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that it is then a quasi-lattice ordered group in the sense of Nica. We
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1 Introduction

Since they were introduced by Nica [9], quasi-lattice ordered groups and their
C∗-algebras have generated considerable interest (see, for example, [5],[6]). The
amenability of quasi-lattice ordered groups has been a deep subject (see, for
example, [3],[4] and [7]). Quasi-lattice ordered groups are also examples of the
more recent LCM semigroups [1], [13]. Here we generalise two recent results
about the Baumslag-Solitar group.
First, Spielberg proved that the Baumslag-Solitar group is quasi-lattice ordered
[11]. The Baumslag-Solitar group is an example of an HNN extension of Z,
and hence we wondered if HNN extensions could provide new classes of quasi-
lattice ordered groups. Spielberg also showed that a groupoid associated to the
Baumslag-Solitar semigroup is amenable [11, Theorem 3.22].
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Second, Clark, an Huef and Raeburn examined the phase-transitions of the
Toeplitz algebra of the Baumslag-Solitar group [2]. As part of their investiga-
tion they proved that the Baumslag-Solitar group is amenable as a quasi-lattice
ordered group. The standard way to prove amenability, introduced by Laca
and Raeburn [5], is to use a “controlled map”: an order-preserving homomor-
phism between quasi-lattice ordered groups. They observed that the height
map, which counts the number of times the stable letter of the HNN exten-
sion appears in a word, is almost a controlled map, and then they adapted the
standard proof in [2, Appendix A] to fit.

Our innovation in this paper is a more general definition of a controlled map.
We prove in Theorem 3.2 that if (G,P ) is a quasi-lattice ordered group and
there is a controlled map µ into an amenable group, and if kerµ is an amenable
quasi-lattice ordered group, then (G,P ) is amenable. The motivation for The-
orem 3.2 was two-fold. First, if a normal subgroup N of a group G is amenable
and G/N is amenable, then G is amenable, and second, Spielberg’s result on
amenability of groupoids [12, Proposition 9.3].

In Theorem 4.1 we give conditions under which an HNN extension of a quasi-
lattice ordered group is quasi-lattice ordered. This result allows us to construct
many new examples of quasi-lattice ordered groups. Finally, we use Theo-
rem 3.2 to prove that an HNN extension of an amenable quasi-lattice ordered
group is amenable (Theorem 5.1).

2 Preliminaries

Let P be a subsemigroup of a discrete group G such that P ∩P−1 = {e}. There
is a partial order on G defined by

x ≤ y ⇔ x−1y ∈ P ⇔ y ∈ xP.

The order is left-invariant in the sense that x ≤ y implies zx ≤ zy for all z ∈ G.
A partially ordered group (G,P ) is quasi-lattice ordered if every finite subset
of G with a common upper bound in P has a least common upper bound in
P [9, Definitions 2.1]. By [3, Lemma 7], (G,P ) is quasi-lattice ordered if and
only if:

if x ∈ PP−1, then there exist a pair µ, ν ∈ P with x = µν−1 such that
γ, δ ∈ P and γδ−1 = µν−1 imply µ ≤ γ and ν ≤ δ. (The pair µ, ν is
unique.)

(1)

Let (G,P ) be a quasi-lattice ordered group, and let x, y ∈ G. If x and y have
a common upper bound in P , then their least common upper bound in P is
denoted x ∨ y. We write x ∨ y = ∞ when x and y have no common upper
bound in P and x ∨ y < ∞ when they have a common upper bound. An
isometric representation of P in a C∗-algebra A is a mapW : P → A such that
We = 1, Wp is an isometry and WpWq =Wpq for all p, q ∈ P . We say that W
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is covariant if

WpW
∗
pWqW

∗
q =

{

Wp∨qW
∗
p∨q if p ∨ q <∞

0 otherwise.
(2)

Equivalently, W is covariant if

W ∗
pWq =

{

Wp−1(p∨q)W
∗
q−1(p∨q) if p ∨ q <∞

0 otherwise.

An example of a covariant representation is T : P → B(ℓ2(P )) characterised
by Tpǫx = ǫpx where {ǫx : x ∈ P} is the orthonormal basis of point masses in
ℓ2(P ).

In [9, §§2.4 and 4.1] Nica examined two C∗-algebras associated to (G,P ). The
reduced C∗-algebra C∗

r (G,P ) of (G,P ) is the C
∗-subalgebra of B(ℓ2(P )) gen-

erated by {Tp : p ∈ P}. The universal C∗-algebra C∗(G,P ) of (G,P ) is gen-
erated by a universal covariant representation w; it is universal for covariant
representations of P in the following sense: for any covariant representation
W : P → A there exists a unital homomorphism πW : C∗(G,P ) → A such that
πW (wp) =Wp. It follows from (2) that

C∗(G,P ) = span{wpw
∗
q : p, q ∈ P}.

Nica defined (G,P ) to be amenable if the homomorphism πT : C∗(G,P ) →
C∗

r (G,P ) is faithful [9, §4.2]. He identified an equivalent condition: there exists
a conditional expectation E : C∗(G,P ) → span{wpw

∗
p : p ∈ P}, and (G,P )

is amenable if and only if E is faithful (that is, E(a∗a) = 0 implies a∗a = 0
for all a ∈ C∗(G,P )). Laca and Raeburn took this second condition as their
definition of amenability [5, Definition 3.4].

3 Order-preserving maps and amenability

A key technique, introduced by Laca and Raeburn in [5, Proposition 6.6]4, is
the use of an order-preserving homomorphism between two quasi-lattice or-
dered groups which preserves the least upper bound structure. Crisp and Laca
called such a homomorphism a controlled map [4]. If (G,P ) and (K,Q) are
quasi-lattice ordered groups, µ : G → K is a controlled map and K is an
amenable group, then (G,P ) is amenable as a quasi-lattice ordered group by
[5, Proposition 6.6]. Motivated by work in [2, Appendix A] we now give a
weaker definition for a controlled map. We then follow the program of [2] to
generalise [5, Proposition 6.6]. We state this generalisation in Theorem 3.2
below; its proof will take up the remainder of this section.

4There is an error in the statement of [5, Proposition 6.6]: the final line should read “if G
is an amenable group, then (G, P ) is amenable”.
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Definition 3.1. Let (G,P ) and (K,Q) be quasi-lattice ordered groups. Let
µ : G → K be an order-preserving group homomorphism. For each k ∈ Q, let
Σk be the set of σ ∈ µ−1(k) ∩ P which are minimal, that is,

x ∈ µ−1(k) ∩ P and x ≤ σ ⇒ σ = x.

We say µ is a controlled map if it has the following properties:

1. For all x, y ∈ P such that x ∨ y <∞ we have µ(x) ∨ µ(y) = µ(x ∨ y).
2. For all k ∈ Q, Σk is complete in the following sense: for every x ∈
µ−1(k) ∩ P there exists σ ∈ Σk such that σ ≤ x.

3. For all k ∈ Q and σ, τ ∈ Σk we have σ ∨ τ <∞ ⇒ σ = τ .

If µ : G→ K is a controlled map in the sense of [5], then it is a controlled map
in the sense of Definition 3.1.

Theorem 3.2. Let (G,P ) and (K,Q) be quasi-lattice ordered groups. Sup-

pose that µ : G → K is a controlled map. If K is an amenable group and
(

µ−1(e), µ−1(e)∩P
)

is an amenable quasi-lattice ordered group, then (G,P ) is
amenable.

We start by showing that the kernel of a controlled map is a quasi-lattice
ordered group.

Lemma 3.3. Let (G,P ) and (K,Q) be quasi-lattice ordered groups, and suppose

that µ : G→ K is a controlled map. Then
(

µ−1(e), µ−1(e)∩P
)

is a quasi-lattice

ordered group.

Proof. It is clear that µ−1(e) is a subgroup of G and that µ−1(e)∩P is a unital
semigroup.
Recall from [9, Definitions 2.1] that (G,P ) is quasi-lattice ordered if and only
if

1. any x ∈ PP−1 has a least upper bound in P , and

2. any x, y ∈ P with a common upper bound have a least upper bound.

Let x ∈ (µ−1(e) ∩ P )(µ−1(e) ∩ P )−1, say x = yz−1 where y, z ∈ µ−1(e) ∩ P .
Then x ∈ PP−1, and since G,P ) is quasi-lattice ordered, x has a least upper
bound w in P . Since y is an upper bound for x in P , we have w ≤ y, and
since µ is order-preserving we have µ(w) ≤ µ(y) = e. Then µ(w) = e, and
w ∈ µ−1(e) ∩ P is an upper bound for x. Let w′ be any upper bound for x in
µ−1(e) ∩ P . Then w ≤ w′ in P , and hence also in µ−1(e) ∩ P . Thus w is the
least upper bound for x in µ−1(e) ∩ P .
Next, let x, y ∈ µ−1(e)∩P , and suppose that x, y have a common upper bound
z ∈ µ−1(e)∩P . Then z is a common upper bound for x, y in P , and hence x∨y
exists in P and x ∨ y ≤ z. Since x, y ∈ P , by Item 1 of Definition 3.1 we have
µ(x∨ y) = µ(x)∨µ(y) = e. Hence x∨ y ∈ µ−1(e)∩P , and it follows that x∨ y
is the least upper bound for x and y in µ−1(e)∩P . Thus

(

µ−1(e), µ−1(e)∩P
)

is a quasi-lattice ordered group.
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To prove Theorem 3.2 we will show that the conditional expectation

E : C∗(G,P ) → span{wpw
∗
p : p ∈ P}

is faithful. We will use the amenability of K to construct a faithful conditional
expectation Ψµ : C∗(G,P ) → span{wpw

∗
q : µ(p) = µ(q)}, and then show that E

is faithful when restricted to rangeΨµ. To construct Ψµ we follow the method
of [5, Lemma 6.5] which uses a coaction.
Let G be a discrete group and let A be a unital C∗-algebra. Let

δG : C∗(G) → C∗(G)⊗min C
∗(G)

be the comultiplication of G which is characterised by δG(ug) = ug ⊗ ug for
g ∈ G. A coaction of G on A is a unital homomorphism δ : A→ A⊗minC

∗(G)
such that

(δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ.
We say that δ is nondegenerate if δ(A)(1 ⊗ C∗(G)) = A⊗min C

∗(G).

Lemma 3.4. Let (G,P ) be a quasi-lattice ordered group. Suppose that there

exists a group K and a homomorphism µ : G → K. Then there exists an

injective coaction

δµ : C∗(G,P ) → C∗(G,P )⊗min C
∗(K)

characterised by δµ(wp) = wp ⊗ uµ(p) for all p ∈ P .

Proof. LetW : P → C∗(G,P )⊗minC
∗(K) be characterised byWp = wp⊗uµ(p).

We will show that W is a covariant representation, and then take δµ := πW .
Unitaries are isometries and hence Wp is isometric for all p ∈ P . Observe that
We = we ⊗ uµ(e) = 1⊗ 1, and

WpWq = wpwq ⊗ uµ(p)uµ(q) = wpq ⊗ uµ(pq) =Wpq for all p, q ∈ P .

ThusW is an isometric representation. To proveW is covariant, we fix x, y ∈ P
and compute:

WxW
∗
xWyW

∗
y = wxw

∗
xwyw

∗
y ⊗ uµ(x)u

∗
µ(x)uµ(y)u

∗
µ(y)

=

{

wx∨yw
∗
x∨y ⊗ 1 if x ∨ y <∞

0⊗ 1 otherwise

=

{

wx∨yw
∗
x∨y ⊗ wµ(x∨y)w

∗
µ(x∨y) if x ∨ y <∞

0 otherwise

=Wx∨yW
∗
x∨y.

Thus W is a covariant representation of P . By the universal property of
C∗(G,P ), there exists a homomorphism δµ := πW , which is characterised by
δu(wp) =Wp = wp ⊗ uµ(p). Since We = 1⊗ 1 it follows that δµ is unital.
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To prove the comultiplication identity, we compute on generators: for p, q ∈ P
we have

((δµ ⊗ id) ◦ δµ)(wpw
∗
q ) = (δµ ⊗ id)(wpw

∗
q ⊗ uµ(pq−1))

= δµ(wpw
∗
q)⊗ id(uµ(pq−1))

= wpw
∗
q ⊗ uµ(pq−1) ⊗ uµ(pq−1)

= wpw
∗
q ⊗ δK(uµ(pq−1))

= id⊗ δK(wpw
∗
q ⊗ uµ(pq−1))

= ((id⊗ δK) ◦ δµ)(wpw
∗
q ).

Hence (δµ ⊗ id) ◦ δµ = (id⊗ δK) ◦ δµ. Thus δµ is a coaction.
To show that δµ is injective, let π : C∗(G,P ) → B(H) be a faithful represen-
tation. We will show that π can be written as a composition of δµ and another
representation. Let ǫ : C∗(K) → C be the trivial representation on C such that
ǫ(uk) = 1 for all k ∈ K. By the properties of the minimal tensor product (see
[10, Proposition B.13]) there exists a homomorphism

π ⊗ ǫ : C∗(G,P )⊗min C
∗(K) → B(H)⊗ C = B(H).

Since
(π ⊗ ǫ) ◦ δµ(wp) = (π ⊗ ǫ)(wp ⊗ uµ(p)) = π(wp),

we have π = (π ⊗ ǫ) ◦ δµ. Now suppose that δµ(a) = 0 for some a ∈ C∗(G,P ).
Then 0 = (π⊗ǫ)◦δµ(a) = π(a). Since π is faithful, a = 0. Hence δµ is injective.
To prove that δµ is a nondegenerate coaction we must show that

δµ(C
∗(G,P ))(1 ⊗ C∗(K)) = C∗(G,P )⊗min C

∗(K).

It suffices to show that we can get the spanning elements wpw
∗
q ⊗ uk, and this

is easy:

δµ(wpw
∗
q )(1 ⊗ uµ(qp−1)k) = wpw

∗
q ⊗ uµ(pq−1)(1⊗ uµ(qp−1)k) = wpw

∗
q ⊗ uk.

Thus δµ is nondegenerate.

Let λ be the left-regular representation of a discrete group K. There is a trace
τ on C∗(K) characterised by

τ(uk) = (λkǫe | ǫe) =
{

1 if k = e

0 otherwise.

It is well-known that if K is an amenable group, then τ is faithful.
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Lemma 3.5. Let (G,P ) be a quasi-lattice ordered group. Suppose that there

exist a group K and a homomorphism µ : G→ K. Let

δµ : C∗(G,P ) → C∗(G,P )⊗min C
∗(K)

be the coaction of Lemma 3.4. Then

Ψµ := (id⊗ τ) ◦ δµ

is a conditional expectation of C∗(G,P ) with range span{wpw
∗
q : µ(p) = µ(q)}.

If K is an amenable group, then Ψµ is faithful.

Proof. Since id ⊗ τ and δµ are linear and norm decreasing, so is Ψµ. Since
Ψµ(we) = 1 the norm of Ψµ is 1. We have

Ψµ(wpw
∗
q ) =

{

wpw
∗
q if µ(p) = µ(q)

0 otherwise,
(3)

and hence Ψµ ◦Ψµ = Ψµ. Thus Ψµ is a conditional expectation by [14].
From (3) we see that span{wpw

∗
q : µ(q) = µ(p)} ⊆ rangeΨµ. To show the

reverse inclusion, fix b ∈ rangeΨµ, say b = Ψµ(a) for some a ∈ C∗(G,P ).
Also fix ǫ > 0. There exists a finite subset F ⊆ P × P such that
‖a−∑

(p,q)∈F λp,qwpw
∗
q‖ < ǫ. Since Ψµ is linear and norm-decreasing,

ǫ >
∥

∥

∥
a−

∑

(p,q)∈F

λp,qwpw
∗
q

∥

∥

∥
≥

∥

∥

∥
Ψµ

(

a−
∑

(p,q)∈F

λp,qwpw
∗
q

)∥

∥

∥

=
∥

∥

∥
Ψµ(a)−Ψµ

(

∑

(p,q)∈F

λp,qwpw
∗
q

)∥

∥

∥
=

∥

∥

∥
b−

∑

(p,q)∈F , µ(p)=µ(q)

λp,qwpw
∗
q

∥

∥

∥
.

Thus b ∈ span{wpw
∗
q : µ(q) = µ(p)}, and rangeΨµ = span{wpw

∗
q : µ(q) =

µ(p)}.
Now suppose that K is amenable. To see that Ψµ is faithful, we follow the
proof of [5, Lemma 6.5]. Let a ∈ C∗(G,P ) and suppose that Ψµ(a∗a) = 0. Let
f be an arbitrary state on C∗(G,P ). Then

0 = f(Ψµ(a∗a)) = f ◦ (id⊗ τ) ◦ δµ(a∗a)
= (f ⊗ τ) ◦ δµ(a∗a) = τ ◦ (f ⊗ id) ◦ δµ(a∗a).

Since K is amenable, τ is faithful. Hence (f ⊗ id) ◦ δ(a∗a) = 0. This implies
that for all states f on C∗(G,P ) and states g on C∗(K),

g ◦ (f ⊗ id) ◦ δµ(a∗a) = (f ⊗ g) ◦ δµ(a∗a) = 0.

To see that δµ(a
∗a) = 0, let π1 : C∗(G,P ) → H1 and π2 : C∗(K) → H2

be faithful representations. Then π1 ⊗ π2 is a faithful representation of
C∗(G,P )⊗minC

∗(K) on B(H1⊗H2) by [10, Corollary B.11]. Fix unit vectors
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h ∈ H1, k ∈ H2. There exists a state fh ⊗ fk on C∗(G,P )⊗min C
∗(K) defined

by
fh ⊗ fk(x) = (π1 ⊗ π2(x)(h ⊗ k) | h⊗ k).

Since (f ⊗ g) ◦ δµ(a∗a) = 0 for all states f of C∗(G,P ) and g of C∗(K), we
have

0 = fh ⊗ fk(δµ(a
∗a))

= (π1 ⊗ π2(δµ(a
∗a))(h⊗ k) | h⊗ k)

= (π1 ⊗ π2(δµ(a))(h⊗ k) | π1 ⊗ π2(δµ(a))h⊗ k)

= ‖π1 ⊗ π2(δµ(a))(h⊗ k)‖2.

Hence π1 ⊗ π2(δµ(a
∗a)) = 0. Since π1 ⊗ π2 is faithful, δµ(a

∗a)) = 0. But δµ is
injective, and hence a = 0, and Ψµ is faithful.

Next we investigate the structure of

rangeΨµ = span{wpw
∗
q : µ(p) = µ(q)}.

Lemma 3.6. Let (G,P ) and (K,Q) be quasi-lattice ordered groups, and suppose

that µ : G→ K is a controlled map. Let k ∈ Q, and let F be a finite subset of

Σk. Let

Bk,F := span{wσωαw
∗
βw

∗
τ : σ, τ ∈ F, α, β ∈ µ−1(e) ∩ P}.

Then Bk,F is a closed C∗-subalgebra of span{wpw
∗
q : µ(p) = µ(q)}.

Proof. It is straightforward to see that Bk,F is contained in span{wpw
∗
q : µ(p) =

µ(q)}. Let A = span{ωαw
∗
β : α, β ∈ µ−1(e) ∩ P}. We will prove the lemma by

showing that Bk,F is isomorphic to

MF (C)⊗A.

By Item 3 of Definition 3.1, the elements of F have no common upper bound
unless they are equal. So

(wσw
∗
τ )(wγw

∗
δ ) = wστ−1(τ∨γ)w

∗
δγ−1(τ∨γ) =

{

wσw
∗
δ if τ = γ

0 otherwise.

Thus {wσw
∗
τ : σ, τ ∈ F} is a set of matrix units in the C∗-algebra Bk,F .

This gives a homomorphism θ : MF (C) → Bk,F which maps the matrix units
{Eσ,τ : σ, τ ∈ F} in MF (C) to {wσw

∗
τ : σ, τ ∈ F} ⊂ Bk,F . It is easy to check

that the formula
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ψ(D) =
∑

γ∈F

wγDw
∗
γ

gives a homomorphism ψ : A→ Bk,F . We have

θ(Eσ,τ )ψ(D) = wσw
∗
τ

∑

γ∈F

wγDw
∗
γ

= wσw
∗
τwτDw

∗
τ (w∗

τwγ = 0 unless τ = γ)

= wσDw
∗
τ

= (
∑

γ∈F

wγDw
∗
γ)wσw

∗
τ

= ψ(D)θ(Eσ,τ ).

Each M ∈MF (C) is a linear combination of the Eσ,τ , and hence ψ(D)θ(M) =
θ(M)ψ(D) for all M ∈ MF (C) and D ∈ A. Since the ranges of θ and ψ
commute, the universal property of the maximal tensor product gives a homo-
morphism θ ⊗max ψ of MF (C)⊗max A into Bk,F .
By [10, Theorem B.18]

MF (C)⊗max A = span{Eσ,τ ⊗D : σ, τ ∈ F and D ∈ A},

with no closure. So the range of θ⊗maxψ is spanned by θ(Eσ,τ )ψ(D) = wσDw
∗
τ

and hence is Bk,F . Thus Bk,F is a closed C∗-subalgebra of span{wpw
∗
q : µ(p) =

µ(q)}.

Let {ǫx : x ∈ P} be the usual basis for ℓ2(P ). Let T be the covariant represen-
tation of (G,P ) on ℓ2(P ) such that Tpǫx = ǫpx, and let πT be the corresponding
homomorphism of C∗(G,P ) onto C∗

r (G,P ) such that πT (wp) = Tp. For k ∈ Q
we consider the subspaces

Hk := span{ǫγz : γ ∈ Σk, z ∈ µ−1(e) ∩ P}.

Lemma 3.7. Let (G,P ) and (K,Q) be quasi-lattice ordered groups, and suppose

that µ : G→ K is a controlled map. Let k ∈ Q, and let F be a finite subset of

Σk. Then

1. Hk is invariant for πT |Bk,F
;

2. if
(

µ−1(e), µ−1(e) ∩ P
)

is amenable, then πT (·)|Hk
is isometric on Bk,F .

Proof. For Item 1, let σ, τ ∈ F and let x, y ∈ µ−1(e) ∩ P and let ǫγz ∈ Hk.
Then wσwxw

∗
yw

∗
τ is a spanning element of Bk,F . Since µ(τ) = k = µ(γ) we

have

πT (wσwxw
∗
yw

∗
τ )ǫγz =

{

ǫσxy−1z if γ = τ and y ≤ z

0 otherwise.
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If πT (wσwxw
∗
yw

∗
τ )ǫγz = 0 we are done. Otherwise, to see that ǫσxy−1z is back

in Hk, suppose that y ≤ z. Then y−1z ∈ P . Since σx ∈ µ−1(k) ∩ P we have
ǫ(σx)(y−1z) ∈ Hk. It follows that Hk is invariant for πT |Bk,F

.

For Item 2 suppose that
(

µ−1(e), µ−1(e) ∩ P
)

is amenable. We will show that
πT (·)|Hk

is faithful on Bk,F . Take B =
∑

σ,τ∈F wσDσ,τw
∗
τ ∈ Bk,F and suppose

that πT (B)|Hk
= 0. Fix γ, δ ∈ F . Then

T ∗
γ πT (B)Tδ = πT (w

∗
γ)πT (B)πT (wδ) = πT (Dγ,δ).

Since Tδ is an injection from He to Hk and πT (B)|Hk
= 0, it follows that

πT (B)Tδ|He
= 0. Thus πT (Dγ,δ)|He

= 0.

But the restriction

(πT |
C∗

(

µ−1(e),µ−1(e)∩P
)·)|He

is the Toeplitz representation of
(

µ−1(e), µ−1(e) ∩ P
)

, and hence is faithful
by amenability. Thus Dγ,δ = 0. Repeating the argument finitely many times
shows that all the Dσ,τ = 0 and hence that B = 0. Thus πT (·)|Hk

is faithful
on Bk,F , and therefore is isometric.

Lemma 3.8. Let (G,P ) and (K,Q) be quasi-lattice ordered groups, and suppose

that µ : G→ K is a controlled map. Let

Bk = span{wpw
∗
q : µ(p) = µ(q) = k}.

Let F be the set of all finite sets F ⊆ Σk. Then Bk = ∪F∈FBk,F . If
(

µ−1(e), µ−1(e) ∩ P
)

is amenable, then πT (·)|Hk
is isometric on Bk.

Proof. Observe that F is a directed set partially ordered by inclusion with
E,F ∈ F majorismajorizeded by E ∪ F . If E ⊆ F , then Bk,E ⊆ Bk,F . Thus
{Bk,F : F ∈ F} is an inductive system with limit ∪F∈FBk,F .

For each F ∈ F we have Bk,F ⊆ Bk, and Bk is closed. Therefore ∪F∈FBk,F ⊆
Bk. To prove the reverse inclusion it suffices to show that the spanning elements
of Bk are in Bk,F for some F . Fix p, q ∈ P such that µ(p) = µ(q) = k and
consider wpw

∗
q . By Item 2 of Definition 3.1, the set Σk of minimal elements

is complete, and there exists σ, τ ∈ Σk such that σ ≤ p and τ ≤ q. Hence
there exists x, y ∈ P such that p = σx and q = τy. Thus wpw

∗
q = wσxw

∗
τy =

wσ(wxw
∗
y)w

∗
τ and wxw

∗
y ∈ C∗

(

µ−1(e), µ−1(e) ∩ P
)

. Since {σ, τ} ∈ F we have

wpw
∗
q ∈ Bk,{σ,τ}. Thus Bk ⊆ ∪F∈FBk,F , and equality follows.

Finally, suppose that
(

µ−1(e), µ−1(e) ∩ P
)

is amenable. Then πT (·)|Hk
is iso-

metric on Bk,F for all F ∈ F by Item 2 of Lemma 3.7. Since πT is isometric
on every Bk,F , its extension to the closure is also isometric.

Let I be the set of all finite sets I ⊂ Q that are closed under ∨ in the sense
that s, t ∈ I and s ∨ t <∞ implies that s ∨ t ∈ I.
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Lemma 3.9. Let (G,P ) and (K,Q) be quasi-lattice ordered groups, and suppose

that µ : G→ K is a controlled map. For each I ∈ I let

CI = span{wpw
∗
q : µ(p) = µ(q) ∈ I}.

Then CI is a C∗-subalgebra of span{wpw
∗
q : µ(p) = µ(q)}, CI = span{Bk : k ∈

I} and span{wpw
∗
q : µ(p) = µ(q)} = ∪I∈ICI .

Proof. Fix I ∈ I. To see that CI is a C∗-subalgebra, it suffices to show that
span{wpw

∗
q : µ(p) = µ(q) ∈ I} is a ∗-subalgebra. It’s clearly closed under taking

adjoints. Let p, q, r, s ∈ P such that µ(p) = µ(q) ∈ I and µ(r) = µ(s) ∈ I.
Then

wpw
∗
qwrw

∗
s =

{

wpq−1(q∨r)w
∗
sr−1(q∨r) if q ∨ r <∞

0 otherwise.

If wpw
∗
qwrw

∗
s = 0 we are done. So suppose that wpw

∗
qwrw

∗
s 6= 0. Then q ∨ r <

∞. Since µ is a controlled map and µ(p) = µ(q), by Item 1 of Definition 3.1,

µ(pq−1(q ∨ r)) = µ(q ∨ r) = µ(q) ∨ µ(r).

Similarly, µ(sr−1(q ∨ r)) = µ(q) ∨ µ(r). Since I is closed under ∨ we have
µ(q) ∨ µ(r) ∈ I, and hence wpw

∗
qwrw

∗
s ∈ span{wpw

∗
q : µ(p) = µ(q) ∈ I}. It

follows that CI is a C∗-subalgebra.

For each k ∈ I, we have Bk ⊆ CI , and so span{Bk : k ∈ I} ⊆ CI . To show
the reverse inclusion observe that for wpw

∗
q ∈ CI we have wpw

∗
q ∈ Bµ(p). Since

the finite span of closed subalgebras is closed, span{wpw
∗
q : µ(p) = µ(q) ∈ I} ⊆

span{Bk : k ∈ I}. Thus CI = span{Bk : k ∈ I}.

Proposition 3.10. Let (G,P ) and (K,Q) be quasi-lattice ordered groups, and

suppose that µ : G → K is a controlled map. If
(

µ−1(e), µ−1(e) ∩ P
)

is

amenable, then πT is faithful on span{wpw
∗
q : µ(p) = µ(q)}.

Proof. By Lemma 3.9, span{wpw
∗
q : µ(p) = µ(q)} = ∪I∈ICI . Thus it suffices

to show that πT is isometric on each CI . Fix I ∈ I. Suppose that πT (R) = 0
for some R ∈ CI . Then there exist Rk ∈ Bk such that R =

∑

k∈I Rk and then
∑

k∈I πT (Rk) = 0.

We claim that if k 6≤ j, then πT (Bk)|Hj
= 0 (it then follows that πT (Rk)|Hj

=
0). To prove the claim, it suffices to show that πT (w

∗
q )ǫγz = 0 for all q ∈

µ−1(k) ∩ P and ǫγz ∈ Hk. We have

πT (w
∗
q )ǫγz = T ∗

q ǫγz =

{

ǫq−1γz if q ≤ γz

0 otherwise.

But q ≤ γz implies k = µ(q) ≤ µ(γz) = µ(γ) = j. So k 6≤ j implies
πT (w

∗
q )ǫγz = 0. Hence πT (Bk)|Hj

= 0 if k 6≤ j as claimed.

Documenta Mathematica 23 (2018) 327–351



338 A. an Huef, I. Raeburn, and I. Tolich

Let l be a minimal element of I in the sense that x ≤ l implies x = l. Then for
k ∈ I, we have k 6≤ l unless k = l. Now

0 =
∑

k∈I

πT (Rk)|Hl
= πT (Rl)|Hl

.

Since
(

µ−1(e), µ−1(e) ∩ P
)

is amenable, πT (·)|Bl
is isometric on Bl by

Lemma 3.8. Thus Rl = 0.
Let l2 be a minimal element of I\{l}. Then we can repeat the above argument
to get Rl2 = 0. Since I is finite, we can continue to conclude that R = 0.

We can now prove Theorem 3.2

Proof of Theorem 3.2. Suppose that K is an amenable group. To see (G,P ) is
amenable, we will show that the conditional expectation

E : C∗(G,P ) → span{wpw
∗
p : p ∈ P}

is faithful. Let Ψµ be the conditional expectation of Lemma 3.5. We have

E(Ψµ(wpw
∗
q )) =

{

Ψ(wpw
∗
q ) if µ(p) = µ(q)

0 otherwise

=

{

wpw
∗
p if p = q

0 otherwise

= Ψ(wpw
∗
q ),

and hence E = E ◦Ψµ.
Since K is an amenable group, Ψµ is faithful by Lemma 3.5. Let Pz ∈ B(ℓ2(P ))
be the orthogonal projection onto span{ǫz}. It is straightforward to show that
the diagonal map ∆ : B(ℓ2(P )) → B(ℓ2(P )) given by

∆(T ) =
∑

z∈P

PzTPz

is a conditional expectation such that ∆ ◦ πT = πT ◦ E and is faithful.
Now suppose that R ∈ C∗(G,P ) and E(R∗R) = 0. Then E(Ψµ(R∗R)) = 0
and so πT ◦ E(Ψµ(R∗R)) = 0. This gives ∆ ◦ πT (Ψµ(R∗R)) = 0. Since ∆
is faithful, it follows that πT (Ψ

µ(R∗R)) = 0. Since
(

µ−1(e), µ−1(e) ∩ P
)

is
amenable, Lemma 3.10 implies that πT is faithful on span{wpw

∗
q : µ(p) =

µ(q)} = rangeΨµ. Thus Ψµ(R∗R) = 0, and then R = 0 since Ψµ is faithful.
Hence E is faithful and (G,P ) is amenable.

4 Quasi-lattice ordered HNN extensions

Let G be a group, let A and B be subgroups of G, and let φ : A → B be an
isomorphism. The group with presentation

G∗ = 〈G, t | t−1at = φ(a), a ∈ A〉
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is the HNN extension of G with respect to A,B and φ. For every HNN exten-
sion G∗ the height map is the homomorphism θ : G∗ → Z such that θ(g) = 0
for all g ∈ G and θ(t) = 1.

Example. Let c, d ∈ Z \ {0}. The Baumslag-Solitar group

BS(c, d) = 〈x, t | t−1xdt = xc〉 = 〈x, t | txc = xdt〉

is an HNN extension of Z with respect to A = dZ, B = cZ and φ : A→ B given
by φ(dn) = cn for all n ∈ Z. Then Z∗ satisfies the relation t−1dt = φ(d) = c.
Let BS(c, d)+ be the subsemigroup of BS(c, d) generated by x and t. Spielberg
showed in [11, Theorem 2.11] that (BS(c, d),BS(c, d)+) is quasi-lattice ordered
for all c, d > 0; he also proved in [11, Lemma 2.12] that (BS(c,−d),BS(c,−d)+)
is not quasi-lattice ordered unless c = 1.

To work with an HNN extension we use a normal form for its elements from [8,
Theorem 2.1]. We choose X to be a complete set of left coset representatives
for G/A, that is, xA 6= x′A for x 6= x′ ∈ X . Similarly, choose a complete set Y
of left coset representatives for G/B. Then a (right) normal form relative to

X and Y of g ∈ G is a product

g = g0t
ǫ1g1t

ǫ2 . . . gn−1t
ǫngn

where:

1. gn is an arbitrary element of G.

2. If ǫi = 1, then gi−1 is an element of X

3. If ǫi = −1, then gi−1 is an element of Y .

By [8, Theorem 2.1], for every choice of complete left coset representatives X
and Y , each g ∈ G∗ has a unique normal form.
Our goal is to generalise the properties of the Baumslag-Solitar group with
c, d > 0 to construct quasi-lattice ordered HNN extensions of other quasi-lattice
ordered groups.
Let (G,P ) be a quasi-lattice ordered group. Let G∗ be the HNN extension of
G with respect to subgroups A and B with an isomorphism φ : A→ B. Let P ∗

be the subsemigroup of G∗ generated by P and t. In general, (G∗, P ∗) is not a
quasi-lattice ordered group. For example, if c > 1, then (BS(c,−d),BS(c,−d)+)
is not quasi-lattice ordered by [11, Lemma 2.12]. We need some conditions on
our subgroups A and B and on the isomorphism φ which ensure that (G∗, P ∗)
is quasi-lattice ordered.
There are two reasons why (BS(c, d),BS(c, d)+) is easy to work with. The
first is that there are natural choices of coset representatives: {0, . . . , d − 1}
for A = dZ and {0, . . . , c − 1} for B = cZ. The second is that the subgroup
isomorphism φ : md 7→ mc takes positive elements to positive elements. In

Documenta Mathematica 23 (2018) 327–351



340 A. an Huef, I. Raeburn, and I. Tolich

particular, using this choice of representatives, every element ω ∈ BS(c, d)+

has a unique normal form

ω = xm0txm1t . . . xmn−1txmn

where 0 ≤ mi < d for i < n and mn ∈ N. This choice of coset representatives
is associated to the division algorithm on N: for every n ∈ N we can uniquely
write n = md+ r for some m ∈ N and 0 ≤ r ≤ d− 1.
In general, for G∗ we would like a natural choice of coset representatives for
G/A and G/B so that every element of P ∗ has a unique normal form that is a
sequence of elements in P and t.

Theorem 4.1. Let (G,P ) be a quasi-lattice ordered group with subgroups A
and B. Suppose that:

1. There is an isomorphism φ : A→ B such that φ(A ∩ P ) = B ∩ P .

2. Every left coset gA ∈ G/A such that gA∩P 6= ∅ has a smallest represen-

tative in P , that is, there exists p ∈ P such that q ∈ gA ∩ P ⇒ p ≤ q.

3. For every x, y ∈ B, x ∨ y <∞ ⇒ x ∨ y ∈ B.

Let G∗ = 〈G, t | t−1at = φ(a), a ∈ A〉 be the HNN extension of G and let P ∗

be the subsemigroup of G∗ generated by {P, t}. Then (G∗, P ∗) is quasi-lattice

ordered.

Before we can prove Theorem 4.1, we need to prove two lemmas. The first
shows that elements of P ∗ are guaranteed to have normal forms made up of
elements of P and t if and only if Item 2 of Theorem 4.1 holds. The second is
a technical lemma which we will use several times in Theorem 4.1 and in later
proofs.

Lemma 4.2. Suppose that (G,P ) is a quasi-lattice ordered group with subgroups

A and B. Suppose that φ : A→ B is a group isomorphism such that φ(A∩P ) =
B ∩ P . Let G∗ = 〈G, t | t−1at = φ(a), a ∈ A〉 be the corresponding HNN

extension of G and let P ∗ be the subsemigroup of G∗ generated by P ∪{t}. Let

LA := {p ∈ P : q ∈ pA ∩ P ⇒ p ≤ q}.

The following two statements are equivalent:

1. Every left coset gA ∈ G/A such that gA ∩ P 6= ∅ has a smallest coset

representative p ∈ P ;

2. There exists a complete set X of left coset representatives such that LA ⊆
X and every α ∈ P ∗ has normal form

α = p0tp1t . . . pn−1tpn where pi ∈ LA for all 0 ≤ i < n, pn ∈ P . (4)
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Proof. Assume Item 1. Choose a complete set X of coset representatives for
G/A which contains LA. Let α ∈ P ∗. If θ(α) = 0 then α ∈ P , and α has form
(4) trivially.
We proceed by induction on θ(α) ≥ 1. Suppose that θ(α) = 1. We may write
α = q0tq1 for some q0, q1 ∈ P . Then q0A ∩ P 6= ∅, and there exists p0 ∈ LA

such that p0A = q0A and p0 ≤ q0. Thusp−1
0 q0 ∈ P ∩ A. Hence q0 = p0a for

some a ∈ A ∩ P . Thus α has normal form

α = p0atq1 = p0tφ(a)q1.

Since φ(A ∩ P ) = B ∩ P we have φ(a) ∈ P and so X satisfies Item 2.
Suppose that all α with 1 ≤ θ(α) ≤ k have normal form (4). Consider α with
θ(α) = k + 1. We write

α = q0tq1t . . . tqktqk+1.

By assumption, we can write the first 2k + 2 terms of α in normal form

p0tp1t . . . pk−1trk

where pi ∈ LA for 0 ≤ i < k and rk ∈ P . There exists pk ∈ LA such that
rkA = pkA and pk ≤ rk. As above, we can write rk = pka for some a ∈ A∩ P .
Then

α = p0tp1t . . . trktqk+1

= p0tp1t . . . tpkatqk+1

= p0tp1t . . . tpktφ(a)qk+1.

We set pk+1 = φ(a)qk+1, which is in P because φ(a) is. Then α =
p0tp1t . . . tpktpk+1 has form (4). By induction, every α has normal form (4).
This implies Item 2.
For Item 2 ⇒ Item 1, we argue by contradiction: we will assume Item 2 holds
but Item 1 doesn’t. Let X be a set of coset representatives satisfying Item 2,
and suppose that there exists a coset gA such that gA ∩ P 6= ∅ which has no
smallest coset representative in P .
Let x ∈ X be the coset representative of gA in X . First, suppose that x ∈ P .
Then p is not smallest, and there exists q ∈ gA∩P with x 6≤ q. Thus x−1q 6∈ P .
Consider qt ∈ P ∗ in normal form:

qt = xx−1qt = xtφ(x−1q). (5)

(Since q ∈ gA ∩ P and p ∈ LA, we have q /∈ LA. Thus the normal form for
qt must be xtφ(x−1q).) Since φ(A ∩ P ) = B ∩ P and x−1q 6∈ P , we have
φ(x−1q) 6∈ P , which contradicts that the right-hand-side of (5) is in normal
form.
Second, assume that x 6∈ P . By assumption gA ∩ P 6= ∅. Let q ∈ gA ∩ P .
Then the right-hand-side of (5) is again the normal form for qt. Either x ≤ q
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or x 6≤ q. Suppose that x ≤ q. Then q−1x ∈ P and φ(x−1q) ∈ P . Then (5)
implies that x ∈ LA, that is x ∈ P , a contradiction. Finally, suppose that
x 6≤ q. Then x−1q /∈ P implies that φ(x−1q) /∈ P , again contradicting the
normal form for qt. Thus Item 2 ⇒ Item 1.

Lemma 4.3. Let (G,P ) be a quasi-lattice ordered group and let B be a subgroup

of G. Suppose that for every x, y ∈ B, x ∨ y < ∞ ⇒ x ∨ y ∈ B. Then for all

x ∈ B∩PP−1, there exist µ, ν ∈ B∩P such that x = µν−1 and for all p, q ∈ P
with pq−1 = x we have µ ≤ p and ν ≤ q.

The lemma says that if x ∈ PP−1 ∩B, then the minimal elements of (1) must
also be contained in B. In particular, if φ : A → B is an isomorphism such
that φ(A ∩ P ) = B ∩ P , then φ−1(x) ∈ PP−1.

Proof of Lemma 4.3. Fix x ∈ B ∩ PP−1. Say x = st−1 with s, t ∈ P . Then
x−1s ∈ P and x ≤ s. Also e ≤ s, and so x ∨ e < ∞. Since e, x ∈ B we get
x∨e ∈ B. Let µ = x∨e and ν = x−1(x∨e). Then µν−1 = x∨e(x−1(x∨e))−1 =
x.
Fix p, q ∈ P such that x = pq−1. Then x−1p = (pq−1)−1p = q, and so x ≤ p.
Therefore µ = x ∨ e ≤ p. Now µ−1p ∈ P , and then ν−1q = µ−1p ∈ P gives
ν ≤ q.

We can now prove Theorem 4.1. Its proof is based on [11, Theorem 2.11], and
our presentation is helped by Emily Irwin’s treatment of [11, Theorem 2.11] in
her University of Otago Honours thesis.

Proof of Theorem 4.1. Fix x ∈ P ∗P ∗−1. We shall prove that there exist µ, ν ∈
P ∗ with x = µν−1 such that whenever γδ−1 = x we have µ ≤ γ and ν ≤ δ (see
Equation 1).
Choose α, β ∈ P ∗ such that x = αβ−1. By Items 1-2, Lemma 4.2 applies. Thus
there exists a complete set X of left coset representatives of G/A that contains

LA := {p ∈ P : q ∈ pA ∩ P ⇒ p ≤ q},

and we can write α and β in unique normal form:

α = p0tp1t . . . tpmtr where pi ∈ LA and r ∈ P ;

β = q0tq1t . . . tqnts where qi ∈ LA and s ∈ P .

Now x = αβ−1 is equal to

αβ−1 = p0tp1t . . . tpmtrs
−1t−1q−1

n t−1 . . . t−1q−1
0 .

First we look for initial cancellations in the middle of αβ−1: if rs−1 ∈ B, then
we can replace trs−1t−1 with φ−1(rs−1). By Item 3, Lemma 4.3 applies and
there exist b1, b2 ∈ P ∩B such that rs−1 = b1b

−1
2 . Then

φ−1(rs−1) = φ−1(b1b
−1
2 ) = φ−1(b1)φ

−1(b2)
−1.
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Since φ(A ∩ P ) = B ∩ P we have φ−1(b1)φ
−1(b2)

−1 ∈ PP−1. Then

x = αβ−1 = p0tp1t . . . tpmφ
−1(b1)φ

−1(b2)
−1q−1

n t−1 . . . t−1q−1
0 . (6)

We can repeat this process until there are no more cancellations available in
the middle, and so we assume this is the case for the expression (6). This gives
the following cases:

(a) there are no more t and no more t−1,

(b) there are no more t−1,

(c) there are no more t,

(d) there are t and t−1, and then the term with t to the left and t−1 to its
right is not in B.

In each case, we will write down our candidates for µ and ν and prove that
they are the required minimums.

(a) Suppose that after initial cancellations, there are no more t and no more
t−1. Then αβ−1 = p0q

−1
0 is already in normal form. By Equation 1 there exist

σ, τ ∈ P such that p0q
−1
0 = στ−1 and for all c, d ∈ P such that cd−1 = στ−1

we have σ ≤ c and τ ≤ d. So we write x = στ−1 and choose as our candidates
µ = σ and ν = τ .
Let γ, δ ∈ P ∗ such that x = γδ−1. Let θ be the height map. Then θ(x) = 0
and hence θ(γ) = θ(δ). We will prove that µ ≤ γ and ν ≤ δ by induction on
θ(γ).
For θ(γ) = 0 we have γ, δ ∈ P , and then µ = σ ≤ γ and ν = τ ≤ δ. Let k ≥ 0
and suppose that for all γ, δ ∈ P ∗ such that θ(γ) = θ(δ) = k and x = γδ−1

we have µ ≤ γ and ν ≤ δ. Now consider γ, δ ∈ P ∗ such that x = γδ−1 and
θ(γ) = θ(δ) = k + 1. We write γ = m0t . . .mktmk+1 and δ = n0t . . . nktnk+1

in normal form where mi, ni ∈ LA for 0 ≤ i ≤ k and mk+1, nk+1 ∈ P . Next we
reduce x = γδ−1 towards normal form. We have

x = γδ−1 = m0t . . .mktmk+1n
−1
k+1t

−1nk . . . tn
−1
0 .

Since x has a unique normal form with no t or t−1, there must be some cancel-
lation. Since the mi, ni ∈ LA for 0 ≤ i ≤ k, the cancellation must occur across
mk+1n

−1
k+1. So mk+1n

−1
k+1 ∈ B and tmk+1n

−1
k+1t

−1 = φ−1(mk+1n
−1
k+1), and

x = γδ−1 = m0t . . . tmk(tmk+1n
−1
k+1t

−1)nkt
−1 . . . tn−1

0

= m0t . . . tmkφ
−1(mk+1n

−1
k+1)nkt

−1 . . . tn−1
0

By Item 3, Lemma 4.3 applies, and there exists bm, bn ∈ B ∩ P such that
mk+1n

−1
k+1 = bmb

−1
n and bm ≤ mk+1 and bn ≤ nk+1. Then

x = m0t . . . tmkφ
−1(bm)φ−1(b−1

n )nkt
−1 . . . tn−1

0 .
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Since φ(A∩P ) = B∩P we have mk+1φ
−1(bm), nk+1φ

−1(bn) ∈ P . But now we
have γ′ = m0t . . . tmkφ

−1(bm) and δ′ = n0t . . . tnkφ
−1(bn) such that γ′(δ′)−1 =

x and θ(γ) = θ(δ′) = k. By our induction hypothesis we have µ ≤ γ′ and ν ≤ δ′.
To show that µ ≤ γ we compute:

γ = m0t . . . tmktmk+1

= m0t . . . tmktbmb
−1
m mk+1

= m0t . . . tmkφ
−1(bm)tb−1

m mk+1 (replacing tbm with φ−1(bm)t)

= γ′tb−1
m mk+1.

Since b−1
m mk+1 ∈ P we have tb−1

m mk+1 ∈ P ∗. Now (γ′)−1γ ∈ P ∗ and γ′ ≤ γ.
Since µ ≤ γ′ this gives µ ≤ γ. Similarly, δ = δ′tb−1

n nk+1 and so ν ≤ δ. By
induction, for all γ, δ ∈ P ∗ such that x = γδ−1 we have µ ≤ γ and ν ≤ δ.

(b) Suppose that after the initial cancellations there are no more t−1 left. Then
we have x in normal form:

x = αβ−1 = p0tp1t . . . tpm−n−1trs
−1

where m ≥ n. By Equation 1 there exist σ, τ ∈ P such that whenever rs−1 =
r′(s′)−1 = στ−1, we have σ ≤ r′ and τ ≤ s′. So

x = p0tp1t . . . tpm−n−1tστ
−1. (7)

Our candidates are

µ = p0tp1t . . . tpm−n−1tσ and ν = τ.

Fix γ, δ ∈ P ∗ such that x = γδ−1. Say γ = m0tm1 . . . tmi and δ = n0tn1 . . . nj

in normal form. Then

γδ−1 = m0tm1 . . . tmin
−1
j t−1 . . . n1t

−1n0.

Since θ(γδ−1) = θ(µν−1) = m− n we get

i = θ(γ) = θ(δ) +m− n

and hence i ≥ m−n. It follows from the uniqueness of normal form that there
exists γ′ ∈ P ∗ such that

γδ−1 = p0tp1t . . . tpm−n−1tγ
′δ−1.

Thus p0tp1t . . . tpm−n−1t ≤ γ. Equation 7 gives (p0tp1t . . . tpm−n−1t)
−1x =

στ−1. Since (p0tp1t . . . tpm−n−1t)
−1γ and δ are both in P ∗ and since

(p0tp1t . . . tpm−n−1t)
−1γδ−1 = στ−1, we can apply case (a) above with µ′ = σ

and ν′ = τ to see that σ ≤ (p0tp1t . . . tpm−n−1t)
−1γ and τ ≤ δ. Hence

µ = p0tp1t . . . tpm−n−1tσ ≤ γ and ν ≤ δ as required.
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(c) Suppose that after the cancellations, there are no more t left. Then

x = rs−1t−1q−1
n−m−1t

−1 . . . t−1q−1
0

for some r, s ∈ P . Consider

x−1 = q0tq1t . . . tqn−m−1tsr
−1.

By Equation 1 there exist σ, τ ∈ P such that whenever r′, s′ ∈ P such that
rs−1 = r′(s′)−1 = στ−1, we have σ ≤ r′ and τ ≤ s′. Let

µ = σ and ν = q0tq1t . . . tqn−m−1tτ.

By case (b), they have the property that x−1 = νµ−1 and that for all γ, δ ∈ P ∗

such that x−1 = δγ−1 we have µ ≤ γ and ν ≤ δ. Taking inverses, x = µν−1

and for all γ, δ ∈ P ∗ such that x = γδ−1 we have µ ≤ γ and ν ≤ δ.

(d) Suppose that after the initial cancellations there are both t and t−1 left.
Then the term with t to the left and t−1 to its right is not in B. There exist
k ≤ m and l ≤ n such that

x = p0tp1t . . . tpktrs
−1t−1q−1

l t−1 . . . t−1q−1
0 .

By Equation 1 there exist σ, τ ∈ P such that whenever r′, s′ ∈ P such that
rs−1 = r′(s′)−1 = στ−1, we have σ ≤ r′ and τ ≤ s′. Our candidates for µ, ν
are

µ = p0tp1t . . . tpktσ and ν = q0tq1t . . . tqltτ.

Fix γ, δ ∈ P ∗ such that x = γδ−1. By the argument used in case (b),
there exists γ′ ∈ P ∗ such that γδ−1 = p0tp1t . . . tpjtγ

′δ−1. Hence γ′ =
(p0tp1t . . . tpjt)

−1γ ∈ P ∗ and p0tp1t . . . tpjt ≤ γ.
Consider γ′δ−1 = στ−1t−1q−1

k t−1 . . . t−1q−1
0 . Here γ′, δ ∈ P ∗ and there are no

t in γ′δ−1 after cancellation. Applying case (c) with µ′ = σ and ν′ = ν to get
µ′ = σ ≤ γ′ and ν′ = ν ≤ δ. Then µ = p0tp1t . . . tpjtσ ≤ p0tp1t . . . tpjtγ

′ =
γ.

Theorem 4.1 gives new examples of quasi-lattice ordered HNN extensions.

Example 4.4. We can now use Theorem 4.1 to show that the Baumslag-
Solitar group (BS(c, d),BS(c, d)+) with c, d > 0 is quasi-lattice ordered. Since
(Z,N) is totally ordered it is quasi-lattice ordered. Let A = {dm : m ∈ Z}
and B = {cm : m ∈ Z}. Every element n ∈ N has a unique decomposition
n = r + md where m ∈ N and r ∈ {0, 1, . . . , d − 1}. The remainder r is a
choice of coset representative n + A = r + A. For all n′ ∈ (n + A) ∩ N we
have n′ = r + md + kd where k ∈ Z and m + k ≥ 0. Thus r ≤ n′. Hence
every coset of Z/A has nontrivial intersection with N, and has a smallest coset
representative in N. Since B is totally ordered it is closed under taking least
upper bounds. Define φ : A → B by φ(dm) = cm. Then φ(A ∩ N) = B ∩ N.
So Theorem 4.1 applies and gives that (Z∗,N∗) is quasi-lattice ordered.
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Example 4.5. We can generalise the previous example to (Z2,N2), which is
quasi-lattice ordered by [9, Example 2.3(2)]. Fix a, b, c, d ∈ N \ {0}. Then
A = {(am, bn) : m,n ∈ Z} and B = {(cm, dn) : m,n ∈ Z} are subgroups of
N2. Let φ : A → B be defined by φ((am, bn)) = (cm, dn). This φ satisfies
φ(A ∩ N

2) = B ∩ N
2. For all (m,n) ∈ N

2, the division algorithm on N gives a
unique decomposition

(m,n) = (r1, r2) + (ja, kb)

for j, k ∈ N and r1 ∈ {0, . . . a − 1}, r2 ∈ {0, . . . , b − 1}. Thus (r1, r2) is a
minimal left coset representative of (m,n) + A. For all (m,n), (p, q) ∈ B, we
have

(m,n) ∨ (p, q) = (max{m, p, 0},max{n, q, 0})
and hence (m,n) ∨ (p, q) ∈ B. So B is closed under ∨. By Theorem 4.1,
(Z2∗,N2∗) is a quasi-lattice ordered group with presentation

Z
2∗ = 〈Z2 ∪ {t} | (am, bn)t = t(cm, dn)〉.

It is straightforward to extend this construction to (Zn,Nn).

Example 4.6. Consider the free group F2 on 2 generators {a, b} and let F+
2 be

the subsemigroup generated by e, a and b. The pair (F2,F
+
2 ) is quasi-lattice

ordered by [9, Example 2.3(4)]. Let A = {an : n ∈ Z}, B = {bn : n ∈ Z}
and φ : A → B defined by φ(an) = bn. Every x ∈ F+

2 can be written as a
product of y ∈ F

+
2 which does not end in a followed by an for some n ≥ 0.

Then y ∈ xA. Every z ∈ yA ∩ F
+
2 begins with the word y which is in F

+
2 . It

follows that y ≤ z. Thus A has minimal left coset representatives in F
+
2 . Since

B is totally ordered, it is trivially closed under ∨. It follows from Theorem 4.1
that (F∗

2,F
+∗
2 ) is a quasi-lattice ordered group with presentation

F
∗
2 = 〈{a, b, t} | at = tb〉.

Example 4.7. Building on (F2,F
+
2 ) again, fix s, u ∈ N\{0}, and let A = {ams :

m ∈ Z}, B = {bmu : m ∈ Z} and φ : A → B be φ(ams) = bmu. Then B is
totally ordered and hence is closed under ∨. To see that A has smallest coset
representatives, we observe that every x ∈ F

+
2 is a product of a y ∈ F

+
2 that

does not end in a followed by an for some n ∈ N. We write n = r+ js for some
j ∈ N and r ∈ {0, 1, . . . , s − 1}. We choose yar as our coset representative.
Then for all z ∈ yarA∩ F

+
2 we have yar ≤ z. It follows from Theorem 4.1 that

(F∗
2,F

+∗
2 ) is a quasi-lattice ordered group with presentation

F
∗
2 = 〈{a, b, t} | ast = tbu〉.

Taking u = s = 1 gives Example 4.6.
Replacing B by B′ = {amu : m ∈ Z} gives a quasi-lattice ordered group
(F∗

2,F
+∗
2 ) with presentation

F
∗
2 = 〈{a, b, t} | ast = tau〉.
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In the next two examples we show that it is easy to find subgroups which do
not have minimal left coset representatives.

Example 4.8. Consider the group

G = Z(
√
2) = {m+ n

√
2 : m,n ∈ Z}

with subsemigroup Z(
√
2)+ = Z(

√
2)∩[0,∞). Let A = Z(2

√
2). We claim there

are no smallest coset representatives for G/A in Z(
√
2)+. Suppose, aiming for

a contradiction, that there exists some coset representative p ∈ Z(
√
2)+ such

that

q ∈ [p+ Z(2
√
2)] ∩ Z(

√
2)+ ⇒ p ≤ q.

Recall that Z(2
√
2) is dense in R.5 Thus there exists some a ∈ Z(2

√
2)∩ (0, p).

Thus p− a ∈ [p+ Z(2
√
2)] ∩ Z(

√
2)+. But p− a < p, giving a contradiction.

Example 4.9. Consider (Z2,N2), and let A be the subgroup generated by
{(1, 2), (2, 1)}. Consider the coset

(1, 0) +A = (0, 1) +A.

Since (1, 0) and (0, 1) have no nonzero lower bound, there can be no choice of
smallest coset representative.

5 Amenability of (G∗, P ∗)

In this section we prove the following theorem.

Theorem 5.1. Let (G,P ) be a quasi-lattice ordered group with subgroups A and

B. Suppose that φ : A → B is an isomorphism which satisfies the hypotheses

of Theorem 4.1. Let (G∗, P ∗) be the corresponding HNN extension. If (G,P )
is amenable, then (G∗, P ∗) is amenable.

To prove the theorem we will show that the height map θ : G∗ → Z is a
controlled map, that (θ−1(e), θ−1(e) ∩ P ∗) is amenable, and then apply Theo-
rem 3.2. To prove that (θ−1(e), θ−1(e) ∩ P ∗) is amenable, we start by investi-
gating order-preserving isomorphisms between the semigroups of quasi-lattice
ordered groups.
The following lemma is well-known, and is straightforward to prove.

Lemma 5.2. Let (G,P ) and (K,Q) be quasi-lattice ordered groups. Suppose

that there is a semigroup isomorphism φ : P → Q. Then φ is order-preserving.

In particular, for x, y ∈ P , x ∨ y < ∞ if and only if φ(x) ∨ φ(y) < ∞. If

x ∨ y <∞ then φ(x ∨ y) = φ(x) ∨ φ(y).
5To see denseness observe that 0 < (−2 + 2

√
2) < 1 and (−2 + 2

√
2)n ∈ Z(

√
2) for all

n ∈ N. Thus for every open interval (u, v) there exists n such that (−2 + 2
√
2)n < v − u.

Hence there exists k ∈ Z such that k(−2 + 2
√
2)n ∈ (u, v).
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Proposition 5.3. Let (G,P ) and (K,Q) be quasi-lattice ordered groups. Let

{vp : p ∈ P} and {wq : q ∈ Q} be the generating elements of C∗(G,P ) and

C∗(K,Q), respectively. Suppose that there is a semigroup isomorphism φ : P →
Q.

1. There exists an isomorphism πφ : C∗(G,P ) → C∗(K,Q) such that

πφ(vp) = wφ(p).

2. (G,P ) is amenable if and only if (K,Q) is amenable.

Proof. For 1, define T φ : P → C∗(K,Q) by T φ
p = wφ(p). It is straightforward

to show that T φ is a covariant representation of P . Take πφ := πTφ . Then
πφ : C∗(G,P ) → C∗(K,Q) satisfies πφ(vp) = wφ(p), and is an isomorphism
with inverse πφ−1 .
For 2, let EQ and EP be the conditional expectations on C∗(K,Q) and
C∗(G,P ), respectively. It is straightforward to check that EP = π−1

φ ◦EQ ◦πφ.
Suppose that (K,Q) is amenable, that is, EQ is faithful. Let a ≥ 0 such that
EP (a) = 0. Then πφ(a) ≥ 0, and

0 = EP (a) = π−1
φ ◦ EQ ◦ πφ(a) ⇒ 0 = EQ ◦ πφ(a) ⇒ 0 = πφ(a)

because EQ is faithful. Since πφ is faithful, a = 0. Now EP is faithful, and
hence (G,P ) is amenable. Symmetry gives the other direction.

Next we need some lemmas which will be used to show that the height map θ
is a controlled map. In particular we need to identify the minimal elements of
Definition 3.1. If x ∈ P ∗ has normal form

x = p0tp1t . . . pn−1tpn

we call p0tp1t . . . pn−1t the stem of x and write

stem(x) = p0tp1t . . . pn−1t.

The set of stems is our candidate for the minimal elements.

Lemma 5.4. Let (G,P ) be a quasi-lattice ordered group with subgroups A and

B. Suppose that φ : A → B is an isomorphism which satisfies the hypotheses

of Theorem 4.1. Let p, q ∈ P . Then p and q have a common upper bound in

P ∗ if and only if p and q have a common upper bound in P .

Proof. First suppose that p and q have a common upper bound r ∈ P . Then
r ∈ P ∗ and so r is a common upper bound for p and q in P ∗.
Second, suppose that p and q have a common upper bound x ∈ P ∗. If θ(x) = 0,
then x ∈ P and we are done. Suppose, aiming for a contradiction, that θ(x) = k
for some k ≥ 1, and that p, q have no common upper bound y with θ(y) < k.
Observe that p−1x, q−1x ∈ P ∗, and that θ(p−1x) = θ(x) = θ(q−1x) = k. The
hypothesis of Theorem 4.1 ensure that Lemma 4.2 applies, and we can write
p−1x and q−1x in their normal forms
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p−1x = p0tp1t . . . pk−1tpk and q−1x = q0tq1t . . . qk−1tqk,

where pi, qi ∈ LA for i < k and pk, qk ∈ P . Consider

p−1q = p−1x(q−1x)−1 = p0tp1t . . . pk−1tpkq
−1
k t−1q−1

k−1 . . . t
−1q−1

0 .

Since p−1x(q−1x)−1 = p−1q and p−1q is in normal form we must have some
cancellation. Since the first k terms are already in normal form, pkq

−1
k ∈ B.

By Lemma 4.3, there exist b1, b2 ∈ B ∩ P such that b1 ≤ pk, b2 ≤ qk and
b1b

−1
2 = pkq

−1
k . Then

p−1q = p−1x(q−1x)−1 = p0t . . . pk−1t(pkq
−1
k )t−1q−1

k−1 . . . t
−1q−1

0

= p0t . . . pk−1t(b1b
−1
2 )t−1q−1

k−1 . . . t
−1q−1

0

= p0t . . . pk−1φ
−1(b1)tt

−1φ−1(b2)
−1q−1

k−1 . . . t
−1q−1

0

= p0t . . . pk−1φ
−1(b1)φ

−1(b2)
−1q−1

k−1 . . . t
−1q−1

0 .

Rearranging gives

p(p0t . . . tpk−1φ
−1(b1)) = q(q0tq1t . . . tqk−1φ

−1(b2)) ∈ P ∗.

Therefore y = p(p0tp1t . . . pk−1φ
−1(b1)) is a common upper bound for p and q

in P ∗ and θ(y) = k − 1, giving us the contradiction we sought. Therefore p
and q have a common upper bound y with θ(y) = 0, and hence they have a
common upper bound in P .

The statement of Lemma 5.5 is adapted from [2, Lemma 3.4].

Lemma 5.5. Suppose that φ : A → B is an isomorphism which satisfies the

hypotheses of Theorem 4.1. Let x, y ∈ P ∗ such that x ∨ y <∞. Write

x = stem(x)p and y = stem(y)q where p, q ∈ P.

1. If θ(x) = θ(y), then stem(x) = stem(y) and p ∨ q < ∞. In particular,

x ∨ y = stem(x)(p ∨ q) and θ(x ∨ y) = θ(x) = θ(y).

2. If θ(x) < θ(y), then there exists r ∈ P such that x∨y = yr and θ(x∨y) =
θ(y).

In particular, θ(x ∨ y) = max{θ(x), θ(y)}.

Proof. For 1, suppose that θ(x) = θ(y). We know that x ≤ x∨y and y ≤ x∨y.
Thus, by the uniqueness of normal forms, stem(x) = stem(y). Now by left
invariance of the partial order we see that

p = stem(x)−1x ≤ stem(x)−1(x ∨ y) and

q = stem(x)−1y ≤ stem(x)−1(x ∨ y).
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Therefore p and q have a common left upper bound in P ∗ and hence, by
Lemma 5.4, they have a common left upper bound in P and p ∨ q exists in
P . By left invariance x ∨ y = stem(x)p ∨ q. Further, θ(x ∨ y) = θ(x) = θ(y).
For 2, suppose that θ(x) < θ(y). Since x ≤ x∨ y we have x−1(x∨ y) ∈ P ∗. We
can write x−1(x∨y) = τγu for some u ∈ P and τ, γ ∈ P ∗ with θ(τ) = θ(y)−θ(x)
and θ(γ) = θ(x ∨ y)− θ(y). Then x ∨ y = xτγu.
Now we have xτ ≤ x ∨ y and θ(xτ) = θ(x) + (θ(y) − θ(x)) = θ(y). Write
xτ = stem(xτ)w for some w ∈ P . Therefore xτ ∨ y < ∞ and θ(xτ) = θ(y) so
we can apply Item 1 to see that stem(xτ) = stem(y) and xτ∨y = stem(y)(q∨w).
Now x ∨ y ≤ stem(y)(q ∨ w). Therefore there exists some r ∈ P such that
x ∨ y = stem(y)qr = yr. Then θ(x ∨ y) = θ(y).
By Items 1 and 2 we see that

θ(x ∨ y) =
{

θ(x) if θ(x) = θ(y)

θ(y) if θ(x) < θ(y).

Thus θ(x ∨ y) = max{θ(x), θ(y)}.

Proof of Theorem 5.1. We will use Theorem 3.2; to do so we need to show
that the height map θ : (G∗, P ∗) → (Z,N) is a controlled map in the sense of
Definition 3.1, and that (θ−1(e), θ−1(e) ∩ P ∗) is amenable.
To see that θ is order-preserving, let x, y ∈ P ∗ such that x ≤ y. Then x−1y ∈
P ∗ and θ(x−1y) ≥ 0. So 0 ≤ θ(x−1y) = −θ(x) + θ(y) and hence θ(x) ≤ θ(y).
By Lemma 5.5, if x ∨ y <∞, then θ(x ∨ y) = max{θ(x), θ(y)} = θ(x) ∨ θ(y).
For every k ∈ N, Σk is complete: if x ∈ θ−1(k) ∩ P ∗, then stem(x) ∈ Σk

and x = stem(x)p for some p ∈ P . Hence stem(x) ≤ x. By the uniqueness
of normal forms, if σ, τ ∈ Σk and σ ∨ τ < ∞ then σ = τ . Therefore θ is a
controlled map into the amenable group Z.
Suppose that (G,P ) is amenable. Then θ−1(0) ∩ P ∗ is the set of elements
of P ∗ with height 0, and hence they all have normal form p0 for some p0 ∈
P . Thus θ−1(0) ∩ P ∗ is isomorphic to P . Since (G,P ) is amenable, so is
(θ−1(0), θ−1(0) ∩ P ∗) by Lemma 5.3. Since (Z,N) is amenable, it now follows
from Theorem 3.2 that (G∗, P ∗) is an amenable quasi-lattice ordered group.

Example 5.6. Since (Z2,N2) and (F2,F
+
2 ) are amenable quasi-lattice ordered

groups [9, §5.1], Theorem 5.1 implies that the HNN extensions (Z2∗,N2∗) and
(F∗

2,F
+∗
2 ) in Examples 4.5-4.7 are amenable quasi-lattice ordered groups.
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