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Abstract. We show that relative Property (T) for the abelianiza-
tion of a nilpotent normal subgroup implies relative Property (T) for
the subgroup itself. This and other results are a consequence of a
theorem of independent interest, which states that if H is a closed
subgroup of a locally compact group G, and A is a closed subgroup
of the center of H , such that A is normal in G, and (G/A,H/A) has
relative Property (T), then (G,H(1)) has relative Property (T), where
H(1) is the closure of the commutator subgroup of H . In fact, the as-
sumption that A is in the center of H can be replaced with the weaker
assumption that A is abelian and every H-invariant finite measure on
the unitary dual of A is supported on the set of fixed points.
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1. Introduction

Relative Property (T) is an analogue of Kazhdan’s Property (T) for pairs
(G,H), where H is a closed subgroup of the locally compact group G. More
precisely, (G,H) has relative Property (T ) if every unitary representation of G
with almost-invariant vectors has H-invariant vectors. (See Definition 2.2. Ad-
ditional information can be found in [3, pp. 41–43], [5], and [14].) This concept
has proved useful for many purposes, including the study of finitely-additive
measures on Euclidean spaces [17], the construction of II1 factors with triv-
ial fundamental group [22], the construction of new examples of groups with
Kazhdan’s Property (T) that satisfy the Baum-Connes Conjecture [26], and
proving that particular groups have Kazhdan’s Property (T). In particular, the
usual proof that SL(3,R) has Kazhdan’s Property (T) is based on the fact that
the pair

(
SL(2,R)⋉R2,R2

)
has relative Property (T) [3, pp. 47–50].

The very basic case where the subgroup H is abelian and normal has been
a focus of attention (see, for example, [6, 7, 10, 12, 26] and [28, Lem. 3.1]).
We generalize the results that were obtained in this situation by allowing H
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to be nilpotent, rather than abelian. Indeed, the following theorem provides
a nilpotent analogue of any result that establishes relative Property (T) for
abelian, normal subgroups.

Notation 1.1. For any topological group N , we let N (1) = cl([N,N ]) be
the closure of the commutator subgroup of N , and let Nab = N/N (1) be the
abelianization of N .

Theorem 1.2. Let N be a closed, nilpotent, normal subgroup of a locally

compact group G. Then (G,N) has relative Property (T ) if and only if

(G/N (1), Nab) has relative Property (T ).

As an example, consider a semidirect product H ⋉ A, where A is abelian.
Y. Cornulier and R. Tessera [6] have characterized precisely when the pair
(H ⋉A,A) has relative Property (T), so the theorem yields a characterization
for pairs (H⋉N,N), where N is nilpotent. The following corollary is a special
case that is in a particularly usable form, and is based on work of Y. Cornulier
and A. Valette [7].

Notation 1.3. Assume the locally compact group H acts on a 1-connected,
nilpotent Lie groupN , and L is a closed, connected,H-invariant subgroup ofN ,
such that [N,N ] ⊆ L. Then N/L ∼= Rn for some n, so the action of H induces
a homomorphism IntN/L : H → GL(n,R). We use IntN/L(H)• to denote the
closure of the image of this homomorphism.

Corollary 1.4. Assume the locally compact group H acts on a 1-connected,
nilpotent Lie group N . The pair (H ⋉N,N) has relative Property (T ) if and

only if, for every closed, connected, H-invariant, proper subgroup L of N that

contains N (1), the group IntN/L(H)• is not amenable.

A special case of Corollary 1.4, in whichH is a Lie group and other assumptions
are also made, was proved in [4, Prop. 4.1.4, p. 44].
The above results are consequences of the following theorem, which is of inde-
pendent interest.

Theorem 1.5. Let H be a closed subgroup of a locally compact group G, and

let A be a closed, abelian subgroup of H. Assume that A is normal in G, and

that every H-invariant finite measure on the unitary dual Â is supported on

the set of fixed points of H. If (G/A,H/A) has relative Property (T ), then

(G,H(1)) has relative Property (T ).

The (easy) proof of Theorem 1.2 does not require the full generality of Theo-
rem 1.5, but only the following special case in which H acts trivially on A.

Corollary 1.6. Let H be a closed subgroup of a locally compact group G,

and let A be a closed subgroup of the center of H, such that A is normal

in G. If (G/A,H/A) has relative Property (T ), then (G,H(1)) has relative

Property (T ).

Documenta Mathematica 23 (2018) 353–382



Relative Property (T) for Nilpotent Subgroups 355

Remark 1.7. The special case of Corollary 1.6 in which G = H is a well-known
result of J.–P. Serre that appears in [3, Thm. 1.7.11, p. 66]. More generally, the
special case where A is central in all of G, not merely in H , is a generalization
of [5, Prop. 3.1.3].

Our methods also apply to relative Property (T) for triples, rather than pairs.

Definition 1.8 ([14, Rem. 0.2.2, p. 3]). Let H and M be closed subgroups of
a locally compact group G. We say that the triple (G,H,M) has relative Prop-

erty (T ), if for any unitary representation π of G, such that the restriction π|H
has almost-invariant vectors, then there exist nonzero π(M)-invariant vectors.

For example, we prove the following result, which was conjectured by
C. R. E. Raja [24, Conjecture 1 of §7] in the special case where N is required
to be a connected Lie group (in addition to being nilpotent).

Corollary 1.9. Suppose that H and N are locally compact groups, such that

N is nilpotent and assume that H acts on N by automorphisms. Then the

triple (H ⋉ N,H,N) has relative Property (T ) if and only if the triple (H ⋉

Nab, H,Nab) has relative Property (T ).

A modified version of Theorem 1.5 also yields a classification of Kazhdan sets
in some groups.

Definition 1.10. A subset Q of a locally compact group G is a Kazhdan

set for G if there exists ǫ > 0, such that every unitary representation of G
with a nonzero (Q, ǫ)-invariant vector has a nonzero invariant vector. (See
Definition 2.2(1) for the definition of a (Q, ǫ)-invariant vector.)

C. Badea and S. Grivaux [2, Thm. 6.1] obtained a Fourier-analytic charac-
terization of Kazhdan sets in abelian groups (that are locally compact). The
following corollary extends this to two other classes of groups. (The special
case where G is a Heisenberg group was proved by C. Badea and S. Grivaux
[2, Thm. 6.11].)

Definition 1.11. A connected Lie group G is real split if every eigenvalue of
Ad g is real, for every g ∈ G. For example, every connected, nilpotent Lie
group is real split.

Corollary 1.12. Let G be a locally compact group that either is nilpotent or is

a connected, real split, solvable Lie group. Then a subset Q of G is a Kazhdan

set for G if and only if the image of Q in Gab is a Kazhdan set for Gab.

Remark 1.13. Y. Cornulier [5, p. 302] has generalized the notion of relative
Property (T) to pairs (G,H) in which H is a subset of G, rather than a
subgroup. Corollary 1.6 extends to this setting in the obvious way (see Corol-
lary 8.7), but the hypotheses of the corresponding generalization of Theorem 1.5
are not as clean (cf. Theorem 8.6).

Other consequences of Theorem 1.5 can be found in Sections 5, 7 and 9.
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Here is an outline of the paper. Section 2 establishes some notation and recalls
(or proves) several basic facts about relative Property (T), introducing the
notion of relative Property (T) with approximation. Section 3 defines a tensor
product that is fibered over the eigenspaces of an abelian normal subgroup,
and discusses the associated invariant or almost-invariant vectors. Section 4
uses the results of Sections 2 and 3 to give a short proof of a generalization
of Theorem 1.5 that applies to triples, rather than pairs. (The section also
proves a slightly different result that also implies Theorem 1.2.) Section 5 uses
Theorem 1.5 (and its generalizations) to prove the other results stated in the
above introduction (plus some related results). Section 6 shows that if N is
compactly generated, and nilpotent, then it has a unique largest subgroup L†,
such that (G,L†) has relative Property (T). Section 7 proves a generalization of
Corollary 1.4 that does not require the subgroupN to be a Lie group. Section 8
presents results on relative Property (T) for triples (G,H,M) in which the
subset M is not required to be a subgroup. Finally, Section 9 records a few
other observations about relative Property (T).

Acknowledgements. I. Chatterji is partially supported by the Institut Uni-
versitaire de France (IUF) and ANR Gamme. R. Shah would like to thank the
National Board for Higher Mathematics (NBHM), DAE, Government of India
for a research grant. We thank the Mathematical Sciences Research Institute
(Berkeley, California) for its hospitality, which facilitated this collaboration.
We also thank Bachir Bekka, Marc Burger, S. G. Dani, Talia Fernós, and
Alain Valette for discussions on an early attempt of the result. The results in
Section 8 were prompted by an anonymous referee’s suggestion to investigate
whether our techniques apply to relative Property (T) for subsets, not just
subgroups.

2. Relative Property (T) for pairs and triples

Assumption 2.1. Hilbert spaces and locally compact groups are assumed to be
second countable. (So all locally compact groups in this paper are σ-compact.)

Definition 2.2 ([3, Defns. 1.1.1 and 1.4.3, pp. 28 and 41]). Let π be a unitary
representation of a locally compact group G on a Hilbert space H, and let H
be a closed subgroup of G.

(1) For a subset Q of G and ǫ > 0, a vector ξ ∈ H is (Q, ǫ)-invariant if
‖π(g)ξ − ξ‖ ≤ ǫ‖ξ‖ for all g ∈ Q.

(2) π has almost-invariant vectors if π has nonzero (Q, ǫ)-invariant vectors,
for every compact Q ⊆ G and ǫ > 0.

(3) The pair (G,H) has relative Property (T ) if every unitary represen-
tation of G that has almost-invariant vectors, also has nonzero H-
invariant vectors.

If the pair (G,H) has relative Property (T), then (Q, ǫ)-invariant vectors can
be approximated by H-invariant vectors:
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Theorem 2.3 (Jolissaint [15, Thm. 1.2 (a2 ⇒ b2)]). Assume H is a closed sub-

group of a locally compact group G, such that (G,H) has relative Property (T ).
Then, for every δ > 0, there exist a compact subset Q of G, and ǫ > 0, such that

if π is any unitary representation of G on a Hilbert space H, and ξ is a nonzero

(Q, ǫ)-invariant vector in H, then ‖ξ− η‖ < δ‖ξ‖, for some H-invariant vector

η ∈ H.

This result does not extend to triples with relative Property (T), because the
following is an example in which the triple (G,H,M) has relative Property (T),
but there are almost-invariant vectors for H that cannot be approximated by
M -invariant vectors.

Example 2.4. Let G = O(n) ⋉ Rn, and let H and M be the stabilizers in G
of two different points x and y in Rn (so H and M are two different conjugates
of O(n)). Then it is not difficult to see that (G,H,M) has relative Property (T).
(Namely, note that H has Property (T), because it is compact, and that every
representation of G with an H-invariant vector must also have an M -invariant
vector, because M is conjugate to H .)
Let π be the natural representation of G on L2(Rn). There is a nonzero H-
invariant function ξ in L2(Rn) whose support is contained in a small disk
centered at x (small enough that the disk does not contain y). Then ξ is (Q, ǫ)-
invariant for every Q ⊆ H and ǫ > 0, but ξ is not well approximated by any
M -invariant function.

This observation motivates the following definition, which identifies the cases
where the approximation is always possible:

Definition 2.5. Let H and M be closed subgroups of a locally compact
group G. We say that the triple (G,H,M) has relative Property (T ) with

approximation if, for every δ > 0, there exist a compact subset Q of H and
ǫ > 0, such that if ξ is any (Q, ǫ)-invariant vector of any unitary representation
of G, then there is an M -invariant vector η, such that ‖η − ξ‖ ≤ δ‖ξ‖.
It is obvious that relative Property (T) with approximation implies relative
Property (T). The converse is not true, as Example 2.4 gives a triple that
has relative Property (T) but not relative Property (T) with approximation.
However, Theorem 2.3 tells us that the two properties are equivalent when
G = H . They are also equivalent when the third group in the triple is normal:

Lemma 2.6. Assume H and M are closed subgroups of a locally compact

group G, such that (G,H,M) has relative Property (T ). If M is normal in G,

then (G,H,M) has relative Property (T ) with approximation.

Proof. This is a standard argument (cf. [3, Prop. 1.1.9, p. 31]). Let δ > 0 be
arbitrary. Since (G,H,M) has relative Property (T), there exist a compact
subset Q of H and ǫ′ > 0, such that every unitary representation of G with
nonzero (Q, ǫ′)-invariant vectors has nonzero M -invariant vectors.
Let ǫ = δǫ′/2, and suppose that ξ is a (Q, ǫ)-invariant unit vector for a unitary
representation π of G on a Hilbert space H. We need to find an M -invariant
vector η that is δ-close to ξ.
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Let P : H → (HM )⊥ be the projection onto the orthogonal complement of
the space of M -invariant vectors. We may assume P (ξ) 6= 0 (otherwise ξ is
invariant and we take η = ξ). Since M is normal in G, we know that HM is
G-invariant, so π restricts to a representation of G on (HM )⊥. For all q ∈ Q,
we have

‖π(q)P (ξ)− P (ξ)‖ = ‖P
(
π(q)ξ − ξ

)
‖ ≤ ‖π(q)ξ − ξ‖ ≤ ǫ.

However, P (ξ) cannot be (Q, ǫ′)-invariant, because (HM )⊥ has no nonzero M -
invariant vectors. Therefore ǫ > ǫ′‖P (ξ)‖, which means

‖P (ξ)‖ < ǫ/ǫ′ = δ/2 < δ‖ξ‖.
Hence η = ξ − P (ξ) 6= 0 is M -invariant and ‖η − ξ‖ ≤ δ‖ξ‖ as desired. �

It is immediate from the definitions that the pair (G,H) has relative Prop-
erty (T) if and only if the triple (G,G,H) has relative Property (T). Now,
suppose M ⊆ H ⊆ G. It is obvious that if the pair (H,M) has relative Prop-
erty (T), then the triple (G,H,M) has relative Property (T). However, the
converse is not true, even if M is contained in H and is normal in G:

Example 2.7. Fix n ≥ 4, and embed SL(3,R) in SL(n,R), in such a way that
SL(3,R) fixes a nonzero vector v ∈ Rn. Then

(1) the triple
(
SL(n,R)⋉Rn, SL(3,R)⋉Rn,Rn

)
has relative Property (T),

but
(2) the pair

(
SL(3,R)⋉Rn,Rn

)
does not have relative Property (T).

Proof. (1) Let π be a unitary representation of SL(n,R) ⋉ R
n, such that the

restriction of π to SL(3,R) ⋉ Rn has nonzero almost-invariant vectors. Since
SL(3,R) has Property (T) [3, Thm, 1.4.15, p. 49], we know that π has nonzero
SL(3,R)-invariant vectors. The Moore Ergodicity Theorem (or Mautner phe-
nomenon) [19, Cor. 11.2.8, p. 216] tells us that every SL(3,R)-invariant vector
is SL(n,R)-invariant. Since the triple

(
SL(n,R)⋉Rn, SL(n,R),Rn

)
has relative

Property (T) (see, for example, [24, Thm. 1.1]), these vectors are Rn-invariant.
(2) Since SL(3,R) fixes v (and SL(3,R) is simple, so its representation on Rn

is completely reducible), we see that the abelianization of SL(3,R) ⋉ R
n is

noncompact. So nontrivial 1-dimensional representations of SL(3,R)⋉Rn ap-
proximate the trivial representation, and are trivial on SL(3,R), but have no
Rn-invariant vectors. �

3. Invariant vectors and tensor products

As was mentioned in the introduction, Theorem 1.5 is a generalization of a
theorem of Serre. The proof of Serre’s result in [3, Thm. 1.7.11, p. 66] is based
on the fact that if A is central in G, and π is irreducible, then π(A) consists of
scalar matrices, so A is in the kernel of π⊗π (see Notation 3.1 for the definition
of the conjugate representation π). To generalize this proof, we construct a
different representation, denoted π⊗Â π, that is trivial on A, even if π(A) does
not consist of scalars (see Definition 3.4). In geometric terms, π can be realized
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as an action on the L2-sections of a vector bundle over the unitary dual of A,
and the representation π ⊗Â π is constructed by tensoring this vector bundle
with its conjugate. However, the official definition of π ⊗Â π in Section 3A
uses the terminology of real analysis and representation theory, instead of the
language of vector bundles.
For the proof of Theorem 1.5, it is important to know that almost-invariant
vectors for π yield almost-invariant vectors for π ⊗Â π. That is the point
of Proposition 3.6 below. Conversely, Proposition 3.8 will be used to obtain
invariant vectors for π from invariant vectors for π ⊗Â π.

Notation 3.1. We use:

• x for the complex conjugate of the number x,
• H for the conjugate of the Hilbert space H [3, p. 293],
• ξ for the element of H corresponding to the element ξ of H (so xξ = x ξ
for x ∈ C), and

• π for the unitary representation on H that is obtained from the unitary
representation π on H [3, Defn. A.1.10, p. 294].

We begin by recalling some basic facts of functional analysis.

Lemma 3.2.

(1) [29, §3.4, pp. 42–49] If H1 and H2 are Hilbert spaces, then there is a

Hilbert space H1 ⊗H2, such that

‖v1 ⊗ v2‖ = ‖v1‖ ‖v2‖
for all v1 ∈ H1 and v2 ∈ H2.

(2) (cf. [29, p. 267 and Thm. 3.12(b), p. 49]) If U1 and U2 are unitary

operators on H1 and H2, respectively, then there is a unitary operator

U1 ⊗ U2 on H1 ⊗H2, such that

(U1 ⊗ U2)(v1 ⊗ v2) = U1v1 ⊗ U2v2.

(3) The natural map U(H1) × U(H2) → U(H1 ⊗ H2) is continuous when

the unitary groups are given the strong operator topology.

3A. A fibered tensor product.

Notation 3.3. Assume

• π is a unitary representation of a locally compact group G, and
• A is an abelian, normal subgroup of G.

Applying the representation theory of abelian groups [3, Thm. D.3.1(i), p. 375]
to the restriction π|A provides a unique projection-valued measure P on the

unitary dual Â, such that, for a ∈ A, we have

π(a) =

∫

Â

λ(a) dP(λ).

The uniqueness implies that

PgE = π(g)PE π(g)−1 for g ∈ G and E ⊆ Â,
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so this is a system of imprimitivity for π (as defined in [27, top of page 203]).
If this system of imprimitivity is homogeneous (as defined in [27, p. 218]), then

[27, Theorem 6.11, pp. 220–221] tells us there is a measure µ on Â, a Hilbert

space H, and a Borel cocycle α : G×Â → U(H), such that (up to isomorphism)

π is the representation on L2(Â, µ;H) given by
(
π(g)f

)
(λ) =

√
D(g, λ)α(g, λ) f(g−1λ)

for g ∈ G, f ∈ L2(Â, µ;H), and λ ∈ Â, and where D(g, λ) is the Radon-

Nikodym derivative of the action of g on Â.

Definition 3.4. With the above notation (and assuming that P is homo-
geneous), we define π′ = π ⊗Â π to be the unitary representation of G on

L2(Â, µ;H ⊗H) that is defined by replacing α with α ⊗ α in the formula for
π(g): (

π′(g)f
)
(λ) =

√
D(g, λ)

(
α(g, λ)⊗ α(g, λ)

)
f(g−1λ).

(Lemma 3.2(3) implies that the cocycle α⊗ α is Borel measurable.)

Remark 3.5. Notice that A is in the kernel of π⊗Âπ, which means that π⊗Âπ
is a representation of G/A.

An important feature of the fibered tensor product is that it preserves almost-
invariant vectors, and more precisely we have the following.

Proposition 3.6. If f ∈ L2(Â, µ;H) is a (Q, ǫ/3)-invariant unit vector for π,

then the function f ′(λ) = 1
‖f(λ)‖ f(λ) ⊗ f(λ) is a (Q, ǫ)-invariant unit vector

for π ⊗Â π. (We use the convention that f ′(λ) = 0 if f(λ) = 0.)

Before giving the proof we need the following simple lemma.

Lemma 3.7. Suppose

• H1 and H2 are Hilbert spaces,

• vi, wi ∈ Hi for i = 1, 2,
• ‖w1‖ = ‖w2‖,
• for z ∈ {v1, v2, w1, w2}, ẑ is a unit vector such that z = ‖z‖ ẑ, and
• D ≥ 0.

Then

‖Dw1 ⊗ ŵ2 − v̂1 ⊗ v2‖ ≤ 2‖Dw1 − v1‖+ ‖Dw2 − v2‖.
Proof. We have

‖Dw1 ⊗ ŵ2 − v̂1 ⊗ v2‖
≤ ‖Dw1⊗ŵ2 − v1⊗ŵ2‖+ ‖v1⊗ŵ2 − v̂1⊗(Dw2)‖+ ‖v̂1⊗(Dw2)− v̂1⊗v2‖

= ‖(Dw1 − v1)⊗ ŵ2‖+
∥∥∥
(
‖v1‖ −D‖w2‖

)
v̂1 ⊗ ŵ2

∥∥∥+ ‖v̂1 ⊗ (Dw2 − v2)‖

= ‖Dw1 − v1‖+
∣∣∣‖v1‖ −D‖w2‖

∣∣∣+ ‖Dw2 − v2‖.

Since ‖w1‖ = ‖w2‖, the conclusion now follows from the fact that
∣∣‖v‖−‖w‖

∣∣ ≤
‖v − w‖ for all vectors v and w in any Hilbert space. �
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Proof of Proposition 3.6. First, note that for λ ∈ Â, we have

‖f ′(λ)‖ =

∥∥∥∥
1

‖f(λ)‖ f(λ)⊗ f(λ)

∥∥∥∥ =
1

‖f(λ)‖ ·‖f(λ)‖·‖f(λ)‖ = ‖f(λ)‖ = ‖f(λ)‖.

Therefore ‖f ′‖2 = ‖f‖2, so f ′ is a unit vector for the representation π′ = π⊗Âπ.

For g ∈ Q and λ ∈ Â, let

v1 = f(λ), w1 = α(g, λ) f(g−1λ), v2 = v1,

w2 = w1, and D =
√
D(g, λ).

Then

f ′(λ) =
1

‖f(λ)‖ f(λ)⊗ f(λ) = v̂1 ⊗ v2.

and
(
π′(g)f ′

)
(λ) =

√
D(g, λ)α′(g, λ) f ′(g−1λ)

=

√
D(g, λ)

‖f(g−1λ)‖ α(g, λ) f(g−1λ)⊗ α(g, λ) f(g−1λ)

= Dw1 ⊗ ŵ2

Therefore, Lemma 3.7 tells us that
∥∥(π′(g)f ′

)
(λ)− f ′(λ)

∥∥ ≤ 2‖Dw1 − v1‖+ ‖Dw2 − v2‖
= 2‖Dw1 − v1‖+ ‖Dw1 − v1‖
= 3‖Dw1 − v1‖
= 3 ‖

(
π(g)f

)
(λ)− f(λ)‖,

since (
π(g)f

)
(λ) =

√
D(g, λ)α(g, λ) f(g−1λ) = Dw1.

So

‖π′(g)f ′ − f ′‖2 ≤ 3 ‖π(g)f − f‖2 < 3 · ǫ
3
= ǫ. �

3B. Obtaining invariant vectors from a tensor product. The follow-
ing result is based on ideas of Jolissaint [15, Thm. 1.2] and Nicoara-Popa-Sasyk
[20, proof of Lem. 1].

Proposition 3.8. Let ρ be a unitary representation of a locally compact

group M on a Hilbert space H, and suppose ξ ∈ H. If η′ is any (ρ ⊗ ρ)-
invariant vector in H ⊗ H, then there is a ρ(M (1))-invariant vector η ∈ H,

such that

‖η − ξ‖ ‖ξ‖ ≤ 7 ‖η′ − ξ ⊗ ξ‖.
Moreover, η can be chosen so that the subspace Cη is ρ(M)-invariant.

Proof. Assume, without loss of generality, that ‖ξ‖ = 1, and, for convenience,

let δ = ‖η′ − ξ ⊗ ξ‖. We may assume that δ < 1/7. (Otherwise, the desired
inequality is satisfied with η = 0.)
Let H′ = H⊗H, and note that H′ can be identified with the space of Hilbert-
Schmidt operators on H, which are compact operators with finite trace (see
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[3, the discussion on page 294]). In this identification, the vector ξ′ = ξ ⊗ ξ
corresponds to the rank-one orthogonal projection Pξ on the line Cξ, defined
by

Pξ(η) = 〈η, ξ〉ξ,
where the inner product is from H. In particular, Pξ is a self-adjoint operator
with trace 1 and its spectrum is in {0, 1}. Therefore, all the Hilbert-Schmidt
operators corresponding to elements in the closed convex hull of (ρ ⊗ ρ)(M)ξ′

are self-adjoint operators with trace 1 and their spectrum is contained in [0, 1].
Let T be the Hilbert-Schmidt operator corresponding to η′. We may assume
that η′ is the projection of ξ′ onto the space of (ρ⊗ ρ)-invariant vectors, so η′

is in the closed convex hull of (ρ ⊗ ρ)(M)ξ′. Then T is a self-adjoint Hilbert-
Schmidt operator with trace 1 and whose spectrum is contained in [0, 1].
As T is invariant under ρ(M), so are all of its eigenspaces, and we claim that T
has a one-dimensional eigenspace. Let {ci} be the eigenvalues of T , and assume
c1 > ci for all i 6= 1. Then

∑
ci = 1, and the Hilbert-Schmidt norm ‖T ‖HS

of T satisfies

‖T ‖HS =
(∑

c2i

)1/2

≤ 1 and ‖T ‖HS ≥ ‖T ‖ = c1.

From the definition of T , we have

‖T − Pξ‖HS = ‖η′ − ξ′‖ = δ.

Also

‖T 2 − Pξ‖HS = ‖T 2 − P 2
ξ ‖HS ≤ ‖T + Pξ‖HS ‖T − Pξ‖HS ≤ 2δ.

Then

‖T − T 2‖HS ≤ ‖T − Pξ‖HS + ‖Pξ − T 2‖HS ≤ δ + 2δ = 3δ.

As c1 > ci for all i 6= 1, we have

3δ ≥ ‖T ‖HS − ‖T 2‖HS =
(∑

c2i

)1/2

−
(∑

c4i

)1/2

≥ (1 − c1)
(∑

c2i

)1/2

= (1− c1)‖T ‖HS ≥ (1 − c1)(1− δ).

Therefore

c1 ≥ 1− 3δ

1− δ
=

1− 4δ

1− δ
>

1

2
,

since δ < 1/7. Since the trace of T is 1, we conclude that the eigenspace
corresponding to the eigenvalue c1 has dimension 1, as claimed.
Note that the c1-eigenspace of T is not orthogonal to ξ: otherwise, if η0 is a
unit vector in the eigenspace, then

1

2
< c1 = ‖c1η0‖ = ‖Tη0 − Pξ(η0)‖ ≤ ‖T − Pξ‖ ≤ δ <

1

7
.

Therefore, we may let η be the (unique) vector in the c1-eigenspace of T , such
that Pξ(η) = c1ξ. Then

‖η − ξ‖ =
1

c1
‖T (η)− Pξ(η)‖ ≤ 1

c1
‖T − Pξ‖ ‖η‖ <

δ

c1
‖η‖ < 2δ‖η‖.
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Since ‖ξ‖ = 1 and 2δ < 2/7 < 1/3, this implies ‖η‖ < 3/2, so ‖η − ξ‖ < 3δ <
7δ. Also, since Cη is a 1-dimensional ρ(M)-invariant subspace, we know that
ρ(M (1)) acts trivially on it, so η is ρ(M (1))-invariant. �

4. Proof of the main theorem

Recall that all locally compact groups are assumed to be second countable (see
Assumption 2.1).
Theorem 1.5 is the special case of the following result in which G = H . (Recall
that if either G = H or M is normal in G, then relative Property (T) for the
triple (G,H,M) is equivalent to relative Property (T) with approximation, by
Theorem 2.3 and Lemma 2.6.)

Theorem 4.1. Let H and M be closed subgroups of a locally compact group G,

and let A be a closed, abelian subgroup of M that is normal in G. Assume that

every M -invariant finite measure on Â is supported on the set of fixed points

of M . If HA is closed and (G/A,HA/A,M/A) has relative Property (T ) with
approximation, then (G,H,M (1)) has relative Property (T ) with approxima-

tion.

Proof. Let δ > 0 be arbitrary. Since (G/A,HA/A,M/A) has relative Prop-
erty (T) with approximation (and HA is closed), there is a compact sub-
set Q of H and ǫ > 0, such that if ξ′ is any (Q, ǫ)-invariant vector for a
unitary representation of G/A, then there is an M -invariant vector η′, such
that ‖η′ − ξ′‖ < δ/7.
Now, suppose π is a unitary representation of G, such that π has a (Q, ǫ/3)-
invariant vector f . (We wish to show that f is well-approximated by an M -
invariant vector.) By replacing π with the direct sum π ⊕ π ⊕ · · · of infinitely
many copies of itself, we may assume that all irreducible representations ap-
pearing in the direct integral decomposition of π|A have the same multiplicity
(namely, ∞). By definition, this means that π|A is homogeneous, so Section 3A

provides a measure µ on Â, a Borel cocycle α : G× Â → U(H), a corresponding

realization of π as a representation on the Hilbert space L2(Â, µ;H), and a
unitary representation π′ = π ⊗Â π of G.

Since π has been realized as a representation on L2(Â, µ;H), we know that

f ∈ L2(Â, µ;H). Then Proposition 3.6 provides a (Q, ǫ)-invariant unit vector f ′

for π′. By the choice of Q and ǫ (and Remark 3.5), we know that there is a

π′(M)-invariant vector f ′
M ∈ L2(Â, µ;H⊗H), such that ‖f ′

M − f ′‖2 < δ/7.
Since f ′

M is M -invariant, we have

‖f ′
M (λ)‖ =

√
D(m,λ) ‖f ′

M (m−1λ)‖ for m ∈ M and a.e. λ ∈ Â,

so it is straightforward to check that ‖f ′
M‖2 µ is an M -invariant measure on Â.

Furthermore, this measure is finite because f ′
M is in L2(Â, µ;H ⊗ H). By

assumption, this implies that (up to modifying f ′
M on a set of measure zero) we

may choose the support of f ′
M to be contained in the set ÂM of fixed points ofM

in Â . For each fixed λ ∈ ÂM , the function α(m,λ) is a representation ρλ of M
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on H (and D(m,λ) ≡ 1 on ÂM ), so M acts on the subspace L2(ÂM , µ|ÂM ;H⊗
H) by (

π′(m)f ′
)
(λ) =

(
(ρλ ⊗ ρλ(m))

)
f ′(λ).

Note that f ′
M (λ) must be an M -invariant vector in H⊗H, for a.e. λ ∈ Â. Then,

since Proposition 3.6 tells us that f ′(λ) = 1
‖f(λ)‖ f(λ) ⊗ f(λ), Proposition 3.8

provides a ρλ(M
(1))-invariant vector v(λ) ∈ H, such that ‖v(λ) − f(λ)‖ ≤

7 ‖f ′
M(λ) − f ′(λ)‖. (Also note that the von Neumann Selection Theorem [1,

Thm. 3.4.3, p. 77] implies that we may choose v(λ) to be a measurable function
of λ.) Then v is π(M (1))-invariant, and ‖v − f‖2 ≤ 7‖f ′

M − f ′‖2 < δ. �

Remark 4.2. Here are two situations that satisfy Theorem 4.1’s assumption

that every M -invariant finite measure on Â is supported on the set of fixed
points of M :

(1) If A is contained in the center of M , then M acts trivially on A (so it

also acts trivially on Â), so every point in Â is a fixed point.
(2) If M is a connected, solvable Lie group that is real split, and A is a

closed, 1-connected, abelian, normal subgroup (so Â ∼= A), then the
desired conclusion is a well known result in the spirit of the Borel
Density Theorem (cf. [9, Cor. 1.3]).

Remark 4.3. If G, H , M , and A are as described in the first two sentences of
the statement of Theorem 4.1, then the proof establishes the following quan-
titative version of the theorem: Suppose Q ⊆ H and δ, ǫ > 0, such that, for

every (Q, ǫ)-invariant vector ξ′ for a unitary representation of G/A, there is

an M -invariant vector η′, such that ‖η′ − ξ′‖ < δ/7. Then, for every (Q, ǫ/3)-
invariant vector ξ for a unitary representation of G, there is an M (1)-invariant

vector η, such that ‖η − ξ‖ < δ.

Remark 4.4. Taking G = H = M in Remark 4.3 establishes that if Q is
a subset of a locally compact group G, and A is a closed, abelian, normal
subgroup of G, such that

(1) the image of Q in G/A is a Kazhdan set for G/A, and

(2) every G-invariant finite measure on Â is supported on the set of fixed
points of G,

then Q is a Kazhdan set for the pair (G,G(1)). (That is, there exists ǫ > 0,
such that every unitary representation of G that has (Q, ǫ)-invariant vectors
also has G(1)-invariant vectors.)

The following theorem removes the phrase “with approximation” from the
statement of Theorem 4.1, at the expense of placing restrictions on M and A.

Notation 4.5. We use Z(M) to denote the center of a group M .

Theorem 4.6. Let H and M be closed subgroups of a locally compact group G,

and let A be a closed subgroup of Z(M) ∩M (1) that is normal in G. Assume

that HA is closed, that M is nilpotent, and that either M has no closed, proper
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subgroups of finite index, or A is contained in H and is compactly generated.

If (G/A,HA/A,M/A) has relative Property (T ), then (G,H,M) has relative

Property (T ).

Proof. Let π be a unitary representation of G, such that π|H has almost-
invariant vectors.
Assume, for the moment, that the triple (G,H,A) has relative Property (T).
Then the space of A-invariant vectors is nonzero. Since A is a normal subgroup,
this space is G-invariant, and therefore yields a representation πA of G/A. Also
(becauseA is a normal subgroup), Lemma 2.6 tells us that (G,H,A) has relative
Property (T) with approximation, so the restriction of πA to H has almost-
invariant vectors. Since (G/A,HA/A,M/A) has relative Property (T), we con-
clude that πA (and hence π) has nonzero M -invariant vectors. So (G,H,M)
has relative Property (T), as desired.
To complete the proof, we show that the triple (G,H,A) does indeed have rel-
ative Property (T). That is, we show that π has nonzero A-invariant vectors.
Arguing as in the proof of Theorem 4.1, we see that we may assume that π|A
is homogeneous (by replacing π with π ⊕ π ⊕ · · · ), so Section 3A provides a

measure µ on Â, a Borel cocycle α : G × Â → U(H), a corresponding realiza-

tion of π as a representation on the Hilbert space L2(Â, µ;H), and a unitary

representation π′ = π⊗Â π of G. Also, M acts trivially on Â, so, for each fixed

λ ∈ Â, the function α(m,λ) is a representation ρλ of M on H, so M acts on

L2(Â, µ;H⊗H) by

(
π′(m)f ′

)
(λ) =

(
(ρλ ⊗ ρλ)(m)

)
f ′(λ).

Also, since (G/A,HA/A,M/A) has relative Property (T), there is a nonzero

π′|M -invariant vector f ′
M in L2(Â, µ;H⊗H).

Therefore, ρλ ⊗ ρλ has a nonzero M -invariant vector for all λ in a set E of
positive measure. For each λ ∈ E, there must be a finite-dimensional ρλ(M)-
invariant subspace Fλ of H [3, Prop. A.1.2, p. 295]. Let Mλ be the closure
of ρλ(M)|Fλ

. This is a closed (hence compact) subgroup of SU(n), for some
n ∈ N. Every compact, nilpotent Lie group is virtually abelian [11, Cor. 11.2.11,
p. 447], so we see that Mλ has a closed, abelian subgroup of finite index.

Case 1. Assume M has no closed, proper subgroups of finite index. Then
the entire group Mλ must be abelian. This means that ρλ(M

(1))|Fλ
is trivial.

Since A ⊆ M (1), this implies that ρλ(A) fixes every element of Fλ. So λ(a) = 1
for all a ∈ A and all λ ∈ E.
This means that µ

(
{1}

)
6= 0. Therefore, if we fix any nonzero ξ0 ∈ H, then the

function

f(λ) =

{
ξ0 if λ = 1,

0 otherwise
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is nonzero in L2(Â, µ;H). And it is obviously fixed by A. So π has a nonzero
A-invariant vector, as desired.

Case 2. Assume A ⊆ H and A is compactly generated. Since Mλ is
virtually abelian, we know there is a finite-index subgroup M ′

λ of M , such that

ρλ(M
′
λ)|Fλ

is abelian. So ρλ|Fλ
is trivial on (M ′

λ)
(1), which is a finite-index

subgroup of M (1) (since M is nilpotent and M ′
λ has finite index in M). Since

A ⊆ M (1), we conclude that ρλ|Fλ
is trivial on a finite-index subgroup Aλ of A.

Therefore, there is some m ∈ N, such that ρλ is trivial on Am for all λ in a
set E of positive measure (where Am = cl({am | a ∈ A})). This means ρλ(A

m)
fixes every element of Fλ (for all λ ∈ E), so π(Am) has a nonzero fixed vector.
This implies that (G,H,Am) has relative Property (T).
Note that Am is normal in G (because it is characteristic in the normal sub-
group A). Also, the quotient A/Am is compact (because A is compactly gen-
erated and abelian). Therefore (G/Am, H/Am, A/Am) obviously has relative
Property (T) (because A ⊆ H). Combining this with the fact that (G,H,Am)
has relative Property (T) (with approximation, by Lemma 2.6), we conclude
that (G,H,A) has relative Property (T), as desired. �

Remark 4.7. The proof of Theorem 4.6 applies somewhat more generally than
is specified in the statement of the theorem. More precisely, after the assump-
tion that HA is closed, it suffices to make the following two additional assump-
tions:

(1) For every finite-dimensional, unitary representation ρ of M , the closure
of ρ(M) has an abelian subgroup of finite index. (For example, this is
true when M is virtually solvable, and also when M is a connected Lie
group whose Levi subgroup has no compact factors.)

(2) For every finite-index, closed subgroup M ′ of M , if m is the index of
(M ′)(1) ∩A in A, then m < ∞, and there is a compact subset C of H ,
such that A ⊆ C ·Am.

Also note that every closed subgroup of a compactly generated nilpotent group
is compactly generated [21, Thm. 6, p. 38]. Therefore, if M is nilpotent, then
it would suffice to assume M is compactly generated, instead of assuming that
A is compactly generated.

5. Proofs of results stated in the Introduction

In this section, we prove that all of the results stated in the Introduction
are consequences of Theorem 4.1. We first prove Theorem 1.5, Corollary 1.6,
Theorem 1.2, and Corollaries 1.9 and 1.12 (while mentioning an additional
corollary and remark along the way). These are followed by Corollary 1.4,
which is a special case of (1 ⇔ 5) of Corollary 5.4 below.
Recall that, as stated in Assumption 2.1, all locally compact groups are assumed
to be second countable, and therefore σ-compact.

Proof of Theorem 1.5. This is the special case of Theorem 4.1 in which
G = H . �
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Proof of Corollary 1.6. This is a special case of Theorem 1.5 (see Re-
mark 4.2(1)). �

The following immediate consequence of Corollary 1.6 is a generalization of [3,
Cor. 3.5.3, p. 177] (which is the special case where G = H).

Corollary 5.1. Let H be a closed subgroup of a locally compact group G, and

let A be a closed subgroup of the center of H, such that A is normal in G. If

(G/A,H/A) has relative Property (T ), and H/H(1) is compact, then (G,H)
has relative Property (T ).

Proof of Theorem 1.2. The direction (⇒) is obvious. The other direction
follows easily from Corollary 1.6 (or, if the reader prefers, from Theorem 1.5,
4.1, or 4.6), by induction on the nilpotence class of N . �

Remark 5.2. In the statement of Theorem 1.2, the assumption that N is
normal can be weakened slightly, to the assumption that N has a central series
N = N0⊲N1⊲N2⊲ · · ·⊲Nc = {e}, such that Ni ⊳G, for all i > 0. (The subgroup
N = N0 does not need to be normal in G.)

Proof of Corollary 1.9. Since (⇒) is obvious, we prove only (⇐). Let
A = Z(N) ∩N (1). By induction on the nilpotence class of N , we may assume
that

(
H⋉ (N/A), H,N/A

)
has relative Property (T). Then the desired conclu-

sion is immediate from Theorem 4.1, by letting G = H ⋉N and M = N . �

Proof of Corollary 1.12. Let G = G0 ⊲ G1 ⊲ G2 ⊲ · · · ⊲ Gk = {e} be:

• the descending central series of G, if G is nilpotent, or
• the derived series of G, if G is a connected, real split, solvable Lie
group.

In either case, we have Gk = {e} for some k. By induction on k, we may
assume the image of Q in G/Gk−1 is a Kazhdan set for G/Gk−1. Applying
Remarks 4.2 and 4.4 (with A = Gk−1) tells us that Q is a Kazhdan set for
the pair (G,G1). By combining this with the fact that the image of Q in
G/G1 = Gab is a Kazhdan set for G/G1, we conclude that Q is a Kazhdan set
for G. �

Our next goal is Corollary 5.4, which is an extension of Corollary 1.4 that also
incorporates Corollary 1.9. Its proof uses the following result.

Proposition 5.3 (Raja [24, Lem. 3.1]). Let H be a locally compact group

that acts on a 1-connected, abelian Lie group N . Then (H ⋉ N,H,N) has

relative Property (T ) if and only if there does not exist a closed, connected,

H-invariant, proper subgroup L of N , such that IntN/L(H)• is amenable.

Although our main interest is in groups that are locally compact, we state the
following result without this assumption on H :

Corollary 5.4. If a topological group H acts on a 1-connected, nilpotent Lie
group N , then the following are equivalent:
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(1) The pair (H ⋉N,N) has relative Property (T ).
(2) The pair (H ⋉Nab, Nab) has relative Property (T ).
(3) The triple (H ⋉N,H,N) has relative Property (T ).
(4) The triple (H ⋉Nab, H,Nab) has relative Property (T ).
(5) For every closed, connected, H-invariant, proper subgroup L of N that

contains N (1), the group IntN/L(H)• is not amenable.

(6) There exists a finite subset Q of H, and ǫ > 0, such that if π is any uni-

tary representation of H⋉N that has nonzero (Q, ǫ)-invariant vectors,
then π has nonzero N -invariant vectors.

Proof. It is easy to establish (3 ⇒ 1 ⇒ 2) and (6 ⇒ 3 ⇒ 4 ⇒ 2). Also, (2 ⇒ 5)
is well known [7, Prop. 2.2 (ii’ ⇒ i), p. 391].
Therefore, it suffices to prove (5 ⇒ 6). Let H• be the closure of the image of H
in Aut(Nab). Now, as H• is a closed subgroup of the Lie group Aut(Nab), it
is separable. Therefore, there is a countable subgroup Γ of H whose image is
dense in H•. Every Γ-invariant, closed subgroup of Nab is also H•-invariant,
and is therefore H-invariant. If we give Γ the discrete topology, then Γ is
locally compact, so we see from Proposition 5.3 that (Γ ⋉ Nab,Γ, Nab) has
relative Property (T). Then Corollary 1.9 tells us that (Γ⋉N,Γ, N) has relative
Property (T).
By a standard argument [15, Thm. 1.2 (a2 ⇒ a1)], this implies there is a
finite subset Q of Γ, and ǫ > 0, such that if π is any unitary representation of
Γ⋉N that has nonzero (Q, ǫ)-invariant vectors, then π has nonzero N -invariant
vectors. Since every unitary representation of H⋉N restricts to a (continuous)
unitary representation of Γ⋉N , this completes the proof. �

Remark 5.5. It is obvious that if a triple (G,H,N) has relative Property (T),
then the pair (G,N) also has relative Property (T). The converse does not hold
in general. (For example, it is easy to see that if N is infinite and discrete,
then the triple (H ⋉N,H,N) never has relative Property (T) [14, Rem. 2.1.8].
But the pair (H ⋉N,N) may have relative Property (T).) Corollary 5.4 shows
that the converse does hold when N is a 1-connected, nilpotent Lie group (and
G = H ⋉N).

Furthermore, the equivalence of (1) and (2) in Corollary 5.4 does not require
N to be a Lie group:

Corollary 5.6. If a topological group H acts on a compactly generated, locally

compact, nilpotent group N , then the following are equivalent:

(1) The pair (H ⋉N,N) has relative Property (T ).
(2) The pair (H ⋉Nab, Nab) has relative Property (T ).

Proof. It suffices to prove (2 ⇒ 1). Since the maximal compact subgroup of N
is unique (see Lemma 6.1 below), it is normal in H⋉N , so there is no harm in
modding it out. Therefore, we may assume that N has no nontrivial compact
subgroups, so N is a (nilpotent) Lie group (see Theorem 6.3 below), such that
N◦ is 1-connected (see Corollary 6.4 below) and N/N◦ is finitely generated

Documenta Mathematica 23 (2018) 353–382



Relative Property (T) for Nilpotent Subgroups 369

(because N is compactly generated) and torsion-free (see Corollary 6.4 below).
Then N can be embedded as a closed, cocompact subgroup of a 1-connected Lie
group N1 [23, Thm. 2.20, p. 42]. Every automorphism of N extends uniquely
to an automorphism of N1 [23, Cor. 1 on p. 34], so we may form the semidirect
product H ⋉ N1, which contains H ⋉ N as a closed, cocompact subgroup.
Since (H ⋉ Nab, Nab) has relative Property (T), and N is cocompact in N1,
it is easy to see that (H ⋉ Nab

1 , Nab
1 ) has relative Property (T). Namely, let

ρ : H ⋉ Nab → H ⋉ Nab
1 be the natural homomorphism, and let N• be the

closure of ρ(Nab). Since (H⋉Nab, Nab) has relative Property (T), we know that
(H ⋉ Nab

1 , N•) has relative Property (T). Also, Nab
1 /N• is compact (because

N1/N is compact), so
(
H ⋉ (Nab

1 /N•), Nab
1 /N•

)
has relative Property (T).

Therefore (H ⋉Nab
1 , Nab

1 ) has relative Property (T).
Now Corollary 5.4(6) provides a finitely generated subgroup Γ of H , such that
(Γ⋉N1, N1) has relative Property (T) (where Γ is given the discrete topology).
Since N1/N is compact, and N1 is nilpotent, there is a unique N1-invariant
probability measure on N1/N . The uniqueness implies that the measure is
Γ-invariant, so we obtain a (Γ ⋉ N1)-invariant probability measure on (Γ ⋉

N1)/(Γ ⋉ N). Therefore, since (Γ ⋉ N1, N1) has relative Property (T), we
conclude from [12, Prop. 2.4(1)] that (Γ⋉N,N) has relative Property (T).
Since every unitary representation of H⋉N restricts to a (continuous) unitary
representation of Γ⋉N , this implies that (H⋉N,N) has relative Property (T).

�

6. The largest subgroup with relative Property (T)

It is easy to construct examples in which (G,L1), (G,L2), . . . , (G,Lk) have
relative Property (T), but if we let L be the subgroup generated by L1 ∪ L2 ∪
· · · ∪ Lk, then (G,L) does not have relative Property (T). (For example, let G
be a simple Lie group that does not have Property (T), and let L1, L2, . . . , Lk

be compact subgroups that generate G.) Corollary 6.7 provides a situation
in which this pathology does not arise. The proof does not require the main
results proved in Section 5, but it does use several basic facts about locally
compact groups and relative Property (T).

Lemma 6.1 (cf. [16, Thm. 2] and [8, Lem. 3.1]). Every compactly generated,

locally compact, nilpotent group N has a unique maximal compact subgroup.

Notation 6.2. We use G◦ for the identity component of the topological
group G.

Theorem 6.3 ([18, Theorem on p. 175 (and Lem. 2.3.1, p. 54)]). Let G be a

locally compact group.Then some open subgroup H of G has a compact, normal

subgroup C, such that H/C is a Lie group.

Moreover, for an appropriate choice of H, the compact subgroup C can be

chosen to be contained in any neighborhood of the identity in H.

Furthermore, if G/G◦ is compact, then we may take H = G.

The following consequence is well known.
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Corollary 6.4. Let G be a locally compact group. If G/G◦ is compact, and

G has no nontrivial, compact subgroups, then G is a 1-connected Lie group.

Lemma 6.5 (cf. [25, Lem. 2.2]). Assume H,H1, . . . , Hn are closed subgroups

of a locally compact group G, and C is a compact subset of G, such that

CH1H2 · · ·Hn contains H. If the pair (G,Hi) has relative Property (T ), for
each i, then (G,H) has relative Property (T ).

Proof. Let π be a unitary representation of G on a Hilbert space H, such that
π has almost-invariant vectors, and let δ = 4−(n+2). For each i, Theorem 2.3
provides a compact subset Qi of G and ǫi > 0, such that if η is any (Qi, ǫi)-
invariant unit vector, then there is an Hi-invariant unit vector ηi, such that
‖η − ηi‖ < δ/2. Now, let η be a (Q, ǫ)-invariant unit vector, where Q =
C ∪⋃n

i=1 Qi and ǫ = min(δ, ǫ1, . . . , ǫn). Then

‖π(g)η − η‖ < δ, for all g ∈ H1 ∪ · · · ∪Hn ∪C.

This implies ‖π(h)η − η‖ < 1/2 for all h ∈ H . So π has a nonzero H-invariant
vector [15, Lem. 2.2]. �

Lemma 6.6. Let H be a compactly generated, locally compact, nilpotent group,

and let L be a collection of closed subgroups of H that generates a dense sub-

group of H. Then, for some n, there exist L1, . . . , Ln ∈ L, and a compact

subset C of H, such that CL1L2 · · ·Ln = H.

Proof. We may assume that H is a Lie group with no nontrivial compact
subgroups (by modding out the maximal compact subgroup (see Lemma 6.1
and Theorem 6.3)). Let H(k) be the closure of the last nontrivial term of the
descending central series of H . The desired conclusion is easy if H is abelian
(and therefore isomorphic to Rm × Zn for some m and n), so we may assume
H(k) 6= H . By induction on the nilpotence class of H , we may assume that
there is a finite product X = L1 · · ·Ln of subgroups in L, and a compact
subset C of H , such that CH(k)X = H . Note that, for each g ∈ H(k−1), the
map x 7→ [x, g] is a homomorphism from H/H(k) to H(k). Since dimH(k) +
rankH(k)/(H(k))◦ is finite, there is a finite subset {g1, . . . , gm} of H(k−1), such
that

∏m
i=1[H, gi] is dense in a cocompact subgroup of the abelian group H(k).

So there is a compact subset C0 of H(k), such that C0 ·
∏m

i=1[H, gi] = H(k).

Since H(k) is abelian, this implies that C0 ·
∏m

i=1[C, gi] ·
∏m

i=1[X, gi] = H(k).
Then

C · C0 ·
m∏

i=1

[C, gi] ·
m∏

i=1

(X · giXg−1
i ) ·X = CH(k)X = H. �

Corollary 6.7. Let N be a closed, compactly generated, nilpotent, normal

subgroup of a locally compact group G, and let T be the collection of all sub-

groups L of N , such that (G,L) has relative Property (T ). Then T has a unique

largest element L†, and L† is a closed, normal subgroup of G.

Proof. Let L† be the closure of the subgroup generated by the subgroups in T .
Lemma 6.6 tells us there is a product L1L2 · · ·Ln of finitely many elements
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of T , and a compact set C, such that CL1L2 · · ·Ln = L†. Since (G,Li) has
relative Property (T), for each i, it follows from Lemma 6.5 that (G,L†) has
relative Property (T). So L† ∈ T . By definition, L† contains every element
of T , so this implies that L† is the unique largest element of T .
Furthermore, L† is closed by definition. Also, if L is any conjugate of L†, then
(G,L) has relative Property (T) (because (G,L†) has relative Property (T)),
so L ⊆ L†. Therefore, L† is normal. �

We also have the following weaker conclusion without the assumption that G
is locally compact.

Corollary 6.8. Let N be a closed, locally compact, compactly generated,

nilpotent, normal subgroup of a topological group G, and let T⊳ be the collection

of all subgroups L of N , such that (G,L) has relative Property (T ) and L ⊳G.

Then T⊳ has a unique largest element L†
⊳, and L†

⊳ is a closed, normal subgroup

of G.

Proof. Nothing in the proof of Corollary 6.7 relies on the assumption that G
is locally compact, other than the application of Theorem 2.3 in the proof of
Lemma 6.5. Although Theorem 2.3 may not be true for general topological
groups, its conclusion holds when H ⊳G, by the same standard argument that
is used in the proof of Lemma 2.6. �

7. Relative Property (T) and amenability

The main result in this section is Corollary 7.2, which provides additional infor-
mation about the subgroup L† of Corollary 6.7 (under a connectivity assump-
tion onN). This implies Corollary 7.9, which is a generalization of Corollary 1.4
that does not require the subgroup N to be a Lie group. The statements of
these results require the following extension of Notation 1.3 to this setting:

Notation 7.1. Suppose N and L are closed, normal subgroups of a locally
compact group G, such that L ⊆ N , and N/L is a Lie group.

(1) IntN/L : G → Aut(N/L) is the natural map defined by the action of G
on N/L by conjugation.

(2) We use IntN/L(G)• to denote the closure of the image of this homo-
morphism.

Corollary 7.2. Let N be a closed, locally compact, nilpotent, normal subgroup

of a topological group G, such that N/N◦ is compact. Then N has a unique

largest subgroup L†, such that (G,L†) has relative Property (T ). Furthermore,

L† is a closed, normal subgroup of G, the quotient N/L† is a 1-connected Lie

group, and IntN/L†(G)• is amenable.

The following consequence of (5 ⇒ 2) of Corollary 5.4 is essentially the special
case of Corollary 7.2 in which N is a connected, abelian Lie group. It will be
the basis of a proof by induction.
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Corollary 7.3 (cf. [7, Prop. 2.2 (i ⇒ ii′)] and [24, Cor. 3.2]). Assume a

topological group H acts on a connected, abelian Lie group N . Then N contains

a closed, connected, H-invariant, normal subgroup L, such that (H⋉N,L) has
relative Property (T ), and IntN/L(H)• is amenable.

The following elementary observation can reduce problems about arbitrary nor-
mal subgroups to the easier case of semidirect products.

Lemma 7.4. Let N be a closed, normal subgroup of a topological group G, and

let L be a subgroup of N . Form the semidirect product G ⋉ N , where G acts

on N by conjugation. If (G⋉N,L) has relative Property (T ), then (G,L) also
has relative Property (T ).

Proof. For any unitary representation π of G, there is a unitary representation
π′ of G⋉N that is defined by π′(g, n) = π(g)π(n), for g ∈ G and n ∈ N . If π
has almost-invariant vectors, then so does π′. �

Remark 7.5. The converse of Lemma 7.4 is not true. For example, let G be a
Lie group with Kazhdan’s Property (T), such that Z(G) is not compact, and
let N = L = Z(G). (In particular, G could be the universal cover of Sp(4,R)
[3, Example 1.7.13(ii), p. 67].) Then (G,N) has relative Property (T) (in fact,
(G,G) has relative Property (T)), but G⋉N ∼= G×N , and (G×N,N) does
not have relative Property (T) (because N is a noncompact, abelian Lie group,
and therefore does not have Kazhdan’s Property (T)).

As the final preparation for the proof of Corollary 7.2, we establish one more
lemma:

Lemma 7.6 (cf. [7, Lem. 2.3(i)]). Suppose N and L are closed, normal subgroups

of a locally compact group G, such that L ⊆ N . Assume that L is connected,

and that N is a 1-connected, nilpotent Lie group. If IntN/L(G)• and IntL(G)•

are amenable, then IntN (G)• is amenable.

Proof. Let N and L be the Lie algebras of N and L, respectively, and let

P = {T ∈ GL(N) | T (L) = L }.
Since N is a 1-connected, nilpotent Lie group, we can identify Aut(N) with
Aut(N), which is a closed subgroup of P . It is well known that, by choosing a
complement W to L in N, we have P =

(
GL(W ) × GL(L)

)
⋉K, where K is

the kernel of the natural map P → GL(N/L)×GL(L). Therefore,

IntN (G)• ⊆
(
IntN/L(G)• × IntL(G)•

)
⋉K.

Since K is abelian (and hence amenable), we conclude that IntN (G)• is a closed
subgroup of an amenable group, and is therefore amenable. �

Proof of Corollary 7.2. By modding out L†
⊳ (see Corollary 6.8), there is

no harm in assuming that it is trivial, which means:

(∗) N does not contain any nontrivial normal subgroup L of G,
such that (G,L) has relative Property (T).
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Since N is a compactly generated, nilpotent group, it has a unique maximal
compact subgroup K (see Lemma 6.1). Then (G,K) has relative Property (T)
(since K is compact), and K ⊳ G (because of the uniqueness), so (∗) implies
that K is trivial. This means that N has no nontrivial compact subgroups.
So N is a 1-connected Lie group (see Corollary 6.4) (and, by assumption, N is
nilpotent).
All that remains is to show that IntN (G)• is amenable. By Lemma 7.4, we may
assume that G is a semidirect product H ⋉ N . Let A = N (1) ∩ Z(N). (Note
that A is a closed, connected, abelian, normal subgroup of G.) By induction
on the rank of N (and Corollary 7.3 for the base case where A is trivial, so N is
abelian), we may assume that N/A contains a closed, normal subgroup L′/A
of G/A, such that (G/A,L′/A) has relative Property (T), N/L′ is 1-connected,
and IntN/L′(G)• is amenable. From Corollary 1.6, we conclude that

(
G, (L′)(1)

)

has relative Property (T). So (∗) tells us that (L′)(1) is trivial, which means L′

is abelian. Also, since N is connected andN/L′ is 1-connected, we know that L′

is connected. Therefore, we may apply Corollary 7.3 to the semidirect product
G ⋉ L′ (and compare with (∗)), to conclude that IntL′(G)• is amenable. We
now know that IntN/L′(G)• and IntL′(G)• are amenable, so Lemma 7.6 tells
us that IntN (G)• is amenable, as desired. �

Remark 7.7. Assume G, N , and L† are as in Corollary 7.2.

(1) If N is connected, then L† is also connected. To see this from the
proof of Corollary 7.2, it suffices to note that the maximal subgroup K
must be connected, since N is homeomorphic to K ×Rn. (This is well
known for connected Lie groups and, in fact, was proved by Iwasawa
[13, Thm. 13, p. 549] for connected groups that are approximated by
Lie groups. Theorem 6.3 implies that every connected, locally compact
group can be so approximated.)

(2) If G is a semidirect product H ⋉ N , then the subgroup L† either is
compact, or projects nontrivially into N/N (1). To establish this, as-
sume, without loss of generality, that N is a 1-connected Lie group
(by modding out the maximal compact subgroup). If IntN (H)• is
amenable, then L† is trivial. (This is an easy generalization of (2 ⇒ 5)
of Corollary 5.4.) If not, then the Zariski closure of IntN (H)• has a
noncompact, semisimple subgroup M . Since M acts nontrivially on
the 1-connected, nilpotent group N , it is well known that M must act
nontrivially on N/N (1). So IntN/N(1)(G)• is not amenable. Therefore,

Corollary 7.2 tells us that L† is not contained in N (1).

Remark 7.8. The assumption that N/N◦ is compact cannot be deleted from
the statement of Corollary 7.2. (So a connectivity assumption is also necessary
in Corollary 7.3.) Here is a counterexample that is adapted from the proof of
[7, Prop. 2.2 (ii′ ⇒ i)].

Let α =
√
2, O = Z[α], Q(x1, x2, x3) = x2

1 + x2
2 + αx2

3, Γ = SO3(Q;O),
N = O3 ∼= Z6, G = Γ ⋉ N , and H = SO(3) ⋉ R3, and let π be the unitary
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representation of G obtained by composing the homomorphism

G = Γ⋉N →֒ SO(3)⋉R
3 = H

with the left-regular representation of H . Since H is amenable, π has almost-
invariant vectors. However, if L is any nontrivial subgroup ofN , then the image
of L in R3 is noncompact, so π has no nonzero L-invariant vector. Therefore,
L must be trivial if (G,L) has relative Property (T).
However, Restriction of Scalars embeds G as a lattice in

(
SO(3) ⋉ R3

)
×(

SO(2, 1)⋉R3
)
(cf. [19, §5.5]), so it is clear that IntN (G)• is not amenable.

Corollary 7.2 implies the following generalization of (1 ⇔ 5) of Corollary 5.4:

Corollary 7.9. Assume a topological group H acts on a locally compact,

nilpotent group N , such that N/N◦ is compact. Then (H ⋉N,N) has relative

Property (T ) if and only if there does not exist a closed, H-invariant, normal

subgroup L of N , such that N/L is a nontrivial, 1-connected Lie group, and

IntN/L(H)• is amenable.

Remark 7.10. Corollary 7.9 can be used to determine whether (H ⋉ N,N)
has relative Property (T), even if we replace the assumption that N/N◦ is
compact with the weaker assumption that N is compactly generated. This
is because the argument in the first paragraph of the proof of Corollary 5.6
constructs a 1-connected, nilpotent Lie group N1, such that (H ⋉ N,N) has
relative Property (T) if and only if (H ⋉N1, N1) has relative Property (T).

8. Relative Property (T) for subsets

As was mentioned in Remark 1.13, Y. Cornulier [5, p. 302] has generalized the
notion of relative Property (T) to pairs (G,H) in which H is a subset of G,
rather than a subgroup. We propose the following natural analogue for triples
(G,H,M) in which M is a subset:

Definition 8.1. Assume H is a closed subgroup of a topological group G, and
M is a subset of G.

(1) To say that the triple (G,H,M) has relative Property (T ) means that
for every ǫ > 0, there exist a compact subset Q of H and δ > 0, such
that every unitary representation of G with nonzero (Q, δ)-invariant
vectors also has nonzero (M, ǫ)-invariant vectors.

(2) To say that the triple (G,H,M) has relative Property (T ) with approx-

imation means that for every ǫ > 0, there exist a compact subset Q
of H and δ > 0, such that every (Q, δ)-invariant vector for any unitary
representation of G is also (M, ǫ)-invariant.

Remark 8.2. If H = G, and G is locally compact, then it follows from the
proof of [5, Thm. 2.2.3 (1 ⇔ 2)] that (1) and (2) of Definition 8.1 are equiv-
alent to each other, and to Cornulier’s definition of relative Property (T) for
the pair (G,M). Also, it is easy to see that Definition 8.1 is consistent with
Definitions 1.8 and 2.5 (because being (M, ǫ)-invariant is equivalent to being
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close to an M -invariant vector in the situation where M is a closed subgroup
of G [15, Lem. 2.2]).

Notation 8.3. For elements m1 and m2 of any group, we let

[m1,m2] = m−1
1 m−1

2 m1m2.

In our discussion of relative Property (T) for subsets, the following trivial
observation replaces Proposition 3.8 as a way to obtain almost-invariant vectors
for π from almost-invariant vectors for π ⊗Â π.

Lemma 8.4. Assume ρ is a unitary representation of a topological group G on

a Hilbert space H, m1,m2 ∈ G, ξ ∈ H, ξ′ = ξ ⊗ ξ ∈ H ⊗ H, and ρ′ = ρ ⊗ ρ.
Then

‖ρ
(
[m1,m2]

)
ξ − ξ‖ ≤ 2

(
‖ρ′(m1)ξ

′ − ξ′‖+ ‖ρ′(m2)ξ
′ − ξ′‖

)
.

Proof. For convenience, let ǫi = ‖ρ′(mi)ξ
′ − ξ′‖ (for i = 1, 2), and assume,

without loss of generality, that ‖ξ‖ = 1. For i = 1, 2, there exists a unique
λi ∈ C (with |λi| ≤ 1), such that

ρ(mi)ξ − λiξ ⊥ ξ.

To avoid some uncomfortably long expressions in the following sentence, let
vi = ρ(mi)ξ − λiξ, so vi ⊥ ξ. Then the three vectors

vi ⊗ ρ(mi)ξ, λiξ ⊗ vi, and ξ′

are pairwise orthogonal, so the Pythagorean Theorem tells us
∥∥ρ′(mi)ξ

′ − ξ′
∥∥2 =

∥∥vi ⊗ ρ(mi)ξ
∥∥2 +

∥∥λiξ ⊗ vi
∥∥2 +

∥∥(|λi|2 − 1
)
ξ′
∥∥2

≥
∥∥vi ⊗ ρ(mi)ξ

∥∥2

= ‖vi‖2,
which means

ǫi ≥ ‖ρ(mi)ξ − λiξ‖.
Therefore

‖ρ(m1m2)ξ − λ1λ2ξ‖ ≤
∥∥ρ(m1)

(
ρ(m2)ξ − λ2ξ

)∥∥+ ‖ρ(m1)(λ2ξ)− λ1λ2ξ‖
= ‖ρ(m2)ξ − λ2ξ‖+ |λ2| · ‖ρ(m1)ξ − λ1ξ‖
≤ ‖ρ(m2)ξ − λ2ξ‖+ ‖ρ(m1)ξ − λ1ξ‖
≤ ǫ2 + ǫ1.

Since the same is true after interchanging the subscripts 1 and 2 (and λ1λ2 =
λ2λ1), we conclude that

∥∥ρ
(
[m1,m2]

)
ξ − ξ

∥∥ = ‖ρ(m1m2)ξ − ρ(m2m1)ξ‖
≤ ‖ρ(m1m2)ξ − λ1λ2ξ‖+ ‖ρ(m2m1)ξ − λ1λ2ξ‖
≤ (ǫ2 + ǫ1) + (ǫ1 + ǫ2)

= 2(ǫ1 + ǫ2). �
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The following theorem is an analogue of Theorem 4.1 that does not require the
set M to be a subgroup.

Definition 8.5.

(1) A probability measure is a finite real positive Borel regular measure
that has been normalized to have total mass 1.

(2) We use the total variation norm ‖ · ‖ to provide a metric on the space
of probability measures (on any topological space).

(3) For a subset M of a group G, we let JM,MK = { [m1,m2] | m1,m2 ∈
M }.

Theorem 8.6. Let H be a closed subgroup of a locally compact group G, let

A be a closed, abelian, normal subgroup of G, and let M be a subset of G.

For every ǫ′ > 0, assume there exists δ′ > 0, such that if µ is any (M, δ′)-

invariant probability measure on Â that is quasi-invariant for the action of G,

then µ(ÂM ) ≥ 1− ǫ′, where ÂM is the set of fixed points of M . If HA is closed

and (G/A,HA/A,MA/A) has relative Property (T ) with approximation, then(
G,H, JM,MK

)
has relative Property (T ) with approximation.

Proof. This is adapted from the proof of Theorem 4.1. Given an arbitrary
ǫ > 0, choose ǫ′ > 0 small enough that if ξ is any ǫ′-invariant unit vector, and
‖ξ − η‖2 < ǫ′, then η is ǫ/4-invariant. Also, let δ′ be a value that corresponds
to this value of ǫ′ in the assumption in the statement of the theorem (and
assume δ′ < ǫ′/2). Since (G/A,HA/A,M/A) has relative Property (T) with
approximation (and HA is closed), there exist a compact subset Q of H and
δ > 0, such that if ξ is any (Q, δ)-invariant vector for any unitary representation
of G/A, then ξ is (M, δ′/2)-invariant.
Now, suppose π is a unitary representation of G, such that π has a nonzero
(Q, δ/3)-invariant vector f . (We wish to show that f is

(
[M,M ], ǫ

)
-invariant.)

By replacing π with the direct sum π ⊕ π ⊕ · · · of infinitely many copies of
itself, we may assume that all irreducible representations appearing in the
direct integral decomposition of π|A have the same multiplicity (namely, ∞).
By definition, this means that π|A is homogeneous, so Section 3A provides

a quasi-invariant probability measure µ on Â, a Borel cocycle α : G × Â →
U(H), a corresponding realization of π as a representation on the Hilbert space

L2(Â, µ;H), and a unitary representation π′ = π ⊗Â π of G.

Since π has been realized as a representation on L2(Â, µ;H), we know that

f ∈ L2(Â, µ;H). Then Proposition 3.6 provides a (Q, δ)-invariant unit vector f ′

for π′. By the choice of Q and δ (and Remark 3.5), we know that

f ′ is (M, δ′/2)-invariant.

Then it is straightforward to check that ‖f ′‖2 µ is an (M, δ′)-invariant measure

on Â. Also, by perturbing f slightly, we could assume that it is nonzero almost
everywhere, so f ′ is also nonzero almost everywhere. Then ‖f ′‖2 µ is quasi-
invariant for the G-action (because µ is quasi-invariant). By the choice of δ′,
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this implies that
∫
ÂM ‖f ′‖2 dµ > 1− ǫ′ (assuming that f ′ has been normalized

to be a unit vector in L2). Proposition 3.6 tells us

f ′(λ) =
1

‖f(λ)‖ f(λ)⊗ f(λ),

so ‖f ′(λ)‖ = ‖f(λ)‖ for all λ ∈ Â. This implies
∫

ÂM

‖f‖2 dµ =

∫

ÂM

‖f ′‖2 dµ > 1− ǫ′,

so
∥∥f |ÂM − f

∥∥ < ǫ′. This means that f is well approximated by a function

that is supported on ÂM , so, to simplify the argument, we will assume that f

itself is supported on ÂM .

For each fixed λ ∈ ÂM , the function α(m,λ) is a representation ρλ of M on H,

so M acts on L2(ÂM , µ;H⊗H) by
(
π′(m)f ′

)
(λ) = (ρλ ⊗ ρλ)(m)f ′(λ).

Therefore, we see from Lemma 8.4 that
∥∥π

(
[m1,m2]

)
f(λ)−f(λ)

∥∥ ≤ 2
(
‖π′(m1)f

′(λ)−f ′(λ)‖+‖π′(m2)f
′(λ)−f ′(λ)‖

)
.

Since this is true for all λ, we conclude that
∥∥π

(
[m1,m2]

)
f − f

∥∥
2
≤ 2

(
‖π′(m1)f

′ − f ′‖2 + ‖π′(m2)f
′ − f ′‖2

)

≤ 2

(
δ′

2
+

δ′

2

)
< ǫ. �

Theorem 8.6 immediately implies the following natural generalization of Corol-
lary 1.6, in which H is a subset, rather than a subgroup. (We do not need to
mention approximation, because Jolissaint’s proof of Theorem 2.3 shows that
relative Property (T) is equivalent to relative Property (T) with approximation
for all pairs (G,H), even if H is only a subset, not a subgroup.)

Corollary 8.7. Let A be a closed, abelian, normal subgroup of a locally com-

pact group G, and H be a subset of G that centralizes A. If (G/A,HA/A) has
relative Property (T ), then

(
G, JH,HK

)
has relative Property (T ).

9. Other observations about relative Property (T)

We close the paper with some tangential observations about relative Prop-
erty (T).

9A. Relative Property (T) for connected, normal, Lie subgroups.
If N is a connected Lie group, then, since the group U/US in the follow-
ing proposition is a connected, nilpotent Lie group, Corollary 7.9 determines
whether or not (H ⋉ N,N) has relative Property (T), without the need to
assume N is nilpotent.
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Proposition 9.1. Suppose a locally compact group H acts on a connected Lie

group N . Let S be the closure of the product of the noncompact simple factors

of a Levi subgroup of N , let U be the nilradical of N , and let

US = cl
(
[S,U ] · (S ∩ U)

)
.

Then (H ⋉N,N) has relative Property (T ) if and only if:

(1) S has Kazhdan’s Property (T ),
(2) N/cl(SU) is compact, and

(3)
(
H ⋉ (U/US), U/US

)
has relative Property (T ).

Proof. (⇒) The adjoint group AdS is a quotient of N , so (H ⋉ AdS,AdS)
has relative Property (T). However, AdS is a connected, semisimple Lie group,
so its outer automorphism group is finite. Therefore, we may assume that H
acts on AdS by inner automorphisms (after replacing H with a finite-index
subgroup). This implies that

H ⋉AdS = CH⋉Ad S(S) · AdS ∼= H ×AdS.

So we now know that (H ×AdS,AdS) has relative Property (T). This implies
that AdS has Kazhdan’s Property (T). Then (1) follows from Corollary 1.6
(or the special case proved by J.–P. Serre that is mentioned in Remark 1.7).
By definition, S is contained in the closure of some Levi subgroup S+ of N .
Since the pair

(
H ⋉ N/(S+U), N/(S+U)

)
has relative Property (T), and the

structure theory of Lie groups tells us that Aut(N) acts on N/(S+U) via a
finite group, we see that N/(S+U) is compact. Since S+/S is compact (by the
definition of S), this implies (2).
Since (H⋉N,N) has relative Property (T), (2) implies that

(
H⋉SU, SU

)
has

relative Property (T) (see [15, Cor. 4.1(2)]). Passing to a quotient yields (3).

(⇐) Suppose π is a unitary representation of H ⋉N that has almost-invariant
vectors. We wish to show that N has invariant vectors. By induction on dimN
(and Theorem 2.3), we may assume that no nontrivial, connected, H-invariant,
normal subgroup of N has nonzero invariant vectors.
Therefore, Corollary 6.7 implies that there is no nontrivial, connected sub-
group U0 of U , such that (H ⋉N,U0) has relative Property (T). So U has no
nontrivial, compact subgroups, and is therefore 1-connected (see Corollary 6.4).
Then Corollary 7.2 implies that S centralizes U . So S ⊳ H ⋉N . However, we
see from (1) that (H ⋉N,S) has relative Property (T). So the assumption of
the previous paragraph implies that S is trivial. Then US is obviously also
trivial. So U/US = U = SU . Therefore, (3) tells us that

(
H ⋉ (SU), SU

)
has

relative Property (T). Then the assumption of the previous paragraph implies
that SU is trivial. Therefore, (2) tells us that N is compact, so (H ⋉ N,N)
has relative Property (T), as desired. �

Remark 9.2. The proof of Proposition 9.1 yields the following general result
(which is slightly weaker than Proposition 9.1 in the special case where G is a
semidirect product):
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Suppose N is a closed, normal subgroup of a locally compact group G, such that

N is a connected Lie group. Define S, U , and US as in Proposition 9.1. Then

(G,N) has relative Property (T ) if and only if:

(1) S has Kazhdan’s Property (T ),
(2) N/cl(SU) is compact, and

(3) (G/US , U/US) has relative Property (T ).

Stronger results were already known in the special case where G is a connected
Lie group. (See, for example, [5, Cor. 3.3.2].)

9B. Relative Property (T) for solvable subgroups. In the statement
of Theorem 1.2, the assumption that N is nilpotent cannot be replaced with
the weaker assumption that N is solvable. (For example, let G = N be a
noncompact, solvable group, such that G/G(1) is compact.) However, it would
suffice to assume that N is a connected, real split, solvable Lie group (see
Remark 4.2(2)). Also, we have the following easy consequence of Theorem 1.2
that applies to some other solvable groups.

Notation 9.3. If N is a locally compact group, then

N (2) = (N (1))(1) = cl
([
[N,N ], [N,N ]

])

is the closure of the second derived group of N .

Corollary 9.4. Let N be a closed, normal subgroup of a locally compact

group G, such that N (1) is nilpotent. Then (G,N) has relative Property (T ) if
and only if (G/N (2), N/N (2)) has relative Property (T ).

For example, every virtually polycyclic group has a (characteristic) finite-index
subgroup whose commutator subgroup is nilpotent (see [23, Cor. 4.11, p. 59]).
Here is another example:

Corollary 9.5. Let N be a connected, closed, solvable, normal subgroup of a

locally compact group G. Then (G,N) has relative Property (T ) if and only if

(G/N (2), N/N (2)) has relative Property (T ).

Proof. It is well known that the assumptions onN imply thatN (1) has a unique
maximal compact subgroup C1, and that N (1)/C1 is nilpotent. So the desired
conclusion is obtained by applying Corollary 9.4 to the pair (G/C1, N/C1). �

9C. Homomorphisms with a dense image. The following corollary gener-
alizes a result of Y. Cornulier and R. Tessera [6, Cor. 2].

Corollary 9.6. Let H, N , and H1 be locally compact groups. Assume N is

nilpotent, H acts on N , and we are given a homomorphism H1 → H with dense

image. Then (H ⋉N,N) has relative Property (T ) if and only if (H1 ⋉N,N)
has relative Property (T ).
Moreover, if (H ⋉ N,N) has relative Property (T ), then there is a finitely

generated group Γ and a homomorphism Γ → H, such that (Γ ⋉ N,N) has

relative Property (T ).
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Proof. In the case where N is abelian, this is [6, Cor. 2]. The general case
follows from this by applying Theorem 1.2. �

If we assume that N is a connected Lie group, then the assumption that N is
nilpotent can be eliminated:

Corollary 9.7. Let H and H1 be locally compact groups, and let N be a

connected Lie group. Assume H acts on N , and we are given a homomorphism

H1 → H with dense image. Then (H ⋉N,N) has relative Property (T ) if and
only if (H1 ⋉N,N) has relative Property (T ).
Moreover, if (H ⋉ N,N) has relative Property (T ), then there is a finitely

generated group Γ and a homomorphism Γ → H, such that (Γ ⋉ N,N) has

relative Property (T ).

Proof. Proposition 9.1 reduces the problem to the case where N is nilpotent,
which is handled by Corollary 9.6. �

If we assume that N is a 1-connected Lie group, then Corollary 9.6 can be
extended to triples, and does not require H or H1 to be locally compact:

Corollary 9.8. Let H and H1 be topological groups, and let N be a 1-
connected, nilpotent Lie group. Assume H acts on N , and we are given a

homomorphism H1 → H with dense image. Then the following are equivalent:

(1) (H ⋉N,N) has relative Property (T ).
(2) (H1 ⋉N,N) has relative Property (T ).
(3) (H ⋉N,H,N) has relative Property (T ).
(4) (H1 ⋉N,H1, N) has relative Property (T ).

Moreover, if these conditions hold, then there is a finitely generated group Γ
and a homomorphism Γ → H, such that (Γ ⋉ N,N) and (Γ ⋉ N,Γ, N) have

relative Property (T ).

Proof. A closed subgroup of N is H-invariant if and only if it is H1-invariant,
so the equivalence of the four conditions follows from Corollary 5.4. The final
conclusion follows from Corollary 5.4(6). �

9D. An observation on the center. Although we are mostly interested
in the abelianization of a nilpotent subgroup H , we also record the following
observation regarding the opposite end of a central series of H .

Corollary 9.9. Let H be a nilpotent subgroup of a locally compact group G.

If there is a nontrivial subgroup L of H, such that (G,L) has relative Prop-

erty (T ), then there is a nontrivial subgroup Z of the center of H, such that

(G,Z) has relative Property (T ).

Proof. Consider the ascending central series of H :

{e} = Z0 ⊂ Z1 ⊂ · · · ⊂ Zc = H.

Let k be minimal, such that (G,L) has relative Property (T), for some closed,
nontrivial subgroup L of Zk. We may assume L 6⊆ Z(H), so there is some i
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(which we choose to be minimal), such that [L,Zi] 6= {e}. Choose h ∈ Zi,
such that [L, h] 6= {e}. Then [L, h] ⊆ [H,Zi] ⊆ Zi−1, so the minimality of i
implies that [L, h] centralizes L. Therefore [ℓ1ℓ2, h] = [ℓ1, h] [ℓ2, h] for ℓ1, ℓ2 ∈ L,
so [L, h] is a subgroup. Also, [L, h] ⊆ L · hLh−1 has relative Property (T)
by Lemma 6.5. Since {e} 6= [L, h] ⊆ [Zk, H ] ⊆ Zk−1, this contradicts the
minimality of k. �

Remark 9.10. The proof of Corollary 9.9 establishes the following general
fact about subgroups of a nilpotent group: If L is a nontrivial subgroup of a
nilpotent group H , then there exist finitely many conjugates of L, such that
the product of these conjugates contains a nontrivial subgroup of the center
of H .
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