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1 Introduction

Let K be a complete discrete valuation field of mixed characteristics (0, p) with
perfect residue field k. Let K be an algebraic closure of K and G := Gal(K/K)
the absolute Galois group of K. Let e be the absolute ramification index of
K and r ≥ 0 an integer. It is known that to classify G-stable lattices in semi-
stable or crystalline representations by some linear data is one of the powerful
tools for studies of various interesting problems such as Langlands correspon-
dence. For this, the theory of Kisin modules, provided in [Kis], is very use-
ful. Based on Kisin’s theory, Liu [Li2] constructed a theory of (ϕ, Ĝ)-modules,
which gives a categorical equivalence between them and a category of G-stable
lattices in semi-stable representations with certain Hodge-Tate weights. One
of the advantages of Liu’s theory is that there are no restriction on e and
r in his theory. Throughout Kisin and Liu’s theory, the non-Galois “Kum-
mer” extension K∞/K, obtained by adjoining a given compatible system of
p-power roots of a uniformizer of K, plays a central role. Recently, Cais
and Liu [CL] generalized Kisin’s theory to the setting of many f -iterate ex-
tension Kπ/K. Here, the f -iterate extension Kπ/K that we consider is de-
fined as follows. Let f(u) = up + ap−1u

p−1 + · · · + a1u ∈ Zp[u] such that
f(u) ≡ up mod pZp[u]. We fix the choice of a uniformizer π0 = π of K and
{πn}n≥0 such that f(πn+1) = πn. Then we set Kπ :=

⋃
n≥0 K(πn). Thus

Kisin’s theory is the case where f(u) = up.
The aim of this paper is to establish the theory of “crystalline” (ϕ, Ĝ)-modules
under the Cais-Liu’s setting, and apply it to a study of torsion crystalline repre-
sentations. In Section 3.2, following [Li2], we define a notion of (ϕ, Ĝ)-modules
of height r. We show in Theorem 3.7 that, under some mild assumptions, there
exists an anti-equivalence between the category of (ϕ, Ĝ)-modules of height r
(with an additional condition) and the category of G-stable lattices in crys-
talline Qp-representations with Hodge-Tate weights in [0, r].
As a consequence of our arguments, we can prove a full faithfulness theorem on
torsion crystalline representations. Let Repr,cristor (G) be the category of torsion
crystalline representations of G with Hodge-Tate weights in [0, r]. Here, a
torsion Zp-representation T is torsion crystalline with Hodge-Tate weights in
[0, r] if T is a quotient of lattices in a crystalline Qp-representation with Hodge-
Tate weights in [0, r]. It is well-known that the condition that T is torsion
crystalline with Hodge-Tate weights in [0, 1] is equivalent to the condition that
T is flat in the sense that T is of the form H(K) where H is a finite flat group
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scheme over OK killed by some power of p. The theorem below is a torsion
analogue of Theorem 1.0.2 of [CL].

Theorem 1.1 (= Theorems 4.1 and 4.2). Under some technical assumptions

(see Theorems 4.1 and 4.2 for details), the restriction functor Repr,cristor (G) →
Reptor(Gπ) is fully faithful if e(r − 1) < p− 1.

In the case f(u) = up, this is Theorem 1.2 of [Oz2]. In this case, previous results
have been given by some mathematicians. The theorem was first studied by
Breuil for e = 1 and r < p − 1 via the Fontaine-Laffaille theory ([Br1], the
proof of Théorèm 5.2). He also proved the theorem for p > 2 and r ≤ 1 as
a consequence of a study of the category of finite flat group schemes ([Br2,
Theorem 3.4.3]). Later, his result was extended to the case p = 2 in [Kim],
[La], [Li3] (proved independently). Based on studies of ramification bounds for
torsion crystalline representations, Abrashkin proved the theorem in the case
[K : Qp] <∞, e = 1, p > 2 and r < p ([Ab, Section 8.3.3]).

On the other hand, our arguments give an affirmative answer to a conjecture
suggested in [CL, Remark 5.2.3 and Section 6.3] (in the case where “F = Qp”).
Let T be a G-stable lattice in a crystalline Qp-representation with Hodge-Tate
weights in [0, r]. Cais-Liu constructed a Kisin module M which corresponds
to T |Gπ

, where Gπ is the absolute Galois group of Kπ. This Kisin module M
depends on the choice of (f(u), (πn)n≥0). If we select another choice of (f

′(u),
(π′

n)n≥0), then we obtain a different Kisin module M′. It seems natural to ask
for the relationship between M and M′. For this, we show1

Theorem 1.2 (= Corollary 3.22 and Theorem 3.24). Let the notation be as
above. Assume vp(a1) > max{r, 1}. Furthermore, we assume the condition
(P ) (cf. Section 3.2) if r > 1. Then the Kisin modules M and M′ become
isomorphic after base change to W (R).

Now we consider the case r = 1. In this case, Cais-Liu showed in [CL, Theorem
5.0.10] that there exists an anti-equivalence of categories between the category
of Kisin modules of height 1 and the category of p-divisible groups over the
ring of integers OK of K. On the other hand, in the classical Kisin’s setting
f(u) = up, relationships between Kisin modules of height 1 and Dieudonné
crystals are well-studied (cf. [Kis]). Combining these facts with the above
theorem, we obtain a geometric interpretation of Kisin modules of height 1 for
the Cais-Liu’s setting.

Corollary 1.3 (= Corollary 3.26). Assume vp(a1) > 1. Let H be a p-divisible
group over OK and D(H) be the Dieudonné crystal attached to H. Let M
be the Kisin module attached to H. Then there is a functorial isomorphism
Acris ⊗S ϕ∗M ≃ D(H)(Acris).

1We should note that the anonymous referee pointed out that Theorem 1.2 holds if we
replace the assumptions “vp(a1) > max{r, 1} and (P )” with only one assumption “vp(a1) >
1” (see Section 3.7).
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Notation : For any topological group H , a free Zp-representation of H (resp.
a Qp-representation of H) is a finitely generated free Zp-module equipped with
a continuous Zp-linear H-action (resp. a finite dimensional Qp-vector space
equipped with a continuous Qp-linear H-action). We denote by RepZp

(H)
(resp. RepQp

(H)) the category of them.
For any ring extension A ⊂ B and any A-linear morphism of A-modules
f : M → N , we often abuse notations by writing f : B ⊗A M → B ⊗A N
for the B-linear extension of f .

2 Preliminary

In this section, we define some basic notation, and we recall some results on
iterate extensions given in [CL]. A lot of arguments in this section are deeply
depending on [Li1, Sections 2 and 3]. It will be helpful for the reader to refer
this reference.

2.1 Basic notation

Let p ≥ 2 be a prime number. Let K be a complete discrete valuation field
of mixed characteristics (0, p) with perfect residue field k. We denote by e the
absolute ramification index of K. Let K be an algebraic closure of K and
OK the integer ring of K. We denote by vp the valuation of K normalized
by vp(p) = 1. We set G := Gal(K/K), the absolute Galois group of K. We
denote by K0 the field W (k)[1/p], which is the maximal absolutely unramified
subfield of K.
We fix a uniformizer π of K and fix the choice of a system (πn)n≥0, where
π0 = π and f(πn+1) = πn for any n ≥ 0. We also fix a polynomial f(u) =∑p

i=1 aiu
i = up+ap−1u

p−1+ · · ·+a1u ∈ Zp[u] which satisfies f(u) ≡ up mod p.
By an easy computation of the Newton polygon of f(u) − πn−1, we see that
vp(πn) = 1/(epn) for any n ≥ 0. We denote by E(u) the minimal polynomial
of π over K0.
Let R = lim

←−
OK/p, where the transition maps are given by the p-th power map.

This is a complete valuation ring with residue field k. Let vR be a valuation ofR
given by vR(x) := limn→∞ vp(x̂

pn

n ) for x = (xn)n≥0 ∈ R, where x̂n ∈ OK is any

lift of xn. LetmR be the maximal ideal ofR and setm≥c
R := {x ∈ R | vR(x) ≥ c}

for any real number c ≥ 0. We set π := (πn mod pOK)n≥0 ∈ R. Note
that vR(π) = 1/e. By [CL, Lemma 2.2.1], there exists a unique set-theoretic
section {·}f : R→ W (R) to the reduction modulo p which satisfies ϕ({x}f ) =
f({x}f ) for all x ∈ R. The embedding W (k)[u] →֒W (R), given by u 7→ {π}f ,
extends to a unique W (k)-algebra embedding S := W (k)[[u]] →֒W (R). By this
embedding, we identifyS with a ϕ-stableW (k)-subalgebra ofW (R). LetOE be
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the p-adic completion of S[1/u]. This is a complete discrete valuation ring with
residue field k((u)). Note that p is a uniformizer of OE . Let E be the fraction
field of OE . Then the embedding S →֒ W (R) extends to OE →֒ W (FrR) and
E →֒ W (FrR)[1/p]. We denote by Eur the p-adic completion of the maximal
unramified algebraic extension of E , and denote by Our the integer ring of Eur.
We may regard Eur and Our as ϕ-stable subrings of W (FrR)[1/p] and W (FrR),
respectively. We put Sur = Our ∩W (R).
We set Kπ :=

⋃
n≥0 K(πn) and denote by Gπ the absolute Galois group of Kπ.

The extensionKπ/K is totally wildly ramified. Furthermore, it is shown in [CL,
Lemmas 3.1.1 and 3.2.1] that the extension Kπ/K is strictly APF in the sense
of [Wi], and the Gπ-action on R induces an isomorphismGπ ≃ Gk((π)) = Gk((u)).
Note that Gπ-action on W (FrR)[1/p] preserves Eur and Our, and Gπ acts on E
and OE trivial.
Let ν : W (R) ։ W (k) be the canonical projection induced by the projection
R ։ k, which extends to a map ν : B+

cris →W (k)[1/p]. Here, B+
cris is the usual

p-adic period ring of Fontaine (see [Fo2] for various p-adic period rings). For
any subring A of B+

cris, we set FiliA := A ∩ FiliB+
cris. We also set

I+A := A ∩ ker ν and

I [1]A := {x ∈ A | ϕn(x) ∈ Fil1A for any n ≥ 0}.

Note that we have I+A ⊃ I [1]A.

2.2 Étale ϕ-modules and Kisin modules

Let ModOE
(resp. ModOE,∞

) be the category of finite free ϕ-modules M over
OE (resp. of finite type ϕ-modules M over OE killed by a power of p) whose
OE -linearization 1⊗ ϕ : OE ⊗ϕ,OE

M →M is an isomorphism. We call objects
of these categories étale ϕ-modules.
We define a Zp-representation of Gπ for any étale ϕ-module M by

TOE
(M) :=

{
HomOE ,ϕ(M,Our) if M ∈ModOE

,
HomOE ,ϕ(M,Qp/Zp ⊗Zp

Our) if M ∈ ModOE,∞
.

Here, the Gπ-action on TOE
(M) is given by (g.f)(x) := g(f(x)) for

f ∈ TOE
(M), g ∈ Gπ and x ∈ M . Then we have a contravariant func-

tor TOE
: ModOE

→ RepZp
(Gπ) and TOE

: ModOE,∞
→ ReptorZp

(Gπ). By
[CL, Corollary 3.2.3], these two functors give equivalences of categories
ModOE

≃ RepZp
(Gπ) and ModOE,∞

≃ Reptor
Zp

(Gπ).

For any integer r ≥ 0, we denote by ′ModrS the category of finite type ϕ-
modules M over S which are of height r in the sense that the cokernel of the
S-linearization 1⊗ϕM : S⊗ϕ,SM→M of ϕM is killed by E(u)r. A ϕ-modules
M is p′-torsion free if, for any non-zero element x ∈M, AnnS(x) is 0 or pnS
for some n. If M is killed by some power of p, then we can check that M is
p′-torsion free if and only if M is u-torsion free. We denote by ModrS the full
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subcategory of ′ModrS consisting of those objects which are finite and free over
S. We also denote by ModrS∞

the full subcategory of ′ModrS consisting of
those objects which are p′-torsion and killed by a power of p. We call objects
of ModrS or ModrS∞

free Kisin modules or torsion Kisin modules, respectively.
If M is a Kisin module, then one can check that OE⊗SM is an étale ϕ-module.
We describe standard linear algebraic properties of Kisin modules.

Proposition 2.1. Let 0 → M′ → M → M′′ → 0 be an exact sequence of
ϕ-modules over S. If M′,M and M′′ are of finite type and p′-torsion free and
M is of height r, then M′ and M are of height r.

Proof. See Propositions B. 1.3.3 and B. 1.3.5 of [Fo1].

Proposition 2.2. Let M ∈ ′ModrS be killed by a power of p. Then the following
are equivalent.

(1) M ∈ModrS∞
,

(2) the natural map M→ OE ⊗S M is injective,

(3) there exists an increasing sequence

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M

of ϕ-modules over S such that, for each i, Mi/Mi−1 is finite free over
k[[u]] and Mi/Mi−1 ∈ ′ModrS,

(4) M is a quotient of two finite free S-modules N′ and N′′ with N′,N′′ ∈
ModrS.

Moreover, if this is the case, Mi and Mi/Mi−1 are objects of ModrS∞
for each

i.

Proof. The same proof as [Li1, Proposition 2.3.2] proceeds.

Corollary 2.3. Let A be a p-torsion free S-algebra and M a Kisin module.
Then we have TorS1 (M, A) = 0. In particular, the functor from the category of
Kisin modules to the category of A-modules defined by M 7→ A⊗S M is exact.

Proof. By Proposition 2.2 and dévissage argument, we can reduce a proof to
the case whereM is killed by a power of p. In this case, M is a free k[[u]]-module
of finite rank. Thus it suffices to show TorS1 (k[[u]], A) = 0. This equality in fact
follows from the assumption that A is p-torsion free.

By this proposition, the following corollaries immediately follow:

Corollary 2.4. Let M be a Kisin module. Let A ⊂ B be a ring extension of
p-torsion free S-algebras such that the natural map A/pA→ B/pB is injective.
Then the natural map A⊗S M→ B ⊗S M is injective.
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Corollary 2.5. Let M be a Kisin module and N a ϕ-module over S with
M ⊂ N. Let S ⊂ A ⊂ W (FrR) be ring extensions. Suppose that such that the
natural map A/pA→ FrR is injective.
(1) The natural map A⊗S M→ A⊗S N is injective.
(2) If A is ϕ-stable, then the natural map A⊗ϕ,S M→ A⊗ϕ,S N is injective.

We define a Zp-representation of Gπ for any Kisin module M by

TS(M) :=

{
HomS,ϕ(M,Sur) if M ∈ModrS,

HomS,ϕ(M,Qp/Zp ⊗Zp
Sur) if M ∈ ModrS∞

.

Here, the Gπ-action on TS(M) is given by (g.f)(x) := g(f(x)) for f ∈ TS(M),
g ∈ Gπ and x ∈ M. If M is a Kisin module, then M := OE ⊗S M is an étale
ϕ-module.

Proposition 2.6. (1) Let M be a Kisin module and put M = OE⊗SM. Then,
we have a canonical isomorphism TS(M) ≃ TOE

(M) of Zp[Gπ]-modules.
(2) Let M be a free (resp. torsion) Kisin module. Then the inclusion Sur →֒
W (R) induces a natural isomorphism TS(M) ≃ HomS,ϕ(M,W (R)) (resp.
TS(M) ≃ HomS,ϕ(M,Qp/Zp ⊗Zp

W (R))) of Zp[Gπ ]-modules.
(3) Assume that ϕn(f(u)/u) is not a power of E(u) for any n ≥ 0. Then the
contravariant functor TS : ModrS → RepZp

(Gπ) is fully faithful.
(4) The contravariant functors TS : ModrS → RepZp

(Gπ) and TS : ModrS∞
→

Reptor(Gπ) are exact and faithful.

Proof. Assertions (1) and (2) for free Kisin modules are [CL, Proposition 3.3.1],
and a proof for the torsion case is essentially the same. For this, the proof
of [Li1, Corollary 2.2.2] is helpful for the readers. The assertion (3) is [CL,
Proposition 3.3.5]. To show (4), it suffices to show that ModrS → ModOE

and
ModrS∞

→ ModOE,∞
given by M → OE ⊗S M are exact and faithful. The

exactness follows from the fact that the inclusion map S → OE is flat. The
faithfulness follows from Proposition 2.2 (2) or Corollary 2.4.

Let Repr,cristor (G) be the category of torsion crystalline representations of G with
Hodge-Tate weights in [0, r]. Here, a torsion Zp-representation T is torsion
crystalline with Hodge-Tate weights in [0, r] if T is a quotient of lattices in a
crystalline Qp-representation with Hodge-Tate weights in [0, r]. The following
is the main results of Section 5 of [CL].

Theorem 2.7 ([CL], Theorem 1.0.3). Assume vp(a1) > 1. Then there exists an
anti-equivalence of categories between the category Mod1S of free Kisin modules
of height 1 and the category (p−div/OK

) of p-divisible groups over the ring
of integers OK of K. If M is a free Kisin module of height 1, then the Gπ-
action on TS(M) naturally extends to G. This induces an anti-equivalence of

categories between Mod1S and Rep1,crisZp
(G). Moreover, the following diagram is

commutative:
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(p−div/OK
)

≃ //

≃

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

Tp ''◆◆
◆◆

◆◆
◆◆

◆◆
◆

Mod1S

TSyysss
ss
ss
ss
s

≃

yysss
ss
ss
ss
s

Rep1,crisZp
(G)

Assume that vp(a1) > 1. Let S(1) be the free Kisin module of rank 1 corre-
sponding to Zp(1) via Theorem 2.7. Let e(1) be a generator of S(1). By [CL,
Lemma 5.2.1 (2)], we have ϕ(e(1)) = µ0E(u)e(1) for some µ0 ∈ S×.

Cartier duality. Here we give a Cartier duality theorem for étale ϕ-modules
and Kisin modules. Since arguments here are completely the same as [Li1,
Section 3.1], we only give a brief sketch here. We fix an integer r ≥ 0. A
lot of notion in this subsection depend on the choice of r but we omit it from
subscripts for an abbreviation.
Assume that vp(a1) > 1. Let µ0 ∈ S× be as in the previous section. Let S∨

be the free Kisin module of rank 1 such that ϕ(e) = (µ0E(u))re. Here e is a
generator of S∨. (Clearly, we have S∨ = S(1) if r = 1.) We see that S∨ is of
height r. We set O∨

E := OE ⊗S S∨, which is an étale ϕ-module. Note that we
have isomorphisms TOE

(O∨
E ) ≃ TS(S

∨) ≃ Zp(r). For any Kisin module M, we
define an S-module M∨ by

M∨ :=

{
HomS(M,S) if M ∈ModrS,
HomS(M,S∞) if M ∈ModrS∞

.

For any étale ϕ-module M , we define an OE -module M∨ by

M∨ :=

{
HomOE

(M,OE) if M ∈ModOE
,

HomOE
(M,OE,∞) if M ∈ModOE,∞

.

We then have canonical parings

〈·, ·〉 : M×M∨ → S∨ if M ∈ModrS,

〈·, ·〉 : M×M∨ → S∨
∞ if M ∈ModrS∞

and

〈·, ·〉 : M ×M∨ → O∨
E if M ∈ModOE

,

〈·, ·〉 : M ×M∨ → O∨
E,∞ if M ∈ModOE,∞

.

Proposition 2.8. Assume that vp(a1) > 1.
(1) There exist a unique ϕ-semi-linear map ϕM∨ : M∨ → M∨ which satisfies
the following:

(a) (M∨, ϕM∨) is an étale ϕ-module,

(b) ϕM∨ is compatible with the pairing 〈·, ·〉 for M ,
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(c) TOE
(M∨) ≃ TOE

(M)∨(r).

(2) Suppose that M = OE ⊗S M. There exist a unique ϕ-semi-linear map
ϕM∨ : M∨ →M∨ which satisfies the following:

(a) (M∨, ϕM∨) is a Kisin module of height r,

(b) ϕM∨ = 1 ⊗ ϕM∨ . In particular, ϕM∨ is compatible with the pairing 〈·, ·〉
for M,

(c) TS(M
∨) ≃ TS(M)∨(r).

Proof. The same proof as [Li1, Section 3.1] proceeds.

Comparison morphism of Kisin modules. We define a comparison mor-
phism between Kisin modules and their representations. Precise arguments are
given in [Li1, Section 3.2].
Let M be a Kisin module of height r. We define a W (R)-linear map
ιS : W (R)⊗S M→W (R)⊗Zp

TS(M)∨ by the composite

W (R)⊗S M→ HomZp
(TS(M),W (R)) ≃W (R)⊗Zp

TS(M)∨,

where the first map is given by x 7→ (f 7→ f(x)) and the second is the natural
map. It is not difficult to check that ιS is ϕ-equivalent and Gπ-equivalent.
Assume that vp(a1) > 1. Take any generator f of TS(S(1)) and set t :=
f(e(1)) ∈W (R). Since f is compatible with ϕ and is a generator of TS(S(1)),
we see

ϕ(t) = µ0E(u)t and t ∈ W (R)r pW (R).

Such t is unique up to multiplication by Z×
p and is independent of the choice

of f .

Proposition 2.9. Assume that vp(a1) > 1. There exist natural W (R)-linear
morphisms

ιS : W (R)⊗S M→W (R)⊗Zp
TS(M)∨

and
ι∨S : W (R)∨ ⊗Zp

TS(M)∨ →W (R)(−r) ⊗S M

which satisfy the following:

(1) ιS and ι∨S are ϕ-equivalent and Gπ-equivalent.

(2) If we identify W (R)∨ = W (R)(−r) = W (R), then we have ι∨S ◦ ιS =
tr ⊗ IdM and ιS ◦ ι

∨
S = tr ⊗ IdTS(M)∨ .

Proof. The proof is completely the same as that of [Li1, Theorem 3.2.2].

Corollary 2.10. Assume that vp(a1) > 1. The maps ιS and ι∨S are injective,
and we have tr(W (R) ⊗Zp

TS(M)∨) ⊂ Im(ιS) and tr(W (R)(−r) ⊗S M) ⊂
Im(ι∨S).
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3 Lattices in crystalline representations

In this section, we study Galois actions on Kisin modules which corresponds
to crystalline representations. It gives an anti-equivalence between a category
of Kisin modules with certain Galois actions and a category of lattices in crys-
talline representations with some Hodge-Tate weights.

3.1 (ϕ, Ĝ)-modules

Let K̂π/K be the Galois closure of the extension Kπ/K and put Ĝ =

Gal(K/K̂π). Following [CL], we set Oα := S[[E(u)p

p ]][1/p] ⊂ B+
cris. It is not

difficult to check I+Oα = uOα and Oα/I+Oα ≃ K0. We note that we have

S[[E(u)p

p ]] = S[[u
ep

p ]] ⊂ Acris and S[[E(u)p

p ]] is p-adically complete and ϕ-stable.

In the rest of this paper, we fix the choice of a K0-subalgebra RK0 of B+
cris

which satisfies the following properties:

• Oα ⊂ RK0 and ν(RK0) = K0,

• RK0 ⊂ B+
cris is stable under ϕ and G-actions, and

• the G-action on RK0 factors through Ĝ.

Remark 3.1. (1) Such RK0 exists. In fact, the K0-subalgebra of B+
cris gener-

ated by {gx | g ∈ G, x ∈ Oα} satisfies all the desired properties.

(2) In the classical setting f(u) = up, an explicitly described RK0 has been
considered. For this, see [Li2].

We set R̂ := RK0 ∩ W (R). By definition, we see that R̂ ⊂ W (R) is stable

under ϕ and G-actions, the G-action on R̂ factors through Ĝ, and the map ν
induces isomorphisms RK0/I+RK0 ≃ K0 and R̂/I+R̂ ≃W (k).

Definition 3.2. A (ϕ, Ĝ)-module (of height r) is a triple M̂ = (M, ϕ, Ĝ) where

(1) (M, ϕ) is a free Kisin module M of height r,

(2) Ĝ is an R̂-semi-linear continuous2 Ĝ-action on R̂ ⊗ϕ,S M,

(3) the Ĝ-action on R̂ ⊗ϕ,S M commutes with ϕ
R̂
⊗ ϕM, and

(4) ϕ∗M ⊂ (R̂ ⊗ϕ,S M)Gπ .

We denote by Modr,ĜS the category of (ϕ, Ĝ)-modules of height r.

2This means that the G-action on W (R) ⊗
R̂

(R̂ ⊗ϕ,S M) = W (R) ⊗ϕ,S M induced by

the Ĝ-action on R̂ ⊗ϕ,S M is continuous with respect to the weak topology of W (R).
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We define a Zp-representation T̂ (M̂) of G for any (ϕ, Ĝ)-module M̂ by

T̂ (M̂) := Hom
R̂,ϕ(R̂ ⊗ϕ,S M,W (R)).

Here, the G-action on T̂ (M̂) is given by (g.f)(x) := g(f(g−1(x))) for f ∈ T̂ (M̂),

g ∈ G and x ∈ R̂⊗ϕ,SM. Note that we have a natural isomorphism of Zp[Gπ]-
modules

θ : TS(M)
∼
−→ T̂ (M̂)

given by θ(f)(a ⊗ x) := aϕ(f(x)) for f ∈ TS(M̂), a ∈ R̂ and x ∈ M (see the

proof of [Li2, Theorem 2.3.1 (1)]). In particular, T̂ (M̂) is a free Zp-module of
rank d, where d := rankSM. Hence we obtain a contravariant functor

T̂ : Modr,ĜS → RepZp
(G).

Note also that we have a canonical isomorphism T̂ (M̂) ≃
HomW (R),ϕ(W (R)⊗ϕ,S M,W (R)).

Following [CL], we set B̃α := W (R)[[E(u)p

p ]][1/p] = W (R)[[u
pe

p ]][1/p], which is a

subring of B+
cris, stable under ϕ and GK -actions.

Definition 3.3. (1) We denote by ′Modr,Ĝ,cris
S the full subcategory of Modr,ĜS

consisting of objects M̂ which satisfy the following condition: For any g ∈ Ĝ
and x ∈M, we have

g(1⊗ x)− (1 ⊗ x) ∈ ϕ(gu− u)B̃α ⊗ϕ,S M.

(Note that, if this is the case, g(1⊗ x)− (1⊗ x) is in fact contained in ϕ(gu−
u)B̃α⊗ϕ,SM∩ I [1]W (R)⊗ϕ,SM since we have ϕ(gu− u) ∈ I [1]W (R) by [CL,
Lemma 2.3.2].)

(2) We denote by Modr,Ĝ,cris
S the full subcategory of Modr,ĜS consisting of ob-

jects M̂ which satisfy the following condition: For any g ∈ Ĝ and x ∈ M, we
have

g(1⊗ x) − (1⊗ x) ∈ ϕ(gu− u)B+
cris ⊗ϕ,S M.

(Note that, if this is the case, g(1⊗ x)− (1⊗ x) is in fact contained in ϕ(gu−
u)B+

cris ⊗ϕ,S M ∩ I [1]W (R) ⊗ϕ,S M since we have ϕ(gu − u) ∈ I [1]W (R) by
[CL, Lemma 2.3.2].)

By definition, the category ′Modr,Ĝ,cris
S is a full subcategory of Modr,Ĝ,cris

S .

Remark 3.4. To understand (ϕ, Ĝ)-module, it is very important to study the
structure of the Galois group Ĝ and to find a “good choice” of RK0 . In the
classical Kisin’s setting f(u) = up, these are well studied. For this, see [Li2].
We should remark that in this classical setting, we may consider (ϕ, Ĝ)-modules
as “linear data” like (ϕ,Γ)-modules. In fact, Ĝ is topologically generated by

Gal(K̂π/Kπ) and a (fixed) generator τ of Gal(K̂π/K(µp∞)). Here, µp∞ is

the set of p-power roots of unity. Hence the Ĝ-action on a (ϕ, Ĝ)-module is
essentially determined by the τ -action only.
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Remark 3.5. To understand objects of the category Modr,Ĝ,cris
S , studying ide-

als I ′gϕ(gu − u)B̃α ∩ I [1]W (R) or Ig := ϕ(gu − u)B+
cris ∩ I [1]W (R) of W (R)

must be important. However, it is not so easy (at least for the author). Later,
we give partial results in Propositions 4.18 and 4.19. Here we describe some
known facts about Ig and give some remarks.

(1) Suppose vp(a1) > 1. Then we can check Ig ⊂ I [1+]W (R) as follows: Let t
be as in the previous section. It follows from ϕ(t) = µ0E(u)t and [CL, Lemma
2.3.1 (2)] that t is not in I [1]W (R) and ϕ(t) is a generator of I [1]W (R). Take
x = ϕ(gu − u)y = ϕ(t)z with y ∈ B+

cris and z ∈ W (R). It suffices to show z ∈
I+W (R). By [CL, Lemma 2.3.2] (see also Proposition 3.11), we have gu− u ∈
ϕ(t)I+W (R). This implies ϕ(gu−u) ∈ ϕ2(t)I+W (R) = ϕ(E(u))ϕ(t)I+W (R) ⊂
ϕ(t)I+W (R), and thus we obtain z = ϕ(gu − u)y/ϕ(t) ∈ W (R) ∩ I+B

+
cris =

I+W (R) as desired.

(2) (Kisin’s setting) If f(u) = up, then we can show that Ig ⊂ upI [1]W (R)
as follows: Since gu − u ∈ uW (R) in this case. it suffices to show upB+

cris ∩
I [1]W (R) ⊂ upI [1]W (R). Take any x = upy ∈ upB+

cris ∩ I [1]W (R). By [Li3,
Lemma 3.2.2], upy ∈ W (R) shows y ∈ W (R). On the other hand, upy ∈
I [1]W (R) and ϕn(up) /∈ Fil1BdR for any n ≥ 0 implies that y ∈ I [1]B+

cris.
Hence we have y ∈ I [1]W (R), which induces x ∈ upI [1]W (R) as desired.

The ideal upI [1]W (R) of W (R) plays an important role for studies of (ϕ, Ĝ)-
modules (cf. [Li2]) which correspond to lattices in crystalline representa-
tions. It allows us to study reductions of crystalline representations and also
gives interesting applications such as the weight part of Serre’s conjecture (cf.
[Ga],[GLS1],[GLS2]).

Comparison morphism of (ϕ, Ĝ)-modules. Let M̂ be a (ϕ, Ĝ)-module of

height r. We define a W (R)-linear map ι̂ : W (R)⊗ϕ,SM→W (R)⊗Zp
T̂ (M̂)∨

by the composite

W (R)⊗ϕ,S M→ HomZp
(T̂ (M̂),W (R)) ≃W (R)⊗Zp

T̂ (M̂)∨,

where the first map is given by x 7→ (f 7→ f(x)) and the second is the natural
map. It is not difficult to check that ι̂ is ϕ-equivalent and G-equivalent. By the
same argument as that in the proof of [Li2, Proposition (2),(3)], we can check
the following.

Proposition 3.6. (1) We have ι̂ ≃ W (R) ⊗ϕ,W (R) ιS, that is, the following
diagram is commutative.

W (R)⊗ϕ,S M
ι̂ // W (R)⊗Zp

T̂ (M̂)∨

W (R)⊗θ∨

��
≀

��
W (R)⊗ϕ,S M

ϕ∗ιS // W (R)⊗Zp
TS(M)∨.
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Here, ϕ∗ιS := W (R)⊗ϕ,W (R) ιS.
(2) Assume that vp(a1) > 1. Then the map ι̂ is injective and we have

tr0(W (R) ⊗Zp
T̂ (M̂)∨) ⊂ Im(ι̂). Here, t0 is any generator of I [1]W (R) (e.g.,

t0 = ϕ(t) (cf., [Fo2, Proposition 5.1.3])).

3.2 Main Results

We often use the following conditions.

Condition (P): ϕn(f(u)/u) is not a power of E(u) for any n ≥ 0.

Condition: vp(a1) > max{r, 1}.

Note that these conditions are satisfied if a1 = 0. We denote by Repr,cris
Zp

(G)
the category of G-stable Zp-lattices in crystalline Qp-representations of G with
Hodge-Tate weights in [0, r]. Now we state our main theorem of this paper.

Theorem 3.7. Assume the conditions (P ) and vp(a1) > max{r, 1}.

(1) We have Modr,Ĝ,cris
S = ′Modr,Ĝ,cris

S .

(2) The contravariant functor T̂ induces an anti-equivalence of categories be-

tween Modr,Ĝ,cris
S and Repr,crisZp

(G).

Summary, we have

′Modr,Ĝ,cris
S = Modr,Ĝ,cris

S

∼
−→ Repr,crisZp

(G)

under the conditions (P) and vp(a1) > max{r, 1}. The theorem is an easy
consequence of the following result, which we show in the rest of this section.

Theorem 3.8. (1) Assume the conditions (P ) and vp(a1) > 1. Then the

contravariant functor T̂ : Modr,ĜS → RepZp
(G) is fully faithful.

(2) Assume the condition vp(a1) > max{r, 1}. Then the contravariant functor

T̂ : Modr,Ĝ,cris
S → RepZp

(G) has values in Rep∞,cris
Zp

(G). If we furthermore

assume the condition (P ), then it has values in Repr,crisZp
(G).

(3) Assume the conditions (P ) and vp(a1) > max{r, 1}. Then the contravariant

functor T̂ : ′Modr,Ĝ,cris
S → Repr,crisZp

(G) is essentially surjective.

The contravariant functor TS : ModrS → RepZp
(Gπ) is fully faithful under the

condition (P). By the condition vp(a1) > 1, we know the injectivity of compar-
ison morphisms (cf. Corollary 2.10 and Proposition 3.6 (2)). Thus Theorem
(1) follows by completely the same way as the last paragraph of [Li2, Section
3.1] and so we leave the proof of (1) for the readers.
In the rest of this section, we show Theorem 3.8 (2) and (3).

Remark 3.9. In fact, we can remove the assumption (P ) from Theorem 3.8
(1). See Section 3.7.
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3.3 Some notations and Properties

Before a proof of Theorem 3.8 (2) and (3), we give some notations and their
properties.

The map ξα. Let M ∈ ModrS be a Kisin module of rank d and set M :=
ϕ∗M/uϕ∗M.

Lemma 3.10 ([CL], Lemma 4.5.6.). Assume that vp(a1) > r. Then there exists
a unique ϕ-equivalent Oα-linear isomorphism

ξα : Oα ⊗W (k) M
∼
−→ Oα ⊗S ϕ∗M

whose reduction modulo u is the identity map on M .

We recall how to define ξα. Let e1, . . . , ed be a basis of M and let A ∈Md(S)
be a matrix such that ϕ(e1, . . . , ed) = (e1, . . . , ed)A. Put ei = 1⊗ ei ∈ ϕ∗M for
each i. Then e1, . . . , ed is a basis of ϕ∗M and ϕ(e1, . . . , ed) = (e1, . . . , ed)ϕ(A).
Put ēi := ei mod uϕ∗M for each i. Then ē1, . . . , ēd is a basis of M and
ϕ(ē1, . . . , ēd) = (ē1, . . . , ēd)ϕ(A0) where A0 = A mod uS ∈Md(W (k)).
It was shown in the proof of [CL, Lemma 4.5.6] that the matrix

ϕ(A) · · ·ϕn(A)ϕn(A−1
0 ) · · ·ϕ(A−1

0 )

converges to an element of GLd(Oα). Putting

Y := lim
n→∞

ϕ(A) · · ·ϕn(A)ϕn(A−1
0 ) · · ·ϕ(A−1

0 ),

we define ξα : Oα ⊗W (k) M
∼
−→ Oα ⊗S ϕ∗M by ξα(ē1, . . . , ēd) = (e1, . . . , ed)Y.

The map ξ′α. Let T be an object of Repr,crisZp
(G) and put V = T [1/p]. Let

D = Dcris(V ) := (Bcris⊗Qp
V ∨)G be the filtered ϕ-module corresponding to V .

Let O be the subring of K0((u)) consisting of those elements which converge
for all x ∈ K with vp(x) ≥ 0. We equip O with a K0-semi-linear Frobenius
ϕ : O→ O such that ϕ(u) = f(u). We see that O is a ϕ-stable subring of Oα.
By [CL, Section 4.2], there exists a ϕ-moduleM =M(D) over O such that

• D0 ⊂ M ⊂ λ−rD0 where D0 := O ⊗K0 D and λ :=∏∞

n=0 ϕ
n(E(u)/E(0)) ∈ O.

• M is of height r in the sense that the cokernel of the O-linearization
1⊗ ϕM : O⊗ϕ,OM→M of ϕM is killed by E(u)r.

• M is étale in the sense of [CL, Section 4.4].

By Theorem 4.4.1 of loc. cit., there exists a Kisin module M ⊂ M of height
r such that O ⊗S M = M. Now we define an isomorphism ξ′α : Oα ⊗K0

D
∼
→ Oα ⊗S ϕ∗M as follows: The isomorphism 1 ⊗ ϕ : ϕ∗D

∼
→ D induces
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an isomorphism 1 ⊗ ϕ : ϕ∗D0
∼
→ D0. Thus we obtain an injection ξ′ : D0

∼
→

ϕ∗D0 →֒ ϕ∗M ≃ O ⊗S ϕ∗M. Then we define ξ′α = Oα ⊗O ξ′. It is shown in
Lemma 4.2.2 of loc. cit. that ξ′α is an isomorphism.

The map ι0. Following Proposition 4.5.1 of loc. cit., we define a Gπ-equivalent
injection ι0 : TS(M) →֒ V by the composite

TS(M) = HomS,ϕ(M,W (R)) →֒ HomO,ϕ,Fil(ϕ
∗M, B+

cris)
∼
→ HomOα,ϕ,Fil(Oα ⊗O ϕ∗M, B+

cris)
∼
→ HomOα,ϕ,Fil(Oα ⊗K0 D,B+

cris)

≃ Vcris(D) ≃ V,

where the first arrow is given by f 7→ (a⊗x ∈ O⊗ϕ,SM = ϕ∗M 7→ aϕ(f(x))),
the second and the fourth arrows are natural isomorphisms, and the third arrow
is given by (f 7→ f ◦ ξ′α). We omit definitions of filtrations of various modules
appeared above since precise informations of them are not so important here.
We only note that definitions of filtrations are given in [CL, Section 4].

The G-action on u. We consider a difference between gu and u for g ∈ G.
We recall that f(u) =

∑p
i=1 aiu

i = up + ap−1u
p−1 + · · ·+ a1u ∈ Zp[u] with the

property f(u) ≡ up mod p.
At first, here is a Cais-Liu’s observation.

Proposition 3.11 ([CL], Lemma 2.3.2). Let g ∈ G be arbitrary.
(1) We have gu− u ∈ I [1]W (R).
(2) If vp(a1) > 1, then we have gu− u ∈ I [1+]W (R).

We use the following proposition in the final section.

Proposition 3.12. Let j0 be the minimum integer 1 ≤ j ≤ p such that
vp(jaj) = 1. Let g ∈ GrGπ and N ≥ 1 the integer such that gπN−1 = πN−1

and gπN 6= πN . We denote by ū the image of u for the projection W (R) ։ R.
Then we have vR(gū− ū) = pN/(p− 1) + (j0 − 1)/(e(p− 1)).

Proof. Since vR(gū − ū) = limn→∞ pnvp(gπn − πn), it suffices to show that
vp(gπn−πn) = cn for n ≥ N , where cn := pN/((p−1)pn)+(j0−1)/(epn(p−1)).
We note that we have an equation

∑p
i=1 ai(gπ

i
n−πi

n) = gπn−1−πn−1. Putting

b
(ℓ)
n =

∑p−ℓ
j=0 aℓ+j

(
ℓ+ j
j

)
πj
n, we have

p∑

i=1

ai(gπ
i
n − πi

n) =

p∑

i=1

i−1∑

j=0

ai

(
i
j

)
(gπn − πn)

i−jπj
n =

p∑

ℓ=1

b(ℓ)n (gπn − πn)
ℓ.

Hence we obtain that gπn − πn is a solution of the equation

p∑

ℓ=1

b(ℓ)n Xℓ − (gπn−1 − πn−1) = 0.
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We note that we have b
(p)
n = 1 and

vp(aℓ+j

(
ℓ+ j
j

)
πj
n) =

{
vp(aℓ+j) +

j
epn for 0 ≤ j < p− ℓ,

1 + p−ℓ
epn for j = p− ℓ

if 1 ≤ ℓ ≤ p− 1.

The case j0 = p: By the assumption vp(a1), . . . , vp(ap−1) > 1, we have

vp(b
(ℓ)
n ) = 1 +

p− ℓ

epn
(3.1)

for 1 ≤ ℓ ≤ p− 1. Now we show vp(gπn − πn) = cn by induction on n ≥ N .
Suppose n = N . Then gπN − πN is a solution of the equation

p−1∑

ℓ=0

b
(ℓ+1)
N Xℓ = 0.

Hence it is enough to show that the Newton polygon of the polynomial∑p−1
ℓ=0 b

(ℓ+1)
N Xℓ ∈ Zp[X ] is the line segment, denoted by lN , connecting

(0, (p− 1)cN ) to (p− 1, 0). This follows immediately by (3.1).
We suppose that the assertion holds for n and consider the case n + 1. We
recall that gπn+1 − πn+1 is a solution of the equation

p∑

ℓ=1

b
(ℓ)
n+1X

ℓ − (gπn − πn) = 0.

Thus it is enough to show that the Newton polygon of the polynomial∑p
ℓ=1 b

(ℓ)
n+1X

ℓ − (gπn − πn) is the line segment, denoted by ln+1, connecting
(0, cn) to (p, 0). This follows immediately by (3.1) again.
The case j0 < p: Let s be the number of integers j such that 1 ≤ j ≤ p− 1
and vp(aj) = 1. By assumption we have s > 0. Let j−1, j0, j1, . . . , js−1 be
integers such that j−1 = 0 < j0 < j1 < · · · < js−1 ≤ p− 1 and vp(aj0) = · · · =
vp(ajs−1) = 1. Then we see

vp(b
(ℓ)
n ) =

{
1 + jk−ℓ

epn if jk−1 < ℓ ≤ jk for some 0 ≤ k ≤ s− 1,

1 + p−ℓ
epn if js−1 < ℓ ≤ p− 1.

(3.2)

By a similar strategy to the proof of (1), we can show vp(gπn − πn) = cn by
induction on n ≥ N . We leave a proof to the readers.

We recall that Oα = S[[E(u)p

p ]][1/p] ⊂ B+
cris and S[[E(u)p

p ]] = S[[u
ep

p ]] ⊂ Acris.

Lemma 3.13. (1) We have ui ∈ p[i/(ep)]+[i/(ep2)]Acris for any i ≥ 0, where [·] is
the floor function.
(2) We have

S[[
uep

p
]] =

{
∞∑

i=0

aip
−[ i

ep
]ui | ai ∈W (k)

}
.
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Proof. (1) Write i = epj + h with 0 ≤ h < ep and j = pk + h′ with 0 ≤
h′ < p. Note that we have j = [i/(ep)] and k = [i/(ep2)]. Since we have
uep/p ∈ E(u)p/p + pAcris, we see (uep/p)p ∈ pAcris. Thus we obtain ui/pj =
uh(uep/p)h

′

(uep/p)pk ∈ pkAcris.

(2) If x =
∑∞

i=0 aip
−[i/(ep)]ui with ai ∈ W (k), then x =

∑∞

j=0

{∑ep−1
h=0 aepj+hu

h
}
(uep/p)j ∈ S[[u

ep

p ]]. Conversely, let x =
∑∞

i=0 xi(u
ep/p)i with xi ∈ S. Writing xi =

∑∞

j=0 aiju
j with aij ∈ W (k),

then we have x =
∑∞

h=0

{∑
i,j≥0,epi+j=h p−iaij

}
uh. If we have i, j ≥ 0 and

epi+ j = h, then we have i ≤ [h/(ep)] and hence p−iaij ∈ p−[h/(ep)]W (k).

We recall that B̃α = W (R)[[E(u)p

p ]][1/p] = W (R)[[u
pe

p ]][1/p] ⊂ B+
cris.

Lemma 3.14. For any g ∈ G and x ∈ Oα, we have gx− x ∈ (gu− u)B̃α.

Proof. We may suppose x ∈ S[[u
ep

p ]] and write x =
∑∞

i=0 aiu
i

with ai ≥ −[i/(ep)] (see Lemma 3.13). For i ≥ 1, we have

gui − ui = (gu − u)
∑i−1

j=0

(
i
j

)
(gu − u)i−1−juj . By Proposition

3.11, we have gu − u ∈ Fil1W (R) ⊂ ueW (R) + pW (R). Thus

we have (gui − ui)/(gu − u) =
∑i−1

j=0

∑i−1−j
h=0 cijhp

hue(i−1−j−h)+j =∑∞
k=0

∑
(j,h)∈Sik

cijhp
h+[k/(ep)]uk/p[k/(ep)] for some cijh ∈ W (R). Here,

Sik is the set of pairs (j, h) of integers such that 0 ≤ j ≤ i − 1, 0 ≤ h ≤
i − 1 − j, e(i − 1 − j − h) + j = k. Note that, if Sik is not empty, then
k ≤ e(i− 1− 0− 0) + (i− 1) = (e+ 1)(i− 1). Thus we have

gui − ui

gu− u
=

(e+1)(i−1)∑

k=0

∑

(j,h)∈Sik

cijhp
h+[k/(ep)] uk

p[k/(ep)]
.

For (j, h) ∈ Sik, we have vp
(
aip

h+[k/(ep)]
)
> −i/(ep) + h + k/(ep) − 1 =

h (1− 1/p) + (e − 1)(i − j − 1)/(ep) − 1 − 1/(ep). Since h, i − j − 1 ≥ 0, we
have vp

(
aip

h+[k/(ep)]
)
> −1 − 1/(ep), that is, vp

(
aip

h+[k/(ep)]
)
≥ −1. Thus

tik :=
∑

(j,h)∈Sik
aicijhp

h+[k/(ep)] is an element of p−1W (R). On the other

hand, we have h = (e(i−1)− (e−1)j−k)/e ≥ (e(i−1)− (e−1)(i−1)−k)/e=
(i− k − 1)/e and hence vp

(
aip

h+[k/(ep)]
)
> (i− k − 1)/e · (1− 1/p) + (e− 1) ·

0/(ep)− 1− 1/(ep) =: mk(i). Since mk(i) goes to ∞ as i→∞, we obtain that
tk :=

∑
i≥1+k/(e+1) tik converges in p−1W (R) (here, tik := 0 if Sik is empty).

Now we claim that the following equality holds;

∞∑

i=1

(e+1)(i−1)∑

k=0

tikp
−[k/(ep)]uk =

∞∑

k=0

tkp
−[k/(ep)]uk. (3.3)
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Admitting this equality, we complete the proof since we have

gx− x =

∞∑

i=1

ai(gu
i − ui) = (gu− u)

∞∑

i=1

(e+1)(i−1)∑

k=0

tikp
−[k/(ep)]uk

= (gu− u)

∞∑

k=0

tkp
−[k/(ep)]uk ∈ (gu− u)B̃α.

Hence it suffices to show (3.3). Denote by α and β the left hand side and the
right hand side of (3.3), respectively. For simplicity, we put uk = p−[k/(ep)]uk.
Since we have

α− β =


α−

m∑

i=1

(e+1)(i−1)∑

k=0

tikuk


−


β −

(e+1)(m−1)∑

k=0

tkuk




−




(e+1)(m−1)∑

k=0

tkuk −
m∑

i=1

(e+1)(i−1)∑

k=0

tikuk




for any m ≥ 1, it suffices to show that γm :=
∑(e+1)(m−1)

k=0 tkuk −∑m
i=1

∑(e+1)(i−1)
k=0 tikuk converges to zero p-adically in B+

cris. Note that we see

γm =
∑(e+1)(m−1)

k=0

∑∞

i=m+1 tikuk. Let s > 0 be any integer. By Lemma 3.13
(1), there exists an integer k0 such that uk ∈ ps+1Acris for any k > k0. Since
sequences {ti0}i, . . . , {tik0}i converge to zero, there exists m0 large enough such
that tik ∈ psW (R) for any 0 ≤ k ≤ k0 and i > m0. Therefore, if m > m0, the
decomposition

γm =

k0∑

k=0

∞∑

i=m+1

tikuk +

(e+1)(m−1)∑

k=k0+1

∞∑

i=m+1

tikuk

and the fact that
∑∞

i=m+1 tik ∈ p−1W (R) implies γm ∈ psAcris.

3.4 Essential image of T̂

The goal of this subsection is to show Theorem 3.8 (2). We continue to use the
same notation as in previous section.

Lemma 3.15. For any M̂ ∈ Modr,Ĝ,cris
S , we have ξα(M) ⊂ (B+

cris ⊗ϕ,S M)G.

Proof. It suffices to show g((e1, . . . , ed)Y ) = (e1, . . . , ed)Y for any g ∈ G. We
define Xg ∈ GLd(W (R)) by

g(e1, . . . , ed) = (e1, . . . , ed)Xg.

It is enough to show Xgg(Y ) = Y . To simplify notation, put ug = gu − u.
We know Xg − Id ∈ ϕ(ug)Md(B

+
cris). Hence we have Xg = Id + ϕ(ug)Yg for
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some Yg ∈ Md(B
+
cris). Furthermore, we have Xggϕ(A) = ϕ(A)ϕ(Xg) since ϕ

commutes with the G-action. Thus we have

Xgg(ϕ(A) · · ·ϕ
n(A)ϕn(A−1

0 ) · · ·ϕ(A−1
0 ))

=Xggϕ(A)gϕ
2(A) · · · gϕn(A)ϕn(A−1

0 ) · · ·ϕ(A−1
0 )

=ϕ(A)ϕ(Xg)gϕ
2(A) · · · gϕn(A)ϕn(A−1

0 ) · · ·ϕ(A−1
0 )

=ϕ(A)ϕ2(A)ϕ2(Xg)gϕ
3(A) · · · gϕn(A)ϕn(A−1

0 ) · · ·ϕ(A−1
0 )

= · · ·

=ϕ(A) · · ·ϕn(A)ϕn(Xg)ϕ
n(A−1

0 ) · · ·ϕ(A−1
0 )

=ϕ(A) · · ·ϕn(A)ϕn(A−1
0 ) · · ·ϕ(A−1

0 )

+ ϕn+1(ug)ϕ(A) · · ·ϕ
n(A)ϕn(Yg)ϕ

n(A−1
0 ) · · ·ϕ(A−1

0 ).

Hence the proof completes if we show that

Zn := ϕn+1(ug)ϕ(A) · · ·ϕ
n(A)ϕn(Yg)ϕ

n(A−1
0 ) · · ·ϕ(A−1

0 )

converges to zero p-adically in B+
cris. Let λ > 0 be an integer such that pλYg ∈

Md(Acris). Since M is of height r, we see that Zn is contained in ϕn+1(ug)/p
nr ·

p−λMd(Acris). Since ϕ
n+1(ug)/p

nr converges to zero by [CL, Lemma 2.2.2], we
obtain the desired result.

Proof of Theorem 3.8 (2). We continue to use the same notation. First we
assume the condition vp(a1) > max{r, 1}. Proposition 3.6 (2) and Lemma
3.15, we have injections

M
ξα
→֒ (B+

cris ⊗ϕ,S M)G
ι̂
→֒ (B+

cris ⊗Zp
T̂ (M̂)∨)G.

Hence we the equality dimQp
(B+

cris ⊗Zp
T̂ (M̂)∨)G = dimQp

T̂ (M̂)∨[1/p]. This

implies that T̂ (M̂)[1/p] is a crystalline Qp-representation with non-negative
Hodge-Tate weights. In the rest of this proof, we show that the Hodge-Tate
weights of T̂ (M̂)[1/p] are at most r.
From now on, we assume the condition (P). Under this assumption, we know

that TS is fully faithful (cf. Proposition 2.6). Put V = T̂ (M̂)[1/p] and D =
Dcris(V ). Take an integer r′ > 0 such that Hodge-Tate weights of V are at
most r′. Let M = M(D) be the ϕ-module over O corresponding to D and
take any free Kisin module M′ ⊂M of height r′ such that O⊗S M′ =M.
We claim that M′ is of height r. Note that TS(M) and TS(M

′) are lattices of
V . By replacing M′ with some pℓM, we may assume that we have TS(M) ⊂
TS(M

′). Let c > 0 be an integer such that TS(M′) ⊂ p−cTS(M). We consider
the following commutative diagram.

TS(M) �
� //� w

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯❯

❯❯
❯❯

❯❯
TS(M

′) �
� // p−cTS(M)

≃

��
TS(p

cM)
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Here, p−cTS(M)
≃
→ TS(pcM) in the diagram is the map given by f 7→ f |pcM,

and the other arrows are natural injections. Since TS is fully faithful, we obtain
maps η′ : M′ → M and η : pcM → M′ such that η′ ◦ η is the inclusion map
pcM →֒M. We see that η and η′ are injective and pcM ⊂ η′(M′). We regard
M′ as a ϕ-stable submodule of M by η′. Since M/M′ is killed by a power
of p, Proposition 2.2 shows that the natural map M/M′ → OE ⊗S M/M′ is
injective. Thus we obtain the fact that M/M′ is p′-torsion free in the sense
that AnnS(M/M′) is zero or of the form pℓS. It follows from [Fo2, Proposition
B.1.3.5] that M′ is of height r. In particular,M is of height r.
Note that ξ′α induces an isomorphism ϕ∗M/E(u)ϕ∗M≃ K ⊗K0 D =: DK . If
we define a decreasing filtration Filiϕ∗M of ϕ∗M by

Filiϕ∗M = {x ∈ ϕ∗M | (1⊗ ϕ)(x) ∈ E(u)iM},

then the natural projection

ϕ∗M։ ϕ∗M/E(u)ϕ∗M≃ DK

is strict compatible with filtrations (cf. [CL, Corollary 4.2.4]). Since M is of
height r, we have Filr+1ϕ∗M⊂ E(u)ϕ∗M, which induces the fact Filr+1DK =
0 as desired.

3.5 Essential surjectiveness of T̂

We show Theorem 3.8 (3). Let T be an object of Repr,crisZp
(G) and put

V = T [1/p]. Let D = Dcris(V ) be the filtered ϕ-module corresponding to V .
Throughout this subsection, we identify V with Vcris(D) = HomK0,ϕ(D,B+

cris)∩
HomK,Fil(DK , B+

dR)(⊂ HomK0(D,B+
cris)). Let M = M(D) be the ϕ-module

over O corresponding to D. By Theorem 4.4.1 of loc. cit., there exists a Kisin
module M ⊂M of height r such that O⊗SM =M. In Section 3.3, we defined
a Gπ-equivalent injection ι0 : TS(M) →֒ V . The image of ι0 might not coincide
with T . However, we have

Lemma 3.16. Assume the condition (P ). Then we can choose M so that
ι0(TS(M)) = T .

Proof. We identify V with HomO,ϕ,Fil(ϕ
∗M, B+

cris) by isomor-
phisms HomO,ϕ,Fil(ϕ

∗M, B+
cris) ≃ HomOα,ϕ,Fil(Oα ⊗O ϕ∗M, B+

cris) ≃
HomOα,ϕ,Fil(Oα ⊗K0 D,B+

cris) ≃ Vcris(D) = V (see the definition of ι0).
Under this identification, ι0 is the injection

ι0 : TS(M) = HomS,W (R)(M,W (R))→ HomO,ϕ,Fil(ϕ
∗M, B+

cris) = V

given by ι0(f)(a ⊗ x) = aϕ(f(x)) for f ∈ TS(M), a ∈ O, x ∈ M (here
we identify ϕ∗M with O ⊗ϕ,S M). Put L = ι0(TS(M)). For any integer
ℓ ≥ 0, we have natural injections TS(p

−ℓM) →֒ TS(M) →֒ TS(p
ℓM) induced

by embeddings pℓM ⊂ M ⊂ p−ℓM. It is not difficult to check the equality
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ι0(TS(p
±ℓM)) = p∓ℓL. Thus by replacing M with p−ℓM for ℓ large enough,

we may assume that L is a submodule of T . Let N → M be the morphism of
free étale ϕ-modules which corresponds to the natural injection L →֒ T . This
implies that we have the following commutative diagram:

T TOE
(N)

∼oo

L
?�

OO

TOE
(M)
?�

OO

∼oo

We denote by η the isomorphism TOE
(M) ≃ L in the diagram. We see that

N → M is injective and M/N is a torsion étale ϕ-module killed by pc. Here,
c is any integer c > 0 such that pc kills T/L. Let g : OE ⊗S M

∼
→ M be the

morphism of étale ϕ-modules which corresponds to the composition TOE
(M)→

η

L →
ι−1
0

TS(M)
∼
→ TOE

(OE ⊗SM). We have the following commutative diagram:

TOE
(M) //∼ //

η
// L

∼ //
ι−1
0

// TS(M)
∼ // TOE

(OE ⊗S M)

TOE
(M)

� � //
TOE

(g)
// TOE

(OE ⊗S M)

Let pr : M → M/N be the natural projection. Then N′ := ker(pr ◦ g) ⊂ M
is a ϕ-module of height r by [Fo2, Proposition B.1.3.5]. Put N = N′[1/p] ∩
(OE ⊗S N′). It follows from [CL, Lemma 3.3.4] that N is a free Kisin module
of height r. By the condition (P) and [CL, Proposition 3.3.5], the embedding
OE ⊗S N = OE ⊗S N′ →֒ OE ⊗S M induces an embedding N →֒ M. We see
that we have an isomorphism g′ : OE ⊗S N

∼
→ N which makes the diagram

N
_�

��

OE ⊗S N
_�

��

∼oo
g′

oo

M OE ⊗S M
∼oo
g

oo

commutative. Here we consider the following commutative diagram.

T //∼ // TOE
(N)

∼ //
TOE

(g′)

// TOE
(OE ⊗S N) TS(N)

∼oo

L //∼ //
η

//?�

OO

TOE
(M)

∼ //
TOE

(g)
//

?�

OO

TOE
(OE ⊗S M)

?�

OO

TS(M)
?�

OO

∼oo

The composite map L
∼
→ TOE

(M)
∼
→ TOE

(OE⊗SM)
∼
→ TS(M) in the diagram

is just ι−1
0 . It suffices to show that the inverse ι′0 of the composite map T

∼
→

TOE
(N)

∼
→ TOE

(OE ⊗S N)
∼
→ TS(N) is just ι0 : TS(N) →֒ V .
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Since M/N′ ⊂ M/N is killed by pc, we have pcM ⊂ N′ ⊂ N ⊂ M. Consider
the following diagram:

TS(M)

ι0

��
≃

��

� � // TS(N)

ι′0

��
≃

��

� � // TS(p
cM)

ι0

��
≃

��
L
� � // T � � // p−cL

� � // V = HomO,ϕ,Fil(ϕ
∗M, B+

cris)

The biggest square in the diagram clearly commutes. The left square in the
diagram also commutes by definition of ι′0. Thus we see that the right square
commutes. This implies that ι′0 is the map ι0 : TS(p

cM) →֒ V restricted to
TS(N), which must coincide with ι0 : TS(N) →֒ V .

In the rest of this subsection, we always assume the condition (P) and vp(a1) >
max{r, 1}. Let M be as in Lemma 3.16. Then ι0 : TS(M) →֒ V induces an
isomorphism TS(M) ≃ T . By this isomorphism, we equip TS(M) with a G-
action. Here, we consider the following diagram:

B+
cris ⊗K0 D

� � //

ξ′α≃

��

HomQp
(V,B+

cris)
∼ // B+

cris ⊗Qp
V ∨ B+

cris ⊗Zp
T∨

B+
cris ⊗S ϕ∗M

ϕ∗ιS //� � // B+
cris ⊗Zp

TS(M)∨ B+
cris ⊗Zp

T∨

ι∨0

oo ∼oo

W (R)⊗ϕ,S M
ϕ∗ιS //� � //

?�

OO

W (R)⊗Zp
TS(M)∨ W (R)⊗Zp

T∨

ι∨0

oo∼oo
?�

OO

(3.4)

The square

B+
cris ⊗S ϕ∗M

� � // B+
cris ⊗Zp

T∨

W (R)⊗ϕ,S M
� � //

?�

OO

W (R)⊗Zp
T∨

?�

OO

in the above diagram is clearly commutative. Furthermore, by direct compu-
tations, we can check that the square

B+
cris ⊗K0 D

� � //

ξ′α≃

��

B+
cris ⊗Zp

T∨

B+
cris ⊗S ϕ∗M

� � // B+
cris ⊗Zp

T∨

Documenta Mathematica 23 (2018) 497–541



Lattices in Crystalline Representations 519

in the diagram is also commutative (here we note that ξ′α appears in the defi-
nition of ι0). Hence, seeing the biggest square in the diagram (3.4), we obtain
a commutative diagram

B+
cris ⊗K0 D

� � // B+
cris ⊗Zp

T∨

W (R)⊗ϕ,S M
� � //

?�

OO

W (R)⊗Zp
T∨

?�

OO

By this diagram, we regard B+
cris ⊗K0 D,W (R) ⊗Zp

T∨ and W (R)⊗ϕ,S M as

ϕ-stable submodules of B+
cris⊗Zp

T∨. Note that B+
cris⊗K0 D and W (R)⊗Zp

T∨

are G-stable submodules of B+
cris ⊗Zp

T∨.

Lemma 3.17. Let the notation be as above.

(1) Gπ acts on ϕ∗M trivial.

(2) The G-action on W (R)⊗Zp
T∨ preserves W (R)⊗ϕ,S M.

(3) The G-action on W (R)⊗ϕ,S M commutes with ϕ.

(4) G(ϕ∗M) ⊂ R̂ ⊗ϕ,S M.

Proof. (1) is trivial. If we admit (2), the statement (3) follows from the fact
that W (R)⊗ϕ,SM is a ϕ-stable submodule of W (R)⊗Zp

T∨ and the G-action
on W (R)⊗Zp

T∨ commutes with ϕ. Hence it suffices to show (2) and (4).

We show (2). Take any g ∈ G. Let e1, . . . , ed be a basis of ϕ∗M. Note that
this is also a basis of B+

cris⊗K0 D. Hence we have g(e1, . . . , ed) = (e1, . . . , ed)Xg

for some Xg ∈ GLd(B
+
cris). By Proposition 3.6 (2), ϕ(t)rg(e1, . . . , ed) =

(e1, . . . , ed)Ag for some Ag ∈ Md(W (R)). Hence we have ϕ(t)rXg = Ag ∈
Md(W (R)). Note that ϕ(t) is a generator of I [1]W (R) by [Fo1, Proposition
5.1.3]. Hence we have Xg ∈Md(W (R)) by [Li4, Lemma 3.1.3].

Finally we show (4). By (2), it suffices to show that Xg has coefficients in RK0 .

Put M := ϕ∗M/uϕ∗M. Let ξα : Oα ⊗W (k) M
∼
−→ Oα ⊗S ϕ∗M, ξ′α : Oα ⊗K0

D
∼
−→ Oα ⊗S ϕ∗M and Y be as in Section 3.3. By [CL, Corollary 4.5.7], we

have an equality ξα(M [1/p]) = ξ′α(D). By definition of the G-action on M, we
know that B+

cris⊗Oα
ξ′α is G-equivalent and thus G acts on ξα(M) trivial. This

implies g((e1, . . . , ed)Y ) = (e1, . . . , ed)Y . Thus we have Xg = Y g(Y )−1, which
is an element of GLd(RK0).

By the above lemma, we have a natural R̂-semi-linear G-action on R̂ ⊗ϕ,S M,

which commutes with ϕ. Since Gal(K/K̂π) acts on R̂ and ϕ∗M trivial, the

G-action on R̂ ⊗ϕ,S M factors through Ĝ. Hence M has a structure of an

object of Modr,ĜS , which we denote by M̂.

Lemma 3.18. Let the notation be as above. Then we have a natural isomor-
phism T̂ (M̂) ≃ T of Zp[G]-modules.
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Proof. We follow the method of [Li2, Section 3.2]. First we recall that we
defined a G-action on TS(M) by the isomorphism ι0 : TS(M) ≃ T , and also
recall that the injection ϕ∗ιS : W (R) ⊗ϕ,S M →֒ W (R) ⊗Zp

TS(M)∨ is G-
equivalent by definition of the G-action on W (R) ⊗ϕ,S M. We consider the
following commutative diagram:

W (R)⊗ϕ,S M
ϕ∗ιS//� � // W (R)⊗Zp

TS(M)∨ W (R)⊗Zp
T∨

ι∨0

oo ∼oo

W (R)⊗ϕ,S M
ι̂ //� � // W (R)⊗Zp

T̂ (M̂)∨

≃

OO
η

OO

Here, η := W (R) ⊗ θ∨. It suffices to show that η is G-equivalent. Note
that all arrows in the diagram except η are known to be G-equivalent and
ϕ(t)W (R) = I [1]W (R) is stable under the G-action on W (R). By Corol-

lary 2.10 and Proposition 3.6 (2), we can regard ϕ(t)W (R) ⊗Zp
T̂ (M̂)∨ and

ϕ(t)W (R) ⊗Zp
TS(M)∨ as G-stable submodules of W (R) ⊗ϕ,S M, and thus

η restricted to ϕ(t)W (R) ⊗Zp
T̂ (M̂)∨ induces an G-equivalent isomorphism

ϕ(t)W (R)⊗Zp
T̂ (M̂)∨ ≃ ϕ(t)W (R)⊗Zp

TS(M)∨. It follows from this that η is
G-equivalent.

Finally, we show the following, which completes a proof of Theorem 3.8 (3).

Lemma 3.19. Let the notation be as above. Then M̂ is an object of ′Modr,Ĝ,cris
S .

Proof. Let e1, . . . , ed be a basis of M and let A ∈ Md(S) be a matrix such
that ϕ(e1, . . . , ed) = (e1, . . . , ed)A. Put ei = 1 ⊗ ei ∈ ϕ∗M for each i. Then
e1, . . . , ed is a basis of ϕ∗M and ϕ(e1, . . . , ed) = (e1, . . . , ed)ϕ(A). Put M :=
ϕ∗M/uϕ∗M and ēi = ei mod uϕ∗M for each i. Then ē1, . . . , ēd is a basis of
M and ϕ(ē1, . . . , ēd) = (ē1, . . . , ēd)ϕ(A0) where A0 = A mod uS ∈Md(W (k)).

Take any g ∈ G and put ug = gu− u. Let Xg ∈ GLd(R̂) be a matrix given by

g(e1, . . . , ed) = (e1, . . . , ed)Xg.

Let Y be as in Section 3.3. Then we have Xg = Y g(Y )−1 (see the proof of

Lemma 3.17 (4)). First we show Xg − Id ∈ ϕ(ug)Md(B̃α). We claim Y ∈
ϕ(Md(Oα)). To check this, we use almost the same method as the proof of
[CL, Lemma 4.5.6]. Since M is of height r, there exists a matrix B ∈ Md(S)
such that AB = E(u)rId. We denote by A0 and B0 the image of A and B for
ν : Md(S)→Md(W (k)). To simplify notation, we assume E(0) = p. We write
A = A0 + uC by some C ∈Md(S). Put

Yn = ϕ(A) · · ·ϕn(A)ϕn(A−1
0 ) · · ·ϕ(A−1

0 ).

Then Yn converges to Y and we have

Yn+1 − Yn = ϕ
(
ϕn(u)/pr(n+1) · Zn

)
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where Zn := A · · ·ϕn−1(A)ϕn(CB0)ϕ
n−1(B0) · · ·B0 ∈ Md(S) . Since

ϕn(u)/pr(n+1) converges to zero p-adically in Oα, we have
∑∞

n=1(Yn+1−Yn) ∈
ϕ(Md(Oα)). Therefore, we have Y =

∑∞
n=1(Yn+1 − Yn) + Y1 ∈ ϕ(Md(Oα)).

Thus we can write Y = Id + ϕ(Z) by some Z ∈Md(Oα) and then we have

Xg = (Id + ϕ(Z))g(Y −1) = ((Id + ϕ(g(Z))− ϕ(g(Z)− Z))g(Y −1)

= (g(Y )− ϕ(g(Z)− Z))g(Y −1) = Id − ϕ(g(Z)− Z)g(Y −1).

By Lemma 3.14, the matrix ϕ(g(Z) − Z) has coefficients in ϕ(ug)B̃α. This

shows Xg − Id ∈ ϕ(ug)Md(B̃α) as desired.
Now we are ready to finish the proof of Lemma 3.19. Take any g ∈ G and x ∈
M. We want to show g(1⊗x)−(1⊗x) ∈ ϕ(ug)B̃α⊗ϕ,SM. Let x ∈Md,1(ϕ(S))
be a matrix such that 1⊗ x = (e1, . . . ed)x. Then we have g(1⊗ x)− (1⊗ x) =
(e1, . . . ed)(Xggx− x). Since we can write Xg = Id + ϕ(ug)X

′
g by some matrix

X ′
g ∈ Md(B̃α), we have Xggx − x = ϕ(ug)X

′
ggx + (gx − x). Since we have

gx− x ∈ ϕ(ug)Md,1(W (R)), we finish the proof.

3.6 Compatibility of different uniformizers, and Dieudonné crys-
tals

Suppose the conditions (P) and vp(a1) > max{r, 1}. Let T be an object of

Repr,crisZp
(G). Then there exists a (ϕ, Ĝ)-module M̂ such that T̂ (M̂) ≃ T . Note

that our arguments depends on the choice of a uniformizer π ofK, a polynomial
f(u) and a system (πn)n≥0.
If we select a different choice of a uniformizer π′ of K, a polynomial f ′(u) and

a system (π′
n)n≥0, then we get another (ϕ, Ĝ′)-module M̂′.

Question 3.20. What is the relationship between M̂ and M̂′ ?

We denote by Sπ (resp. Sπ′) the image of the injection W (k)[[u]] → W (R)
given by u 7→ {π}f (resp. u 7→ {π′}f ′). We may regard M (resp. M′) as a
ϕ-module over Sπ (resp. Sπ′). Write S := Sπ (resp. S′ := Sπ′). We have
comparison morphisms

ι̂ : W (R)⊗ϕ,S M →֒ W (R)⊗Zp
T̂ (M̂)∨ ≃W (R)⊗Zp

T∨

and
ι̂′ : W (R)⊗ϕ,S′ M′ →֒ W (R)⊗Zp

T̂ (M̂′)∨ ≃W (R)⊗Zp
T∨

Theorem 3.21. Assume the conditions (P ) and vp(a1) > max{r, 1}. Let the
notation be as above. Then we have ι̂(W (R)⊗ϕ,SM) = ι̂(W (R)⊗ϕ,S′ M′). In
particular, we have a functorial isomorphism W (R)⊗ϕ,SM ≃W (R)⊗ϕ,S′ M′

which commutes with ϕ and G-actions.

Proof. Let d be the Zp-rank of T . Put M = ϕ∗M/uϕ∗M. We have G-

equivalent injections B+
cris⊗W (k)M

ξα
≃ B+

cris⊗Sϕ∗M
ι̂
→֒ B+

cris⊗Zp
T∨. By Lemma
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3.15, we have ξα(M) ⊂ (B+
cris⊗S ϕ∗M)G

ι̂
→֒ (B+

cris⊗Zp
T∨)G ⊂ Dcris(V ). Since

the W (k)-rank of M is d, we have isomorphisms

M [1/p]
ξα
≃ (B+

cris ⊗S ϕ∗M)G
ι̂
≃ (B+

cris ⊗Zp
T∨)G = Dcris(V ). (3.5)

Therefore, we obtain the following diagram:

B+
cris ⊗S ϕ∗M

ι̂ //� � // B+
cris ⊗Zp

T∨

B+
cris ⊗W (k) M

ι̂

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

≃

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

ξα

//∼ // B+
cris ⊗K0 (B

+
cris ⊗S ϕ∗M)G

OO

ι̂
//∼ // B+

cris ⊗K0 Dcris(V )
?�

OO

Here, two vertical arrows in the diagram are natural maps. We see that the
left vertical arrow is isomorphism by the commutativity of the diagram.
Let e1, . . . , ed be a basis of ϕ∗M and e′1, . . . , e

′
d be a basis of ϕ∗M′. Seeing the

above diagram, we obtain the fact that ι̂(e1), . . . , ι̂(ed) is a basis of B+
cris ⊗K0

Dcris(V ). Similarly, ι̂′(e′1), . . . , ι̂
′(e′d) is also. Hence there exist a matrix X ∈

GLd(B
+
cris) such that ι̂(e1, . . . , ed) = ι̂′(e′1, . . . , e

′
d)X . On the other hand, if we

take any generator t0 of I
[1]W (R), we have tr0ι̂

′(W (R)⊗Sϕ∗M′) ⊂ tr0(W (R)⊗Zp

T∨) ⊂ ι̂(W (R) ⊗ϕ,S ϕ∗M). Thus we obtain tr0X ∈ Md(W (R)). By [Li4,
Lemma 3.1.3], X ∈ Md(W (R)). By the similar manner we can check X−1 ∈
Md(W (R)). This finishes the proof. (The assertion for the functoriality follows
immediately by construction.)

The following statements gives an affirmative answer of [CL, Section 6.3].

Corollary 3.22. Assume the conditions (P ) and vp(a1) > max{r, 1}. Let T

be an object of Repr,cris
Zp

(G). Let M (resp. M′) be a Kisin module with respect

to the choice of (f(u), (πn)n≥0) (resp. (f ′(u), (π′
n)n≥0)) such that TS(M) ≃ T

(resp. TS′(M′) ≃ T ). Then we have a functorial isomorphism W (R)⊗S M ≃
W (R)⊗S′ M′ of ϕ-modules over W (R).

Proof. Let N̂ (resp. N̂′) be a (ϕ, Ĝ)-module with respect to the choice of
(f(u), (πn)n≥0) (resp. (f ′(u), (π′

n)n≥0)) corresponding to T . By Theorem
3.21, we have an isomorphism W (R) ⊗ϕ,S N ≃ W (R) ⊗ϕ,S′ N′. Taking
W (R)⊗ϕ−1,W (R), we obtain an isomorphism W (R)⊗S N ≃W (R)⊗S′ N′. On

the other hand, we have isomorphisms TS(M) ≃ T |Gπ
≃ T̂ (N̂)|Gπ

≃ TS(N).
Similarly, we also have TS′(M′) ≃ TS′(N′). By the condition (P) and Propo-
sition 2.6, we have isomorphisms M ≃ N and M′ ≃ N′. Thus the result
follows.

Remark 3.23. In fact, we can replace the conditions “(P ) and vp(a1) >
max{r, 1}” in Theorem 3.21 and Corollary 3.22 with “vp(a1) > 1”. See Section
3.7.
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The case r ≤ 1. In the case r ≤ 1, we can omit the assumption (P) from
Theorem 3.21 and Corollary 3.22.

Theorem 3.24. Assume vp(a1) > 1. Let T be an object of Rep1,crisZp
(G). Let

M (resp. M′) be the Kisin module with respect to the choice of (f(u), (πn)n≥0)
(resp. (f ′(u), (π′

n)n≥0)) corresponding to T via Theorem 2.7. Then we have a
functorial isomorphism W (R)⊗SM ≃W (R)⊗S′ M′ of ϕ-modules over W (R).

Proof. At first, in the proof of Theorem 3.21, we used the assumption (P) to
apply Lemma 3.15 and to obtain (3.5). Following the arguments of [CL, Section
5], we can obtain the same result without (P) in the case r = 1, as follows.
By the arguments of [CL, Section 5], we can equip W (R)⊗SM with a (unique)
G-action which satisfies the following:

• Gπ acts on M trivial, and

• g(1⊗ x)− 1⊗ x ∈ tMd(I+W (R)) for any g ∈ G and x ∈M.

(Note that their arguments do not work for r > 1.) Moreover, if we equip
TS(M) with a G-action by the isomorphism TS(M) ≃ HomW (R),ϕ(W (R) ⊗S

M,W (R)), then we have an isomorphism TS(M) ≃ T of Zp[G]-modules. Now
we recall how to define a G-action on W (R) ⊗S M. Let e1, . . . , ed be a basis
of M and let A ∈Md(S) be the matrix given by ϕ(e1, . . . , ed) = (e1, . . . , ed)A.
Set X ′

g := limn→∞ Aϕ(A) · · ·ϕn(A)gϕn(A)−1 · · · gϕ(A)−1gA−1, which is an el-
ement of GLd(W (R)). We put Xg = ϕ(X ′

g). Then we have Xg = Y g(Y )−1

where Y is the matrix defined in Section 3.3. Hence we see that the com-

posite B+
cris ⊗W (k) M

ξα
≃ B+

cris ⊗S ϕ∗M
ι̂
→֒ B+

cris ⊗Zp
T∨ induces ξα(M) ⊂

(B+
cris⊗Sϕ∗M)G

ι̂
→֒ (B+

cris⊗Zp
T∨)G, which givesM [1/p]

ξα
≃ (B+

cris⊗Sϕ∗M)G
ι̂
≃

(B+
cris ⊗Zp

T∨)G = Dcris(V ) as (3.5). Then the same arguments as Theorem
3.21 proceeds.

Comparison with Dieudonné crystals. In this section, we give a geomet-
ric interpretation of Kisin modules in terms of Dieudonné crystals of p-divisible
groups under our Kπ/K-setting, which is well-known in the Kisin’s setting
f(u) = up. We recall that (cf. Theorem 2.7), under the assumption vp(a1) > 1,
there exists an anti-equivalence of categories between the category Mod1S of
free Kisin modules of height 1 and the category of p-divisible groups over the
ring of integers OK of K.

Remark 3.25. Consider the Kisin’s setting f(u) = up. In this case Theorem 2.7
is well-studied. Let S be the p-adic completion of the divided power envelope
of the surjection W [[u]] ։ OK given by u 7→ π. Let H be a p-divisible group
over OK and M the free Kisin module attached to H . Then it is known that
we have a functorial isomorphism S ⊗S ϕ∗M ≃ D(H)(S). For this, see [Kis,
Theorem 2.2.7 and Proposition A.6] for p > 2 and [Kim, Proposition 4.2] for
p = 2.
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Combining Theorems 2.7, 3.24 and Remark 3.25, the result below follows im-
mediately.

Theorem 3.26. Assume vp(a1) > 1. Let H be a p-divisible group over OK

and D(H) be the Dieudonné crystal attached to H. Let M be the Kisin module
attached to H. Then there exists a functorial isomorphism Acris ⊗S ϕ∗M ≃
D(H)(Acris).

3.7 Appendix

I leave here some comments from the anonymous referee, which refines some
results given in this section. His/Her idea is based on the theory of Shtuka and
Breuil-Kisin-Fargues modules. It is helpful for the reader to refer Section 4 of
[BMS]. We follow notions in loc. cit.

On Theorem 3.21 and Corollary 3.22. We can replace the assumptions
(P ) and vp(a1) > max{r, 1} in these results with only one assumption vp(a1) >
1. The proof is as follows.
By [BMS, Theorem 4.28], there exists an equivariant covariant functor F from
the category of finite free Breuil-Kisin-Fargues modules M̃ over W (R) to the
category of pairs (T,Ξ), where T is a finite free Zp-module and Ξ is a B+

dR-

lattice of BdR ⊗Zp
T . Explicitly, M̃ corresponds to the pair (T,Ξ) where

T = (W (Fr R)⊗W (R) M̃)ϕ=1 and Ξ = B+
dR ⊗W (R) M̃.

Now let T be an object of Repr,crisZp
(G) and M a Kisin module such that

TS(M) ≃ T |G∞
. Since M is of finite E(u)-height, we see that M̃ := W (R)⊗ϕ,S

M is a finite free Breuil-Kisin-Fargues modules over W (R). Let (T ′,Ξ′) be the
pair corresponding to M̃. Since we have vp(a1) > 1 and ϕ(t) is a unit of

W (Fr R), we have an isomorphism W (Fr R)⊗W (R) M̃
∼
−→W (Fr R)⊗Zp

T∨ by

Corollary 2.10. This gives f : T ′ ∼
−→ T∨. On the other hand, we see that the

map BdR ⊗ f : BdR ⊗Zp
T ′ ∼
−→ BdR ⊗Zp

T∨ induces Ξ′ = B+
dR ⊗W (R) M̃

∼
−→

B+
dR ⊗K0 Dcris(T [1/p]) (in fact, it is not difficult to check that this map coin-

cides with the inverse of B+
dR⊗ ξ′α : B

+
dR⊗K0 Dcris(T [1/p])

∼
−→ B+

dR⊗W (R) M̃).

Therefore, M̃ corresponds to the pair (T∨, B+
dR⊗K0 Dcris(T [1/p])) via F, which

does not depend on the choice of (f(u), (πn)n≥0). Thus we obtain the desired
result.

On Theorem 3.8 (1). We can remove the assumption (P ) from the statement
of the theorem.
Let M̂ and N̂ be objects of Modr,ĜS . Set T := T̂ (M̂) and T ′ := T̂ (M̂′), and
let f : T ′ → T be a G-equivariant morphism. Since f induces a morphism
from (T∨, B+

dR ⊗K0 Dcris(T [1/p])) to (T ′∨, B+
dR ⊗K0 Dcris(T

′[1/p])), we obtain
f : W (R)⊗SM→W (R)⊗SN which commutes with ϕ. On the other hand, we
have a morphism of étale ϕ-modules M → M ′ which corresponds to f . Since
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we have M = M ∩ (W (R) ⊗S M) and M′ = M ′ ∩ (W (R) ⊗S M′), we obtain
a map f : M → M′ of Kisin modules. To check that this induces a desired
morphism f : M̂ → M̂′ of (ϕ, Ĝ)-modules is the same as our method (see just
after Theorem 3.8).

4 Torsion representations and full faithfulness theorem

In this section, we study torsion Kisin modules and show a full faithfulness
theorem for a restriction functor on a category of torsion crystalline represen-
tations.

4.1 Statements of full faithfulness theorems

We state main results of this section. Let Repr,cris
tor (G) be the category of torsion

crystalline representations of G with Hodge-Tate weights in [0, r]. Here, a
torsion Zp-representation T of G is torsion crystalline with Hodge-Tate weights
in [0, r] if T is a quotient of lattices in a crystalline Qp-representation of G with
Hodge-Tate weights in [0, r]. For example, it is well-known that the category

Rep1,cristor (G) coincides with the category of flat representations of G. Here, a
torsion Zp-representation T of G is flat if it is of the form H(K) with some
finite flat group scheme H over the integer ring of K killed by a power of p.
In the case where r = 1, we have

Theorem 4.1. Assume the condition (P ) and vp(ai) > 1 for any 1 ≤ i ≤ p−1.

Then the restriction functor Rep1,cristor (G)→ Reptor(Gπ) is fully faithful.

We recall that the condition (P) is that ϕn(f(u)/u) is not a power of E(u) for
any n ≥ 0. For general r, we need some more technical assumptions.

Theorem 4.2. Assume the following conditions.

(i) gu ∈ uW (R) for any g ∈ G.

(ii) f (n)(π) 6= 0 for any n ≥ 1.

(iii) vp(a1) > r.

Then the restriction functor Repr,cristor (G)→ Reptor(Gπ) is fully faithful if e(r−
1) < p− 1.

Remark 4.3 (This is pointed out by the anonymous referee). The conditions
(i) and (ii) in the theorem just above imply vp(ai) > 1 for any 1 ≤ i ≤ p− 1,.
This can be checked as follows. Let j0 be the minimum integer 1 ≤ j ≤ p
such that vp(jaj) = 1. It suffices to show j0 = p. Take any g ∈ G such that
g(π1) 6= π1 and let ū be the image of u for the projection W (R) ։ R. By
Proposition 3.12, we have vR(gū − ū) = p/(p − 1) + (j0 − 1)/(e(p − 1)). On
the other hand, it follows from Proposition 4.19 (1) (given later) that we have
vR(gū− ū) ≥ p/(p− 1) + 1/e. Hence we obtain j0 = p as desired.
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4.2 Some remarks

We give some remarks about the statement of Theorem 4.2.

The condition e(r − 1) < p− 1. We mention the condition e(r − 1) < p− 1
in the theorem. If we remove this condition, the full faithfulness property in
the theorem does not hold as explained in [Oz2] even for the classical case
f(u) = up; moreover, the condition e(r − 1) < p − 1 is (almost) optimal in
this case. However, we expect that such full faithfulness should be weaker for
general f(u). For example, if f(u) is chosen for cyclotomic extension (cf. [CL,
Example 2.1.2]), it is not difficult to check that the full faithfulness holds only
for r = 0. Motivated by Propositions 4.18 and 4.19, the invariant j0 (defined
in Proposition 4.18) might say something on such difference.

The conditions (i) and (ii). Next we give some remarks about the condi-
tions (i) and (ii) in Theorem 4.2. Here are some examples of iterated extensions
which satisfy the condition (i).

– If f(u) = up, it is clear that the conditions (i), (ii) and (iii) above are
satisfied.

– If p is odd, K is a finite extension of Qp and Kπ/K is Galois (in this
case this is abelian (cf. Remark 7.16 of [CD])), then the condition (i) is
satisfied. In fact, the G-action on W (R) preserves S if Kπ/K is Galois
and hence we have gu ∈ I+W (R) ∩S = uS ⊂ uW (R).

We give two remarks for the condition (ii). First, it is not difficult to check
that the condition (ii) implies the condition (P). Next, for a fixed f(u), the
condition (ii) is satisfied except only finitely many choice of uniformizers π of
K. Moreover, we have the following. (We recall that i0 is the integer defined
by f(u) =

∑p
i=i0

aiu
i with ai0 6= 0.)

Proposition 4.4. Put

n0 =

{
evp(a1) if i0 = 1,

max{n ∈ Z | in0 ≤ e(i0 − 1)vp(ai0) + 1} if i0 6= 1.

Then the following are equivalent.

(ii) f (n)(π) 6= 0 for any n ≥ 1.

(ii′) f (n)(π) 6= 0 for any 1 ≤ n ≤ n0.

Proof. Assume that there exists an integer n ≥ 1 such that f (i)(π) 6= 0 for
any 0 ≤ i ≤ n − 1 and f (n)(π) = 0. (In particular, we have f(u) 6= up.) It
suffices to show n ≤ n0. Put ci = vp(f

(i)(π)) for 0 ≤ i ≤ n − 1. We have

c0 = 1/e by definition. Note that f (n−1)(π) is a root of Xp−i0 +
∑p−1

i=i0
aiX

i−i0 .
Seeing the Newton polygon of this polynomial, it is not difficult to check that
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the inequality cn−1 ≤ vp(ai0) holds. On the other hand, we claim that the
inequality

cj ≥
1

e

j∑

k=0

ik0 (4.1)

holds for any 0 ≤ j ≤ n− 1. We show this claim by induction on j. The case
j = 0 is clear. Assume that (4.1) holds for j = m−1 and consider the case where

j = m. It follows from the equation f (m)(π) = f (m−1)(π)p+
∑p−1

i=i0
aif

(m−1)(π)i

that we have

cm ≥ min{pcm−1, vp(ai) + icm−1 | i = i0, . . . , p− 1} ≥ min{pcm−1, 1 + i0cm−1}

≥ min

{

p

e

m−1
∑

k=0

ik0 ,
1

e
+

i0
e

m−1
∑

k=0

ik0

}

= min

{

p

e

m−1
∑

k=0

ik0 ,
1

e

m
∑

k=0

ik0

}

.

Since we have p
∑m−1

k=0 ik0−
∑m

k=0 i
k
0 ≥ (1+i0)

∑m−1
k=0 ik0−

∑m
k=0 i

k
0 =

∑m−1
k=0 ik0−

1 ≥ 0, we obtain cm ≥ e−1
∑m

k=0 i
k
0 as desired. Therefore, we obtain

1

e

n−1∑

k=0

ik0 ≤ cn−1 ≤ vp(ai0).

The desired result immediately follows from this.

4.3 Maximal objects

We recall that the contravariant functor TS : ModrS∞
→ Reptor(Gπ) is exact

and faithful (cf. Proposition 2.6). However, this is not full in general. In this
section, following [CL1], we first define a notion of maximal Kisin modules34.
Almost the arguments given in [CL1] carry over to the present situation. In
particular, we can check that a category of maximal Kisin modules is abelian
and the functor TS restricted to a category of maximal Kisin modules is fully
faithful. These play an important role in the proof of Theorems 4.1 and 4.2.

Let M be an étale ϕ-module over OE which is killed by a power of p. Let
F r
S(M) be the set of torsion Kisin modules M over S of height r such that

M ⊂ M and M[1/u] = M . The set F r
S(M) is an partially ordered set by

inclusion.

Lemma 4.5. If M,M′ ∈ F r
S(M), then we have M+M′,M ∩M′ ∈ F r

S(M).

Proof. See the proof of Proposition 3.2.3 of [CL1].

3We can also study the theory of minimal Kisin modules by similar arguments to [CL1].
However, we do not consider it in this paper since we do not need it for our purpose.

4As well as [CL1], results in this section can be applied also for the case “r = ∞” with
suitable (minor) modifications.
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Lemma 4.6. Let M be a torsion Kisin module M over S of height r and put
M = M[1/u]. If M′ ∈ F r

S(M) and M ⊂M′, then we have

lengthS(M′/M) ≤

[
er

p− 1

]
· lengthOE

M.

Here, [x] denotes the integer part of x.

Proof. See the proof of Lemma 3.2.4 of [CL1].

By the above lemmas, we immediately obtain

Corollary 4.7. Let M ∈ModOE,∞
and suppose that F r

S(M) 6= ∅.
(1) The set F r

S(M) has a greatest element and a smallest element.
(2) If er < p− 1, then F r

S(M) contains only one element.

Definition 4.8. Let M be a torsion Kisin module over S of height r. We
denote by Maxr(M) the greatest element of F r

S(M[1/u]). We say that M is
maximal (of height r) if M = Maxr(M).

We denote by MaxrS∞
the full subcategory of ModrS∞

consisting of maximal
Kisin modules. By Corollary 4.7, we have ModrS∞

= MaxrS∞
if er < p− 1.

We can check that all the properties given in Section 3.3 in [CL1] holds also for
the present situation by the same arguments given in loc. cit. Here we describe
only a part of properties on maximal Kisin modules that we need later.

Theorem 4.9. (1) The implication M 7→ Maxr(M) defines a covariant functor
Maxr : ModrS∞

→ ModrS∞
. Furthermore, this is left exact and Maxr ◦Maxr =

Maxr.
(2) The category MaxrS∞

is abelian. Moreover, for any morphism f : M→M′

in MaxrS∞
, we have the following.

(i) The kernel ker(f) of f in the usual sense is an object of MaxrS∞
. Fur-

thermore, it is the kernel of f in the abelian category MaxrS∞
.

(ii) The cokernel coker(f) in the usual sense is of height r and
coker(f)/(u-tors) is a Kisin module of height r. Moreover,
Maxr (coker(f)/(u-tors)) is the cokernel of f in the abelian category
MaxrS∞

. If f is injective, then coker(f) is u-torsion free.

(iii) The image im(f) (resp. the coimage coim(f)) of f in the usual sense is a
Kisin module of height r. Moreover, Maxr(im(f)) (resp. Maxr(coim(f)))
is the image (resp. the coimage) of f in the abelian category MaxrS∞

.

(3) Let 0→M′ α
→M

β
→M′′ → 0 be a sequence in MaxrS∞

such that β ◦α = 0.
Then this sequence is exact in the abelian category MaxrS∞

if and only if 0→

M′[1/u]
α[1/u]
→ M[1/u]

β[1/u]
→ M′′[1/u]→ 0 is exact as OE -modules.

(4) The functor MaxrS∞
→ ModOE,∞

given by M 7→ OE ⊗S M is exact and
fully faithful.
(5) The functor TS : MaxrS∞

→ Reptor(Gπ) is exact and fully faithful.
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Proof. (1) : See the proof of Propositions 3.3.2 to 3.3.4 of [CL1].
(2) : See the proof of Theorem 3.3.8 [CL1].
(3) and (4) : See the proof of Lemma 3.3.9 of [CL1].

(5) : This follows from (4) immediately.

Let us consider simple objects in the abelian category MaxrS∞
. Let S be the

set of sequences n = (ni)i∈Z/dZ of integers 0 ≤ ni ≤ er with smallest period d
for some integer d > 0.

Definition 4.10. Let n = (ni)i∈Z/dZ ∈ S be a sequence with smallest period
d. We define a torsion Kisin module M(n) of height r, killed by p, as follows:

• as a k[[u]]-module, M(n) =
⊕

i∈Z/dZ k[[u]]ei;

• for all i ∈ Z/dZ, ϕ(ei) = uniei+1.

We denote by Srmax the set of sequences n = (ni)i∈Z/dZ of integers 0 ≤ ni ≤
min{er, p − 1} with smallest period d for some integer d except the constant
sequence with value p− 1 (if necessary).

Proposition 4.11. Assume that k is algebraically closed. Then all simple
objects in the abelian category MaxrS∞

are of the form M(n) with some n ∈
Srmax.

Proof. This is a part of Propositions 3.6.8 and 3.6.12 in [CL1].

4.4 (ϕ,G)-modules

Definition 4.12. A free (resp. torsion) (ϕ,G)-module (of height r) is a triple

M̂ = (M, ϕ,G) where

(1) (M, ϕ) is a free (resp. torsion) Kisin module M of height r,

(2) G is a W (R)-semi-linear continuous G-action on W (R)⊗ϕ,S M,

(3) the G-action on W (R)⊗ϕ,S M commutes with ϕW (R) ⊗ ϕM, and

(4) ϕ∗M ⊂ (W (R)⊗ϕ,S M)Gπ .

We denote by Modr,GS (resp. Modr,GS∞
) the category of free (resp. torsion) (ϕ,G)-

modules of height r.

We define a Zp-representation T̂ (M̂) of G for any (ϕ,G)-module M̂ by

T̂ (M̂) :=

{

HomW (R),ϕ(W (R)⊗ϕ,S M,W (R)). if M̂ ∈ Modr,G
S ,

HomW (R),ϕ(W (R)⊗ϕ,S M,W (R)⊗Zp Qp/Zp). if M̂ ∈ Modr,G
S∞

.
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Here, theG-action on T̂ (M̂) is given by (g.f)(x) := g(f(g−1(x))) for f ∈ T̂ (M̂),
g ∈ G and x ∈ W (R) ⊗ϕ,S M. Note that we have a natural isomorphism of
Zp[Gπ]-modules

θ : TS(M)
∼
−→ T̂ (M̂)

given by θ(f)(a ⊗ x) := aϕ(f(x)) for f ∈ TS(M̂), a ∈ W (R) and x ∈ M

(see the proof of [CL2, Theorem 3.1.3 (1)]). In particular, if M̂ is free, then

T̂ (M̂) is a free Zp-module of rank d, where d := rankSM. Hence we obtain a
contravariant functor

T̂ : Modr,GS → RepZp
(G) and T̂ : Modr,GS∞

→ ReptorZp
(G).

For a (ϕ, Ĝ)-module M̂, by extending the G-action on R̂ ⊗ϕ,S M (naturally

obtained by the Ĝ-action on this module) to W (R) ⊗ϕ,S M by W (R)-semi-

linearity, we obtain a (ϕ,G)-module; we abuse notation by writing M̂ for it.

Definition 4.13. Let α ∈ W (R) r pW (R). We define a full subcategory

Modr,GS (α) (resp. Modr,GS∞
(α)) of Modr,GS (resp. Modr,GS∞

) consisting of objects

M̂ with the condition that

g(1⊗ x)− (1 ⊗ x) ∈ αI [1]W (R)⊗ϕ,S M

for any g ∈ G and x ∈M. We put ᾱ = α mod pW (R) ∈ R.

Theorem 4.14. Let r, r′ ≥ 0, M̂ ∈Modr,GS∞
(α) and N̂ ∈Modr

′,G
S∞

(α). Then we

have Hom(M̂, N̂) = Hom(M,N) if vR(ᾱ) > p(r − 1)/(p− 1).

In particular, the forgetful functor Modr,GS∞
(α) → ModrS∞

is fully faithful if
vR(ᾱ) > p(r − 1)/(p− 1).

Proof. The proof is the same as that of Proposition 4.2 in [Oz2]. Here we only
explain why we need the condition vR(ᾱ) > p(r − 1)/(p− 1). Assume pN = 0
for simplicity. Let g ∈ G and f : M→ N be a morphism of Kisin modules. We
also denote by f : W (R) ⊗ϕ,S M→ W (R)⊗ϕ,S N the W (R)-linear extension
of f . Then it follows from the argument of the proof of Proposition 4.2 of

loc. cit. that we have f ◦ g(x) − g ◦ f(x) ∈ m
≥c(s)
R ⊗ϕ,S N for any s ≥ 0 and

x ∈ W (R) ⊗ϕ,S M. Here, c(s) is defined by c(0) = vR(ᾱ) + p/(p − 1) and
c(s+1) = pc(s)− pr, that is, c(s) = (vR(ᾱ)− p(r− 1)/(p− 1))ps + pr/(p− 1).
By the assumption vR(ᾱ) > p(r − 1)/(p − 1), we have lims→∞ c(s) = ∞ and
hence f commutes with g.

4.5 A G-action on M(n)

In this section, we equip a (ϕ,G)-module structure on M(n). In the classical
setting f(u) = up, this has been already studied in Section 4.3 of [Oz2] by using
the fact that the G-action on u is explicitly calculated. In the present setting,
the G-action on u is not so easy to understand, and so we need more delicate
arguments.
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Theorem 4.15. Assume that vp(ai) > 1 for any 1 ≤ i ≤ p − 1. Let n =
(ni)i∈Z/dZ ∈ S be a sequence with smallest period d. Let M(n) be the Kisin
module of height r defined in Definition 4.10. Then there exists a W (R)-semi-
linear G-action on W (R)⊗ϕ,S M(n) which satisfies the following properties:
(1) The G-action on W (R)⊗ϕ,S M(n) commutes with ϕW (R) ⊗ ϕM(n).
(2) Gπ acts on S⊗ϕ,S M(n) trivial.

(3) For any g ∈ G and x ∈M, we have g(1⊗x)−(1⊗x) ∈ m
≥p2/(p−1)
R ⊗ϕ,SM(n).

Moreover, such a G-action is uniquely determined if 0 ≤ ni ≤ min{er, p − 1}
for any i.

Remark 4.16. For the uniqueness assertion above, we do not need (2).

Proof of Theorem 4.15. Take any (pd − 1)-st root π(0) of π = π0. We define

π(n) inductively by the formula π(n) = πpd−1

(n−1)π
−1
n for n ≥ 1. We see vp(π(n)) =

1/(epn(pd − 1)) and thus we have π(n) ∈ OK . Now we claim the following.

πp
(n) ≡ π(n−1) mod pπ(n−1)OK and πpd−1

(n) ≡ πn mod pπnOK . (4.2)

We proceed a proof of this claim by induction on n.

Consider the case n = 1. We have πp
(1) = πpd

(0)π
−p
1 = π(0)π

pd−1
(0) π−p

1 = π(0) ·ππ
−p
1

and π = πp
1 +

∑p−1
i=1 aiπ

i
1. Hence we obtain πp

(1) = π(0) + π(0)

∑p−1
i=1 aiπ

−(p−i)
1 .

By the assumption vp(ai) > 1 for any i, we obtain πp
(1) ≡ π(0) mod pπ(0)OK .

On the other hand, we have πpd−1
(1) = π

pd−1(pd−1)
(0) π

−(pd−1)
1 = π1(ππ

−p
1 )p

d−1

=

π1(1 +
∑p−1

i=1 aiπ
−(p−i)
1 )p

d−1

. By the assumption vp(ai) > 1 for any i, we have

(1 +
∑p−1

i=1 aiπ
−(p−i)
1 )p

d−1

∈ 1 + pOK . Hence we have πpd−1
(1) ≡ π1 mod pπ1OK

as desired.
Next we assume that (4.2) holds for n = m− 1 and consider the case n = m.

By induction hypothesis, we have πpd−1
(m−1) = πm−1 + pπm−1x for some x ∈ OK .

Thus we have πp
(m) = πpd

(m−1)π
−p
m = π(m−1)π

pd−1
(m−1)π

−p
m = π(m−1)(πm−1 +

pπm−1x)π
−p
m = π(m−1)(1+

∑p−1
i=1 aiπ

−(p−i)
m + pπm−1π

−p
m x). By the assumption

vp(ai) > 1 for any i, we obtain πp
(m) ≡ π(m−1) mod pπ(m−1)OK . On the other

hand, we have πpd−1
(m) = (πpd−1

(m−1)π
−1
m )p

d−1 = (πm−1 + pπm−1x)
pd−1

π−pd

m πm =

πm((πm−1 + pπm−1x)π
−p
m )p

d−1

= πm(1 +
∑p−1

i=1 aiπ
−(p−i)
m + pπm−1π

−p
m x)p

d−1

.

By the assumption vp(ai) > 1 for any i, we have (1 +
∑p−1

i=1 aiπ
−(p−i)
m +

pπm−1π
−p
m x)p

d−1

∈ 1 + pOK . Therefore, we obtain πpd−1
(m) ≡ πm mod pπmOK .

This finishes the proof of (4.2).
By (4.2), we can define an element πd of R by πd := (π(n) mod pOK)n≥0. By

definition we have πpd−1
d = π. On the other hand, for any g ∈ G, there exists a

unique ag ∈ F×
pd such that gπ(0)π

−1
(0) = [ag]. Here, [·] stands for the Teichmüller

lift. We note that we have a cocycle condition agh = ag · gah for any g, h ∈ G.
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Put xg = a−1
g gπdπ

−1
d ∈ R×. By the cocycle condition above, we can define an

R-semi-linear G-action on R⊗ϕ,S M(n) = ⊕i∈Z/dZR(1⊗ ei) by

g(1⊗ ei) = xmi

g (1⊗ ei)

for any g ∈ G and i ∈ Z/dZ. Here, mi =
∑d

j=1 p
jni−j . In the rest of this

proof, we show that this G-action satisfies the assertions (1), (2) and (3) in
the statement of this lemma. The assertion (1) can be checked by a direct
computation without difficulty. We check (2) and (3) below.

We show (2). Let g ∈ Gπ. It suffices to show that gπdπ
−1
d coincides with

ag. The case (p, d) = (2, 1) is clear. Thus we may assume (p, d) 6= (2, 1).
Put bg := gπdπ

−1
d , which is an element of F×

pd . Seeing the 0-th components of

both sides of gπd = bgπd, we have gπ(0) ≡ [bg]π(0) mod pOK . Thus we have

[ag]π(0) ≡ [bg]π(0) mod pOK , and this induces [ag] − [bg] ∈ pπ−1
(0)OK . By the

assumption (p, d) 6= (2, 1), we have vp(pπ
−1
(0)) = 1−1/(e(pd−1)) > 0, and hence

we obtain [ag]− [bg] ∈ pW (k). Therefore, we have ag = bg. This shows (2).

We show (3). We may assume g /∈ Gπ. At first we show

g(1⊗ ei)− (1⊗ ei) ∈ m
≥

p2

p−1

R ⊗ϕ,S M(n) (4.3)

for any g ∈ G and i ∈ Z/dZ. Since mi is divided by p, it suffices to show

xg − 1 ∈ m
≥p/(p−1)
R ⊗ϕ,S M(n). Note that the n-th component of a−1

g gπd − πd

is [a−p−n

g ]gπ(n) − π(n) mod pOK . Hence we have

vR(xg − 1) = vR(a
−1
g gπd − πd)− vR(πd)

= lim
n→∞

pnvp([a
−p−n

g ]gπ(n) − π(n))−
1

e(pd − 1)

= lim
n→∞

pn(vp([a
−p−n

g ]gπ(n) − π(n))− vp(π(n)))

= lim
n→∞

pnvp

(
[a−p−n

g ]
gπ(n)

π(n)
− 1

)
.

Hence it is enough to show that vp

(
[a−p−n

g ]gπ(n)π
−1
(n) − 1

)
≥ p/(pn(p−1)) for n

large enough. More precisely, we claim the following: Let N ≥ 1 be the integer
such that gπN−1 = πN−1 and gπN 6= πN . (Such N exists by the assumption
g /∈ Gπ .) Then we have

vp

(
[a−p−n

g ]
gπ(n)

π(n)
− 1

)
≥

pN

pn(p− 1)
(4.4)

for n large enough. We show this inequality. Put cn = [a−p−n

g ]gπ(n)π
−1
(n) for
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n ≥ 0. Since ap
d

g = ag, we have

cn − 1 = [a−p−n

g ]p
d gπ

pd−1

(n−1)gπ
−1
n

πpd−1

(n−1)π
−1
n

− 1 =

(

[a−p−(n−1)

g ]
gπ(n−1)

π(n−1)

)pd−1
(

gπn

πn

)−1

− 1

= cp
d−1

n−1

(

gπn

πn

)−1

− 1 = (cp
d−1

n−1 − 1)

(

gπn

πn

)−1

+

(

gπn

πn

)−1

− 1.

In particular, we have vp(cn − 1) ≥ min{vp(cn−1 − 1), vp(gπnπ
−1
n − 1)}. Re-

peating this argument, we obtain vp(cn − 1) ≥ min{vp(c0 − 1), vp(gπ1π
−1
1 −

1), . . . , vp(gπnπ
−1
n −1)}. Since c0−1 = 0, we have vp(cn−1) ≥ min{vp(gπ1π

−1
1 −

1), . . . , vp(gπnπ
−1
n − 1)}. On the other hand, we know vR(gπnπ

−1
n − 1) =

pN/(pn(p−1)) for any n ≥ N by the proof of Proposition 3.12. Hence, to show
(4.4), it suffices to show vp(gπnπ

−1
n − 1) > 0 for any n ≥ 1. More precisely, we

show

vp

(
gπn

πn
− 1

)
>

p

pn(p− 1)
(4.5)

for any n ≥ 1. We note that xn := gπnπ
−1
n −1 is a root of

∑p
i=1 aiπ

−(p−i)
n (X+

1)i − gπn−1π
−p
n . Put bj =

∑p
i=j

(
i
j

)
aiπ

−(p−i)
n ∈ pOK for any 1 ≤ j ≤ p − 1.

Then we see the equality
∑p

i=1 aiπ
−(p−i)
n (X+1)i = Xp+

∑p−1
j=1 bjX

j+πn−1π
−p
n .

Hence xn for n ≥ 2 (resp. n = 1) is a root of Xp +
∑p−1

j=1 bjX
j + (gπn−1 −

πn−1)π
−p
n (resp. Xp−1 +

∑p−1
j=1 bjX

j−1). Now (4.5))follows by induction on n
and arguments of Newton polygons. Consequently we finish the proof of (4.3).
To finish the proof of (3), we need to show

g(1⊗ x)− (1⊗ x) ∈ m
≥

p2

p−1

R ⊗ϕ,S M(n) (4.6)

for any x ∈ M(n). Writing x =
∑d

i=1 aiei with some ai ∈ k[[u]], we have

g(1 ⊗ x) − (1 ⊗ x) =
∑d

i=1(g(1 ⊗ aiei) − (1 ⊗ aiei)) =
∑d

i=1((gai − ai)
pg(1 ⊗

ei))+api (g(1⊗ei)− (1⊗ei))). By (4.3), it suffices to show gai−ai ∈ m
≥p/(p−1)
R

but this immediately follows from Proposition 3.12. Consequently, we obtained
the proof of (3).
Finally, we show that an R-semi-linear G-action on R⊗ϕ,SM(n) satisfying (1)
and (3) is uniquely determined when 0 ≤ ni ≤ min{er, p−1} for any i. Assume
that two G-actions ρ1, ρ2 : G → EndR(R ⊗ϕ,S M(n)) on R ⊗ϕ,S M(n) satisfy
(1) and (3), and put g∗(x) = ρ1(g)(x) and g♯(x) = ρ2(g)(x) for any g ∈ G and

x ∈ R⊗ϕ,S M(n). By (3), we have g∗(1⊗ ei)− g♯(1⊗ ei) ∈ m
≥c(0)
R ⊗ϕ,S M(n)

where c(0) = p2/(p− 1). Thus, by (1), we obtain

gupni(g∗(1⊗ei+1)−g♯(1⊗ei+1)) = ϕ(g∗(1⊗ei)−g♯(1⊗ei)) ∈ m
≥pc(0)
R ⊗ϕ,SM(n).

Furthermore, we have pc(0) − pni/e ≥ pc(0) − p(p − 1) by the assumption
0 ≤ ni ≤ min{er, p − 1}. Hence we obtain g∗(1 ⊗ ei+1) − g♯(1 ⊗ ei+1) ∈
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m
≥c(1)
R ⊗ϕ,S M(n) where c(1) = pc(0)− p(p− 1). Repeating this argument, we

obtain g∗(1 ⊗ ei+s) − g♯(1 ⊗ ei+s) ∈ m
≥c(s)
R ⊗ϕ,S M(n) for any s ≥ 0 where

c(s) = pc(s − 1) − p(p − 1) = ps+1/(p − 1) + p. Since lims→∞ c(s) = ∞, we
obtain g∗(1⊗ ei) = g♯(1 ⊗ ei) for any i as desired.

4.6 Proofs of Theorems 4.1 and 4.2

In this section we prove Theorems 4.1 and 4.2. We put ā = a mod pW (R)
for any a ∈ W (R). It is known (cf. Example 3.3.2 of [CL]) that there exists
t′ ∈ W (R) r pW (R) such that ϕ(t′) = E(u)t′. By Lemma 2.3.1 of loc. cit.,
ϕ(t′) is a generator of I [1]W (R).

Remark 4.17. Under the condition vp(a1) > 1, we defined t ∈W (R)rpW (R)
in Section 2.2 such that ϕ(t) = µ0E(u)t with some µ0 ∈ S×. Then we have
t/t′ ∈ W (R)× since both ϕ(t) and ϕ(t′) are generators of a principal ideal
I [1]W (R).

We start with two estimations of the ideal ϕ(gu− u)B+
cris ∩W (R) of W (R) for

g ∈ G to study its reduction modulo p. The first proposition gives a “weak”
estimation, however, it does not need any assumption. The second one gives a
“strong” estimation although we need some technical assumptions.

Proposition 4.18. Let j0 be the minimum integer 1 ≤ j ≤ p such that
vp(jaj) = 1. Put h = 0 (resp. h = 1) if e < j0 − 1 (resp. e ≥ j0 − 1).
(1) Let g ∈ G r Gπ and N ≥ 1 the integer such that gπN−1 = πN−1 and
gπN 6= πN . Then

(i) gu− u = ϕN (t′)vg for some vg ∈W (R).

(ii) ϕ(vg) = vgwg for some wg ∈W (R).

(iii) ϕ(gu− u)B+
cris ∩W (R) ⊂ vgw

h
g I

[1]W (R).

(2) The image of ϕ(gu − u)B+
cris ∩W (R) under the projection W (R) → R is

contained in m≥c
R for any g ∈ G. Here,

c =
p

p− 1
+

j0 − 1

e(p− 1)
ph.

Proposition 4.19. Assume the following conditions.

(i) gu ∈ uW (R) for any g ∈ G.

(ii) f (n)(π) 6= 0 for any n ≥ 1.

Then we have the following.
(1) gu− u ∈ uI [1]W (R) for any g ∈ G.
(2) ϕ(gu− u)B̃α ∩W (R) ⊂ ϕ(u)I [1]W (R) for any g ∈ G.
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(3) The image of ϕ(gu − u)B̃α ∩ W (R) under the projection W (R) → R is

contained in m≥c
R for any g ∈ G. Here,

c =
p

p− 1
+

p

e
.

For proofs of these propositions, we use

Lemma 4.20. (1) Let v ∈ W (R) such that vR(v̄) ≤ 1. If x ∈ B+
cris satisfies

vx ∈W (R), then we have x ∈W (R).
(2) Assume that vp(ai) > 1 for any 1 ≤ i ≤ p − 1. Put f0(u) = f(u)/u. If

x ∈ B̃α satisfies f0(u)x ∈ W (R), then we have x ∈ W (R).

Proof. (1) This is a generalization of Lemma 3.2.2 of [Li3] but almost the same
proof can be applied to our setting. We only give one remark that E(u) is
contained in vW (R) + pW (R) by the condition vR(v̄) ≤ 1 = vR(E(ū)), and
thus we can write E(u)i+1 = pi+1bi + vwi by some bi, wi ∈W (R).
(2) The proof here is given by the anonymous referee. Again we modify the
proof of Lemma 3.2.2 of [Li3]. We may assume x =

∑∞

j=0 aj(E(u)p/p)j with

aj ∈ W (R). Put y = f0(u)x ∈W (R). For any i ≥ 0, we have piy = f0(u)x̃i+ z̃i
where x̃i :=

∑i
j=0 ajp

i−jE(u)pj and z̃i := pif0(u)
∑∞

j=i+1 aj(E(u)p/p)j . Note

that we have x̃i ∈ W (R) and z̃i ∈ Filp(i+1)W (R). Since Filp(i+1)W (R) is
generated by E(u)p(i+1), we have z̃i = E(u)p(i+1)βi for some βi ∈ W (R).
By the assumption vp(ai) > 1 for any 1 ≤ i ≤ p − 1, we have E(u)p ≡
f0(u)u

ep−p+1 mod p2, which implies E(u)p(i+1) ∈ p2(i+1)S+f0(u)S. Hence we
have piy = f0(u)x

′
i+ p2(i+1)w′

i for some x′
i, y

′
i ∈W (R). Since p does not divide

f0(u), we see that p
i divides x′

i and thus we obtain y = f0(u)x(i) + pi+2w(i) for
some x(i), y(i) ∈ W (R). This gives y ∈ f0(u)W (R), which shows x ∈ W (R) as
desired.

Proof of Proposition 4.18. (1) By definition of N , we have ϕ−(N−1)(gu− u) ∈
I [1]W (R) and ϕ−N (gu − u) /∈ Fil1W (R) (cf. Lemma 2.1.3 of [CL]). By the
condition ϕ−(N−1)(gu − u) ∈ I [1]W (R) and the fact that ϕ(t′) is a generator
of I [1]W (R), we have gu − u = ϕN (t′)vg for some vg ∈ W (R), which shows
(1)-(i). Taking ϕ to both sides of this equality, we have

ϕ(gu− u) = ϕN+1(t′)ϕ(vg) = ϕN (t′)ϕN (E(u))ϕ(vg). (4.7)

On the other hand, the equation ϕ(u) = f(u) implies

ϕ(gu− u) = (gu− u)w̃g = ϕN (t′)vgw̃g (4.8)

where w̃g =
∑p

i=1 ai(gu
i−ui)/(gu−u) ∈ W (R). By (4.7) and (4.8), we obtain

vgw̃g = ϕN (E(u))ϕ(vg). (4.9)

Hence we have ϕ−N (vg)ϕ
−N (w̃g) ∈ Fil1W (R). Here we note that ϕ−N (vg) is

not contained in Fil1W (R) since t′ϕ−N (vg) = ϕ−N (gu− u) /∈ Fil1W (R). Thus
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we obtain ϕ−N (w̃g) ∈ Fil1W (R). Since E(u) is a generator of Fil1W (R) (cf.
Lemma 2.1.3 of [CL]), we obtain w̃g = ϕN (E(u))wg for some wg ∈ W (R). By
(4.9), we obtain ϕ(vg) = vgwg, which shows (1)-(ii).
Finally we show (1)-(iii). Take any x = ϕ(gu − u)y ∈ ϕ(gu − u)B+

cris ∩W (R).
We have

x = ϕ(gu− u)y = ϕN+1(t′)ϕ(vg)y = ϕN+1(t′)vgwgy

= ϕN (E(u))ϕN (t′)vgwgy = ϕN (E(u))ϕN−1(E(u))ϕN−1(t′)vgwgy

= · · · = ϕN (E(u)) · · ·ϕ(E(u)) · E(u)t′vgwgy

= E(u)t′vgw
h
g z

where z := ϕN (E(u)) · · ·ϕ(E(u))w1−h
g y ∈ B+

cris. Note that we have vR(E(u)) =
evR(ū) = 1. By the equality ϕ(t′) = E(u)t′, we have vR (̄t

′) = 1/(p− 1) ≤ 1. It
follows from Proposition 3.12 and the equality gu−u = ϕN (t′)vg that we have
vR(v̄g) = (j0 − 1)/(e(p− 1)) ≤ 1. Furthermore, by the equality ϕ(vg) = vgwg,
we also see vR(w̄

h
g ) = h(j0 − 1)/e ≤ 1. Hence it follows from Lemma 4.20

and E(u)t′vgw
h
g z = x ∈ W (R) that we have z ∈ W (R). Therefore, we obtain

x = ϕ(t′)vgw
h
g z ∈ vgw

h
g I

[1]W (R) as desired.

(2) Since vR (̄t
′) = 1/(p − 1), vR(v̄g) = (j0 − 1)/(e(p − 1)) and vR(w̄

h
g ) =

h(j0 − 1)/e, the result follows from (1)-(iii) immediately.

Proof of Proposition 4.19. The assertion (3) follows from (2) immediately, and
thus it suffices to show (1) and (2). By the assumption (i), we have gu−u = uvg
for some vg ∈W (R). By Lemma 2.3.2 of [CL] and the assumption (ii), we see

vg ∈ I [1]W (R), which shows (1). Take any x = ϕ(gu − u)y ∈ ϕ(gu − u)B̃α ∩
W (R). Writing vg = ϕ(t′)v′g with some v′g ∈W (R), we have

x = ϕ(uvg)y = ϕ(u)ϕ2(t′)ϕ(v′g)y = f0(u) · u ·E(u) · t′ · z

where z = ϕ(E(u))ϕ(v′g)y, which is an element of B̃α. Note that we have
vR(ū) = 1/e ≤ 1, vR (̄t

′) = 1/(p−1) ≤ 1. Hence it follows from Lemma 4.20 that
we have z ∈ W (R). Therefore, we obtain x = ϕ(u)ϕ(t′)z ∈ ϕ(u)I [1]W (R).

The above propositions allow us to show the existence of “good” (ϕ,G)-modules

which correspond to objects of Repr,cristor (G). For the case r = 1, we have

Corollary 4.21. Assume vp(a1) > 1 and the condition (P ). Let j0 be the
minimum integer 1 ≤ j ≤ p such that vp(jaj) = 1. Put h = 0 (resp. h = 1)
if e < j0 − 1 (resp. e ≥ j0 − 1). Let α ∈ W (R) r pW (R) such that vR(ᾱ) ≤

(j0−1)ph/(e(p−1)). Let T be an object of Rep1,cris
tor (G) such that pT = 0. Then

there exists a (ϕ,G)-module M̂ ∈Mod1,GS∞
(α) killed by p such that T ≃ T̂ (M̂).

Proof. Take an exact sequence 0→ L1 → L2 → T → 0 of representations of G,
where L1 ⊂ L2 are G-stable Zp-lattices in a crystalline Qp-representation of G

with Hodge-Tate weights in [0, 1]. Take a morphism i : L̂2 → L̂1 in Mod1,Ĝ,cris
S
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which corresponds to the injection L1 →֒ L2 via Theorem 3.7. We regard L̂1

and L̂2 as (ϕ,G)-modules by a canonical way. It is not difficult to check that
the map L2 → L1 of underlying Kisin modules of i is injective, and thus we
may regard L̂2 as a sub (ϕ,G)-module of L̂1. Put M = L1/L2. It follows from
Proposition 2.2 that M is an object of Mod1S∞

. Furthermore, we can naturally

equip M with a (ϕ,G)-module structure; we denote it by M̂. By construction,

we have an exact sequence 0 → L̂2 → L̂1 → M̂ → 0 of (ϕ,G)-modules. It
follows from (the proof of) Lemma 3.1.4 of [CL2] that this exact sequence
induces 0 → L1 → L2 → T → 0. We note that M[1/u] is an étale ϕ-module
corresponding to T |Gπ

, and thus M[1/u] is killed by p (see the isomorphism
(3.2.1) of [CL]). In particular, M is killed by p. Combining this with the fact

that L̂1 and L̂2 are objects of Mod1,Ĝ,cris
S , it follows from Proposition 4.18 that

M̂ is an object of M̂ ∈Mod1,GS∞
(α).

Next we consider general r.

Corollary 4.22. Assume the following conditions.

(i) gu ∈ uW (R) for any g ∈ G.

(ii) f (n)(π) 6= 0 for any n ≥ 1.

(iii) vp(a1) > max{r, 1}.

Let T be an object of Repr,cris
tor (G). Then there exists a (ϕ,G)-module M̂ ∈

Modr,GS∞
(ϕ(u)) such that T ≃ T̂ (M̂).

Moreover, we have the following: Suppose that we have an exact sequence

(#) 0→ L1 → L2 → T → 0

of representations of G, where L1 ⊂ L2 are G-stable Zp-lattices in a crystalline
Qp-representation of G with Hodge-Tate weights in [0, r]. Then there exist

L̂1, L̂2 ∈ Modr,GS (ϕ(u)), M̂ ∈Modr,GS∞
(ϕ(u)) and an exact sequence

(∗) 0→ L̂2 → L̂1 → M̂→ 0

of (ϕ,G)-modules which induces (#).

Proof. The proof is almost the same as that of Corollary 4.21. We only give
a remark that L̂1 and L̂2 in the present situation are objects of Modr,GS (ϕ(u))

by Proposition 4.19 (2), and thus M̂ is an object of Modr,GS∞
(ϕ(u)).

Now we are ready to prove Theorems 4.1 and 4.2. We essentially follow the
method of [Oz2].
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Proof of Theorem 4.2. The goal is to show the equality

HomG(T, T
′) = HomGπ

(T, T ′) (4.10)

for any T, T ′ ∈ Repr,cristor (G).

STEP 1. We reduce a proof to the case where k = k. Assume that the
theorem holds when k = k and consider general cases. We denote by L and
H the completion of the maximal unramified extension of K and the absolute
Galois group of L, respectively. We identify the inertia subgroup I of G with
H . We set Lπ :=

⋃
n≥0 L(πn) and denote by Hπ the absolute Galois group of

Lπ. We remark that Lπ is an f -iterate extension of L since π is a uniformizer
of L.
Let f : T → T ′ be a Gπ-equivalent homomorphism. Since T |H and T ′|H
are objects of Repr,cristor (H) and f commutes with Hπ , the assumption above
implies that f is H-equivalent. Since the extension Kπ/K is a totally ramified
pro-p-extension, we know that H and Gπ topologically generates G. Hence f
commutes with G.

STEP 2. We reduce a proof to the case where T is irreducible. Assume that
the equality (4.10) holds when T is irreducible and consider general cases.

Since the category Repr,cristor (G) is stable under subquotients and direct sums
in Reptor(G) (cf. Lemma 4.19 of [Oz2]), it is an exact category in the sense of

Quillen [Qu, Section 2]. Hence short exact sequences in Repr,cristor (G) give rise
to exact sequences of Hom’s and Ext1’s in the usual way. Thus a standard
dévissage argument (with respect to a Jordan-Hölder sequence of T ) reduces a
proof to the case where T is irreducible.

STEP 3. By Steps 1 and 2, it suffices to show the equality (4.10) under the
conditions that k = k and T is irreducible. Now we assume these conditions.
First we claim that T |Gπ

is irreducible. Let W be a Gπ-stable submodule of
T . Since T is irreducible, the wild inertia subgroup Iw of G acts on T trivial.
In particular, the Iw-action on T preserves W . Since Gπ and Iw topologically
generates G, the irreducibility of T implies that W is 0 or T . Thus the claim
follows.
By Corollary 4.22, there exist (ϕ,G)-modules M̂, M̂′ ∈Modr,GS∞

(ϕ(u)) such that

T ≃ T̂ (M̂) and T ′ ≃ T̂ (M̂′). Then we have T |Gπ
≃ TS(M) ≃ TS(Maxr(M)).

By Theorem 4.9 (5) and the condition that T |Gπ
is irreducible, we know that

Maxr(M) is a simple object in the abelian category MaxrS∞
. By Proposition

4.11 and the assumption k = k, there exists an sequence n ∈ Srmax such that
M(n) ≃Maxr(M). We note that the ideal ϕ(u)I [1]W (R) of W (R) is generated
by ϕ(u)ϕ(t) and vR(ϕ(u)ϕ(t) mod p) = p/e + p/(p − 1) ≤ p + p/(p − 1) =
p2/(p − 1). It follows from Theorem 4.15 that there exists a (unique) (ϕ,G)-

module M̂(n) ∈ Modr,GS∞
(ϕ(u)) with underlying Kisin module M(n). Then

we have an isomorphism T |Gπ
≃ T̂ (M̂(n))|Gπ

. By this isomorphism, we know
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that T̂ (M̂(n))|Gπ
is irreducible since T |Gπ

is irreducible. Hence T̂ (M̂(n)) is irre-

ducible as a representation of G. In particular, T and T̂ (M̂(n)) are tame. Since

Gπ and Iw topologically generates G, the isomorphism T |Gπ
≃ T̂ (M̂(n))|Gπ

is
in fact G-equivalent. We consider the following commutative diagram.

HomG(T, T
′) �
� // HomGπ

(T, T ′)

Hom(M̂′, M̂(n))

T̂

OO

// HomS,ϕ(M
′,M(n))

Maxr

// HomS,ϕ(Maxr(M′),M(n))

TS

OO

Here, we recall that we have vR(ϕ(ū)) = p/e > p(r − 1)/(p − 1). Hence the
first arrow in the bottom line, obtained by forgetting G-actions, is bijective
by Theorem 4.14. Since M(n) is maximal, it is not difficult to check that the
second arrow in the bottom line is also bijective. Furthermore, the right vertical
arrow is also bijective by Theorem 4.9 (5). Therefore, the top horizontal arrow
must be bijective as desired. This is the end of the proof of Theorem 4.2.

Proof of Theorem 4.1. The goal is to show the equality

HomG(T, T
′) = HomGπ

(T, T ′) (4.11)

for any T, T ′ ∈ Rep1,cristor (G). The arguments in Steps 1 and 2 just above
proceed also for the present situation. Thus it suffices to show the equality
(4.11) under the conditions that k = k and T is irreducible. Put T ′′ = ker(T ′ →

T ′;x 7→ px). This is an object of Rep1,cristor (G) by Lemma 4.19 of [Oz2]. Since
pT = 0, we know that any homomorphism T → T ′ of Zp-modules have values
in T ′′. Thus, by replacing T ′ with T ′′, we may assume pT ′ = 0.
Take any α ∈ W (R)r pW (R) such that 0 < vR(ᾱ) ≤ (j0− 1)/(e(p− 1)). Since

T and T ′ are killed by p, there exist (ϕ,G)-modules M̂, M̂′ ∈ Mod1,GS∞
(α) killed

by p such that T ≃ T̂ (M̂) and T ′ ≃ T̂ (M̂′) by Corollary 4.21. Now we can use
the same arguments of the third paragraph of Step 3.
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