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Abstract. In [20], Ranestad and Voisin showed, quite surprisingly,
that the divisor in the moduli space of cubic fourfolds consisting of cu-
bics “apolar to a Veronese surface” is not a Noether–Lefschetz divisor.
We give an independent proof of this by exhibiting an explicit cubic
fourfold X in the divisor and using point counting methods over finite
fields to show X is Noether–Lefschetz general. We also show that two
other divisors considered in [20] are not Noether–Lefschetz divisors.
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1 Introduction

In [20], Ranestad and Voisin introduced some new divisors in the moduli space
of smooth complex cubic fourfolds, quite different from Hassett’s Noether–
Lefschetz divisors [14]. A cubic X ⊂ P5 is called special if

H2,2
prim(X,Z) := H4

prim(X,Z) ∩H2,2(X)

is non-zero, or equivalently if X contains a surface not homologous to a com-
plete intersection. The locus of special cubic fourfolds is a countable union
of irreducible divisors in the moduli space, called Noether–Lefschetz divisors.
Special cubic fourfolds often have rich connections to K3 surfaces, and it is ex-
pected that all rational cubic fourfolds are special; see [15] for a recent survey
of the topic.
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Ranestad and Voisin’s divisors are constructed in a much more algebraic
way, using apolarity. Briefly, a cubic fourfold X cut out by a polynomial
f(y0, . . . , y5) is said to be apolar to an ideal generated by quadrics,

I = 〈q1, . . . , qm〉 ⊂ C[y0, . . . , y5],

if, writing qi =
∑

aijk yjyk, we have

∑
aijk ∂j∂kf = 0 for all i.

Ranestad and Voisin showed that the following loci are irreducible divisors
in the moduli space of cubic fourfolds: DV-ap, the set of cubics apolar to a
Veronese surface; DIR, the set of cubics apolar to a quartic scroll; and Drk3,
the closure of the set of cubics apolar to the union of a plane and a disjoint
hyperplane. They showed that DV-ap is not a Noether–Lefschetz divisor, by
carefully analyzing its singularities. From this they deduced that for a generic
cubic X , the “varieties of sums of powers” of the polynomial f , which is a
hyperkähler fourfold, is not Hodge-theoretically related to the Fano variety of
lines on X , a better-known hyperkähler fourfold. They remarked that Drk3 is
“presumably” not a Noether–Lefschetz divisor, and that if one could prove that
DIR is not a Noether–Lefschetz divisor then it would give another approach to
proving their main theorem.

We were very surprised to learn that DV-ap is not a Noether–Lefschetz divisor:
we would have guessed that it was Hassett’s divisor C38, for the following reason.
Cubic fourfolds in C38, which are conjectured to be rational, have associated K3
surfaces of degree 38. Mukai [17] observed that the generic such K3 surface S
can be described as the variety of sums of powers of a plane sextic g(x0, x1, x2);
see [19, Thm. 1.7(iii)] for a more detailed account. A natural way to construct
a cubic fourfold from g is to consider the multiplication map

m : Sym3 Sym2 C3 → Sym6 C3

and its transpose

m∨ : Sym6
C3∨ → Sym3 Sym2

C3∨.

Then m∨(g) cuts out a cubic X ⊂ P(Sym2 C3∨) = P5, typically smooth. By
[20, Lem. 1.7], the cubics obtained this way are exactly those in DV-ap. Though
it seemed reasonable to expect that the cubic X would be Hodge-theoretically
associated with the K3 surface S, Ranestad and Voisin’s result implies that it
cannot be.

Since the result is so surprising, and the proof quite difficult, at least to our
eyes, we thought it worthwhile to seek experimental confirmation. In this note,
we give a computer-aided proof of the following result, and in particular a more
direct proof of Ranestad and Voisin’s result:
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Theorem 1. There is an explicit sextic polynomial g, defined over Q, such that
the cubic fourfold X cut out by m∨(g) is smooth and satisfies H2,2

prim(X,Z) = 0.
In particular, X ∈ DV-ap, but X is not in any Noether–Lefschetz divisor.

We also confirm Ranestad and Voisin’s expectations for the other two divisors
mentioned above:1

Theorem 2. There is an explicit cubic fourfold X ∈ DIR, defined over Q, with
H2,2

prim(X,Z) = 0. In particular, DIR is not a Noether–Lefschetz divisor.

Theorem 3. There is an explicit cubic fourfold X ∈ Drk3, defined over Q,
with H2,2

prim(X,Z) = 0. In particular, Drk3 is not a Noether–Lefschetz divisor.

Thus it seems that apolarity tends to produce cubic fourfolds of a different
character than those considered by Hassett. It would be very interesting to
know if there is any connection with rationality.

We follow a strategy developed by van Luijk [23] and refined by Elsenhans and
Jahnel [9, 10], for producing explicit K3 surfaces of Picard rank 1. We find an
explicit cubic fourfold with good reduction modulo 2, then count points over
F2m for m = 1, 2, . . . , 11 to determine the eigenvalues of Frobenius acting on
H4

prim(XF2
,Qℓ(2)), which give a bound on the rank of H2,2

prim(X,Z). In §2, we
give the details of adapting van Luijk’s method to cubic fourfolds.

On the one hand, our task is simpler than van Luijk’s: since the geometric
Picard rank of a K3 surface over a finite field is necessarily even, to show that
a K3 surface has Picard rank 1, van Luijk had to work modulo two different
primes and compare intersection forms; but here we need only work modulo
one prime. On the other hand, a fourfold is much bigger than a surface, and
it is infeasible to count points naively by iterating over P5. Nor can we control
the cohomology of X by counting points on an associated K3 surface as in [2]
or [16], since there is none. In §3 we explain how to exploit the conic bundle
structure on the blow-up of X along a line, so that to count points we only need
to iterate over P3, and with a little more work, only over P2. The same idea was
used to count points on cubic threefolds by Debarre, Laface, and Roulleau [7,
§4.3], who trace it back to Bombieri and Swinnerton–Dyer [3]. Whereas those
papers restrict to odd characteristic, we find that the hassle of working with
conics in characteristic 2 is more than repaid by the fact that computation in
F2m is so fast.

We do not use the p-adic cohomology methods of Kedlaya, Harvey, and others
[1, 13, 6]. While these methods are surely the way of the future, they are much
harder to implement than our algorithm, and the available implementations
are not quite ready to handle cubic fourfolds.

1They also studied a fourth divisor Dcopl, not defined using apolarity, but we were unable
to find a suitable cubic in that divisor using the technique described below. Probably one
could be found by working modulo 5, but that would forfeit many of the computational
advantages of working modulo 2.
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In §4, we give the explicit polynomials and the point counts needed to prove
Theorems 1, 2, and 3. In §5, we conclude with some remarks about computer
implementation and verification.

The existence of Noether–Lefschetz general cubic fourfolds (and other complete
intersections) defined over Q was first proved by Terasoma [21], although his
proof is not constructive. Elsenhans and Jahnel gave an explicit example in
[10, Example 3.15], also using point-counting methods. But the existence of
Noether–Lefschetz general cubic fourfolds with specified algebraic properties is
far from clear a priori.
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2 Adaptation of van Luijk’s method

In this section we adapt the method developed in [23] from K3 surfaces to cubic
fourfolds. We begin with the following proposition, which is similar to [22,
Cor. 6.3]. Note that due to our choice of Tate twist, our Frobenius eigenvalues
have absolute value 1 rather than qi.

Proposition 2.1. Let R be a discrete valuation ring of a number field L with
residue field k ∼= Fq for q = pr, and let X be a smooth projective scheme over
R. Let Xan denote the complex manifold associated to the complex variety XC.
Let Φ: Xk → Xk be the r-th power absolute Frobenius, let ℓ be a prime different
from p, and let Φ∗ be the automorphism of

H2i
ét (Xk̄,Qℓ(i))

induced by Φ× 1 on Xk × k̄.

Then the rank of the image of the cycle class map

CHi(XC)
cl

−−→ H2i(Xan,Z(i)) (1)

is less than or equal to the number of eigenvalues of Φ∗, counted with multi-
plicity, that are roots of unity.

In particular, if the Hodge conjecture holds for codimension-i cycles on X, then
the rank of H2i(Xan,Z) ∩ Hi,i(Xan) is bounded above by the number of such
eigenvalues.
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Proof. The rank of the image of (1) agrees with the rank of the image of

CHi(XC)
cl

−−→ H2i(Xan,Zℓ(i)).

By the comparison theorem between singular and ℓ-adic cohomology, this agrees
with the rank of the image of

CHi(XC)
cl

−−→ H2i
ét (XC,Zℓ(i)).

Now let K be the field of fractions of the completion R̂, and consider the
commutative diagram2

CHi(XC)
cl // H2i

ét (XC,Zℓ(i))

CHi(XL̄)

OO

��

cl // H2i
ét (XL̄,Zℓ(i))

∼=

OO

∼=

��
CHi(XK̄)

cl // H2i
ét (XK̄ ,Zℓ(i)).

The right-hand vertical maps are isomorphisms by smooth base change, and
while the left-hand vertical maps are typically not isomorphisms, the images of
the three horizontal maps agree thanks to the existence of Hilbert schemes, as
remarked in [5, Rem. 46].

Next we have a commutative square

CHi(XK̄)

σ

��

cl // H2i
ét (XK̄ ,Zℓ(i))

∼=

��
CHi(Xk̄)

cl // H2i
ét (Xk̄,Zℓ(i)),

where the left-hand vertical map is the specialization map for Chow groups;
see Fulton [11, Example 20.3.5] for the commutativity of the square. Thus the
rank of the image of the top horizontal map is less than or equal to that of the
bottom one.

Finally we consider the cycle class map after tensoring with Qℓ

CHi(Xk̄)⊗Qℓ
cl

−−→ H2i(Xk̄,Qℓ(i))

and recall that cycles on Xk̄ are defined over some finite extension of k, hence
are fixed by some power of Frobenius, hence their classes in cohomology are
eigenvectors with eigenvalues a root of unity as in the proof of [22, Cor. 6.3].

2Alternatively we could have embedded K̄ →֒ C, but we preferred to use the more natural
embeddings C ←֓ L̄ →֒ K̄.
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In our application, we will take R = Z(2), so L = Q, q = p = 2, and K = Q2.

Now specialize to the case where X is a cubic fourfold. The Hodge conjecture
holds for cubic fourfolds [26, 18, 25], so to show that H2,2

prim(X,Z) = 0 it is
enough to show that no eigenvalue of Φ∗ acting on

V := H4
ét,prim(Xk̄,Qℓ(2)) ∼= Q22

ℓ

is a root of unity, or equivalently that the characteristic polynomial

χ(t) := det(t · IdV − Φ∗|V )

has no cyclotomic factor. For this it is enough to show that χ is irreducible
over Q and that not all its coefficients are integers.

The cohomology of X is

Hi
ét(Xk̄,Qℓ(i)) =





Qℓ i = 0,

Qℓ · h i = 2

Qℓ · h
2 ⊕ V i = 4

Qℓ · h
3 i = 6

Qℓ · h
4 i = 8

0 otherwise,

where h is the hyperplane class, so by the Lefschetz trace formula we have

#X(Fqm) = 1 + qm + q2m
(
1 + tr(Φ∗m|V )

)
+ q3m + q4m. (2)

The method of passing from traces of powers of Φ∗|V to the characteristic
polynomial using Newton’s identities is discussed in [23, §3], [9, §3], or [16,
§6.1]. Thanks to the functional equation χ(t) = ±t22χ(t−1) it is usually enough
to count up to m = 11.

3 The algorithm using conic bundles

How then can we compute the point counts (2) for an explicit cubic with q = 2
and m = 1, 2, . . . , 11? As we said in the introduction, it is not feasible to iterate
over P5(F2m), evaluating our cubic polynomial at every point: in Magma this
would take many years, and in a program written optimized specially for the
purpose it would take months, or at best weeks. Instead we project from a line
to obtain a conic fibration.

Continue to work with a smooth cubic X defined over an arbitrary Fq. Choose
a line l ⊂ X defined over Fq; by [7] such a line always exists for q = 2 or q ≥ 5,
and probably for q = 3 or 4 as well. Change variables so that l is given by
y0 = y1 = y2 = y3 = 0. Then we can write the equation of X as

Ay24 +By4y5 + Cy25 +Dy4 + Ey5 + F,
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where A, B, and C are linear in y0, . . . , y3, C and D are quadratic, and F is
cubic. If A, . . . , F vanish simultaneously at some point of P3 then X contains a
plane, contributing an unwanted Frobenius eigenvalue, so we stop. Otherwise
we obtain a flat conic bundle

Bll(X) −→ P3
(y0:...:y3)

with fibers given by the homogenization of the quadratic form above. Now we
use the following.

Proposition 3.1. Let Z be an Fq-scheme of finite type, let π : Y → Z be a
flat conic bundle, let ∆ ⊂ Z be the locus parametrizing degenerate conics, and
let ∆̃ be the (possibly branched) double cover of ∆ parametrizing lines in the
fibers of π. Then

#Y (Fq) = (q + 1) ·#Z + q · (#∆̃−#∆). (3)

Proof. A smooth conic over Fq is isomorphic to P1, hence has q+1 points. For
a singular conic, there are three possibilities:

• a pair of lines defined over Fq, contributing 2q + 1 points;

• a pair of conjugate lines defined over Fq2 , contributing only one Fq-point;

• a double line, contributing q + 1 points.

The fiber of ∆̃ over the relevant point of ∆ consists of 2, 0, or 1 points respec-
tively. Thus we have

#Y (Fq) = (q + 1) · (#Z −#∆)︸ ︷︷ ︸
from smooth conics

+ (q ·#∆̃ +#∆)︸ ︷︷ ︸
from singular conics

,

which simplifies to give (3).

In our case, with Y = Bll(X) and Z = P3, this yields

#X(Fq) = q4 + q3 + q(#∆̃−#∆) + q + 1.

The discriminant locus ∆ ⊂ P3 is cut out by the quintic polynomial

AE2 +B2F + CD2 −BDE − 4ACF. (4)

This formula remains valid in characteristic 2, although of course the last term
vanishes. The double cover ∆̃ can also be described as the variety of lines on
X that meet l.3

3The topology of ∆̃ over C has been studied in [24, §3, Lemmas 1–3]. For a generic l ⊂ X,
it is a smooth surface with Hodge diamond

1

0 0

5 50 5.

0 0

1
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So we can iterate over P3 and count points on ∆ and ∆̃. To count points on ∆̃
in characteristic 2, we note that if B = D = E = 0 then the conic is a double
line; otherwise we compute an Arf invariant: if B 6= 0 (resp. D 6= 0 or E 6= 0),
then the conic has 2q + 1 points if AC/B2 (resp. AF/D2 or CF/E2) is of the
form a2 + a for some a ∈ Fq, and 1 point if it is not.

This algorithm runs up to q = 211 in about half a minute on the first author’s
laptop. But to find the explicit cubics below we had to search through dozens
of candidates, so it was worthwhile to make a further optimization, iterating
only over ∆ rather than all of P3, as follows.

The quintic ∆ is not smooth; in characteristic 2, it is singular at least along
the locus where

B = D = E = 0,

which has expected dimension 0 and degree 4. Suppose this locus contains an
F2-point y.

4 Projecting from y, the quintic ∆ becomes a 3-to-1 cover of P2, so
we can iterate over P2 and find the three (or fewer) sheets of the cover at each
point with a suitable version of Cardano’s formula [8, Exercise 14.7.15].

With this improvement the algorithm runs up to q = 211 in less than a second,
and up to q = 214 in a little more than a minute. In §5 we make some practical
comments about our implementation of the algorithm, and sanity checks on
the output.

4 The explicit cubics

4.1 Proof of Theorem 1

Let us begin by discussing the map m∨ from the introduction in very con-
crete terms, embracing the monomial basis for the polynomial ring rather than
working invariantly, and staying in characteristic 0 as long as possible to avoid
discussing divided powers.

Let R = C[x0, . . . , xn], and let Rd ⊂ R be the subspace of homogeneous poly-
nomials of degree d. We identify R1 with its dual via the pairing

〈xi, xj〉 =
∂

∂xi

xj = δij ,

and extend this to a pairing

Rk ⊗Rd → Rd−k

4In practice this usually happens, although not always. That is, there exist smooth cubics
X and F2-lines l ⊂ X such that ∆sing has no F2-point, but they are relatively rare. We have
not encountered a cubic X such that for every F2-line l ⊂ X, ∆sing has no F2-point. We
wonder whether any such cubic exists.
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for positive integers k ≤ d, again by differentiation. If k = d this is a perfect,
symmetric pairing. We have, for example,

〈x0x1, x0x1〉 =
∂

∂x0

∂
∂x1

x0x1 = 1,

but
〈x2

0, x
2
0〉 =

∂
∂x0

∂
∂x0

x2
0 = 2,

so the monomials form an orthogonal basis for Rd but not an orthonormal
basis. For k > d we set 〈Rk, Rd〉 = 0.

Now with a view toward Theorem 1, let R = C[x0, x1, x2] and S = C[y0, . . . , y5].
The isomorphism

m : S1 → R2

given by

y0 7→ x2
0 y1 7→ x0x1 y2 7→ x0x2

y3 7→ x2
1 y4 7→ x1x2 y5 7→ x2

2.

induces a map
m : Sd → R2d

for all d.

Let g ∈ R6 be given by

g =
1

30
x5
0x1 +

1

6
x4
0x

2
1 +

1

6
x2
0x

4
1 +

1

30
x0x

5
1 +

1

120
x6
1

+
4

3
x3
0x

2
1x2 +

2

3
x2
0x

3
1x2 +

1

6
x4
0x

2
2 + 2x2

0x
2
1x

2
2 +

1

3
x0x

3
1x

2
2

+
1

12
x4
1x

2
2 +

2

3
x2
0x1x

3
2 +

1

6
x3
1x

3
2 +

1

3
x2
0x

4
2 +

1

15
x1x

5
2,

and let f ∈ S3 be given by

f = 2y20y1 + 4y0y
2
1 + 8y21y2 + 4y0y

2
2 + 4y20y3 + 4y21y3

+ 16y0y2y3 + 8y1y2y3 + 8y22y3 + 4y0y
2
3 + 2y1y

2
3 + y33

+ 16y0y1y4 + 4y21y4 + 16y1y2y4 + 4y22y4 + 8y0y3y4

+ 4y2y3y4 + 8y0y
2
4 + 2y1y

2
4 + 2y3y

2
4 + y34 + 4y20y5

+ 8y21y5 + 8y1y2y5 + 8y22y5 + 16y0y3y5 + 4y1y3y5

+ 2y23y5 + 8y0y4y5 + 6y3y4y5 + 8y0y
2
5 + 4y4y

2
5 .

We claim that f = m∨(g), i.e. that

〈h, f〉 = 〈m(h), g〉

for all h ∈ S3. This can be checked tediously by hand, or with the Macaulay2
code given in the ancillary file thm1.m2.
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Let X ⊂ P5 be the hypersurface cut out by f . After substituting

y1 7→ 1
2y1, y2 7→ 1

2y2, y5 7→ 1
2y5,

we obtain a model of X with good reduction modulo 2. Its reduction contains
the line

y0 + y3 = y1 = y2 + y3 = y4 = 0.

The point counts of X over F2m are given in Table 1. Thus the characteristic
polynomial of Φ∗ acting on H4

ét,prim(Xk̄,Qℓ(2)) is

χ(t) = t22 −
3

2
t20 +

3

2
t18 − t16 +

1

2
t15 +

1

2
t14 − t13 +

3

2
t11

− t9 +
1

2
t8 +

1

2
t7 − t6 +

3

2
t4 −

3

2
t2 + 1,

which is irreducible over Q. By our discussion in §2, this proves Theorem 1.

4.2 Proof of Theorem 2

Continue to let S = C[y0, . . . , y5]. A homogeneous polynomial f ∈ S is said to
be apolar to a homogeneous ideal I ⊂ S if

〈i, f〉 = 0 for all i ∈ I.

It is enough to check this on a set of generators for I.

Ranestad and Voisin observe [20, Lem. 1.7] that a cubic is in the image of
m∨ : R6 → S3 if and only if it is apolar to ideal generated by the 2× 2 minors
of 


y0 y1 y2
y1 y3 y4
y2 y4 y5


 ,

which cuts out a Veronese surface. This is checked for the previous section’s
cubic in thm1.m2.

For Theorem 2, we take

f = y30 + 2y1y
2
2 + y32 + y20y3 + 2y0y1y3 + 8y1y2y3 + y20y4 + 4y21y4

+ 8y0y2y4 + y22y4 + 4y2y3y4 + y23y4 + 2y1y
2
4 + y2y

2
4 + y34

+ 8y0y1y5 + 2y1y2y5 + 4y1y3y5 + 2y2y3y5 + 4y0y4y5 + 2y1y4y5

+ 6y3y4y5 + y24y5 + y0y
2
5 + y2y

2
5 + y3y

2
5 + y4y

2
5 .

This is apolar to the ideal generated by the 2× 2 minors of the matrix
(
y0 y1 y3 y4
y1 y2 y4 y5

)
,
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which cuts out a quartic scroll. Apolarity can be checked by hand or with
thm2.m2.5

Let X ⊂ P5 be the hypersurface cut out by f . After substituting y1 7→ 1
2y1 we

obtain a model of X with good reduction modulo 2. It contains the line

y0 = y2 = y3 = y4 = 0.

The point counts of X over F2m are given in Table 1. Thus the characteristic
polynomial of Φ∗ acting on H4

ét,prim(Xk̄,Qℓ(2)) is

χ(t) = t22 + t20 +
1

2
t19 +

1

2
t18 +

1

2
t17 −

1

2
t14 −

1

2
t13 −

3

2
t12 −

1

2
t11

−
3

2
t10 −

1

2
t9 −

1

2
t8 +

1

2
t5 +

1

2
t4 +

1

2
t3 + t2 + 1,

which is irreducible over Q. By our discussion in §2, this proves Theorem 2.

4.3 Proof of Theorem 3

The cubic fourfold X cut out by

f = y20y1 + y20y2 + y0y1y2 + y1y
2
2 + y32 + y21y3 + y0y2y3 + y0y

2
3

+ y1y
2
3 + y0y1y4 + y0y2y4 + y1y2y4 + y22y4 + y0y3y4 + y1y3y4

+ y2y3y4 + y0y
2
4 + y1y

2
4 + y34 + y23y5 + y3y4y5 + y24y5 + y4y

2
5 + y35

has good reduction modulo 2. The polynomial f is apolar to the ideal

〈y0y5, y1y5, y2y5〉,

as can be checked by hand or with thm3.m2. We do not review the definition of
Drk3, but only refer to the proof of [20, Lem. 2.1] for the fact that this implies
X ∈ Drk3.

The reduction of X contains the line

y0 = y1 + y3 = y2 = y4 + y5 = 0.

5Ranestad and Voisin gave a different definition of DIR and proved that a cubic of Waring
rank 10 (the maximum possible) is in DIR if and only if it is apolar to a quartic scroll [20,
Lem. 2.4]. Our cubic does have rank 10, as can be checked using [20, Lem. 3.18]. But in fact
the rank condition can be ignored: the cubic forms that are apolar to a given quartic scroll
form a linear space, in which the general one has rank 10, so DIR consists of all cubics apolar
to a quartic scroll, with no restriction on rank. We thank K. Ranestad for explaining this to
us.
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m
#X(F2m)

Theorem 1 Theorem 2 Theorem 3
1 31 31 33
2 389 309 297
3 4 681 4 585 4 641
4 69 521 69 905 70 945
5 1 082 401 1 082 401 1 084 033
6 17 040 449 17 050 689 17 057 409
7 270 491 777 270 577 793 270 525 953
8 4 311 818 497 4 312 006 913 4 311 720 449
9 68 854 546 945 68 854 448 641 68 853 843 969
10 1 100 584 649 729 1 100 596 118 529 1 100 585 936 897
11 17 600 762 873 857 17 600 774 408 193 17 600 759 586 817

Table 1: Point counts.

The point counts of X over F2m are given in Table 1. Thus the characteristic
polynomial of Φ∗ acting on H4

ét,prim(Xk̄,Qℓ(2)) is

χ(t) = t22 −
1

2
t21 +

3

2
t20 −

1

2
t19 −

3

2
t16 +

1

2
t15 − t14 +

1

2
t13 +

1

2
t12 +

1

2
t11

+
1

2
t10 +

1

2
t9 − t8 +

1

2
t7 −

3

2
t6 −

1

2
t3 +

3

2
t2 −

1

2
t+ 1.

which is irreducible over Q. By our discussion in §2, this proves Theorem 3.

5 Verification and implementation

Our implementation of the algorithm described in §3 is included as an ancillary
file count.cpp. We double-checked its output very thoroughly:

• For small m, we checked the counts over F2m using the naive algorithm
discussed at the beginning of §3.

• We checked the counts up to about m = 9 with a “semi-sophisticated”
algorithm that projects from a point rather than a line.

• We projected from several different lines and got the same counts.

• After finding the characteristic polynomial one can predict the counts for
all m. We checked these up to m = 14, and even m = 15 on a computer
with much more memory than the first author’s laptop.

• The characteristic polynomial of Φ∗ acting on

H4
ét,prim(XF̄2

,Qℓ),
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with no Tate twist, is 422χ(t/4), and this must have integer coefficients.
But even stronger, we have

H4
ét,prim(XF̄2

,Qℓ(1)) ∼= H2
ét,prim(FF̄2

,Qℓ),

where F is the Fano variety of lines on X , so 222χ(t/2) must have integer
coefficients. We verified this.

• We used our program to count points on Elsenhans and Jahnel’s cubic [10,
Example 3.15], and our numbers agreed with theirs.

We conclude with a few practical comments about our implementation:

• We represented elements of F2m as unsigned integers, interpreting the bits
as coefficients of a polynomial in F2[x] modulo a fixed irreducible polynomial
of degree m. Thus addition is given by “xor” and multiplication by a well-
known algorithm.

• We stored multiplication in a lookup table, which sped up the program by
an order of magnitude.

• We also stored division in a lookup table, as well as roots of quadratic and
depressed cubic polynomials, which saved us the trouble of writing those
algorithms. This did not start to use an unreasonable amount of memory
until m = 14.

• Following [9, Alg. 15] and [16, §8], we pre-computed a list of Galois orbit
representatives (and orbit sizes) in F2m , and then touched each Galois orbit
of P2 only once, which sped up the program by a factor of m.

• We did not bother with parallelization, although this problem is ideally
suited to it.
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