed infinitely many real quadratic fields that do not admit m-ary uni-
versal quadratic forms. Using very different techniques, Yatsyna [Ya] recently
extended these results to the case of number fields that possess units of every
signature.
However, still not much is known about the number of variables required by a
general (diagonal) universal form over a real quadratic field: this is the goal of
the present paper. We will focus on totally positive definite diagonal quadratic
forms of arity (or rank) m over real quadratic fields K = Q(

√
D), i.e., forms

Q(x1, . . . , xm) = a1x
2
1 + · · ·+ amx2

m, where a1, . . . , am are totally positive ele-
ments of the ring of integers OK . Such a form is universal if it represents all
totally positive integers α, i.e., if α = Q(x1, . . . , xm) for some x1, . . . , xm ∈ OK .
Let us denote by mdiag(D) the smallest integer m such that there is an m-ary
diagonal universal form over K. We introduce the following notation. For
squarefree D > 1 let

ωD =

{√
D if D ≡ 2, 3

1+
√
D

2 if D ≡ 1
(mod 4), (1.1)

∆ ∈ {D, 4D} the discriminant of OK and ωD = [u0, u1, u2, . . . , us−1, us] the
periodic continued fraction expression with s minimal. We define

MD =





u1 + u3 + · · ·+ us−1 if s is even,

2u0 + u1 + u2 + · · ·+ us−1 if s is odd and D ≡ 2, 3 (mod 4),

2u0 + u1 + u2 + · · ·+ us−1 − 1 if s is odd and D ≡ 1 (mod 4).

(1.2)
If s is odd, equivalently if OK has a unit with negative norm, then

MD = u1 + . . .+ us. (1.3)

For ε > 0 define M∗
D,ε as the sum in (1.2), but ranging only over coefficients

ui ≥ D1/8+ε.
Our first result is then the following:

Theorem 1. With the above notation we have

max

(
MD

κs
, CεM

∗
D,ε

)
≤ mdiag(D) ≤ 8MD
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for any ε > 0, where Cε > 0 is a constant (depending only on ε) and κ = 2 if
s is odd and κ = 1 otherwise.

We will prove this result as Theorems 10, 12, and 14. All of these proofs are
based on studying the representability of additively indecomposable integers of
Q(

√
D), which can be nicely characterized in terms of convergents and semi-

convergents to the corresponding continued fraction. To show the upper bound,
we generalize Kim’s result [Ki2] and construct an explicit diagonal universal
form, whose coefficients are (some of) these indecomposable integers. The lower
bound hinges on showing that sufficiently many indecomposables (essentially)
have to appear as the coefficients of any diagonal universal form. Comparing
our two lower bounds MD

κs and CεM
∗
D,ε, the first one is clearly larger for small

values of D or s. However, one can estimate the size of s (cf. (6.4)) to see that
the second bound is larger for most D’s.
Of course one would like to know how MD and M∗

D,ε behave asymptotically
with respect to D or equivalently ∆. In this respect, we will prove in Section
6 the following.

Theorem 2. We have MD ≤ c
√
∆(log∆)2 for an absolute constant c > 0. If

s is odd, equivalently if OK has a unit of negative norm, we have M∗
D,ε ≥

√
∆

for every ε < 1/8.

Under the Generalized Riemann Hypothesis, the upper bound can be sharpened
somewhat (cf. (6.3)). The lower bound for odd s follows simply from the fact
that u0 = ⌊ωD⌋ ≥ 1

2

√
∆.

With more analytic work, one can even establish an asymptotic formula for the
sum of convergents, which may be of independent interest. It can be viewed as
a variation of Kronecker’s limit formula for real quadratic fields and highlights
the fascinating connection between special L-values and continued fractions.
The following result is proved in Corollary 18, which in view of (1.3) gives an
asymptotic formula for MD if s is odd.

Theorem 3. As D → ∞, we have

s∑

i=1

ui ∼
√
∆

ζ(∆)(2)

(
L(D) +

1

h
L(1, χ∆) log

√
D
)
,

where h = hD is the class number, ζ(∆)(s) is the Riemann zeta function with
Euler factors at primes dividing ∆ removed, χ∆ is the usual quadratic character
associated with the fundamental discriminant ∆, and L(D) (defined in (5.2))
is the constant Taylor coefficient of the ζ-function associated to the class of
principal ideals.

Kronecker’s limit formula is concerned with finding a closed expression for
L(D) (and more general functions). Zagier and Hirzebruch observed that for
real quadratic fields there is a connection between L(D) and the coefficients of
the continued fraction of ωD. The exact formula in [Za1, Corollary 2] (which
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18 Valentin Blomer and Vı́tězslav Kala

is derived by a completely different method than Theorem 3), however, seems
to be hard to use to obtain any sort of asymptotic statement. The beautiful
formula [Za2, Satz 2, §14], on the other hand, is of different nature, since
it treats the alternating sum

∑s
i=1(−1)iui, cf. [Za2, p. 131] (and gives in

particular no information if s is odd). Yet another variation of the connection
between special values of class group L-functions for real quadratic fields and
continued fractions can be found in a nice paper of Biró and Granville [BG,
Theorem 1].

Most of what we do in this paper can probably be generalized to non-maximal
orders in OK , but in order to avoid technical subtleties in particular in the an-
alytic argument, we concentrate on the most natural case of the maximal order.

Acknowledgement: We would like to thank the referee for useful suggestions
that improved and simplified the presentation.

2 Preparation: Indecomposables

2.1 Basic notation

Throughout the paper, we shall use the following notation: Let K = Q(
√
D)

with squarefree D > 1 and discriminant ∆. For α = x + y
√
D ∈ Q(

√
D) we

denote its conjugate as α′ = x − y
√
D ∈ Q(

√
D) and its norm as N(α) =

x2 − Dy2. An element α is totally positive if α > 0 and α′ > 0; if α − β is
totally positive, we write α ≻ β. We denote by OK the ring of integers of K
and by O+

K the semiring of totally positive integers. Let ωD be as in (1.1), so
that

−ω′
D =

{√
D if D ≡ 2, 3

−1+
√
D

2 if D ≡ 1
(mod 4),

and OK = Z[ωD]. We recall from the introduction that ωD =
[u0, u1, u2, . . . , us−1, us]. Note that us = 2u0 when D ≡ 2, 3 (mod 4) and
us = 2u0 − 1 when D ≡ 1 (mod 4) (which we used to go from (1.2) to (1.3)).
We also know that the sequence (u1, u2, . . . , us−1) is symmetric, i.e., ui = us−i.

Let pi

qi
:= [u0, . . . , ui] be the ith convergent to ωD (where pi, qi are co-

prime positive integers), and αi = pi − qiω
′
D the corresponding element of

OK , which by small abuse of notation we also call a convergent. We have
pi+1 = ui+1pi+pi−1, qi+1 = ui+1qi+ qi−1, and αi+1 = αiqi+αi−1 (with initial
conditions p−1 := 1, p0 = k, q−1 := 0, q0 = 1). Note that α−1 = 1, and that
αi ≻ 0 if and only if i is odd.

Let ǫ be the totally positive fundamental unit, N(ǫ) = 1. Then we have
ǫ = αs−1 or ǫ = α2s−1 when s is even or odd, respectively.
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On the Rank of Universal Quadratic Forms 19

By a semi-convergent to ωD we mean a fraction of the form pi+rpi+1

qi+rqi+1
with

0 ≤ r ≤ ui+2 (i ≥ −1). Note that each convergent is also a semi-convergent
and that if we take r = ui+2, the fraction is just pi+2/qi+2. We denote
the corresponding element of OK (which we also call a semi-convergent) by
αi,r := αi + rαi+1 (again for i ≥ −1 and 0 ≤ r ≤ ui+2). A semi-convergent
αi,r is a convex combination of αi and αi+2. These are either both totally pos-
itive, or none of them is, and hence αi,r is totally positive if and only if i is odd.

Denote by S the set of all totally positive semi-convergents and their conjugates,
i.e.,

S := {αi,r, α
′
i,r | i ≥ −1 odd, 0 ≤ r < ui+2},

and by S0 its subset of elements σ ∈ S satisfying ǫ > σ ≥ σ′ > 0 (note that in
the definition of S, all the elements are distinct, except for α−1,0 = 1 = α′

−1,0).

The set S is closed under multiplication by ǫk for any k ∈ Z, and each element
of S can be uniquely written in the form σ0ǫ

k for some σ0 ∈ S0 and k ∈ Z.

The cardinality of S0 is clearly u1 + u3 + · · · + us−1 if s is even and
u1 + u3 + · · · + us + us+2 + · · · + u2s−1 if s is odd, because S0 consists
precisely of all the elements αi,r with odd −1 ≤ i ≤ s− 3 (2s− 3, resp.). Note
that this equals MD as defined in (1.2), as us = 2u0 or us = 2u0 − 1 when
D ≡ 2, 3 (mod 4) or 1 (mod 4) and us+i = ui for i ≥ 1.

A totally positive integer α ∈ O+
K is (additively) indecomposable if it cannot

be decomposed as the sum of two totally positive elements, i.e., if α 6= β + γ
for β, γ ∈ O+

K . By a classical theorem (see, e.g., [Pe, §16] or [DS, Theorem
2]), semi-convergents (and their conjugates) are exactly all indecomposable
elements, i.e., S is the set of all indecomposable integers.

In later sections we will use the following asymptotic notation: For real func-
tions f(x), g(x), we write f ∼ g if limx→∞ f(x)/g(x) = 1, f ≪ g (or g ≫ f)
if there are c > 0 and x0 such that |f(x)| < cg(x) for all x > x0, and f ≍ g if
f ≪ g and f ≫ g.

2.2 Estimates

We will need certain estimates on the sizes of indecomposables and their norms.
These are mostly classical; in the case D ≡ 2, 3 (mod 4) they have appeared
for example in [Ka2]. We will need them also when D ≡ 1 (mod 4), and so we
collect the required results here, giving proofs only for this case.

We will first need to introduce some additional notation. For a convergent αi,
we set

Ni := |N(αi)| = (−1)i+1N(αi) =

{
|p2i − piqi − q2i

D−1
4 |, D ≡ 1 (mod 4),

|p2i −Dq2i |, D ≡ 2, 3 (mod 4).
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Recall that we have pi+1qi − piqi+1 = (−1)i. Moreover, let us define Ti so
that αi−1α

′
i = Ti + (−1)i+1ωD, i.e., we have Ti = pi(pi−1 − qi−1)− qiqi−1

D−1
4

or Ti = pipi−1 − Dqiqi−1 when D ≡ 1 (mod 4) or 2, 3 (mod 4), respectively.
Finally, set ci := [ui, ui+1, ui+2, . . . ] so that

ci = ui +
1

ci+1
, ωD =

ci+1pi + pi−1

ci+1qi + qi−1
. (2.1)

Concerning norms of indecomposables, first note that as in the proof of [Ka2,
Proposition 1] (or [JK, Theorem 4]), for odd i we have

N(αi,r) =

{
(D−1)/4+(Ti+1−Ni+1r)−(Ti+1−Ni+1r)

2

Ni+1
, D ≡ 1 (mod 4)

D−(Ti+1−Ni+1r)
2

Ni+1
, D ≡ 2, 3 (mod 4).

(2.2)

In order to better estimate the sizes of norms, we will use the following two
lemmas.

Lemma 4. For i ≥ 0 we have

Ti = (−1)i
(
ωD − Ni−1

ci+1

)
and Ni =

√
∆

ci+1
− Ni−1

c2i+1

. (2.3)

Proof. As we indicated above, we will give the proof only in the case D ≡ 1
(mod 4); for the other case see [Ka2, Proposition 5]. From the second formula
in (2.1) we conclude ci+1α

′
i = −α′

i−1. Multiplying by −αi we get

−N(αi)ci+1 = αiα
′
i−1 = Ti + (−1)i+1ω′

D. (2.4)

Moreover, we have

Ti+1 = pi+1(pi − qi)− qiqi+1
D − 1

4

= (ui+1pi + pi−1)(pi − qi)− (ui+1qi + qi−1)qi
D − 1

4

= ui+1N(αi) + Ti + piqi−1 − pi−1qi = ui+1N(αi) + Ti + (−1)i+1.

Plugging in (2.4), we obtain

(−1)iω′
D −N(αi+1)ci+2 = ui+1N(αi) + (−1)i+1ω′

D −N(αi)ci+1 + (−1)i+1,

and so

N(αi+1)ci+2 = (−1)i(2ω′
D + 1) +N(αi)(ci+1 − ui+1) = (−1)i

√
D +

N(αi)

ci+2
.

This proves the formula for Ni in (2.3). The formula for Ti follows by plugging
in the expression for Ni into (2.4).
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On the Rank of Universal Quadratic Forms 21

Lemma 5. For i ≥ 0 we have

√
∆

ci+1

(
1− 1

cici+1

)
< Ni <

√
∆

ci+1
(2.5)

and in particular

1

ui+1 + 10
<

Ni√
∆

if ui+1 ≥ 3 and
Ni√
∆

<
1

ui+1
. (2.6)

Proof. The upper bound in (2.5) follows immediately from the second formula
in (2.3). The lower bound in the case D ≡ 1 (mod 4) follows from

Ni =

√
∆

ci+1
− Ni−1

c2i+1

=

√
∆

ci+1
− 1

c2i+1

(√
∆

ci
− Ni−2

c2i

)
>

√
∆

ci+1

(
1− 1

cici+1

)
.

The bounds in (2.6) are simple consequences of (2.5) and the first formula in
(2.1), cf. e.g. [Ka2, Theorem 8a].

Finally, from [JW, Theorem 5.9] we conclude the following useful result. Note
that by the discussion [JW, Section 5.2/5.3], principal reduced ideals corre-
spond to convergents.

Proposition 6. Assume that µ ∈ OK is such that 0 < |N(µ)| < 1
2

√
∆. Then

µ = nαi or µ = nα′
i for some i ≥ −1 and n ∈ Z.

Note that Lemma 5 and Proposition 6 together give quite a close correspon-
dence between primitive ideals of small norm and coefficients of the continued
fraction: The elements αi, i = 0, 1, . . . , s− 1 generate primitive (i.e., not divis-
ible by a rational integer other than 1) principal ideals of norm <

√
∆. Con-

versely, the generators α of all primitive principal ideals α with |Nα| <
√
∆/2

come from a convergent to the continued fraction expansion of ωD, so that the
primitive principal ideals of norm <

√
∆/2 can naturally be injected into the

set of {ui | 1 ≤ i ≤ s}; the element αi corresponds to the coefficient ui+1.
Since the convergent αj is totally positive if and only if j is odd, we also obtain
an analogous correspondence between elements with negative norm modulo
totally positive units and coefficients ui with odd i, where 1 ≤ i ≤ s if s is even
and 1 ≤ i ≤ 2s if s is odd. In terms of estimating the sum of coefficients ui,
we summarize this discussion as follows:

Corollary 7. a) We have

∑∗

Na<
√
∆/2

√
∆

Na
+O

( ∑∗

Na<
√
∆

1
)
<

s∑

i=1

ui <
∑∗

Na<
√
∆

√
∆

Na
,

where
∑∗

denotes the sum over principal primitive ideals.
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b) We have

∑−

Na<
√
∆/2

√
∆

Na
+O

( ∑−

Na<
√
∆

1
)
< MD <

∑−

Na<
√
∆

√
∆

Na
,

where
∑−

denotes the sum over principal primitive ideals generated by an
element with negative norm.

Proof. The upper bound follows easily from the previous remark and the second
bound in (2.6). For the lower bound we use the first bound in (2.6) to conclude
that

s∑

i=1

ui >
∑

i≤s
ui≥3

( √
∆

Ni−1
− 10

)
≥

∑∗

Na<
√
∆/2

√
∆

Na
− 10

∑∗

Na<
√
∆

1−
∑

i≤s
ui≤2

√
∆

Ni−1
.

Using again the first bound in (2.6), we have
√
∆/Ni−1 ≤ ui + 10, so that we

obtain
s∑

i=1

ui >
∑∗

Na<
√
∆/2

√
∆

Na
− 22

∑∗

Na<
√
∆

1

as desired. The lower bound in b) is proved similarly.

3 Upper bound

In this section we will prove an upper bound on the minimal number of variables
of universal quadratic forms over Q(

√
D) by constructing an explicit diagonal

universal form that generalizes the results of Kim [Ki2]. The idea is to first
express a totally positive integer as the sum of indecomposables. Since the
set S0 of indecomposables modulo (squares of) units is finite, we can collect
together the terms corresponding to the same element of S0, obtaining certain
sums of units as coefficients.
Denote by E = N0[ǫ, ǫ

−1] the semiring of all elements
∑i1

i=i0
eiǫ

i with i0, i1 ∈ Z
and ei ∈ Z, ei ≥ 0 (recall that ǫ denotes the totally positive fundamental unit).
Note that since ǫ is totally positive, we have that E ⊂ O+

K ∪ {0}.
Proposition 8. a) Every element a ∈ O+

K is of the form a =
∑

j njσj for
some nj ≥ 0 and σj ∈ S.
b) Every element a ∈ O+

K is of the form a =
∑

σ∈S0
eσσ for some eσ ∈ E.

Proof. a) This is clear, as S is the set of all indecomposable elements (and
there are no infinite chains a1 ≻ a2 ≻ a3 ≻ . . . of totally positive integers).
b) follows from a) by noting that if σ ∈ S, then there is some k ∈ Z such that
σǫk ∈ S0.

We can now simplify the sums of units as follows. The proof of Lemma 9 is
very similar to the proofs of Lemma 4 and Theorem 1 of [Ki2].
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Lemma 9. a) For e ∈ E there are i, c, d ∈ Z with c, d ≥ 0 such that e =
cǫi + dǫi+1.
b) All elements e ∈ E are represented by the 8-ary form x2

1 + x2
2 + x2

3 + x2
4 +

ǫ(x2
5 + x2

6 + x2
7 + x2

8).

Theorem 10. The quadratic form

∑

σ∈S0

σ(x2
1,σ + x2

2,σ + x2
3,σ + x2

4,σ + ǫx2
5,σ + ǫx2

6,σ + ǫx2
7,σ + ǫx2

8,σ)

is universal and has 8MD variables.

Proof. The universality of the form follows by Proposition 8 and Lemma 9. Its
number of variables is eight times the number of elements of S0.
When s is even, the elements of S0 are of the form αi + rαi+1 with odd i,
−1 ≤ i ≤ s− 3 and 0 ≤ r < ui+2. The same is true when s is odd, except that
we take −1 ≤ i ≤ 2s− 3, so that |S0| = MD.

Finally, let us note that this result is exactly analogous to Kim’s case of D =
n2 − 1 [Ki2]. Then we have

√
D = [n − 1, 1, 2(n− 1)], and so s = 2, u1 = 1,

and S0 = {1}, also obtaining MD = 1 and mdiag(D) ≤ 8.

4 Lower bound

Let us now prove a lower bound on the number of variables of a diagonal
universal quadratic form. Assume that Q(xi) =

∑
1≤i≤m aix

2
i is a universal

totally positive diagonal quadratic form with ai ∈ O+
K . For every indecompos-

able element σ we know that σ = Q(xi) for some x1, . . . , xm, but since σ is
indecomposable, this is possible only when σ = aix

2
i for some i. Hence it will

be important for us to understand when it can happen that squares of elements
of OK are indecomposable.

Lemma 11. Assume that α ∈ OK is such that α2 is indecomposable. Then for
some j ≥ −1 we have α ∈ {±αj,±α′

j}.

Proof. By the theorem of Dress-Scharlau [DS, Theorem 3] we know that
N(α2) ≤ ∆/4, and so |N(α)| ≤ 1

2

√
∆. Since α must obviously be primitive,

the claim follows from Proposition 6.

Using the previous lemma, we are now ready to prove a lower bound on the
number of variables.

Theorem 12. Every diagonal universal totally positive quadratic form over
OK needs at least MD/s variables if s is even and MD/2s if s is odd.

Proof. Let T = S0 if s is odd and T = {σ ∈ S | ǫ2 > σ ≥ σ′ > 0} if s is even,
i.e., we can describe T uniformly as T = {σ ∈ S | α2

s−1 = α2s−1 > σ ≥ σ′ > 0}.
Thus T has cardinality 2MD if s is even and MD if s is odd.
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Note that if 1 6= σ = x− yω′
D ∈ T , then x, y > 0 and σ > 1 > σ′.

As before, let Q(xi) =
∑

1≤i≤m aix
2
i be a universal form with ai ∈ O+

K . Mul-
tiplying any of the variables by a power of the unit αs−1 is an invertible sub-
stitution, and so we can assume without loss of generality that the coefficients
ai satisfy 0 < ai < a′i < α2

s−1.
The only way in which Q can represent an indecomposable σ is when all but one
of the variables xi are zero. Hence for each σ ∈ T we have σ = ai(σ)α(σ)

2 for
some index 1 ≤ i(σ) ≤ m and some α(σ) ∈ OK , which must be indecomposable.
By Lemma 11, α(σ) is, up to sign, a convergent αj or its conjugate α

′
j for some

j. Moreover, we have the two bounds

|α(σ)| = (σ/ai(σ))
1/2

{
< αs−1 · (a′i(σ))1/2 < α2

s−1,

> (σ′/a′i(σ))
1/2 = |α(σ)′|.

In particular, this excludes the possibility α(σ) = ±α′
j and forces α(σ) = ±αj

with −1 ≤ j ≤ 2s− 2.
Since all elements of T are represented by Q, we have T ⊂ {aiα2

j | 1 ≤ i ≤
m,−1 ≤ j ≤ 2s− 2}. Comparing cardinalities, we get #T ≤ m · 2s, finishing
the proof.

Comparing this bound on the number of variables with Theorem 10, we see
that it is asymptotically good when s is small. This of course happens only
rarely, and so it would be very interesting to be able to replace 1/s in Theorem
12 by an absolute constant.
This is perhaps hard, but we can almost achieve this, at the cost of having to
consider the sum M∗

D,ε of sufficiently large coefficients uj instead of MD, as we
are now going to prove.

Let us first consider in more detail the set of semi-convergents αi,r with fixed

odd i and varying r. Their number is ui+2 ≍
√
D/Ni+1, and so if Ni+1 is small,

there are many of them. Let N := Ni+1, T := Ti+1 and u := ui+2 so that

N(αi,r) =

{
D−(T−Nr)2

N , D ≡ 2, 3 (mod 4),
(D−1)/4+(T−Nr)−(T−Nr)2

N , D ≡ 1 (mod 4)

by (2.2). In either case, we view this as a quadratic polynomial f(r) and note
that from the definition of αi,r as (totally positive) indecomposables we have

Z ∩ [0, u] = {n ∈ Z | f(n) > 0}

(using the estimate for T from (2.3), this also corresponds to
∣∣ T
N − u

2

∣∣ being
small). We define the multiplicative arithmetic function ρf (d) = {n (mod d) |
f(n) ≡ 0 (mod d)}. An application of Hensel’s lemma shows

ρf (p
k) ≤ 2 (4.1)

for all primes p and all k ≥ 2:
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We verify this first in the case f(x) = D−(T−Nx)2

N = D−T 2

N + 2Tx−Nx2.
If p | D, then D ≡ (T −Nx)2 (mod p2) has no solution since D is squarefree,
i.e., ρ(pk) = 0 for all k ≥ 2.
If p ∤ D and p ∤ N , then N is invertible modulo p, and so ρ(p) ≤ 2 and if p 6= 2,
we can use Hensel’s lemma to conclude ρ(pk) ≤ 2 for every k ≥ 1. If p = 2, then
we see directly that ρ(2k) = 0 for all k ≥ 2, since D ≡ 2, 3 6≡ 1 ≡ (T − Nx)2

(mod 4).
If p ∤ 4D and p | N , then f(x) (mod p) is linear or constant, and so ρ(p) ≤ 1
and ρ(pk) ≤ 1 for every k ≥ 1 by Hensel’s lemma.

Finally, if p = 2 ∤ D and 2 | N , then f(x) ≡ D−T 2

N (mod 2). Since D ≡ 2, 3
(mod 4), we have 4 ∤ D − T 2 and we see that ρ(2k) = 0 for all k ≥ 1 in this
case.

In the second case we have

f(x) =
D − (2(T −Nx)− 1)

2

4N
=

D − (2T − 1)2

4N
+ (2T − 1)x−Nx2.

The discussion is similar to the previous one:
If p | D, then again D ≡ (2(T −Nx)− 1)

2
(mod p2) has no solution, i.e.,

ρ(pk) = 0 for all k ≥ 2.
If p ∤ D and p ∤ N , then N is invertible modulo p, and so ρ(p) ≤ 2 and if p 6= 2,
we can use Hensel’s lemma to conclude ρ(pk) ≤ 2 for every k ≥ 1. For p = 2
we have that f(x) is constant modulo 2 and non-constant modulo 4, and so
ρ(2k) ≤ 2 for k ≥ 2.
If p ∤ 4D and p | N , then f(x) (mod p) is linear or constant, and so ρ(p) ≤ 1
and ρ(pk) ≤ 1 for every k ≥ 1 by Hensel’s lemma.

If p = 2 ∤ D and 2 | N , then f(x) ≡ D−(2T−1)2

4N − x (mod 2), and so ρ(2) = 1.
Distinguishing some more cases, one gets ρ(4) = 1 and ρ(2k) ≤ 2 for k ≥ 3.

Having established (4.1), we can now prove the following lemma.

Lemma 13. Let f, T,N, u be as above. Let k ∈ 2N and 1 ≤ X ≤ u. Then

S := #{n ≤ X | f(n) is k-th power free}

= Ck,fX +O

(
Y Xε +

X

Y k−1
+

D1+ε

NY k

)

for any ε > 0, where Ck,f ≥ 1/ζ(k)3, and 1 ≤ Y ≤ X can be chosen arbitrarily.

Proof. For 1 ≤ Y ≤ X we have

S =
∑

n≤X

∑

dk|f(n)
µ(d) =

∑

d≤Y

µ(d)
∑

n≤X

dk|f(n)

1 +
∑

n≤X

f(n)=dkm
d>Y

µ(d). (4.2)

The first term on the right hand side equals

∑

d≤Y

µ(d)

(
ρf (d

k)

dk
X +O(Xε)

)
= Ck,fX +O(Y Xε + Y −k+1X)
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with

Ck,f =

∞∑

d=1

µ(d)
ρf (d

k)

dk
=
∏

p

(
1− ρf (p

k)

pk

)
≥
∏

p

(
1− 2

pk

)
≥ 1

ζ(k)3
.

For the second term, we observe that 0 < f(n) ≤ D/N for 1 ≤ n ≤ X , so that
0 < m ≤ D/(NY k). The summation condition f(n) = dkm is equivalent to the
equation (dk/2)2mN +(T −Nn)2 = D resp. 4(dk/2)2mN +(2(T −Nn)− 1)2 =
D. For given m,N, T,D, this has at most 6τ(D) solutions (d, n), since the
imaginary quadratic number field Q(

√
−mN) can have at most 6 units and the

number of principal ideals of norm D is at most τ(D) ≪ Dε. Hence we can
bound the second term in (4.2) by O(D1+εY −kN−1).

Now we are ready to bound the minimal number of variables from below in
terms of the sum M∗

D,ε of coefficients ui ≥ D1/8+ε, defined immediately before
Theorem 1.

Theorem 14. We have
mdiag(D) ≫ M∗

D,ε,

where the implicit constant depends only on ε > 0.

Proof. Let’s consider the (pairwise distinct) indecomposables αi,r with odd i
and 0 ≤ r < u. Arguing similarly as in the proof of Theorem 12, each of them
has to be of the form σ = aj(σ)α(σ)

2, where aj are the coefficients of a universal
form. Hence it suffices to show that for a positive density of suitable values
of i, r we have that the elements αi,r have 4th-power-free norms (because then
the indices j(αi,r) must be different for different values of i, r). Note that for
−1 ≤ i ≤ 2s−3, the indecomposables αi,r are pairwise distinct modulo squares
of units, and so we can consider the cases of different i’s separately and then
just add them together.
Hence let i be odd. As before we write u := ui+2, N := Ni+1, and T := Ti+1.
We apply the previous lemma with X = u, Y = u1−2ε and k = 4. Provided
N ≤ D3/8−ε (for ε > 0 sufficiently small and D sufficiently large) we can
conclude from (2.6) that u ≍ D1/2N−1 and

S ≫ u+O(u1−ε+D1+εN−1u−4+8ε) = u+O
(
u1−ε(1 +N4−9εD− 3

2
+ 11

2
ε)
)
≫ u

as desired.

5 Analytic preparation

We now employ analytic methods to prove Theorems 2 and 3. We denote
by C the class group of K (of order h) and by Ĉ the corresponding character

group. For each χ ∈ Ĉ we denote by LK(s, χ) the corresponding class group
L-function. It is entire except if χ = χ0 is the trivial character, in which case
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LK(s, χ0) = ζ(s)L(s, χ∆) has a simple pole at s = 1 with residue L(1, χ∆). We
have the important subconvexity bound

LK(1/2 + it, χ) ≪ (1 + |t|)AD 1
4
−δ (5.1)

where A, δ > 0 are some absolute constants. The first such result was obtained
in [DFI], the best value of δ = 1/1889 is due to [BHM]. We write

L∗
K(s, χ) :=

∑

a primitive

χ(a)

(Na)s

=
∏

p=pp̄ split

(
1 +

∞∑

n=1

2ℜχ(p)
pns

)
∏

p=p2 ramified

(
1− χ(p)

ps

)−1

= LK(s, χ)ζ(∆)(2s)−1

where the superscript (∆) denotes the removal of Euler factors at primes di-
viding ∆.
For s > 1 we have

1

h

∑

χ6=χ0

LK(s, χ) = ζ(s, princ)− 1

h
ζ(s)L(s, χ∆),

where

ζ(s, princ) =
∑

a principal

1

(Na)s

is the zeta-function associated to the class of principal ideal. If we write

L(D) = lim
s→1

[
ζ(s, princ)− L(1, χ∆)/h

s− 1

]
, (5.2)

then comparing Taylor coefficients in the equation

1

h

∑

χ6=χ0

LK(s, χ) = ζ(s, princ)− 1

h
L(s, χ∆)ζ(s)

we obtain

1

h

∑

χ6=χ0

LK(1, χ) = L(D)− γL(1, χ∆) + L′(1, χ∆)

h
,

where γ = 0.577 . . . denotes Euler’s constant, and so

1

h

∑

χ6=χ0

L∗
K(1, χ) =

1

ζ(∆)(2)

(
L(D)− γL(1, χ∆) + L′(1, χ∆)

h

)
. (5.3)

Explicit, but very complicated expressions for L(D) have been obtained by
Hecke [Hec], Herglotz [Her], and Zagier [Za1] and can be regarded as a real-
quadratic analogue of Kronecker’s limit formula.
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In the following we fix a smooth function w : [0,∞) → [0, 1] that is 1 on
[0, 1] and 0 on [2,∞). Its Mellin transform ŵ(s) =

∫∞
0 w(x)xs−1dx (initially in

ℜs > 0) is entire except for a simple pole at s = 0 with residue 1, which can
be seen by decomposing w = w|[0,1] + w|(1,2]. More precisely, it has a Laurent
expansion

ŵ(s) =
1

s
+ c+ . . . , c =

∫ 2

1

w(x)
dx

x
.

Moreover, it is rapidly decaying on vertical lines:

ŵ(s) ≪B |s|−B (5.4)

for any constantB ≥ 1 andℜs > −1 (say), as can be seen by partial integration.

Lemma 15. Let X ≥ 1. Then

∑

a

∗ 1

Na
w

(
Na

X

)
=

1

ζ(∆)(2)

(
L(D) +

L(1, χ∆)(logX + c+ (log ζ(∆))′(2))

h

)

+ O
(
X− 1

2D
1
4
− 1

2000

)
,

and

∑

a

∗
w

(
Na

X

)
=

ŵ(1)

ζ(∆)(2)

X

h
L(1, χ∆) +O(X

1
2D

1
4
− 1

2000 ),

where as before
∑∗ denotes a sum over primitive principal ideals and

(log ζ(∆))′(2) := d
ds (log ζ

(∆)(s))
∣∣
s=2

.

Proof. This is a standard contour shift argument. We have by Mellin inversion
and orthogonality of class group characters

∑

a

∗ 1

Na
w

(
Na

X

)
=

∫

(2)

1

h

∑

χ∈Ĉ

L∗
K(s+ 1, χ)ŵ(s)Xs ds

2πi

where here and in the following
∫
(c) denotes a complex contour integral over

the vertical line ℜs = c. Shifting the contour to ℜs = −1/2, computing the
residue of the double pole at s = 0, namely

1

h

∑

χ6=χ0

L∗
K(1, χ) +

L(1, χ∆)(logX + c+ (log ζ(∆))′(2) + γ) + L′(1, χ∆)

ζ(∆)(2)h

=
1

ζ(∆)(2)

(
L(D) +

L(1, χ∆)(logX + c+ (log ζ(∆))′(2))

h

) (5.5)

by (5.3), and estimating the remaining integral with (5.1) and (5.4) gives the
first formula. The proof of the second formula is similar.
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The following lemma is an application of Burgess’ bound.

Lemma 16. For ε > 0 we have

L′(1, χ∆) ≥ −
(
3

8
+ ε

)
L(1, χ∆) (logD +Oε(1)) .

Proof. Let

r(n) :=
∑

d|n
χ∆(d).

For X ≥ 1 we compute by Mellin inversion

S :=
∑

n≤X

r(n)

n

(
1− n

X

)
=

∫

(2)

ζ(s+ 1)L(s+ 1, χ∆)
Xs

s(s+ 1)

ds

2πi
.

We shift the contour to ℜs = −1/2. The residue at s = 0 contributes

L(1, χ∆)(logX + γ − 1) + L′(1, χ∆), (5.6)

while Heath-Brown’s hybrid bound [HB]

L(1/2 + it, χ∆) ≪ ((1 + |t|)D)3/16+ε (5.7)

along with the classical convexity estimate ζ(1/2+ it) ≪ (1 + |t|)1/4+ε bounds
the remaining integral by

O(X−1/2D3/16+ε). (5.8)

On the other hand, for a parameter 1 ≤ Y ≤ X/10 we have by partial summa-
tion

S ≥
∑

Y ≤n≤X

r(n)

n

(
1− n

X

)
=

∫ X

Y

∑

Y ≤n≤t

r(n)
dt

t2
≥
∫ X

3Y

∑

Y ≤n≤t

r(n)
dt

t2
.

For 0 < ε < 1/10 and t ≥ 3Y let Vt : R → [0, 1] be a smooth function with

support in [Y, t] that is 1 on [2Y, (1 − ε)t] and satisfies V
(j)
t (x) ≪ε,j x−j for

j ∈ N0 uniformly in t and Y . It follows from the definition and repeated
integration by parts that

V̂t(s) =

∫ ∞

0

Vt(s)x
s−1dx ≪ tℜs|s|−10 (5.9)

for ℜs ≥ 1/2. Then again by Mellin inversion we have

S ≥
∫ X

3Y

∑

n

r(n)Vt(n)
dt

t2
=

∫ X

3Y

∫

(2)

ζ(s)L(s, χ∆)V̂t(s)
ds

2πi

dt

t2
.
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Shifting the s-contour to ℜs = 1/2 and using (5.7) and (5.9), we obtain

S ≥
∫ X

3Y

((
t(1− ε)− 2Y

)
L(1, χ∆) +O(t1/2D3/16+ε)

) dt

t2

= L(1, χ∆)

(
(1− ε) log

X

3Y
+O(1)

)
+O(D3/16+εY −1/2).

Combining this with (5.6) and (5.8) yields

L(1, χ∆)(logX +O(1)) + L′(1, χ∆)

≥ L(1, χ∆)

(
(1 − ε) log

X

Y
+O(1)

)
+O(D3/16+εY −1/2).

Now we choose
Y = D3/8+4ε, X = D (say)

getting

L′(1, χ∆) ≥ −
(
3

8
+ 5ε

)
L(1, χ∆) (logD +O(1)) +O(D−ε).

By Siegel’s theorem, the last error term is negligible compared to the main
term, and the result follows.

6 Bounds for the sum of convergents

Theorem 17. We have

s∑

i=1

ui =

√
∆

ζ(∆)(2)

(
L(D) +

1

h
L(1, χ∆)(log

√
D +O(1))

)
+O(D

1
2
− 1

2000 ).

Proof. Using Corollary 7 we prove an upper bound and a lower bound. On the
one hand we have

s∑

i=1

ui ≤
∑∗

Na≤
√
∆

√
∆

Na
≤
∑

a

∗
√
∆

Na
w

(
Na√
∆

)
,

so that

s∑

i=1

ui ≤
√
∆

ζ(∆)(2)

(
L(D) +

1

h
L(1, χ∆)(log

√
D +O(1))

)
+O(D

1
2
− 1

2000 )

by Lemma 15. On the other hand, since supp(w) ⊆ [0, 2], we have

s∑

i=1

ui ≥
∑

a

∗
√
∆

Na
w

(
2Na

1
2

√
∆

)
+O

(
∑

a

∗
w

(
Na√
∆

))
,

getting a corresponding lower bound again by Lemma 15.
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Since us = 2⌊ωD⌋ or 2⌊ωD⌋ − 1, it is clear that the error term O(D
1
2
− 1

2000 )
is smaller than the main term. However, since L(D) may be negative, it is
not clear if L(D)+ log

√
DL(1, χ∆)/h grows more quickly than L(1, χ−D)/h as

D → ∞, so that a priori Theorem 17 may only give an upper bound. In order
to understand the behaviour of the main term, it is more convenient to use the
left hand side of the expression (5.5) with X =

√
D. Notice that all L-values

are real (since L(s, χ) = L(s, χ̄) = L(s, χ) for χ ∈ Ĉ and s ∈ R) and, except for
L′(1, χ∆), positive and that (log ζ(∆))′(2) ≍ 1. Since Lemma 16 implies

L(1, χ∆) log
√
D + L′(1, χ∆) ≫ L(1, χ∆) log

√
D,

for sufficiently large D, (5.5) implies

L(D) +
1

h
L(1, χ∆)(log

√
D +O(1)) ≫ 1

h
L(1, χ∆) log

√
D, (6.1)

for sufficiently large D, and hence

Corollary 18. We have

s∑

i=1

ui ∼
√
∆

ζ(∆)(2)

(
L(D) +

1

h
L(1, χ∆) log

√
D
)

as D → ∞.

We have the classical upper bounds [Fo, Lemma 4]

L(s, χ∆) ≪ log∆, LK(s, χ) ≪ (log∆)2 (6.2)

for |s − 1| ≤ 1/ log∆ and χ ∈ Ĉ, from which we also conclude L′(1, χ∆) ≪
(log∆)2 by Cauchy’s integral formula. Thus we obtain

√
∆ ≤ 2⌊ωD⌋ ≤

s∑

i=1

ui ≪
√
∆(log∆)2

from (5.5), which by (1.2) and (1.3) implies the upper bound in Theorem 2.
As mentioned in the introduction, the lower bound M∗

D,ε ≥
√
∆ is trivial if s

is odd.

Concluding remarks:

(1) If one is willing to assume the Generalized Riemann Hypothesis, then
L(1, χ∆) ≫ 1/ log logD [Lit], and instead of (6.2) we have

L(1, χ∆), LK(1, χ) ≪ log logD, L′(1, χ∆) ≪ (log logD)2

(cf. [Li, Section 5]), so that again by (5.5) for the upper bound and (6.1) for
the lower bound we obtain

√
D

(
1 +

logD

h log logD

)
≪

s∑

i=1

ui ≪
√
D

(
1 +

logD

h

)
(log logD)2. (6.3)
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(2) Using the second part of Lemma 15, we obtain easily

√
D

h
L(1, χ∆) +O(D

1
2
− 1

2000 ) ≪ s ≪
√
D

h
L(1, χ∆) +O(D

1
2
− 1

2000 ), (6.4)

where the lower bound is of course a trivial statement if h ≥ D1/2000 (but
conjecturally this does not happen very frequently).

(3) In the same way as in Theorem 17 one can show

MD =

√
∆

ζ(∆)(2)

(
L−(D) +

1

h+
L(1, χ∆)(log

√
D +O(1))

)
+O(D

1
2
− 1

2000 )

where h+ is the narrow class number (which equals h if OK has a unit of
negative norm and otherwise equals 2h) and L−(D) is the constant Taylor
coefficient of ζ(s, princ−) =

∑
a
(Na)−s. Alternatively, one can also combine

Corollary 18 with [Za2, Satz 2, §14] for the alternating sum, to obtain a formula
form for MD. In many cases, however, the main term will be smaller than the
error term, so that it is unclear to which extent this formula is meaningful.

References

[Bh] M. Bhargava,On the Conway-Schneeberger Fifteen Theorem, Contemp.
Math. 272 (1999), 27-37

[BH] M. Bhargava, J. Hanke, Universal quadratic forms and the 290-theorem,
preprint
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