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1 The problem

1.1 Context and motivation

In this work, we study the asymptotic behavior (as ǫ → 0) of the low-lying
spectrum of the following multiscale Schrödinger operator on the line:

Lǫ,β := ǫβD2
x + q

(
x,

x

ǫ

)
, Dx =

1

i

d

dx
, (1)

where q(x, y) is localised in the first variable, and 1-periodic and zero-mean in
the second variable (in this paper T will denote R/Z). In other words, we are
interested in the non-zero solutions of the following eigenvalue equation:

Lǫ,βϕǫ,β(x) = λǫ,βϕǫ,β(x) , ϕǫ,β ∈ L2(R) . (2)

In addition to its intrinsic mathematical interest, the spectral investigation of
(1) can be motivated as a toy problem for the propagation of waves in a material
with high contrast microstructure (see for instance [1]).
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Of course, in the case of the trivial potential q ≡ 0, the spectrum is purely
essential, and no eigenfunction with finite energy is allowed. Adding a spatially
localized potential q

(
x, xǫ
)
does not perturb the essential spectrum [29], so that

spess(Lǫ,β) = R
+. However, as we shall see, the presence of the highly oscillatory

potential generates negative eigenvalues. Our aim is to describe the asymptotic
behavior of these eigenvalues through non-oscillatory, effective operators of the
form:

Leff
ǫ,β := ǫβD2

x + ǫγ0V0(x) + ǫγ1V1(x) on L2(R) ,

where V0 and V1 are given in terms of q, and independent of ǫ, and
γ0(β), γ1(β) ∈ R.
The eigenvalue asymptotics may be very different, depending on the value of
the parameter β, as one can see by looking at the following two cases which
have been treated in the literature.

i. The case β = 0 corresponds to the classical case of homogenization. Al-
though standard homogenization arguments yield an effective potential

Veff (x) =

∫

T

q(x, y)dy = 0 ,

a more precise study [4, 5, 14] shows that the low-lying spectrum is driven
by a non-trivial effective potential Veff(x) = ǫ2V (x) ≤ 0. Consistently, there

exists a negative eigenvalue, λǫ,0 ∼ − ǫ4

4

( ∫
R
V
)2
. This eigenvalue is unique

for ǫ sufficiently small, and the corresponding eigenfunction behaves like
ϕǫ,0 ∼ exp(−

√
−λǫ,0| · |).

ii. The case β = 2 has been studied in [9, 10], and corresponds to a semiclas-
sical scaling. In particular, based on the theory of effective Hamiltonians
developed in [17], the authors show that the number of negative eigenval-
ues grows as ǫ → 0 and satisfies a Weyl type asymptotics. Although the
method therein relies on the use of an effective Hamiltonian, it is not clear
how to relate this effective Hamiltonian to an effective potential, even in
our one-dimensional setting.

1.2 Results

Here we aim at studying the situation of intermediate values for β. Our results
apply to β ∈ (0, 3/2) and predict very different asymptotic behaviors (having
the flavor of situation i. or ii. above) depending on the sign of β − 1. It is
interesting to notice that our strategy does not depend strongly on the situation
at stake. We find it convenient to study a rescaled problem: let α = β

2−β ,

ε = ǫ1−β/2 and (abusing notations) ϕε,α(x) = ϕǫ,β(ǫ
β/2x), λε,α = λǫ,β . Then

the eigenproblem (2) reads

Lε,αϕε,α(x) :=
(
D2

x + q(εαx, x/ε)
)
ϕε,α(x) = λε,αϕε,α(x), ϕε,α ∈ L2(R).

(3)
From now on, we shall only focus on the eigenproblem (3); the interested reader
can straightforwardly translate our results to the original problem (2).
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1.2.1 An effective Hamiltonian to describe the low-lying spec-
trum

Let us describe the explicit formula for the aforementioned effective potential.
A key role is played by the function Q, defined as the unique solution to

D2
yQ(X, y) = −q(X, y),

∫

T

Q(X, y)dy = 0. (4)

Here, X ∈ R is a fixed parameter. This allows to define

V0(X) = −

∫

T

|∂yQ|
2
(X, y)dy and V1(X) = 2

∫

T

(
(∂XQ)(∂yQ)

)
(X, y)dy . (5)

Our aim is to show that V0 and its corrector V1 act as effective potentials,
in the sense that the asymptotic behavior of the low-lying spectrum of our
original operator, Lε,α, may be described at first order through the one of the
non-oscillatory effective operator:

Leff
ε,α := D2

x + ε2V0(ε
αx) + ε3+αV1(ε

αx) on L2(R) . (6)

What is more, in most situations, one does not lose precision by considering

Leff,0
ε,α := D2

x + ε2V0(ε
αx) on L2(R) . (7)

Notation 1.1 We use standard notations for Lebesgue spaces, Lp, L2-based
Sobolev spaces, Hk, and denote W ℓ,∞(R × T) := W ℓ,∞(R;L∞(T)), endowed
with the norm

∥∥q
∥∥
W ℓ,∞(R×T)

= sup
l∈{0,...,ℓ}

∥∥∂lXq
∥∥
L∞(R×T)

.

We also denote 〈·〉 := (1 + | · |2)1/2.

In the whole paper, we work under the following assumption. Additional re-
strictions are explicitly stated when needed.

Assumption 1.2 q ∈ W 5,∞(R;L∞(T)),
∫
T
q(X, y)dy = 0, 〈·〉V ′

0 ∈ L∞(R),
〈·〉V ′

1 ∈ L∞(R) and V (X) → 0 as |X | → ∞.

Notation 1.3 Denote λn,ε,α the nth eigenvalue1 of Lε,α counted increasingly,
and by convention λn,ε,α = 0 if n > Nε,α, the number of negative eigenvalues.
Define similarly λeffn,ε,α through the eigenvalues of Leff

ε,α, and λ
eff ,0
n,ε,α through the

eigenvalues of Leff,0
ε,α .

We can now state one of our main results.

1Due to the one-dimensional framework, this eigenvalue is necessarily simple. Indeed, two
square-integrable solutions of the eigenvalue problem are necessarily homothetic, since their
Wronskian vanishes identically.
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Theorem 1.4 Let α > −1 and q satisfying Assumption 1.2. There exists
C > 0 such that for all n ∈ N and ε ∈ (0, 1], one has

|λn,ε,α − λeffn,ε,α| ≤ Cεmin{4,4(1+α)} .

Remark 1.5 The benefit of the estimate of Theorem 1.4 is that the asymptotic
behavior of λeffn,ε,α for V sufficiently localized, depending on the value of α, is
well understood. There are three different regimes at stake:

α > 1 The low-lying spectrum of (6) is dictated by a semiclassical limit. There
is a growing number of simple negative eigenvalues accumulating below
the edge of the essential spectrum, as ε→ 0;

α < 1 The low-lying spectrum of (6) is dictated by a weak coupling limit. Since
the effective potential has negative mass, there exists a (unique for ε
sufficiently small) negative eigenvalue, at a distance O(ε4−2α) from the
origin;

α = 1 In this regime, the effective problem is self-similar, and there exists a
(non-zero) finite number of eigenvalues below the essential spectrum.

Notice that α = 0 (respectively α = +∞) corresponds to β = 0 (respectively
β = 2), already described, and that the eigenvalue asymptotics are consistent.

Remark 1.6 In the situation when q(X, ·) is not mean-zero, our method yields
the following effective operator

Leff
ε,α := D2

x + q0(ε
αx) + ε2Ṽ0(ε

αx) + ε3+αṼ1(ε
αx) on L2(R) , (8)

where q0(X) =
∫
T
q(X, y) dy and Ṽ0, Ṽ1 are defined as in (4)-(5), replacing q

with q − q0. The nature of the spectrum of (8) is generically determined by
q0, the functions Ṽ0, Ṽ1 acting as regular perturbations. This is why we focus
on the mean-zero case where the oscillations themselves generate the discrete
spectrum.

1.2.2 About the approximation of the eigenfunctions

Theorem 1.4 is valid for a wide range of values for α, but in general provides
only limited information on the localization of the eigenvalues. However, in
the situation where the spectral gap of one of the corresponding operators
is asymptotically larger than εmin{4,4(1+α)}, then the asymptotic behavior of
λn,ε,α is described by the one of λeffn,ε,α. In that case, the effective potential also
allows to describe asymptotically the behavior of the corresponding eigenfunc-
tions. This situation generically occurs when α ∈ (0, 3), as we shall see in the
following propositions.

Proposition 1.7 (Semiclassical regime) Assume α ∈ (1, 3). We also as-
sume that X 7→ V0(X) has a unique minimum (not attained at infinity)
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Spectral Asymptotics for the Schrödinger Operator 603

at X = 0 and that it is non-degenerate. Let N ∈ N. Then there exists
ε0 > 0, such that if ε ∈ (0, ε0), then Lε,α has at least N negative eigenval-
ues, λ1,ε,α < · · · < λN,ε,α, satisfying

λn,ε,α = ε2V0(0) + ε1+α(2n− 1)

√
V ′′
0 (0)

2
+ O(εmin{4,2α}) .

Up to changing its sign, the corresponding nth L2-normalized eigenfunction,
ψn,ε,α, satisfies ∥∥ψn,ε,α − ϕeff,0

n,ε,α

∥∥
L2(R)

= O(ε3−α) ,

where ϕeff,0
n,ε,α is the nth L2-normalized eigenfunction of the effective operator

Leff,0
ε,α defined in (7). Moreover, we have the approximation

∥∥ϕeff,0
n,ε,α(x)− ε

1+α
4 Hn(ε

1+α
2 x)

∥∥
L2(R)

= O(ε
α−1

2 ) ,

where Hn is the n-th rescaled Hermite function satisfying

−H ′′
n +

V ′′
0 (0)

2
x2Hn = (2n− 1)

√
V ′′
0 (0)

2
Hn .

If it exists, any other negative eigenvalue satisfies

λ̃ε,α ≥ ε2V0(0) + ε1+α(2N)

√
1

2
V ′′
0 (0) .

Remark 1.8 The asymptotic behaviour of the eigenvalues is determined by the
non-degenerate nature of the minimum of V0. Our method could be extended
to degenerate situations restricting the range of admissible α.

Proposition 1.9 (Weak coupling regime) Let α ∈ (0, 1) and assume that
V0 is not almost everywhere zero and satisfies (1 + | · |)V0, (1 + | · |)V1 ∈ L1(R).
Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), Lε,α has one negative
eigenvalue, λε,α, satisfying

λε,α = −
1

4
ε4−2α

(∫

R

V0

)2

+O(εmin{4,6−4α}) ,

with L2-normalized corresponding eigenfunction satisfying
∥∥ψε,α(x)− ϕeff

ε,α(x)
∥∥
L2(R)

= O(ε2α) ,

where ϕeff
ε,α is the unique L2-normalized eigenfunction of the effective operator

Leff
ε,α defined (6). Moreover, we have the approximation

∥∥∥∥∥ϕ
eff
ε,α(x)−

(
ε2−α

2

∫

R

|V0|

) 1
2

exp
(
|x|
ε2−α

2

∫

R

V0
)
∥∥∥∥∥
L2(R)

= O(εmin{ 4
3 (1−α),1+α}).

If it exists, any other negative eigenvalue satisfies λ̃ε,α = O(ε4).
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Proposition 1.10 (Critical regime) Let α = 1 and assume that V0 is not
almost everywhere zero and satisfies (1 + | · |)V0 ∈ L1(R). For n = 1, . . . , N ,
denote λn,V0 the nth negative eigenvalue of D2

x+V0, and ϕn,V0 its corresponding
L2-normalized eigenfunction. Then there exists ε0 > 0 such that for any ε ∈
(0, ε0), Lε,α has at least N negative eigenvalues, λn,ε, satisfying

λn,ε = ε2λn,V0 +O(ε4) ,

with L2-normalized corresponding eigenfunction satisfying
∥∥ψn,ε(x) − ε1/2ϕn,V0(εx)

∥∥
L2(R)

= O(ε2) .

If it exists, any other negative eigenvalue satisfies λ̃ε = O(ε4).

1.2.3 A two-scale WKB expansion

A natural question one can ask is whether the approximations displayed in
our results are the first terms of an asymptotic expansion, at least for smooth
potential, q ∈

⋂
ℓ∈N

W ℓ,∞(R×T). We are able to positively answer this question
only for a limited number of values for α, all belonging in the semiclassical
regime (see however in [12] an asymptotic expansion of the eigenvalue in the
situation α = 0). We state below the result for α = 2.

Proposition 1.11 Let α = 2 and assume that q ∈
⋂

ℓ∈N
W ℓ,∞(R×T) is such

that X 7→ V0(X) has a unique minimum (not attained at infinity) at X = 0 and
that it is non-degenerate. Then λn,ε,2 and ψn,ε,2, defined by Proposition 1.7,
satisfy expansions in the form of asymptotic series

λn,ε,2 ∼
ε→0

ε2
+∞∑

j=0

εjλn,j , ψn,ε,2(x) ∼
ε→0

χ(ε2x)e−Φ(ε2x)/ε
+∞∑

j=0

εjΨn,j(ε
2x, x/ε) ,

where

i. the last expansion is meant in the L2(R)-sense,

ii. λn,j ∈ R, Ψn,j ∈
⋂

ℓ∈N
W ℓ,∞(R× T) are defined in Section 5,

iii. χ is a smooth cutoff function equal to 1 near 0 and

Φ(X) =

∣∣∣∣∣

∫ X

0

(V0(s)− V0(0))
1
2ds

∣∣∣∣∣ ∼
X→0

1

2

√
V ′′
0 (0)

2
X2 .

Moreover, there exists C0 ∈ R such that for any U bounded neighborhood of 0,

sup
ε3/2x∈U

∣∣∣ψn,ε,2(x)− C0ϕn,ε(ε
3/2x)

(
1 + ε2Q(ε2x, x/ε)

)∣∣∣ = O(ε3) ,

and ϕn,ε satisfies for any k ∈ N,
∥∥ϕn,ε −Hn

∥∥
Ck(U)

= O(ε1/2) .
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1.3 Numerical illustration

In Figures 2, 3 and 4, below, we plot eigenfunctions of Lε,α in the three different
regimes, and compare them with the approximations involved in our results,
i.e. the eigenfunction of the effective operator, Leff

ε,α, and its asymptotic ap-

proximation —namely ϕapp
n,ε,α := ε

1+α
4 Hn(ε

1+α
2 ·) in the semiclassical regime,

and ϕapp
ε,α :=

(
ε2−α

2

∫
R
|V0|
) 1

2 exp
(
| · | ε

2−α

2

∫
R
V0
)
in the weak coupling regime.

The numerical scheme used for computing the eigenfunctions is described in
Appendix A. We defined the oscillatory potential by (see Figure 1)

q(X, y) = 4 cos(2πy)× exp(−X2/8) ,

so that

Q(X, y) = −
1

π2
cos(2πy)× exp(−X2/8) , V0(X) = −

2

π2
exp(−X2/4) .

The value of the parameters are ε = 1/5, and α = 2 (semiclassical regime),
α = 1/2 (weak coupling regime) and α = 1 (critical regime).
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(a) Semiclassical regime, α = 2
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(b) Weak coupling regime, α = 1/2

Figure 1: Large and small-scale behavior of the oscillatory potential, q(εα·, ·/ε).

A striking observation on these numerical experiments is that, as suggested
in Propositions 1.7, 1.9 and 1.10, the main source of imprecision arises when
approximating the eigenfunction of the effective problem, ϕeff with its semiclas-
sical or weak coupling asymptotics, ϕapp. Notice however that, in our results,
the estimates between the exact and effective eigenfunctions is still much less
precise than the eigenvalue approximation, due to the smallness of the spectral
gap. As a matter of fact, the crudeness of the former estimates hides a finer
structure for the eigenfunctions, suggested by our proof: we show that

ψε,α(x) ≈ eφε(x) × ϕeff
ε,α

(∫ x

0

e−2φε(x
′)dx′

)
, φε(x) ≈ ε2Q(εαx, x/ε) .
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Figure 2: Semiclassical regime, α = 2.
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(a) Normalized eigenfunction, ψε,α
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Figure 3: Weak coupling regime, α = 1/2.
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(a) First normalized eigenfunction, ψ1,ε
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Figure 4: Critical regime, α = 1.
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Notice the above approximation shows three different scales, as the scaling
involved in ϕeff

ε,α is different from the ones involved by φε, unless α = 1. In
particular, oscillations are localized on a smaller region than the one defined by
the eigenfunction in the weak coupling regime, in contrast with the semiclassical
regime (which explains why a two-scale expansion could be obtained only in this
situation). Although the precision of our results is insufficient to demonstrate
the refined behavior, the latter is fully supported by our numerical simulations.
Indeed, had we plotted

ϕ̃eff
ε,α(x) = eε

2Q(εαx,x/ε) × ϕeff
ε,α(x) ,

in Figures 2, 3 and 4, then its graph would have been superimposed with the
one of the corresponding eigenfunction of the oscillatory operator, Lε,α.

1.4 Related results and analogies in the literature

Let us now briefly discuss the relation of our results with the existing literature.

1.4.1 Homogenization

The problem of describing the large scale behavior of partial differential equa-
tions with periodically oscillating coefficients on a small scale is often tackled
by the so-called homogenization process. Our approach is closely related, as
the effective potential can be thought as the effective medium obtained after
solving the auxiliary “cell” problem (4). Notice however that our problem
involves three scales whereas standard works based on homogenization tech-
niques typically involve only two scales, as in the case α = 0 or α = 1. This
transpires for instance in [2, 3, 1] where, in order to deal with large potentials,
the authors introduce a factorization principle which is similar to our normal
form transformation (see below), although without the change of variable. We
would also like to mention the recent works [25, 7, 26], where similar multiscale
problem as ours are studied.

1.4.2 Effective potential

The notion of effective problems is of course ubiquitous in asymptotic studies,
and in particular when a microstructure is involved. As mentioned earlier, in
the specific situation α = 0, the effective potential V0 in (6) was introduced
in the previous work [14]. This was then refined and generalized so as to deal
with higher dimensions and scattering resonances in [12, 11]. In particular,
the correction V1 in (6) was introduced in [12], together with the existence of
a power series expansion —with the first terms being explicitly given through
the effective potentials— again in the situation α = 0.
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1.4.3 Anderson localization

It is interesting to notice that our results display a similar behavior than the
one at stake in the famous Anderson localization phenomenon (see for in-
stance [16]). In the present context, a discrete spectral structure emerges from
the strong oscillations of the electric potential. Here, in some sense, the oscilla-
tions play the role of randomness. The phenomenon is weakened by the spatial
decay of the potential (in particular the essential spectrum is unperturbed),
however more and more discrete eigenvalues are generated as ε is small and α
is large.

1.4.4 Born-Oppenheimer reduction

Our strategy is somewhat reminiscent of the so-called Born-Oppenheimer ap-
proximation. This method of dimensional reduction, that is a quantum av-
eraging strategy, was initially introduced in [6] (see also [21] in relation with
molecular physics) and has been developed in many different contexts (see for
instance the review [19]), and in particular to derive spectral asymptotic results
(see [22, 23, 28]). Let us explain the analogy. Consider the two-dimensional
operator

D2
x1

+D2
x2

+ q(εαx1, ε
−1x2) ,

acting on L2(R × T) with q satisfying the same assumptions as above. This
operator is formally obtained by introducing a fictitious variable x2 and dupli-
cating the second derivative. Using the rescaling y = ε−1x2, we are reduced to
the unitarily equivalent operator:

D2
x1

+ ε−2D2
y + q(εαx1, y) .

This operator is in the Born-Oppenheimer form: it is partially semiclassical
with respect to the variable x1 and Mεαx1,ε = ε−2D2

y + q(εαx1, y) can be
interpreted as an operator-valued potential. It can be proved in a rather general
framework (see for instance [24] in the context of pseudo-differential operators)
that, generically, the low-lying spectrum is well described by the one of the
reduced operator

D2
x1

+ µε(ε
αx1) ≈ D2

x1
+ ε2V0(ε

αx1) .

The study here is complicated by the presence of cross-derivatives Dx1Dx2 ,
due to the fact that the variables x1 and x2 are not independent. The above
strategy however served as a guideline for the construction of the normal form
in a previous version of this work [13].

1.4.5 Weakly decaying oscillating potentials

The strategy of our paper follows some ideas of [27], where the author studies
the asymptotic distribution of discrete eigenvalues of the Schrödinger operator
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Spectral Asymptotics for the Schrödinger Operator 609

with weakly decaying (non-rapidly) oscillating potentials. It is well-known
that if the potential is negative at infinity, then the asymptotic distribution of
discrete eigenvalues is driven by the decay rate of the potential [29], but no
results were known when the potential oscillates at infinity. Here again, the
effective potential plays a role as it allows to predict the correct behavior of
the asymptotic distribution of discrete eigenvalues.

1.5 Strategy and outline

Let us describe the key elements of the proof of our results. The main idea is a
normal form transformation. We show that the contributions of the oscillatory
potential q(εαx, x/ε) may be approximately factorized thanks to a two-scale
function φε(x) = ε2Φε(ε

αx, x/ε). This function plays the role of a complex
phase, and is chosen after considering the operator e−φεLε,αe

φε and so that

q(εαx, x/ε)− φ′′ε,α(x)− (φ′ε,α)
2(x) = Vε(ε

αx) + rε(x) ,

where Vε depends on the large scale only and rε is a small remainder. We ex-
plain in Section 2.1 how φε may be explicitly constructed and how the effective
potential Vε = ε2V0+ε

3+αV1 emerges from this construction. The normal form
of the operator is made explicit and compared with the effective operator, Leff

ε,α,
in Section 2.2.

In Section 3, we apply the normal form transformation so as to compare the
Rayleigh quotients associated with Lε,α and the ones associated with Leff

ε,α.
Theorem 1.4 quickly follows from the min-max principle. We then deduce the
asymptotic behavior of the eigenvalues in the three aforementioned regimes.

In Section 4, we use again the normal form of our operator to construct quasi-
modes. We detail in Section 4.1 (respectively Section 4.2 and Section 4.3) the
semiclassical regime, α > 1 (respectively weak coupling regime, α < 1 and
critical regime, α = 1). By using the classical resolvent bound for self-adjoint
operators (consequence of the spectral theorem), together with the previously
obtained results on the eigenvalues, allows to deduce the asymptotic behavior
of the corresponding eigenfunctions, as stated above.

Section 5 is devoted to the case α = 2 and to the proof of the two-scale WKB
expansion stated in Proposition 1.11.

2 The normal form

As mentioned earlier, the key ingredient of our analysis is a “normal form” of
our operator, obtained through conjugation. The conjugation allows to replace
the main oscillatory contributions by a large-scale, effective potential. More
precisely, we shall introduce the transformation

Tφε : ϕ 7→ ψ, ψ(x) := eφε,α(x)ϕ

(∫ x

0

e−2φε,α(x′)dx′
)
,
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where φε,α is to be determined. This yields a new Schrödinger operator involv-
ing the reduced potential (up to a complex phase which will not play a role in
our analysis)

Vφε,α(x) := q(εαx, x/ε)− φ′′ε,α(x) − (φ′ε,α)
2(x) .

Our aim is to choose φε,α such that Vφε,α depends only on the large-scale vari-
able (up to a small oscillatory term). We explain in section 2.1 how we obtain
such a phase and how the effective potential surfaces. We then apply these re-
sults to our Schrödinger operator, and provide useful estimates in Section 2.2.

2.1 Construction of the phase

Our aim in this section is to exhibit a complex phase, φε,α(x), such that

q(εαx, x/ε)− φ′′ε,α(x)− (φ′ε,α)
2(x) = Vε(ε

αx) + rε , (9)

where the remainder term rε is as small as desired. We seek φε,α (and conse-
quently rε) with two-scale behavior

φε,α(x) = ε2Φε(ε
αx, x/ε) ,

where the profile Φε has to be determined. Equation (9) becomes

(
D2

y + 2ε1+αDXDy + ε2(1+α)D2
X

)
Φε(X, y)

+ ε2
(
DyΦε + ε1+αDXΦε

)2
(X, y) + q(X, y) = Vε(X) + rε(X, y) .

Consistently, we will solve the above with the following Ansatz:

Φε(X, y) =
∑

κ∈N2

εp(κ)Φκ(X, y) , Vε(X) =
∑

κ∈N2

εp(κ)Vκ(X, y) ,

where p(κ1, κ2) := (1 + α)κ1 + 2κ2, and we additionally enforce the property

∀κ ∈ N
2,

∫

T

Φκ(X, y)dy = 0 .

2.1.1 Inductive construction

Plugging the Ansatz into the equation and solving at order (κ1, κ2) yields

D2
yΦκ1,κ2 + 2DXDyΦκ1−1,κ2 +D2

XΦκ1−2,κ2

+

κ1∑

κ3=0

(DyΦκ3,κ2−1)(DyΦκ1−κ3,κ2−1) +

κ1∑

κ3=1

(DyΦκ3−1,κ2−1)(DXΦκ1−κ3,κ2−1)

+

κ1∑

κ3=2

(DXΦκ3−2,κ2−1)(DXΦκ1−κ3,κ2−1) = −δ(κ1,κ2)=(0,0)q + Vκ1,κ2 ,
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where δ(κ1,κ2)=(0,0) = 1 if (κ1, κ2) = (0, 0) and 0 otherwise.
We may define Φκ1,κ2 and Vκ1,κ2 by induction on |κ| = κ1 + κ2. Indeed, the
equation reads

D2
yΦκ1,κ2(X, y) + Fκ1,κ2(X, y) = Vκ1,κ2(X) ,

where Fκ1,κ2(X, y) is given explicitly in terms of Φκ′ with |κ′| ≤ |κ − 1|. We
solve the equation by setting (as forced by the Fredholm alternative in the
variable y)

Vκ1,κ2(X) =

∫

T

Fκ1,κ2(X, y)dy ,

and then Φκ1,κ2 is the unique mean-zero solution to

D2
yΦκ1,κ2(X, y) = Vκ1,κ2(X)− Fκ1,κ2(X, y) .

Let us detail the first terms. At order κ = (0, 0), one finds

D2
yΦ0,0(X, y) + q(X, y) = V0,0(X) .

Because , y 7→ q(X, y) is mean-zero, we deduce

V0,0(X) = 0 and Φ0,0(X, y) = Q(X, y) ,

where we recall that Q(X, ·) is the solution to D2
yQ(X, y) = −q(X, y) with zero

mean. At order κ = (1, 0), one has

D2
yΦ1,0(X, y) + 2DXDyΦ0,0(X, y) = V1,0(X) .

We deduce

V1,0(X) = 0 and D2
yΦ1,0(X, y) = −2DXDyQ(X, y) .

At order (k, 0), for k ≥ 2, one has

D2
yΦk,0(X, y) + 2DXDyΦk−1,0(X, y) +D2

XΦk−2,0(X, y) = Vk,0(X) .

We deduce

Vk,0(X) = 0 and D2
yΦk,0 = −2DXDyΦk−1,0 −D2

XΦk−2,0 .

In particular,

D2
yΦ2,0 = 3D2

XQ and D2
yΦ2,0 = 2D2

XΦ1,0 .

At order κ = (0, 1), we find

D2
yΦ0,1(X, y) + (DyΦ0,0)

2(X, y) = V0,1(X) .
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We deduce from the Fredholm alternative

V0,1(X) =

∫

T

(DyQ)2dy =: V0(X) ,

where V0 was already introduced in (5), and

D2
yΦ0,1 = −(DyQ)2(X, y)− V0(X).

At order κ = (1, 1), one has

D2
yΦ1,1 + 2(DyΦ1,0)(DyΦ0,0) + 2(DXΦ0,0)(DyΦ0,0) + 2DXDyΦ0,1 = V1,1 .

This yields, as above,

V1,1(X) = −2

∫

T

(
(DyQ)(DXQ)

)
(X, y)dy =: V1(X) .

where V1 was also introduced in (5), and

D2
yΦ1,1(X, y) = V1,1(X) + 2

(
(DyQ)(DXQ)

)
(X, y)− 2DXDy

(
(DyQ)2

)
(X, y) .

2.1.2 Truncated expansion

As it is clear from the previous section, we can solve the problem up to any ar-
bitrary high order provided that q ∈

⋂
ℓ∈N

W ℓ,∞(R× T). Unfortunately, other
sources of error cannot be avoided, and our results do not benefit from adding
all high-order contributions in the expansion. Here we decide to truncate the
expansion so as to satisfy (9) with precision O(εmin{4,2+2(1+α),4(1+α)}).

Definition 2.1 For ε > 0, we set

φε,α(x) = ε2

(
3∑

k=0

εk(1+α)Φk,0 + ε2Φ0,1 + ε3+αΦ1,1

)
(εαx, x/ε),

where Φκ1,κ2 are defined as the unique mean-zero solutions to

−D2
yΦ0,0 = q, −D2

yΦ1,0 = 2DXDyΦ0,0 −D2
yΦ2,0 = −3D2

XΦ0,0,

−D2
yΦ3,0 = −2D2

XΦ1,0, −D2
yΦ0,1 = (DyΦ0,0)

2 −

∫

T

(DyΦ0,0)
2dy,

−D2
yΦ0,1 = −2(DyΦ0,0)(DXΦ0,0) + 2

∫

T

(DyΦ0,0)(DXΦ0,0)dy + 2DXDyΦ0,1.

Lemma 2.2 Assume α > −1. Then one has

∥∥e−φε,α
∥∥
W 2,∞(R)

+
∥∥eφε,α

∥∥
W 2,∞(R)

≤ C(
∥∥q
∥∥
W 3,∞(R×T)

) ,

∥∥eφε,α − 1
∥∥
L∞(R)

≤ ε2C(
∥∥q
∥∥
W 3,∞(R×T)

) ,
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and
∥∥q(εα·, ·/ε)−φ′′ε,α− (φ′ε,α)

2−Vε(ε
α·)
∥∥
L∞(R)

≤ εmin{4,4(1+α)}C(
∥∥q
∥∥
W 5,∞(R×T)

) ,

where we define

Vε(X) := −ε2
∫

T

|∂yQ|
2
(X, y)dy + 2ε3+α

∫

T

(
(∂xQ)(∂yQ)

)
(X, y)dy

=: ε2V0(X) + ε3+αV1(X) .

Here, Q is defined by (4) and satisfies
∥∥Q
∥∥
W 1,∞(R×T)

+
∥∥DyQ

∥∥
L∞(R×T)

≤ C(
∥∥q
∥∥
W 1,∞(R×T)

).

Proof: Let us start with the last estimate of the statement. We test (4)
with Q, integrate by parts and use Cauchy-Schwarz inequality to deduce

∥∥DyQ(X, ·)
∥∥2
L2(T)

≤
∥∥q
∥∥
L∞(R×T)

∥∥Q(X, ·)
∥∥
L2(T)

≤
∥∥q
∥∥
L∞(R×T)

∥∥DyQ(X, ·)
∥∥
L2(T)

2π
,

where we used Wirtinger’s inequality (or the min-max principle since the mean
value of Q is zero, and the second lowest eigenvalue of D2

y on L2(T) is 4π2,
recalling T = R/Z) for the last inequality. Moreover, we obviously have

∥∥D2
yQ(X, ·)

∥∥2
L2(T)

≤
∥∥q
∥∥2
L∞(R×T)

,

and thus we control
∥∥Q
∥∥
L∞(R×T)

+
∥∥DyQ

∥∥
L∞(R×T)

. There remains to control∥∥DXQ
∥∥
L∞(R×T)

, which is obtained in the same way, after differentiating (4)

with respect to X .
By proceeding as above, we obtain

∥∥φε,α
∥∥
L∞(R)

+ ε
∥∥φ′ε,α

∥∥
L∞(R)

+ ε2
∥∥φ′′ε,α

∥∥
L∞(R)

≤ ε2C(
∥∥q
∥∥
W 3,∞(R×T)

) ,

and the first two estimates of the statement follow immediately. For the re-
maining one, we find

φ′′ε,α + (φ′ε,α)
2 = ε2

∑

κ

εp(κ)
(
ε−2D2

y + 2εα−1DXDy + ε2αD2
X

)
Φκ(X, y)

+ ε2

(∑

κ

ε−1εp(κ)DyΦκ + εαεp(κ)DXΦκ

)2

(X, y)

=
∑

0≤|κ|≤8

εp(κ)rκ(X, y) .

By our construction of Φκ, we ensured r0,0 = −qε, r1,0 = r2,0 = r3,0 = 0, as
well as r0,1 = V0 and r1,1 = V1. The other terms satisfy

∥∥rκ
∥∥
L∞(R×T)

≤ C(
∥∥q
∥∥
W 5,∞(R×T)

)

and p(κ) ≥ min{p(4, 0), p(2, 1), p(0, 2)} = min{4(1 + α), 2(1 + α) + 2, 4}.
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2.2 The conjugation

Thanks to Definition 2.1 and Lemma 2.2, we may now introduce the normal
form of our operator, Lε,α, through the following transformation.

Lemma 2.3 Let α > −1. The application

Tφε : ϕ 7→ ψ, ψ(x) := eφε,α(x)ϕ

(∫ x

0

e−2φε,α(x′)dx′
)

defines a continuous isomorphism from Hk(R) into Hk(R) for k = 0, 1, 2, and
one has

∥∥Tφε(ϕ)− ϕ
∥∥
L2(R)

≤ ε2C(
∥∥q
∥∥
W 3,∞(R×T)

)
∥∥ϕ
∥∥
L2(R)

,
∥∥Tφε(ϕ)

∥∥
Hk(R)

+
∥∥T−1

φε
(ϕ)
∥∥
Hk(R)

≤ C(
∥∥q
∥∥
W 3,∞(R×T)

)
∥∥ϕ
∥∥
Hk(R)

.

Remark 2.4 The change of variable x̃ :=
∫ x

0
e−2φε,α(x′)dx′ is used to eliminate

derivatives of order 1 in Lemma 2.5 below. It turns out that this change of
variable is crucial for the construction of quasimodes (see Section 4), but not
so much to estimate the eigenvalues (Section 3.1, Theorem 3.1), where the
simple factorization by eφε,α would suffice.

The normal form is obtained by considering T−1
φε

Lε,αTφε . More precisely, we
will make use of the following identity.

Lemma 2.5 Let α > −1 and ε ∈ (0, ε0) as in Lemma 2.2. Let ϕ ∈ H2(R) and
ψ(x) := Tφε(ϕ)(x). Then

(Lε,αψ)(x) = e−3φε,α(x)
(
D2

x̃ + V red
ε,α (x)

)
ϕ(x̃) ,

where we denote x̃ =
∫ x

0 e
−2φε,α(x′)dx′, and

V red
ε,α(x) := e4φε,α(x)

(
q(εαx, x/ε)− φ′′ε,α(x) − (φ′ε,α)

2(x)
)
. (10)

Proof: Since V red
ε,α , e

−φε,α(x
′) ∈ L∞(R), and Tφε defines a continuous

isomorphism from H2(R) into H2(R), the following identities are well-defined
in L2(R). One has

(
D2

x + q(εαx, x/ε)
)
ψ(x)

= q(εαx, x/ε)eφε,α(x)ϕ(x̃)− iDx

(
φ′ε,α(x)e

φε,α(x)ϕ(x̃) + e−φε,α(x)ϕ′(x̃)
)

= eφε,α(x)ϕ(x̃)
(
q(εαx, x/ε)− φ′′ε,α(x)− (φ′ε,α)

2(x)
)
+ e−3φε,α(x)(D2

x̃ϕ)(x̃)

= e−3φε,α(x)
(
D2

x̃ + V red
ε,α(x)

)
ϕ(x̃) ,

which concludes the proof.
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It is now natural to compare the normal form of our operator with the effective
operator, Leff

ε,α := D2
x + ε2V0(ε

αx) + ε3+αV1(ε
αx). Indeed, by construction of

φε,α, one has the following approximation.

Lemma 2.6 Let α > −1. One has

∥∥V red
ε,α (x)− ε2V0 (ε

αx̃)− ε3+αV1 (ε
αx̃)
∥∥
L∞(R)

≤ C εmin{4,4(1+α)} ,

where C = C(
∥∥q
∥∥
W 5,∞(R×T)

,
∥∥〈·〉V ′

0

∥∥
L∞

,
∥∥〈·〉V ′

1

∥∥
L∞

) and x̃ =
∫ x

0 e
−2φε,α(x

′)dx′,

and where we recall

V0(X) = −

∫

T

|∂yQ(X, y)|2dy and V1(X) = 2

∫

T

(
(∂XQ)(∂yQ)

)
(X, y)dy

with Q(X, ·) ∈ L2(T) the zero-mean solution to D2
yQ(X, y) = −q(X, y).

Proof: By Lemma 2.2, one has

∥∥e4φε,α − 1
∥∥
L∞(R)

≤ ε2C(
∥∥q
∥∥
W 3,∞(R×T)

) ,

and

∥∥q(εα·, ·/ε)−φ′′ε,α− (φ′ε,α)
2−Vε(ε

α·)
∥∥
L∞(R)

≤ εmin{4,4(1+α)}C(
∥∥q
∥∥
W 5,∞(R×T)

) ,

and ∥∥Vε
∥∥
L∞(R)

≤ ε2C(
∥∥q
∥∥
W 3,∞(R×T)

) .

Collecting the above information and triangular inequalities yield

∥∥V red
ε,α (x)−ε

2V0 (ε
αx)−ε3+αV1 (ε

αx)
∥∥
L∞(R)

≤ εmin{4,4(1+α)}C(
∥∥q
∥∥
W 5,∞(R×T)

) .

Now, we remark that

|x̃− x| =

∣∣∣∣
∫ x

0

e−2φε,α(x
′)
(
e2φε,α(x′) − 1

)
dx′
∣∣∣∣ ≤ C(

∥∥q
∥∥
W 3,∞(R×T)

)ε2|x| .

By the Taylor formula, one has, for V = V0 or V = V1 and x 6= 0,

V (εαx̃)− V (εαx) =
x̃− x

x

∫ 1

0

rε(x, t)
−1(εαxrε(x, t))V

′ (εαxrε(x, t)) dt ,

where

rε(x, t) := 1 + t
x̃− x

x
.

We deduce that

∥∥V (εαx̃)− V (εαx)
∥∥
L∞(R)

≤ C(
∥∥q
∥∥
W 3,∞(R×T)

)
∥∥〈·〉V ′

∥∥
L∞

ε2 ,

and the desired estimate follows by triangular inequality.
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3 Asymptotic analysis of the eigenvalues

3.1 Comparison of eigenvalues

In this section, we prove Theorem 1.4, recalled below.

Theorem 3.1 Let α > −1 and q satisfying Assumption 1.2. There exists
C > 0 such that for all n ∈ N and ε ∈ (0, 1], one has

|λn,ε,α − λeffn,ε,α| ≤ Cεmin{4,4(1+α)} .

Proof: The result is based on the min-max principle; thus we introduce
the quadratic forms associated with our operators, respectively

Qε,α(ψ) :=

∫

R

|ψ′|
2
(x) + q(εαx, x/ε)|ψ|

2
(x)dx ,

and

Qeff
ε,α(ψ) =

∫

R

|ψ′|
2
(x) +

(
ε2V0(ε

αx) + ε3+αV1(ε
αx)
)
|ψ|

2
(x)dx .

Let f ∈ H1(R). Then eφε,αf ∈ H1(R) by Lemma 2.2, and one has

Qε,α(e
φε,αf)

=

∫

R

|eφε,αf ′ + φ′ε,αe
φε,αf |

2
(x) + q(εαx, x/ε)|eφε,αf |

2
(x)dx

=

∫

R

|eφε,αf ′|
2
(x) +

(
(φ′ε,αe

2φε,α)2 − (e2φε,αφ′ε,α)
′ + q(εα·, ·/ε)e2φε,α

)
|f |

2
(x)dx

=

∫

R

e2φε,α(x)
(
|f ′|

2
(x) + |f |

2
(x)
(
−(φ′ε,α)

2(x)− φ′′ε,α(x) + q(εαx, x/ε)
))

dx

=

∫

R

e2φε,α(x)
(
|f ′|

2
(x) + |f |

2
(x)e−4φε,α(x)V red

ε,α (x)
)
dx .

Now, we apply the near-identity change of variable

x̃ =

∫ x

0

e−2φε,α(x
′)dx′ ⇐⇒ x = θ(x̃) ,

and deduce

Qε,α(e
φε,αf) =

∫

R

e4φε,α(θ(x̃))
(
|f ′|

2
+ |f |

2
e−4φε,αV red

ε,α

)
(θ(x̃))dx̃ .

Finally, denoting ψ(x̃) = f(θ(x̃)), one has

Qε,α(e
φε,αf) =

∫

R

|ψ′|
2
(x̃) + V red

ε,α(θ(x))|ψ|
2
(x̃)dx̃ ,
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that is to say

Qε,α(Tφε(ψ)) = Qeff
ε,α(ψ) + r(ψ) , (11)

with

r(ψ) :=

∫

R

|ψ|
2
(x̃)
(
V red
ε,α (θ(x̃))− ε2V0(ε

αx̃)− ε3+αV0(ε
αx̃)
)
dx .

By Lemma 2.6, one has

|r(ψ)| ≤ εmin{4,4(1+α)}C(
∥∥q
∥∥
W 5,∞(R×T)

,
∥∥〈·〉V ′

0

∥∥
L∞

,
∥∥〈·〉V ′

1

∥∥
L∞

)
∥∥ψ
∥∥2
L2(R)

.

By the min-max principle, and using Lemma 2.3, we deduce that

λn,ε,α ≤ λeffn,ε,α + Cε2|λeffn,ε,α|+ Cεmin{4,4(1+α)} (12)

and

λeffn,ε,α ≤ λn,ε,α + Cε2|λn,ε,α|+ Cεmin{4,4(1+α)}, (13)

with C = C(
∥∥q
∥∥
W 5,∞(R×T)

,
∥∥〈·〉V ′

∥∥
L∞

). Let us only explain (12). Consider

(ueffj )1≤j≤n an orthonormalized family of eigenfunctions associated with the

eigenvalues (λeffj,ε,α)1≤j≤n and set

En = spanueffj
1≤j≤n

.

For all ψ ∈ En, we get

Qeff
ε,α(ψ) ≤ λeffn,ε,α‖ψ‖

2
L2(R) .

so that, with the triangle inequality and Lemma 2.3,

Qeff
ε,α(ψ) ≤ λeffn,ε,α‖Tφεψ‖

2
L2(R) + Cε2|λeffn,ε,α|‖Tφεψ‖

2
L2(R) .

It remains to recall (11) to get that, for all ψ ∈ En,

Qε,α(Tφεψ) ≤
(
λeffn,ε,α + Cε2|λeffn,ε,α|+ Cεmin{4,4(1+α)}

)
‖Tφεψ‖

2
L2(R)

and to apply the min-max principle to the n-dimensional subspace Tφε(En)
and to the quadratic form Qε,α.
By Lemma 2.2, we have

∀X ∈ R, V0(X) ≤ C(
∥∥q
∥∥
L∞(R×T)

) and V1(X) ≤ C(
∥∥q
∥∥
W 1,∞(R×T)

) .

We deduce 0 ≤ −λeffn,ε,α ≤ ε2C(
∥∥q
∥∥
W 1,∞(R×T)

), and Theorem 3.1 follows from

(12) and (13).
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3.2 Application

In this section, we obtain the asymptotic behavior of the low-lying spectrum
of the operator Lε,α. We showed in Theorem 3.1 that the eigenvalues can be
compared with the ones of the effective operator,

Leff
ε,α := D2

x + ε2V0(ε
αx) + ε3+αV1(ε

αx) ,

where we recall that

V0(X) = −

∫

T

|∂yQ(X, y)|2dy and V1(X) = 2

∫

T

(
(∂xQ)(∂yQ)

)
(X, y)dy

with Q the unique solution to

D2
yQ(X, y) = −q(X, y) , Q(X, ·) ∈ L2(T) ,

∫ 1

0

Q(X, y) dy = 0 .

As previously mentioned, the asymptotic behavior of the low-lying spectrum
of Leff

ε,α strongly depends on the value of α, and we detail below the different
regimes corresponding to different values of α.

Proposition 3.2 (Semiclassical regime) Let α ∈ (1, 3) and N ∈ N. As-
sume that X 7→ V0(X) has a unique non-degenerate minimum at X = 0. Then
there exists ε0 > 0, such that if ε ∈ (0, ε0), then Lε,α has at least N negative
eigenvalues, λ1,ε,α < · · · < λN,ε,α, satisfying

λn,ε,α = ε2V0(0) + ε1+α(2n− 1)

√
V ′′
0 (0)

2
+ O(εmin{4,2α}) .

If it exists, any other negative eigenvalue satisfies

λ̃ε,α ≥ ε2V0(0) + ε1+α(2N)

√
1

2
V ′′
0 (0) .

Proof: Because α > 1, all the previous results (and in particular The-
orem 3.1) hold immediately and without loss of precision when replacing the
operator Leff

ε,α with the simpler Leff,0
ε,α := D2

x + ε2V0(ε
αx). By a rescaling ar-

gument, λeff,0ε,α is an eigenvalue of the effective operator, Leff,0
ε,α , if and only if

ε−2λeff,0ε,α is an eigenvalue of

Ls.c.
ε,α := ε2(α−1)D2

x + V0.

Thus (see classical references [31, 8, 18] for instance), as h = εα−1 → 0, one
has

ε−2λeff,0ε,α = V0(0) + (2n− 1)εα−1

√
V ′′
0 (0)

2
+O(ε2(α−1)) .

The result now follows from Theorem 3.1, since the restriction α ∈ (1, 3) ensures
that 1 + α < min{4, 4(1 + α), 3 + α, 2α} = min{4, 2α}.
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Proposition 3.3 (Weak coupling regime) Let α ∈ (0, 1), and assume
that V0 is not almost everywhere zero and that (1+ | · |)V0, (1+ | · |)V1 ∈ L1(R).
Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), Lε,α has a negative
eigenvalue, λε,α, satisfying

λε,α = −
1

4
ε4−2α

(∫

R

V0

)2

+O(εmin{4,6−4α}) .

If it exists, any other negative eigenvalue satisfies λ̃ε,α = O(ε4).

Proof: By a scaling argument, λeffε,α is an eigenvalue of Leff
ε,α if and only if

ε−2αλeffε,α is an eigenvalue of

Ls.a.
ε,α := D2

x + ε2(1−α)
(
V0 + ε1+αV1

)
.

Since α < 1, (1 + | · |)V0 ∈ L1, and
∫
R
V0 < 0 by (5), we are in the situation

studied in [30, Theorem 2.5], and [20, Theorem 4]. Their results do not directly
apply due to the presence of the correction ε1+αV1, however their proofs are
easily adapted to this situation. It follows that for ε sufficiently small, Leff

ε,α has

a unique negative eigenvalue, λeffε,α, and

ε−2αλeffε,α = −
1

4
ε4−4α

(∫

R

V0 + ε1+αV1

)2

+O(ε6−6α) .

The result now follows from Theorem 3.1, since the restriction α ∈ (0, 1) ensures
that 4− 2α < min{4, 4(1 + α), 6− 4α} and (4− 2α) + (1 + α) > 4.

Proposition 3.4 (Critical regime) Let α = 1, and assume that V0 is not
almost everywhere zero and such that (1 + | · |)V0 ∈ L1(R). Denote

λ1 < λ2 < · · · < λN < 0

the negative eigenvalues of
Lcr := D2

x + V0.

Then for ε sufficiently small, Lε,α has N negative eigenvalues, λn,ε, satisfying

λn,ε = ε2λn +O(ε4) .

If it exists, any other negative eigenvalue λ̃ε satisfies λ̃ε = O(ε4).

Proof: As previously, we introduce Leff,0
ε,α := D2

x + ε2V0(ε
αx) and notice

that λeff,0n,ε is an eigenvalue of Leff,0
ε,α , if and only if ε−2αλeff,0n,ε is an eigenvalue

of Lcr. Since α < 1, (1 + | · |)V0 ∈ L1, and V0 ≤ 0 by (5), Lcr possesses
N ≥ 1 negative eigenvalues. The result then follows from Theorem 3.1 and the
comparison

|λeff,0n,ε − λeffn,ε| ≤ ε4C(
∥∥q
∥∥
W 1,∞(R)

),

where λeffn,ε is the eigenvalue of Leff
ε,α = D2

x + ε2V0(ε
αx) + ε4V1(ε

αx), counted as
in Notation 1.3.
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4 Description of the eigenfunctions

This section is dedicated to the description of the eigenfunctions associated
with the low-lying spectrum of our operator Lε,α, as described in Theorem 1.4.
The main tool is the transformation defined in Lemma 2.3 which, as seen in
Lemma 2.5, allows to transform the oscillatory problem into a normal form,
the latter being described at first order by the effective operator, defined as
Leff
ε,α := D2

x + ε2V0(ε
αx) + ε3+αV1(ε

αx); see Lemma 2.6.
Consequently, the eigenfunctions of the oscillatory operator define quasimodes
of the effective operator. When the precision of the constructed quasimode is
smaller than the spectral gap, one deduces an asymptotic description of the
quasimode, and therefore of the oscillatory eigenfunction. In the following
sections, we carry out this strategy in the different regimes so as to prove
Propositions 1.7, 1.9 and 1.10.

4.1 Semiclassical regime α > 1; proof of Proposition 1.7

We shall make use of the following properties on the eigenfunctions of Leff
ε,α

in the semiclassical limit. This proposition is a consequence of the harmonic
approximation (see the classical references [31, 8, 18]).

Proposition 4.1 Let α > 1 and assume that X 7→ V0(X) has a unique non-
degenerate minimum at X = 0. Then there exists C, ε0 > 0 such that if ε ∈
(0, ε0), then there exists λeff1,ε,α < · · · < λeffN,ε,α eigenvalues and ϕeff,0

1,ε,α, . . . , ϕ
eff,0
N,ε,α

corresponding eigenfunctions of Leff,0
ε,α = D2

x + ε2V0(ε
αx). Moreover, ϕeff,0

n,ε,α is
uniquely determined by

∥∥ϕeff,0
n,ε,α

∥∥
L2(R)

= 1 ,

∫

R

ϕeff,0
n,ε,α(x)Hn(ε

1+α
2 x)dx > 0 ,

and one has
∣∣∣∣∣λ

eff,0
n,ε −

(
ε2V0(0) + ε1+α(2n− 1)

√
V ′′
0 (0)

2

)∣∣∣∣∣ ≤ C × ε2α , (14)

and

ϕeff,0
n,ε,α(x) = ε

1+α
4

(
Hn(ε

1+α
2 x) + rn,ε(ε

1+α
2 x)

)
(15)

with ∥∥rn,ε
∥∥
L2(R)

≤ C × ε
α−1
2 .

Proof: Let us only sketch the main steps of the proof.
Using the rescaling x̂ = εαx and denoting h = εα−1 the effective semiclassical
parameter, the study reduces to the spectral analysis of

Lh = h2D2
x̂ + V0(x̂) .
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Since X 7→ V0(X) has a unique non-degenerate minimum at X = 0 that is
not attained at infinity (as V0(X) → 0 as |X | → ∞), the standard harmonic
approximation shows that, for all n ≥ 1, there exist Cn > 0 and hn > 0 such
that for all h ∈ (0, hn), the n

th eigenvalue of Lh, denoted λn(h), satisfies

∣∣∣∣∣λn(h)− V0(0)− (2n− 1)h

√
V ′′
0 (0)

2

∣∣∣∣∣ ≤ Cnh
2 , (16)

and the constants Cn, hn depend only on n and
∥∥V0
∥∥
W 3,∞(R)

(and thus on∥∥q
∥∥
W 3,∞(R×T)

). We deduce (14).

We also observe that

∥∥∥∥∥

(
Lh − V0(0)− (2n− 1)h

√
V ′′
0 (0)

2

)
h−

1
4Hn(h

− 1
2 ·)

∥∥∥∥∥
L2(R)

≤ Cnh
3
2 .

Since the nth eigenspace is one-dimensional (and the spectral gap of order h), we
get, by the spectral theorem, that the nth normalized eigenfunction is at a dis-
tance, in L2-norm, at most Cnh

1
2 of the normalized quasimode h−

1
4Hn(h

− 1
2 ·).

In other words, we have
∥∥r̂h
∥∥
L2(R)

≤ Ch
1
2 if r̂h is the difference between the

quasimode and the normalized eigenfunction. After rescaling, we deduce (15).

We can now prove Proposition 1.7. Let ψn,ε,α be the normalized eigenfunction
associated with λn,ε,α, eigenvalue of Lε,α, as defined by Proposition 3.2. By
Lemma 2.5, it follows that ϕn,ε,α := T−1

φε
(ψn,ε,α) satisfies

(
D2

x + V red
ε,α (x)

)
ϕn,ε,α(x̃) = λn,ε,αe

4φε,α(x)ϕn,ε,α(x̃).

By Lemmata 2.2 and 2.6, Theorem 3.1, Proposition 3.2 and since α > 1, one
deduces

∥∥(Leff
ε,α−λ

eff
n,ε,α)ϕn,ε,α

∥∥
L2(R)

≤ ε4C(
∥∥q
∥∥
W 4,∞(R×T)

,
∥∥〈·〉V ′

0

∥∥
L∞(R)

)
∥∥ϕn,ε,α

∥∥
L2(R)

.

The spectral gap is of order εα+1 and thus, for α ∈ (1, 3), the spectral theorem
yields ∥∥ϕn,ε,α − ϕeff ,0

n,ε,α

∥∥
L2(R)

≤ ε3−αC
∥∥ϕn,ε,α

∥∥
L2(R)

.

Proposition 1.7 now follows from Lemma 2.3 and Proposition 4.1.

4.2 Weak coupling regime α < 1; proof of Proposition 1.9

We shall make use of the following properties on the eigenfunctions of Leff
ε,α in

the weak coupling limit.
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Proposition 4.2 Let α < 1, and assume that X 7→ V0(X) is not almost
everywhere zero and satisfies (1+ | · |)V0, (1+ | · |)V1 ∈ L1(R). Then there exists
C, ε0 > 0 such that if ε ∈ (0, ε0), L

eff
ε,α = D2

x + ε2V0(ε
αx) + ε3+αV1(ε

αx) has a

unique eigenvalue denoted λeffε,α < 0. The corresponding eigenfunction, ϕeff
ε,α, is

uniquely determined by

∥∥ϕeff
ε,α

∥∥
L2(R)

= 1 ,

∫

R

ϕeff
ε,α(x)dx > 0 ,

and one has
∣∣∣∣∣λ

eff
ε,α +

1

4
ε4−2α

(∫

R

V0

)2
∣∣∣∣∣ ≤ C × εmin{6−4α,5−α} , (17)

and

ϕeff
ε,α(x) =

(
ε2−α

2

∫

R

|V0|

) 1
2
(
exp

(
|x|
ε2−α

2

∫

R

V0

)
+ rε,α(ε

2−αx)

)
(18)

with ∥∥rε,α
∥∥
L2(R)

≤ C × εmin{ 4
3 (1−α),1+α} .

Proof: By rescaling, (λeffε,α, ϕ
eff
ε,α) is an eigenmode of the operator Leff

ε,α if

and only if (ε−2αλeffε,α, ϕ
eff
ε,α(ε

−α·)) is an eigenmode of

Ls.a.
ε,α := D2

x + ε2(1−α)(V0 + ε1+αV1).

Without the correction term V1, the existence and uniqueness for ε2(1−α) suffi-
ciently small of a negative eigenvalue (since V0 is real-valued, has negative mass
and satisfies the integrability condition) as well as its asymptotic behavior as
ε2(1−α) ց 0, yielding (17), is a classical result of Simon [30] and Klaus [20] (as
mentioned in the proof of Proposition 3.3, the proof is easily adapted to the
presence of V1). As far as we know, the corresponding eigenfunction asymp-
totic has been first described in [32], but their result is restricted to smooth,
compactly supported potentials. A less precise estimate was given in [15, The-
orem 3.1], namely

sup
x∈R

∣∣∣∣ϕeff
ε,α(ε

−αx) −K exp
(
|x|
ε2(1−α)

2

∫

R

V0

)∣∣∣∣ = O(ε1−α) ,

with renormalization constant K ∈ R (and, again, with V1 = 0). We prove
below a variant of this estimate, which allows correction terms and most im-
portantly control the L2-norm.
Define x = ε2−αx, λeffε,α(x) =: −ε4−2αθ2 and ϕeff

ε,α =: ε1−α/2ϕ(ε2−αx), so that

(
D2

x + θ2
)
ϕ(x) = −δ−1Vε(δ

−1x)ϕ(x) ,
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where δ = ε2−2α is a small parameter, and Vε = V0 + ε1+αV1. Applying the
Fourier transform, we find

(4π2| · |2 + θ2)ϕ̂ = −V̂ε(δ·) ⋆ ϕ̂ , (19)

where the Fourier transform of a function f is defined by the formula

∀ξ ∈ R , f̂(ξ) =

∫

R

e−2iπxf(x)dx .

Then, we decompose the solution of (19) in terms of small and large frequencies

ϕ̂ = ϕ̂small + ϕ̂large = χ(| · | ≤ δ−r)× ϕ̂+ χ(| · | > δ−r)× ϕ̂ ,

with χ(S) the characteristic function of the set S, and r > 0 is a parameter, to
be determined. With these notations, (19) implies that

ϕ̂large =
χ(| · | > δ−r)

4π2| · |2 + θ2
V̂ε(δ·) ⋆

(
ϕ̂small + ϕ̂large

)
, (20)

ϕ̂small =
χ(| · | ≤ δ−r)

4π2| · |2 + θ2
V̂ε(δ·) ⋆

(
ϕ̂small + ϕ̂large

)
. (21)

One easily checks that the operator

T : f̂ 7→
χ(| · | > δ−r)

4π2| · |2 + θ2
V̂ε(δ·) ⋆ f̂

is bounded as an operator from L1(R) to L1(R). Moreover, one has

∥∥T f̂
∥∥
L1(R)

≤

∥∥∥∥
χ(| · | > δ−r)

4π2| · |2 + θ2

∥∥∥∥
L1(R)

∥∥V̂ε(δ·) ⋆ f̂
∥∥
L∞(R)

. δr
∥∥V̂ε
∥∥
L∞(R)

∥∥f̂
∥∥
L1(R)

.

It follows that, provided r > 0 and δ is chosen sufficiently small, (20) defines
uniquely ϕ̂large, and we get the following rough microlocalization estimate:

∥∥ϕ̂large

∥∥
L1(R)

≤ δrC(
∥∥V̂ε
∥∥
L∞(R)

)
∥∥ϕ̂small

∥∥
L1(R)

. (22)

Now, by (21), we get

(4π2|·|2+θ2)ϕ̂small = χ(|·| ≤ δ−r)V̂ε(0)

∫

R

χ(|η| ≤ δ−r)ϕ̂small(η)dη +RI+RII ,

(23)
where

RI := χ(|·| ≤ δ−r)V̂ε(δ·)⋆ϕ̂large , RII := χ(|·| ≤ δ−r)
(
V̂ε(δ·)−V̂ε(0)

)
⋆ϕ̂small .

We estimate below the two remainders. By Young’s inequality and (22), and
finally Cauchy-Schwarz inequality, one gets

∥∥(1 + | · |)−1RI

∥∥
L2(R)

≤
∥∥χ(| · | ≤ δ−r)

1 + | · |

∥∥
L2(R)

∥∥V̂ε(δ·) ⋆ ϕ̂large

∥∥
L∞(R)

≤ δrC(
∥∥V̂ε
∥∥
L∞(R)

)
∥∥(1 + | · |)ϕ̂small

∥∥
L2(R)

. (24)

Documenta Mathematica 23 (2018) 599–636
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By the Taylor formula and the fact that (1 + | · |)Vε ∈ L1(R), we can write

∥∥(1 + | · |)−1RII

∥∥2
L2(R)

≤

∫

Rξ

χ(| · | ≤ δ−r)

1 + ξ2

(∫

Rη

|V̂0(δξ − δη)− V̂ε(0)|ϕ̂small(η)dη

)2

dξ

≤
∥∥V̂ ′

ε

∥∥2
L∞(R)

∥∥(1 + | · |)ϕ̂small

∥∥2
L2(R)

×

∫

R2

δ2|ξ − η|2

(1 + ξ2)(1 + η2)
χ(|ξ| ≤ δ−r)χ(|η| ≤ δ−r)dηdξ .

From elementary considerations to estimate the last integral, we deduce that
∥∥(1 + | · |)−1RII

∥∥
L2(R)

≤ δ1−
r
2C(

∥∥V̂ ′
ε

∥∥
L∞(R)

)
∥∥(1 + | · |)ϕ̂small

∥∥
L2(R)

. (25)

Combining (24) and (25), we are led to take r = 2
3 and we get

∥∥(1 + | · |)−1(RI +RII)
∥∥
L2(R)

. δ
2
3C(

∥∥V̂ε
∥∥
W 1,∞(R)

)
∥∥(1 + | · |)ϕ̂small

∥∥
L2(R)

.

Coming back to (23) and using [15, Lemma 4.4], we find that there existsK > 0
such that

∥∥∥∥(1 + | · |)

(
ϕ̂small −K

χ(| · | ≤ δ−r)

4π2| · |2 + θ20

)∥∥∥∥
L2(R)

≤ δ
2
3C(

∥∥V̂ε
∥∥
W 1,∞(R)

) , (26)

where we denote θ0 = 1
2 |V̂ε(0)|.

Let us notice that, by (20) and Young’s inequality for the convolution,

∥∥ϕ̂large

∥∥
L2(R)

≤ δ
3r
2 C(

∥∥V̂ε
∥∥
L∞(R)

)
(∥∥ϕ̂small

∥∥
L1(R)

+
∥∥ϕ̂large

∥∥
L1(R)

)
.

Then, we notice, from the definition of ϕ̂small, Cauchy-Schwarz inequality and
Plancherel’s theorem, that

∥∥ϕ̂small

∥∥
L1(R)

≤ δ−
r
2

∥∥ϕ̂small

∥∥
L2(R)

≤ δ−
r
2 .

Thus by the above and (22), one obtains

∥∥ϕ̂large

∥∥
L2(R)

≤ δrC(
∥∥V̂ε
∥∥
L∞(R)

) .

It is now easy to deduce from (26) that ϕ, the solution to (19), satisfies
∥∥∥∥ϕ̂−K

1

4π2| · |2 + θ20

∥∥∥∥
L2(R)

. δ
2
3 = ε

4
3 (1−α) .

Estimate (18) follows by using the inverse Fourier transform, while the value
of the constant, K, is determined by the normalization of ϕeff

ε,α. We can then
replace Vε by V0 in (17) and (18) in the formula, up to straightforwardly esti-
mated terms. Proposition 4.2 is proved.
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We prove Proposition 1.9 as in the previous section. Let (λε,α, ψn,ε,α) be the
eigenmode of Lε,α uniquely defined by Proposition 3.3. By Lemmata 2.2, 2.5,
and 2.6, Theorem 3.1 and Proposition 3.3, and since α ∈ (0, 1), one has that
ϕε,α := T−1

φε
(ψε,α) satisfies

∥∥(Leff
ε,α − λeffε,α)ϕε,α

∥∥
L2(R)

≤ ε4C(
∥∥q
∥∥
W 4,∞(R×T)

,
∥∥〈·〉V ′

0

∥∥
L∞(R)

)
∥∥ϕε,α

∥∥
L2(R)

.

The spectral gap is of order ε4−2α and thus, by the spectral theorem, for
α ∈ (0, 1), ∥∥ϕε,α − ϕeff

ε,α

∥∥
L2(R)

≤ Cε2α
∥∥ϕε,α

∥∥
L2(R)

.

Proposition 1.9 now follows from Lemma 2.3 and Proposition 4.2.

4.3 Critical regime α = 1; proof of Proposition 1.10

The proof in the case α = 1 is that same as in the previous two sections. The
eigenmodes of the effective operator correspond to the ones of the operator
D2

x + V0 after a straightforward rescaling. Proposition 3.4 allows to compare
the corresponding eigenfunction to the ones of our original operator, Lε,α, as
above. We leave the details to the reader.

5 A WKB expansion

As already mentioned, the precision of the estimates in the preceding section
is insufficient to exhibit the fine multiscale structure (i.e. the small-amplitude
oscillations) of the eigenfunctions, and only the large-scale behavior is cap-
tured. This is due to the fact that we cannot improve —at least following our
method— the precision of the constructed quasimode, and that the smallness of
the distance between two consecutive eigenvalues considerably deteriorates the
effectiveness of the resolvent bound given by the spectral theorem. By contrast,
many semiclassical studies offer asymptotic expansions up to arbitrary high or-
der, through two-scale or Wentzel-Kramers-Brillouin (WKB) expansions. At
this point it is interesting to notice that two-scale expansions are hopeless in the
regime α < 1 since the numerical eigenfunction displays a three-scale structure.
Indeed, the amplitude of oscillations vanish outside an interval of size O(ε−α)
—the support of the potential— whereas the support of the eigenfunction is of
size O(ε2−α). Such is not the case in the regime α > 1 and one may hope that
the variations of the oscillating structure, due to the variation of the oscillating
potential, are small to any algebraic order thanks to the smaller support and
exponential decay of the eigenfunctions. Unfortunately, we have not been able
to implement two-scale or WKB expansions for any value of α > 1, but only
for specific values in the countable set α ∈ {1+4/k, k ∈ N

⋆}, for reasons which
become clear below. We present in this section the detailed calculations when
α = 2.
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5.1 Trace of an operator in higher dimension

We seek to construct quasimodes of the operator Lε,α with two-scale feature

(Lε,α − λε,α,N )ϕε,α,N (x) :=
(
D2

x + q(εαx, x/ε)− λε,α,N
)
ϕε,α,N (x) = O(εN ) ,

where N is arbitrary large, λε,α,N ∈ R and ϕε,α,N (x) = Ψε,N (εαx, x/ε). For
this to hold, we construct Ψε,N : (X, y) ∈ R× T 7→ Ψε,N (X, y) as a quasimode
of a two-dimensional operator:

(
(εαDX + ε−1Dy)

2 + q(X, y)− λ
)
Ψε,N (X, y) = O(εN ) . (27)

Denoting h = εα−1, we find
(
(hDX + h

−2
α−1Dy)

2 + h
−2
α−1 q(X, y)− h

−2
α−1λ

)
Ψε,N(X, y) = O(h

N−2
α−1 ) .

A two-scale expansion would require a further scaling X̃ = h1/2X , and one
readily sees that the size of the differential operators as well as the Taylor

expansion of h
−2
α−1 q(h1/2X̃, y) around X = 0 are all powers of h1/2 provided

that 4
α−1 ∈ N. In the following, we limit ourselves to the specific value α = 2,

and present the more efficient WKB expansion.

5.2 The formal expansion

Summarizing the above and abusing notations, we seek λh,N and Ψh,N satis-
fying

(Lh − λh,N )Ψh,N :=
(
(h3DX +Dy)

2 + h2q(X, y)− λh,N
)
Ψh,N = O(hN ) ,

(28)
with N ∈ N arbitrary large. In order to do so, we introduce a (real-valued)
phase Φ(X) and notice that

L
Φ
h := eΦ/h

Lhe
−Φ/h = (h3DX + ih2Φ′(X) +Dy)

2 + h2q(X, y)

reads

L
Φ
h =

6∑

k=0

hkLk ,

with

L0 = D2
y , L1 = 0 , L2 = 2Φ′(X)∂y + q(X, y), L3 = −2∂X∂y ,

L4 = −Φ′(X)2 , L5 = ∂XΦ′(X)− Φ′(X)∂X , L6 = D2
X .

We seek Ψh,N and λh,N as power expansions:

Ψh,N =
N−1∑

k=0

hkΨk(X, y) and λh,N =
N−1∑

k=0

hkλk ,

and find Ψh,N , λh,N by plugging the above expansions into (28) and solving at
maximal order.
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5.2.1 Initialization

We determine the explicit formulas for the first-order contributions in
Ψh,N , λh,N by solving (28) up to the order O(h6).

Order O(h0). We need to solveD2
yΨ0 = λ0Ψ0, and deduce from the Fredholm

alternative (in the variable y) that

λ0 = 0 and Ψ0(X, y) = f0(X) , (29)

where f0 will be determined later on.

Order O(h1). We need to solve, after using (29), D2
yΨ1 = λ1Ψ0, from which

we deduce as above

λ1 = 0 and Ψ1(X, y) = f1(X) , (30)

where f1 will be determined later on.

Order O(h2). We need to solve

D2
yΨ2(X, y) =

(
λ2Ψ0 − L2Ψ0

)
(X, y) = λ2 − f0(X)q(X, y) ,

and the Fredholm alternative (in the variable y), using that q(X, ·) is mean-
zero, yields

λ2 = 0 and Ψ2(X, y) = f0(X)Q(X, y) + f2(X) , (31)

where f2 will be determined later on and denote as always Q as the unique
solution (for any fixed X ∈ R) to

D2
yQ(X, y) = −q(X, y) ,

∫

T

Q(X, y)dy = 0 .

Order O(h3). We need to solve

D2
yΨ3(X, y) =

(
(λ3 −L3)Ψ0 + (λ2 − L2)Ψ1

)
(X, y) = λ3f0(X)− f1(X)q(X, y) ,

from which we deduce as above

λ3 = 0 and Ψ3(X, y) = f1(X)Q(X, y) + f3(X) , (32)

where f3 will be determined later on.

Order O(h4). We need to solve

D2
yΨ4(X, y) =

(
(λ4 − L4)Ψ0 + (λ3 − L3)Ψ1 + (λ2 − L2)Ψ1

)
(X, y)

= (λ4 +Φ′(X)2)f0(X)− 2Φ′(X)f0(X)∂yQ(X, y)

− f0(X)q(X, y)Q(X, y)− f2(X)q(X, y) .
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Using again that q(X, ·) is mean-zero, the Fredholm alternative (again in the
variable y) yields the eikonal equation

λ4 +Φ′(X)2 −

∫

T

q(X, y)Q(X, y)dy = 0 .

Here, we recognize, after one integration by parts,

∫

T

q(X, y)Q(X, y)dy = V0(X) ,

as defined in (5). Here and below, we shall assume that V0 has a unique non-
degenerate minimum, at X = 0. In order for Φ to be a smooth non-negative
solution to the above, one needs

λ4 = V0(0) (33)

and

Φ(X) =

∣∣∣∣∣

∫ X

0

√
V0(s)− V0(0)ds

∣∣∣∣∣ , (34)

the “Agmon distance” from X to 0. With this choice, we may set

ψ4(X, y) = f4(X) + f2(X)Q(X, y) + F4[f0](X, y) ,

where f4 will be determined later on, and F4 is the unique solution to

D2
yF4(X, y) = f0(X)

(
V0(0) + Φ′(X)2 − q(X, y)Q(X, y)

)

satisfying
∫
T
F4(X, y)dy = 0.

Order O(h5). We need to solve

D2
yΨ5(X, y)

=
(
(λ5 − L5)Ψ0 + (λ4 − L4)Ψ1 + (λ3 − L3)Ψ2 + (λ2 − L2)Ψ3

)
(X, y)

= λ5f0(X)− Φ′′(X)f0(X)− 2Φ′(X)f ′
0(X) + (V0(0) + Φ′(X)2)f1(X)

+ 2f ′
0(X)∂yQ(X, y) + 2f0(X)∂X∂yQ(X, y)− 2Φ′(X)f1(X)∂yQ(X, y)

− f1(X)q(X, y)Q(X, y)− f3(X)q(X, y) .

The Fredholm alternative (in the variable y) yields, similarly as above,

λ5f0(X)−Φ′′(X)f0(X)− 2Φ′(X)f ′
0(X)+ (V0(0)+Φ′(X)2−V0(X))f1(X) = 0 .

Since Φ has been constructed so as to satisfy the eikonal equation, the above
simplifies to the transport equation

λ5f0(X)− Φ′′(X)f0(X)− 2Φ′(X)f ′
0(X) = 0 .
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In order to resolve the singularity at X = 0 and allow for smooth solutions f0,
we need to set

λ5 = (2n+ 1)× Φ′′(0) = (2n+ 1)×

√
1

2
V ′′
0 (0) , (35)

where n ∈ N is a free parameter, and then

f0(X) = C0X
n exp

(
−

∫ X

0

Φ′′(s)− λ5
2Φ′(s)

−
n

s
ds

)
, (36)

with C0 6= 0 any multiplicative constant. Then one has

ψ5(X, y) = f5(X) + f3(X)Q(X, y) + F5[f0, f1](X, y) ,

where f5 will be determined later on, and F5 is the unique solution to

D2
yF5(X, y) = f1(X)

(
V (0) + Φ′(X)2 − q(X, y)Q(X, y)

)

+ 2f ′
0(X)∂yQ(X, y) + 2f0(X)∂X∂yQ(X, y)− 2Φ′(X)f1(X)∂yQ(X, y)

satisfying
∫
T
F5(X, y)dy = 0.

5.2.2 Induction

Based on the previous calculations, we guess the following Ansatz:

Ψk(X, y) = fk(X) +Q(X, y)fk−2(X) + Fk[f0, . . . , fk−4](X, y) , (37)

where Fk(X, y) is uniquely determined by fi (and derivatives) for i ≤ k−4 and
is mean-zero (in the variable y) for any value of X ∈ R.
The form (37) has been verified above for k ∈ {0, 1, . . . , 5} (with the convention
fi = 0 for i < 0) with explicit formulas for λk, Fk and f0. We explain below
how λk, Fk, fk−5 may be determined for any k ≥ 6 by induction on k. For
k ≥ 6, solving (28) at the order O(hk) yields

(L0−λ0)Ψk =

k∑

i=7

λiΨk−i+(λ6−L6)Ψk−6+(λ5−L5)Ψk−5+(λ4−L4)Ψk−4

+ (λ3 − L3)Ψk−3 + (λ2 − L2)Ψk−2 + (λ1 − L1)Ψk−1 .

By (29)–(36), we find

D2
yΨk(X, y) =

k∑

i=7

λiΨk−i(X, y) + (λ6 −D2
X)Ψk−6(X, y) (38)

+ ((2n+ 1)Φ′′(0)− Φ′′(X)− 2Φ′(X)∂X)Ψk−5(X, y)

+ (V0(0) + Φ′(X)2)Ψk−4(X, y) + 2∂y∂xΨk−3(X, y)

− 2Φ′(X)∂yΨk−2(X, y) + q(X, y)Ψk−2(X, y) .
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Using (37) for i =∈ {0, . . . , k− 1}, the Fredholm alternative (in the variable y)
yields

k−1∑

i=6

λifk−i(X) + λkf0(X) + f ′′
k−6(X)

+ ((2n+ 1)Φ′′(0)− Φ′′(X)− 2Φ′(X)∂X)fk−5(X)

+ (V0(0) + Φ′(X)2)fk−4(X) + V0(X)fk−4(X)

+

∫

T

q(X, y)Fk−2[f0, . . . , fk−6](X, y)dy = 0 .

Thanks to (33) and (34), the above reduces to

(Φ′′(X)+2Φ′(X)∂X−(2n+1)Φ′′(0))fk−5(X) = λkf0(X)+Gk[f0, . . . , fk−6](X) ,
(39)

where Gk is a known function depending on f0, . . . , fk−6 (and derivatives) as
well as λ6, . . . , λk−1 (if k − 1 ≥ 6). We explain below how (39) determines the
unknowns fk−5 ∈ C∞(R) and λk. Then, since its right-hand side is mean-zero,
the equation (38) defines uniquely the mean-zero solution

Ψk(X, y)− fk(X) = Q(X, y)fk−2(X) + Fk[f0, . . . , fk−4](X, y) ,

and the induction is complete.
Thus we are left with solving the equation (39) for fk−5 and λk. For simplicity,
we rewrite

(Φ′′(X) + 2Φ′(X)∂X − (2n+ 1)Φ′′(0))f(X) = G(X) + λf0(X) , (40)

where f0(X),Φ(X) and G(X) are given smooth functions, and λ, f(X) are the
unknowns. As a first step, we solve (40) in the sense of formal series. Taylor
expanding around X = 0 yields


∑

k≥0

Xk
(
ak + bkX∂X

)

 f(X) =

∑

k≥0

(
ck + λdk

)
Xk ,

with given ak, bk, ck, dk ∈ R; in particular, a0 = −2nΦ′′(0) and b0 = 2Φ′′(0).
Notice that, applied to the monomial Xm (with m ∈ N), one has

∑

k≥0

Xk
(
ak + bkX∂X

)

Xm = 2(m− n)Φ′′(0)Xm +

∑

k≥1

(ak +mbk)X
m+k .

This allows to define uniquely λ and fm form ≥ 0 such that the following holds
for arbitrary N ∈ N as X → 0:
(

N∑

k=0

Xk
(
ak + bkX∂X

)
)(

N∑

m=0

fmX
m

)
=

N∑

k=0

Xk
(
ck + λdk

)
+O(XN+1) .

Documenta Mathematica 23 (2018) 599–636



Spectral Asymptotics for the Schrödinger Operator 631

Indeed, we define fm by induction on m ≥ 0 through the identity

2(m− n)Φ′′(0)fm +

N∑

k=1

(ak +mbk)fm−k = cm + λdm .

Since Φ′′(0) > 0, the identity is solvable for fm for any m 6= n. For m = n,

we fit λ so that the identity is satisfied —notice that dn =
f
(n)
0 (0)
n! = C0 6= 0

by (36)— and, for instance, fn = 0.

As a second step, we introduce f̃ ∈ C∞(R) such that f̃(m)(0)
m! = fm, whose

existence follows from Borel’s Lemma. By the above, one easily checks that

r(X) := (Φ′′(X) + 2Φ′(X)∂X − (2n+ 1)Φ′′(0))f̃(X)−G(X)− λf0(X)

satisfies r(m)(X) = 0 for any m ∈ N. We shall now find f̌ ∈ C∞(R) such that

(Φ′′(X) + 2Φ′(X)∂X − (2n+ 1)Φ′′(0))f̌(X) = r(X) .

Indeed, let

f̌(X) = f0(X)

∫ X

0

r(s)

2Φ′(s)f0(s)
ds .

Notice the singularity inX = 0 is removed by the property that r(m)(X) = 0 for
any m ∈ N, and that Φ′(X)f0(X) 6= 0 for X 6= 0 by (34) and (36). Altogether,
we find that f(X) := f̃(X)− f̌(X) satisfies (40), as desired.

5.3 Completion of the proof

The construction of λk,Ψk above can be pursued to any arbitrary order, and
allows to obtain

Ψh,N(X, y) :=

N−1∑

k=0

hkΨk(X, y) ∈ C∞(R× T), λh,N :=

N−1∑

k=0

hkλk ∈ R

such that (
Lh − λh,N

)
e−Φ(X)/hΨh,N(X, y) = rh,Ne

−Φ(X)/h ,

where rh,N ∈ C∞(R× T) and

∥∥rh,N
∥∥
Ck(U×T)

= O(hN ) ,

for all k ∈ N and U bounded neighborhood of 0.
What is more, one easily checks by induction that as long as 2k ≤ n, one has

fk(X) = C0αkX
n−2k+O(Xn−2k+2), αk =

−αk−1

Φ′′(0)

(n− 2k + 2)(n− 2k + 1)

2k
.
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This shows that, provided 2N ≥ n, and with the right choice of constant C0,

N−1∑

k=0

hkfk(h
1/2X) = hn/2Pn(h

1/2X) +Rh,n,N(h1/2X),

where Pn is the n-th rescaled Hermite polynomial associated with the solution
to

−H ′′
n(X) + (Φ′′(0)X)2Hn = (2n− 1)Φ′′(0)Hn(X) ,

and, for any k ∈ N, ∥∥Rh,n,N

∥∥
Ck(U)

= O(hn/2+1) ,

for any U bounded neighborhood of 0. A further inspection shows that

Ψh,N(h1/2X, y) =

(
N−1∑

k=0

hkfk(h
1/2X)

)
(
1+h2Q(h1/2X, y)

)
+Fh,n,N(h1/2X, y)

with Fh,n,N collecting higher-order contributions and satisfying
∥∥Fh,n,N

∥∥
L∞(U×T)

= O(hn/2+3) ,

for any U bounded neighborhood of 0, and provided 2N ≥ n. Additionally,
notice

λh,N = h4λ4 + h5λ5 +O(h6) = h4V0(0) + h5(2n+ 1)Φ′′(0) +O(h6) .

We are now in position to prove the expansions in Proposition 1.11. We intro-
duce χ a smooth cutoff function equals to 1 in a neighborhood of X = 0, and
use χ(ε2x)e−Φ(ε2x)/εΨε,N (ε2x, x) as a quasimode for Lε,2. Indeed, one has

(
Lε,2 − ε−2λε,N

)
χ(ε2x)e−Φ(ε2x)/εΨε,N (ε2x, x)

= ε−2χ(ε2x)rε,N (ε2x, x)e−Φ(ε2x)/ε +O(e−c/ε) ,

where c = ( inf
suppχ′

Φ)/2 > 0. We can then estimate the right hand side:

∥∥χ(ε2x)rε,N (ε2x, x)e−Φ(ε2x)/ε
∥∥
L2(R)

. εN
∥∥χ(ε2x)e−Φ(ε2x)/ε

∥∥
L2(R)

.

Moreover, the previous estimate on Ψε,N yields

∥∥χ(ε2x)e−Φ(ε2x)/εΨε,N(ε2x, x)
∥∥
L2(R)

& εn/2
∥∥χ(ε2x)e−Φ(ε2x)/ε

∥∥
L2(R)

.

It remains to combine the spectral theorem with the fact that, in the semiclas-
sical case (and α = 2), the spectral gap is of order ε3 (by Proposition 1.7).
Proposition 1.11 follows from the above estimates and defining

ϕn,ε(ε
3/2x) = χ(ε2x)e−Φ(ε2x)/ε ×

(
N−1∑

k=0

εkfk(ε
2x)

)
,

since Φ(X) = 1
2Φ

′′(0)X2 +O(X3) = 1
2

√
V ′′

0 (0)

2 X2 +O(X3).
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A Numerical scheme

In this section, we present the numerical scheme used in Figures 2, 3 and 4.
Since our chosen potential, q, as well as the expected solutions decay exponen-
tially at infinity, it is convenient to truncate the infinite spatial domain to a
periodic interval T(−L,L), and turn to Fourier spectral methods. However,
because of the several scales of our problem, it is too costly to approximate the
solution to the eigenvalue problem

Lε,αψε,α(x) :=
(
D2

x + q(εαx, x/ε)
)
ψε,α(x) = λε,αψε,α(x), ψε,α ∈ L2(R) .

with a complete set of Fourier modes:

ψε,α(x) ≈

N∑

k=−N

ake
ik π

Lx .

Thus we restrict to a limited number of well-chosen Fourier modes. Motivated
by our results, we define

Kn :=
⋃

j∈{−2,−1,0,1,2}

{k ∈ Z, |
kπ

L
−

2πj

ε
| ≤

nπ

L
} .

and seek
ψε,α(x) ≈

∑

k∈Kn

ake
ik π

Lx.

In other words, defining the orthogonal projections

ΠN := f 7→
N∑

k=−N

〈eik
π
L ·, f〉L2(−L,L)

〈eik
π
L ·, eik

π
L ·〉L2(−L,L)

eik
π
L · ,

ΠKn := f 7→
∑

k∈Kn

〈eik
π
L ·, f〉L2(−L,L)

〈eik
π
L ·, eik

π
L ·〉L2(−L,L)

eik
π
L · ,

we numerically solve

(
D2

x +ΠKn

(
ΠN q(ε

α·, ·/ε)
))
ψ̃ε,α = λ̃ε,αψ̃ε,α , ψ̃ε,α = ΠKn ψ̃ε,α ,

as an eigenvalue problem for a matrix of size 5(2n+ 1)× 5(2n+ 1).
For Figures 2, 3 and 4, we set L = 500, N = 222, and n = 300.
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