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Introduction

The main goal of the present paper is to establish a symplectic K2-analogue
of Quillen’s Patching Theorem which is the key ingredient in his solution of
Serre’s problem (see [14])1.

Theorem (Quillen). Let R be a commutative ring, and P be a finitely generated

projective module over the polynomial ring R[t1, . . . , tn]. Then P is extended

from R (i.e., there exists a projective R-module Q such that P ∼= R[t1, . . . , tn]⊗
Q) if and only if Pm is extended from Rm for every maximal ideal m of R.

Later Suslin proved his K1-analogue of Serre’s problem with the use of a similar
statement concerning elementary matrices (see [12]).

Theorem (Suslin). Let n ≥ 3 and g ∈ GLn(R[t], tR[t]). Then g ∈ En(R[t]) if
and only if gm ∈ En(Rm[t]) for every maximal ideal m of R.

Subsequently, K1-analogues for Chevalley groups [1, 5, 13] were obtained.
Presently, K1-analogue is known in much larger generality, namely, for isotrop-
ic reductive groups [10] and in the framework of Stepanov’s universal localisa-
tion [11]. As opposed to that, K2-analogues are proven only for GLn [15] and,
recently, for Chevalley groups of types El [9] and Dl [7].
The Main Theorem of the present paper is the following K2-analogue to the
local-global principle for Sp2n.

1The author acknowledges financial support from Russian Science Foundation grant
14–11–00297.
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Main Theorem. Let R be an arbitrary commutative ring (with unity), n ≥ 3,
and g ∈ StSp2n(R[t], tR[t]). Then g = 1 if and only if for every maximal ideal

m of R holds gm = 1 ∈ StSp2n(Rm[t]). Similarly, g ∈ StSp2n(R[t], tR[t]) lies in
the image of the natural map

StSp2n−2(R[t]) → StSp2n(R[t])

if and only if gm ∈ Im
(
StSp2n−2(Rm[t]) → StSp2n(Rm[t])

)
for every maximal

ideal m of R.

The paper is organised as follows. In the first section we recall results of [6],
where a “basis-free” presentation of the symplectic Steinberg group is given.
We make an essential use of these results in the Section 4. In the next section we
show that three possible definitions of the relative symplectic Steinberg group
coincide. One of them is the “correct” definition, and the other two are used in
our proof. In the Section 3 we establish the local-global principle modulo the
main technical lemma. Finally, in the Section 4, we give a proof to this lemma,
namely, construct a symplectic analogue of the Tulenbaev map.

1. Absolute Steinberg groups

In the present paper R always denotes an arbitrary associative commutative
unital ring, R2n is the free right R-module, we number its basis as follows:
e−n, . . ., e−1, e1, . . ., en, n ≥ 3. The symplectic group Sp2n(R) is the group
of automorphisms of R2n preserving the standard symplectic form 〈 , 〉, where
〈ei, e−i〉 = 1, i > 0. We denote the elementary symplectic transvections by

Tij(a) = 1+ eij ·a− e−j,−i ·a · sign(i) · sign(j), Ti,−i(a) = 1+ ei,−i ·a · sign(i),

where a ∈ R, i, j ∈ {−n, . . . , −1, 1, . . . , n}, i 6∈ {±j}, eij is a matrix unit.
They generate the elementary symplectic group Ep2n(R).

Definition. The symplectic Steinberg group StSp2n(R) is generated by the
formal symbols Xij(a) for i 6= j, a ∈ R subject to the Steinberg relations

Xij(a) = X−j,−i(−a · sign(i)sign(j)), (S0)

Xij(a)Xij(b) = Xij(a+ b), (S1)

[Xij(a), Xhk(b)] = 1, for h 6∈ {j,−i}, k 6∈ {i,−j}, (S2)

[Xij(a), Xjk(b)] = Xik(ab), for i 6∈ {−j,−k}, j 6= −k, (S3)

[Xi,−i(a), X−i,j(b)] = Xij(ab · sign(i))X−j,j(−ab
2), (S4)

[Xij(a), Xj,−i(b)] = Xi,−i(2 ab · sign(i)). (S5)

There is a natural projection φ : StSp2n(R) ։ Ep2n(R) sending the generators
Xij(a) to Tij(a). In other words, the Steinberg relations hold for the elementary
symplectic transvections.
To define the elementary symplectic group Ep2n(R) instead of Tij(a) one can
use “basis-independent” ESD-transformations T (u, v, a) defined by

w 7→ w + u(〈v, w〉+ a〈u, w〉) + v〈u, w〉
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as a set of generators. Here u, v ∈ R2n, 〈u, v〉 = 0, a ∈ R. See section 1 of [6]
for details. On the level of Steinberg groups, this idea leads to the following
presentation, inspired by van der Kallen’s paper [3]. It is the main theorem
of [6].

Theorem. The symplectic Steinberg group StSp2n(R) can be defined by the set

of generators
{
[u, v, a]

∣
∣ u ∈ Ep2n(R)e1, v ∈ R2n, 〈u, v〉 = 0, a ∈ R

}

and relations

[u, v1, a1][u, v2, a2] = [u, v1 + v2, a1 + a2 + 〈v1, v2〉], (K1)

[u1, u2b, 0] = [u2, u1b, 0] for any b ∈ R, (K2)

[u′, v′, a′][u, v, a][u′, v′, a′]−1 = [T (u′, v′, a′)u, T (u′, v′, a′)v, a], (K3)

For the usual generators of the symplectic Steinberg group the following identi-

ties hold

Xij(a) = [ei, e−j · a · sign(−j), 0] for j 6= −i, Xi,−i(a) = [ei, 0, a],

and, moreover, φ sends [u, v, a] to T (u, v, a). Furthermore, the following re-

lations are automatically satisfied

[u, ua, 0] = [u, 0, 2a], (K4)

[ub, 0, a] = [u, 0, ab2], (K5)

[u+ v, 0, a] = [u, 0, a][v, 0, a][v, ua, 0] for 〈u, v〉 = 0. (K6)

More precisely, we need elements X(u, v, a) in StSp2n(R) defined in [6] for
arbitrary u, v ∈ R2n with 〈u, v〉 = 0, and a ∈ R (see the definition of X(u, 0, a)
in section 4, then the definition of X(u, v, 0) on p. 3775 and the general case
on p. 3777, or an overview in section 1). For u ∈ Ep2n(R)e1 these elements
coincide with the generators [u, v, a] above (see the last section of [6] where
the isomorphism between two presentations is described). Below we list their
properties, proven in [6].

Lemma 1.1. For all u, v ∈ R2n, 〈u, v〉 = 0, a, b ∈ R, g ∈ StSp2n(R) one has

φ
(
X(u, v, a)

)
= T (u, v, a), (X0)

g X(u, v, a)g−1 = X(φ(g)u, φ(g)v, a), (X1)

X(ub, 0, a) = X(u, 0, b2a), (X2)

X(u, 0, a)X(u, 0, b) = X(u, 0, a+ b), (X3)

X(u, v, 0) = X(v, u, 0), (X4)

X(ua, ub, 0) = X(u, 0, 2ab), (X5)

X(u+ v, 0, 1) = X(u, 0, 1)X(v, 0, 1)X(u, v, 0), (X6)

X(u, v, a) = X(u, v, 0)X(u, 0, a). (X7)
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Proof. For X0 see section 1 of [6], properties X1–X4 are proven in Lem-
mas 26, 29, 31, 33, 34 of [6], X6 and X7 are actually definitions (see pp. 3775
and 3777 of [6]). To get X5 use X6, then X2 and X3. �

We also need to use a few more properties of X(u, v, a) listed in Lemma 1.4
below. To prove them, we pass to another type of elements Y (u, v, a) defined
in [6]. As soon as Lemma 1.4 is proven, we do not need Y ’s any more in this
paper and use only X ’s.
For u ∈ R2n having a pair of zeros in symmetric positions, i.e., such that
ui = u−i = 0 for some i, and v ∈ R2n, such that 〈u, v〉 = 0, a ∈ R also
elements Y(i)(u, v, a) are defined. Their definition is given in three steps (see
definitions and remarks on pp. 3762, 3764 and 3766 of [6]). If, in addition, u
has another symmetric pair of zeros, i.e., ui = u−i = uj = u−j = 0 for some
i 6= ±j, then Y(i)(u, v, a) = Y(j)(u, v, a) (see Y1 below) and in this situation
we omit the index and denote this element by Y (u, v, a). We use the following
properties of these elements, proven in [6].

Lemma 1.2. For a fixed index i and any j 6= ±i, vectors u, v, v′, w, w′, q, q′, r,
r′ s ∈ R2n, such that ui = u−i = 0, 〈u, v〉 = 〈u, v′〉 = 0, 〈w, ei〉 = 〈w′, ei〉 = 0,
v′i = v′−i = qi = q−i = ri = r−i = rj = r−j = 0, q′ = eiq

′
i + e−iq

′
−i,

r′ = ejr
′
j + e−jr

′
−j, s = eisi + e−is−i, and elements a, a′ ∈ R, one has

φ
(
Y(i)(u, v, a)

)
= T (u, v, a), (Y0)

Y(i)(u, v, a) = Y(j)(u, v, a) if also uj = u−j = 0, (Y1)

Y (ei, w, a)Y (ei, w
′, a′) = Y (ei, w + w′, a+ a′ + 〈w, w′〉), (Y2)

Y (ei, w, a) = X(ei, w, a), (Y3)

Y(i)(u, v
′, a) = [Y (ei, u, 0), Y (e−i, v

′ sign(i), a)]·

·Y (ei, ua sign(−i), 0),
(Y4)

Y(i)(u, v, a) = Y(i)(u, v − eivi − e−iv−i, a− viv−i sign(i))·

·Y (ei, uvi, 0)Y (e−i, uv−i, 0),
(Y5)

X(q + q′, 0, a) = Y(i)(q, 0, a)Y (q′, 0, a)Y (q′, qa, 0), (Y6)

Y (r, s, 0)Y (r′, s, 0) = Y(i)(r + r′, s, 0). (Y7)

Proof. For Y0 see section 1 of [6], for Y1 and Y2 see Lemmas 20 and 9
of [6], for Y3 use Lemma 36 of [6], Y6, Lemma 1.1(X7) and Y2, Y4–Y6 are
actually definitions (pp. 3764, 3766, 3768 and remark on p. 3770 of [6]), Y7 is
Lemma 28 of [6]. �

Let us establish some further properties of Y(i)(u, v, a).

Documenta Mathematica 23 (2018) 653–675



A Local–Global Principle for Symplectic K2 657

Lemma 1.3. For an index i and any vectors u, v, w ∈ R2n, such that ui =
u−i = 0, 〈u, v〉 = 〈u, w〉 = 0, elements a, b ∈ R, one has

Y(i)(u, v, a+ b) = Y(i)(u, v, a)Y(i)(u, 0, b), (Y8)

Y(i)(u, v, a) = Y(i)(u, v − eivi − e−iv−i, a)Y(i)(u, eivi + e−iv−i, 0), (Y9)

X(u+ v, 0, a) = X(u, 0, a)X(v, 0, a)Y(i)(u, va, 0), (Y10)

Y(i)(u, va, 0) = Y(i)(v, ua, 0) if also vi = v−i = 0, (Y11)

Y(i)(u, v, a) = X(u, v, a), (Y12)

Y(i)(u, v, 0)Y(i)(u, w, 0) = Y(i)(u, v + w, 〈v, w〉). (Y13)

Proof. We prove Y8 and Y9 together.
First, assume that vi = v−i = 0. In this assumption one can get Y8 repeating
the proof of Lemma 21 of [6]. Use Y2 and Y4 to decompose elements and Y3
and X1 to show, that some of them commute (instead of complicated arguments
in the original proof). Next, use this result to obtain Y9, more precisely,
repeating the proof of Lemma 22 of [6] use it instead of Lemma 21. Now, Y8
follows from Y9 in full generality. One needs that Y(i)(u, 0, b) = X(u, 0, b) by
Y6, and commutes with Y(i)(u, eivi + e−iv−i, 0) by X1.
To obtain Y10–Y13 we also proceed in several steps.
First, consider Y10 and assume that vi = v−i = 0. Then, repeat the proof
of Lemma 23 of [6] interchanging the roles of u and v and using Y3 and X1
instead of the arguments presented there. Obviously, by X1, X(u, 0, a) and
X(v, 0, a) commute. Using this fact we get Y11. Then, we can get Y12 in the
same assumptions on v. For a = 0 it follows from Y10 and X6, for the general
case use Y8 and X7.
Next, consider Y13 and assume that vi = v−i = wi = w−i = 0. By Y4, we
have

Y (u, v + w, 〈v, w〉) =

= [Y (ei, u, 0), Y (e−i, (v + w) sign(i), 〈v, w〉)]Y (e−i, u〈v, w〉sign(−i)).

Now, we get

Y (e−i, (v + w) sign(i), 〈v, w〉) = Y (e−i, v sign(i), 0)Y (e−i, w sign(i), 0)

by Y2 and use an identity [a, bc] = [a, b]·[a, c]·[[c, a], b] for a = Y (ei, u, 0), b =
Y (e−i, v sign(i), 0), and c = Y (e−i, w sign(i), 0). As above, we have [a, b] =
Y(i)(u, v, 0) and [a, c] = Y(i)(u, w, 0). One can check, that

[[c, a], b] = Y (e−i, −u〈w, v〉sign(i), 0)

with the use of Y3, X1 and Y2.
Now, we prove Y13 for arbitrary v, w and u having two pairs of zeros, i.e.,
such that uj = u−j = 0 for j 6= ±i also. Decompose v = ṽ + v′, where
v′ = eivi + e−iv−i, and similarly for w. Use Y9, then Y8, then Y6 and X1 to
change the order of factors, then Y8 again to obtain

Y (u, v + w, 〈v, w〉) = Y (u, ṽ + w̃, 〈ṽ, w̃〉)Y (u, v′ + w′, 〈v′, w′〉).
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For each factor we can use the previous steps. To reorder the factors in the re-
sult use that Y (u, v′, 0) = X(u, v′, 0) (we already have Y12 for this situation)
and X1. Then use Y9 again.
Next, we establish Y10 in full generality. Decompose v = ṽ + v′ as above and
use Y6 to obtain

X(u+ v, 0, a) = X(u+ ṽ, 0, a)X(v′, 0, a)Y (v′, (u + ṽ)a, 0).

For the first factor we can already use Y10, and for the last one we can already
use Y13. Reordering factors by X1 we get

X(u+ v, 0, a) = X(u, 0, a)Y(i)(u, ṽa, 0)Y (v′, ua, 0)X(v, 0, a)

with the use of Y6. Decompose u = ũ + u′, where u′ = ejuj + e−ju−j , then
decompose Y (v′, ua, 0) by Y9, apply Y11 to each factor and use Y7 to get

Y (v′, ua, 0) = Y (v′, ũa, 0)Y (v′, u′a, 0) =

= Y(j)(ũ, v
′a, 0)Y(k)(u

′, v′a, 0) = Y (u, v′a, 0).

Now, we are done by Y9. Proceeding as above, we get Y12 in full generality.
Finally, consider Y13. As above, decompose v = ṽ + v′ and w = w̃ + w′, and
get

Y(i)(u, v + w, 〈v, w〉) = Y(i)(u, ṽ + w̃, 〈ṽ, w̃〉)Y(i)(u, v
′ + w′, 〈v′, w′〉).

For the first factor Y13 holds by previous steps, for the second one use Y5,
then Y8 and Y2. Then change the order of factors. To interchange positions
of Y (ei, uwi, 0) and Y (e−i, uv−i, 0) we need to plug in an extra commutator
equal to

Y(i)(−uwi, −uv−i sign(i), 0) = X(u, 0, 2wiv−i sign(i))

by Y12 and X5. With the use of Y5 and Y8 one gets

Y(i)(u, v
′ + w′, 〈v′, w′〉) = Y(i)(u, v

′, 0)Y(i)(u, w
′, 0).

It remains to change the order of factors and use Y9. �

In the following lemma we collect some new relations among X’s which we need
in the sequel.

Lemma 1.4. Consider u, v, w ∈ R2n, a, b ∈ R, such that 〈u, v〉 = 〈u, w〉 = 0.
Assume either that ui = u−i = 0 or that vi = v−i = wi = w−i = 0. Then one

has

X(u+ vr, 0, a) = X(u, 0, a)X(v, 0, r2a)X(u, vra, 0), (X8)

X(u, va, 0) = X(v, ua, 0), (X9)

X(u, v, a)X(u, w, b) = X(u, v + w, a+ b + 〈v, w〉). (X10)

Proof. First, assume ui = u−i = 0. Then X8 follows from Y10, X2 and
Y12. Denote u′ = ejuj + e−ju−j and v′ = eivi + e−iv−i for some j 6= ±i and
decompose u = ũ+ u′, v = ṽ + v′. Then

X(u, va, 0) = Y(i)(u, ṽa, 0)Y (ũ, v′a, 0)Y (u′, v′a, 0)
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by Y9 and Y7. Now apply Y11 twice to each factor

X(u, va, 0) = Y(i)(ua, ṽ, 0)Y (ũa, v′, 0)Y (u′a, v′, 0).

Next, X10 for a = b = 0 follows from Y12 and Y13, and the general case from
Y8, X7 and X3.
Now, consider the second case vi = v−i = wi = w−i = 0. For X8 use the
previous step (X8 and X9). It remains to prove X10. Assume a = b = 0 (the
case of arbitrary a and b may be treated as in the previous step). Denote
u′ = eiui + e−iu−i and ũ = u − u′ (previously we took ±j-th components
instead). Using X4, Y12 and Y9 we get

X(u, v, 0) = X(ũ, v, 0)X(u′, v, 0)

and similarly for w. Using X1 and the previous case (X10) we can compute

[X(u′, v, 0), X(ũ, w, 0)] = X(ũ, u′〈v, w〉, 0).

Thus, reordering factors and using previous case we get

X(u, v, 0)X(u, w, 0) =

= X(ũ, v + w, 〈v, w〉)X(u′, v + w, 〈v, w〉)X(ũ, u′〈v, w〉, 0).

Now, we can finish the proof with the use of X7, X1, X4, Y12, Y9 and Y6. �

At the end of this section we establish one more relation automatically satisfied
by the generators [u, v, a] from Another presentation. We need it later to get
a map from the relative symplectic Steinberg group to the absolute one. First,
observe that for v ∈ R2n such that v−1 = 0 (equiv., 〈v, e1〉 = 0) holds

X(e1 + vr, 0, a) = X(e1, 0, a)X(v, 0, r2a)X(e1, vra, 0)

by X8. Next, take g ∈ StSp2n(R) and denote u = φ(g)e1 and w = φ(g)v.
Conjugate the above identity by g and use X1 to get

X(u+ wr, 0, a) = X(u, 0, a)X(w, 0, r2a)X(u, wra, 0).

The above identity holds for any u ∈ Ep2n(R)e1 and w orthogonal to it. Finally,
take (u, w) ∈ Ep2n(R)(e1, e2). Then u+wr also lies in Ep2n(R)e1 and we can
replace X’s above by the generators from the Another presentation.

Lemma 1.5. For (u, w) ∈ Ep2n(R)(e1, e2) and a, r ∈ R the following identity

holds

[u + wr, 0, a] = [u, 0, a][w, 0, ar2][u, war, 0]. (K7)

2. Relative Steinberg groups

In the present section we give three definitions of a relative symplectic Steinberg
group.
For our purposes we can concentrate on splitting ideals I E R, i.e., those ideals
for which the natural projection ρ : R ։ R/I splits. Obviously, tR[t] E R[t] is
a splitting ideal.
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We show that for splitting ideals all three definitions of relative symplectic
Steinberg group coincide.
The correct approach to relative Steinberg groups is described in [4,8,9]. But
for splitting ideals we can define it in the following naive way. Afterwards, we
show that (for splitting ideals) it coincides with the usual one.

Definition. Let I E R be a splitting ideal. Define the relative symplectic

Steinberg group StSp2n(R, I) = Ker
(
ρ∗ : StSp2n(R) ։ StSp2n(R/I)

)
.

Obviously, Ker(ρ∗) coincides with the normal subgroup of StSp2n(R) generated
by {Xij(a) | a ∈ I}. This is tantamount to saying that applying ρ∗ is the same
as forcing an additional relation Xij(a) = 1, a ∈ I, in StSp2n(R).
The next definition is a symplectic version of the Keune–Loday presentation in
the linear case (see [4,8]). It is a relative version of the definition via Steinberg
relations.
For a group G acting on a group H on the left, we will denote the image of
h ∈ H under the homomorphism corresponding to the element g ∈ G by gh,
the element gh · h−1 by Jg, h] and the element h · gh−1 by [h, gK.

Definition. Let the Keune–Loday relative symplectic Steinberg group

StSpKL
2l (R, I) be a group with the action of the (absolute) Steinberg group

StSp2l(R) defined by the set of relative generators Yij(a), i 6= j, a ∈ I, subject
to the relations

Yij(a) = Y−j,−i(−a · sign(i) · sign(j)), (KL0)

Yij(a)Yij(b) = Yij(a+ b), (KL1)

JXij(r), Yhk(a)] = 1, for h 6∈ {j,−i}, k 6∈ {i,−j}, (KL2)

JXij(r), Yjk(a)] = Yik(ra), for i 6∈ {−j,−k}, j 6= −k, (KL3)

JXi,−i(r), Y−i,j(a)] = Yij(ra · sign(i))Y−j,j(−ra
2), (KL4)

[Yi,−i(a), X−i,j(r)K = Yij(ar · sign(i))Y−j,j(−ar
2), (KL5)

JXij(r), Yj,−i(a)] = Xi,−i(2 ra · sign(i)), (KL6)

Xij(a)
(
Xhk(r)Yst(b)

)

= Yij(a)
(
Xhk(r)Yst(b)

)

. (KL7)

In other words, we consider a free group generated by symbols (g, x) = gx
where g is from the absolute Steinberg group and x is from the set of relative
generators, StSp2l(R) naturally acts on this free group via f (g, x) = (fg, x)
and then we define the relative symplectic Steinberg group as the quotient of
the above free group modulo equivariant normal subgroup generated by KL0–
KL7.

There is an obvious equivariant mapping from StSpKL
2l (R, I) to StSp2l(R)

sending Yij(a) to Xij(a), and its image is the normal subgroup generated by
{Xij(a) | a ∈ I}, i.e., coincides with Ker

(
StSp2n(R) ։ StSp2n(R/I)

)
.

Lemma 2.1. Let I E R be a splitting ideal. Then the natural map

ι : StSpKL
2l (R, I) → StSp2l(R)
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is injective. In other words, StSpKL
2l (R, I) = StSp2l(R, I).

The proof is actually the same as in the linear case (see [4,8] and [9] for the
simply-laced case).

Proof. Denote by ρ : R։ R/I the natural projection and by σ : R/I → R

its splitting. Then StSp2l(R/I) acts on StSpKL
2l (R, I) via σ∗ and one can

consider the semi-direct product StSpKL
2l (R, I) ⋋ StSp2l(R/I) which maps to

StSp2l(R) via ι⋋ σ∗

StSpKL
2l (R, I)⋋ StSp2l(R/I) → StSp2l(R), (x, y) 7→ ι(x) · σ∗(y).

We construct an inverse map

ψ : StSp2l(R) → StSpKL
2l (R, I)⋋ StSp2l(R/I),

sending

Xij(r) 7→
(
Yij(r − σρ(r)), Xij(ρ(r))

)
.

Obviously, the fact that ι⋋ σ∗ is an isomorphism implies that ι is injective.
To check that ψ is well-defined one has to verify relations S0–S5 for the images
of the generators. Consider, say, S4. We will show that the images of

Xi,−i(a)X−i,j(b)Xi,−i(−a) and Xij(ab · sign(i))X−j,j(−ab
2)X−i,j(b)

under ψ coincide. Indeed,

ψ
(

Xi,−i(a)X−i,j(b)Xi,−i(−a)
)

=

=
(

Yi,−i(a− σρ(a))Xi,−i(σρ(a))Y−i,j(b− σρ(b))·

· Xi,−i(σρ(a))X−i,j (σρ(b))Yi,−i(−a+ σρ(a)),

Xi,−i(ρ(a))Xi,−j(ρ(b))Xi,−i(−ρ(a))
)

.

Rewriting

X−i,j(σρ(b))Yi,−i(−a+ σρ(a)) =

= Yi,−i(−a+ σρ(a))[Yi,−i(a− σρ(a)), X−i,j(σρ(b))K

we get with the use of KL7

ψ
(

Xi,−i(a)X−i,j(b)Xi,−i(−a)
)

=

=
(

Xi,−i(a)Y−i,j(b− σρ(b))[Yi,−i(a− σρ(a)), X−i,j(σρ(b))K,

Xi,−i(ρ(a))Xi,−j(ρ(b))Xi,−i(−ρ(a))
)

,
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and finally

ψ
(

Xi,−i(a)X−i,j(b)Xi,−i(−a)
)

=

=
(

Yij((ab − σρ(ab)) · sign(i))·

· Y−i,j(b − σρ(b))Y−j,j(−ab
2 + 2 σρ(ab)b− σρ(ab2)),

Xij(σρ(ab) · sign(i))X−j,j(−σρ(ab
2))X−i,j(σρ(b))

)

.

On the other hand,

ψ
(

Xij(ab · sign(i))X−j,j(−ab
2)X−i,j(b)

)

=

=
(

Yij((ab − σρ(ab)) · sign(i))·

· Y−j,j(−ab
2 + σρ(ab2)) · Xij(σρ(ab)sign(i))Y−i,j(b − σρ(b)),

Xij(σρ(ab) · sign(i))X−j,j(−σρ(ab
2))X−i,j(σρ(b))

)

.

Other relations are similar and much less tedious.
Obviously, ι⋋ σ∗ ◦ ψ = 1 and it only remains to show that ψ is surjective. All
elements of types (1, Xij(s)) and (Yij(a), 1) lie in the image of ψ, and then

elements of type (Xhk(r)Yij(a), 1) lie as well. �

In the proof of the local–global principle we also need another presentation
for the relative Steinberg group. It is inspired by the definition of the relative
linear Steinberg groups given by Tulenbaev.

Definition. Let the Tulenbaev relative symplectic Steinberg group

StSpT2n(R, I) be the group defined by the set of generators

{[u, v, a, b] ∈ Ep2n(R)e1 ×R2n × I × I | 〈u, v〉 = 0}

subject to the relations

[u, vr, a, b] = [u, v, ra, b] ∀ r ∈ R, (T0)

[u, v, a, b][u, w, a, c] = [u, v, a, b+ c+ a2〈v, w〉], (T1)

[u, v, a, 0][u, v, b, 0] = [u, v, a+ b, 0], (T2)

[u, u, a, 0] = [u, 0, 0, 2a], (T3)

[u, v, a, 0] = [v, u, a, 0] ∀ (u, v) ∈ Ep2n(R)(e1, e2), (T4)

[u+ vr, 0, 0, a] = [u, 0, 0, a][v, 0, 0, ar2][u, v, ar, 0]

∀ r ∈ R ∀ (u, v) ∈ Ep2n(R)(e1, e2),
(T5)

[u′, v′, a′, b′][u, v, a, b][u′, v′, a′, b′]−1 =

= [T (u′, v′a′, b′)u, T (u′, v′a′, b′)v, a, b].
(T6)

There is a natural map κ : StSpT2n(R, I) → StSp2n(R) sending [u, v, a, b] to
[u, va, b] (here we need the relation K7 established in the previous section).
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Its image is contained in Ker
(
StSp2n(R) ։ StSp2n(R/I)

)
and contains all

elements of the form gXij(a) = [φ(g)ei, φ(g)e−j a sign(−j), 0] and
gXi,−i(a) =

[φ(g)ei, 0, a] for a ∈ I, and thus actually coincides with this kernel.
Any triple (u, v, a) ∈ V × V ×R defines a homomorphism

αu,v,a : StSpT2n(R, I) → StSpT2n(R, I)

sending a generator [u′, v′, a′, b′] to [T (u, v, a)u′, T (u, v, a)v′, a′, b′]. To show
that αu,v,a is well-defined we have to check that T0–T6 hold for the images of
the generators, but that is straightforward. Next, there exists a well-defined
homomorphism

StSp2l(R) → Aut (StSp∗2l(R, I))

sending X(u, v, a) to αu,v,a, i.e., the absolute Steinberg group acts on the
Tulenbaev group. Obviously, we need to verify that K1–K3 hold for αu,v,a, but
that is also straightforward.

Lemma 2.2. Let I E R be a splitting ideal. Then

StSpT2l(R, I) = StSp2l(R, I) = StSpKL
2l (R, I).

Proof. We identify StSp2l(R, I) with StSpKL
2l (R, I) and construct a map

inverse to κ. With this end define

Y ∗
ij(a) = [ei, e−j , a sign(−j), 0] and Y ∗

i,−i(a) = [ei, 0, 0, a]

inside StSpT2l(R, I). These elements satisfy relations KL0–KL7. KL0–KL2 and
KL7 are obvious. Consider, say, KL4.

JXi,−i(r), Y
∗
−i,j(b)] =

= [e−j, T (ei, 0, r)e−i, bε−j, 0][e−j, e−i, bε−j, 0]
−1 =

= [e−j, eirεi, bε−j, −rb
2] =

= [e−j, eirεi, bε−j, 0][e−j, 0, bε−j, −rb
2] =

= Y ∗
ij(rbεi) · Y

∗
−j,j(−rb

2);

One can check other relations similarly. For KL5 use T5 and for KL6
use T3. Thus, we have a map θ : StSpKL

2l (R, I) → StSpT2l(R, I) preserv-
ing the action. Obviously, κθ = 1 thus θ is injective. It remains to show
that it is also surjective. First, observe that [e1, v, a, b] = [e1, 0, 0, b −
a2

∑
vkv−k]

∏
[e1, ek, vka, 0] lie in the image of θ (here vk is a k-th coordi-

nate of v; we use that v−1 = 0 and T3). Thus, all generators [u, v, a, b] lie in
the image of θ, since it preserves the action. �

In the sequel for splitting ideals we do not distinguish the relative Steinberg
groups defined in this section.
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3. Local-global principle

In this section we prove the Main Theorem.
Fix a non-nilpotent element a ∈ R. Let λa : R→ Ra be a principal localisation
of R in a.
For any x ∈ R[t] consider the evaluation map evx : R[t] → R[t], which is the
only R-algebra homomorphism sending t to x. For p ∈ R[t] denote its image
under evx by p(x), e.g., p = p(t). Similarly, for g ∈ StSp2n(R[t]) denote its
image under ev∗x by g(x). We claim the following.

Lemma 3.1. Consider g(t) ∈ StSp2n(R[t], tR[t]) such that

λ∗a(g(t)) = 1 ∈ StSp2n(Ra[t]).

Then there exists an N ∈ N such that g(aN t) = 1. Similarly, assume that

λ∗a(g(t)) ∈ Im
(
StSp2n−2(Ra[t]) → StSp2n(Ra[t])

)
.

Then there exists an N ∈ N such that

g(aN t) ∈ Im
(
StSp2n−2(R[t], tR[t]) → StSp2n(R[t], tR[t])

)
.

Now, we define the symplectic analogue of the Tulenbaev map and use it to
prove Lemma 3.1

Definition. Denote B = R ⋉ tRa[t] the ring with component-wise addition
and multiplication given by

(r, f) · (s, g) = (rs, λa(r)g + fλa(s) + fg).

One may think of elements of B as polynomials in t with the constant term
from R and all other coefficients from Ra.

Consider a direct system of rings

R[t]
evat

// R[t]
evat

// R[t]
evat

// · · ·

i.e., (Si, ψij)0≤i≤j , where Si = R[t] and ψij : t 7→ aj−it. It induces a direct
system of Steinberg groups. The following facts are left to the reader.

Lemma 3.2. A system of maps ϕi : Si → B sending

p(t) 7→
(
p(0), λ∗a(p)(a

−it)− λ∗a(p)(0)
)

induces

a) an isomorphism

lim
−→

Si →
∼ B;

b) an isomorphism

lim
−→

StSp2n(Si) →
∼ StSp2n(B).

Indeed, a Steinberg group functor commutes with directed limits.
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Now, we claim that the composition of ϕ∗
0 with the inclusion

µ : StSp2n(R[t], tR[t])
�

�

// StSp2n(R[t])
ϕ∗

0
// StSp2n(B)

factors through the localisation in a. More generally, the following statement
holds.

Lemma 3.3 (Tulenbaev map). Let B be a ring, a ∈ B, and I E B be an

ideal such that for any x ∈ I there exists a unique y ∈ I such that ya = x
(equivalently, a localisation map λa : I → Ia = I ⊗R Ra is an isomorphism).
Then, there exists a map

T: StSpT2n(Ba, Ia) → StSp2n(B)

making the diagram

StSpT
2n(B, I) //

λ∗

a

��

StSp2n(B)

λ∗

a

��
StSpT2n(Ba, Ia) //

T

55❥
❥

❥
❥

❥
❥

❥
❥

StSp2n(Ba)

commutative. Moreover, for

g ∈ Im
(
StSpT2n−2(Ra[t], tRa[t]) → StSpT2n(Ba, Ia)

)

one has T(g) ∈ Im
(
StSp2n−2(B) → StSp2n(B)

)
.

The next section is devoted to the proof of Lemma 3.3. Now, we deduce
Lemma 3.1 from it.

Proof of Lemma 3.1. Apply Lemma 3.3 for a ∈ R ⊆ B, B = R⋉ tRa[t]
as above, I = tRa[t] E B. Consider the following commutative diagram.

StSp2n(R[t], tR[t])
�

�

//

ϕ∗

0 ))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

λ∗

a

��

StSp2n(R[t])

ϕ∗

0

��

StSp2n(B, I)�

u

((PP
PP

PP
PP

PP
PP

λ∗

a

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

StSp2n(Ra[t], tRa[t])
T

// StSp2n(B)

Take g(t) ∈ StSp2n(R[t], tR[t]) such that λ∗a(g(t)) = 1. Then

ϕ∗
0(g(t)) = (T ◦ λ∗a)(g(t)) = 1

as well, i. e., g(t) becomes trivial in the limit. But it can only happen if
ψ∗
0,N (g(t)) = 1 for some N (use the construction of direct limit as disjoint

union modulo an equivalence relation). The proof of the second statement is
similar. �
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For the next lemma the proof of Lemma 16 of [9] works verbatim. There are
two references in that proof: instead of Lemma 8 of [9] use Lemma 2.2, and
instead of Lemma 15 of [9] use Lemma 3.1. The second statement is not proven
in [9], but the proofs of both statements are the same.

Lemma 3.4. Consider a, b ∈ R generating R as an ideal, Ra + Rb = R.
Assume that for g ∈ StSp2n(R[t], tR[t]) one has λ∗a(g) = λ∗b(g) = 1 . Then

g = 1. Similarly, assume that λ∗a(g) ∈ StSp2n−2(Ra[t], tRa[t]) and λ∗b(g) ∈
StSp2n−2(Rb[t], tRb[t]). Then g ∈ StSp2n−2(R[t], tR[t]).

Now, the Main Theorem also follows. For the first statement the proof of
Theorem 2 of [9] can be repeated verbatim. The only reference in that proof
is Lemma 16 of [9], which should be replaced by Lemma 3.4. For the second
statement the same proof works.

4. Tulenbaev map

This section is devoted to the construction of the map

T: StSpT2n(Ba, Ia) → StSp2n(B)

from Lemma 3.3. As there, let B be a ring, a ∈ B a non-nilpotent element,
I E B, such that for any x ∈ I there exists a unique y ∈ I such that ya = x.
We denote such a y by x

a
. Elements x

aN are also well-defined. The localisation
map λa : I → Ia is an isomorphism and we identify I and Ia.
To define the map T we need to find elements Z(u, v, b, c) ∈ StSp2n(B) for
any u ∈ Ep2n(Ba)e1, v ∈ B2n

a , 〈u, v〉 = 0, and b, c ∈ I subject to relations
T0–T6. We start with the following definition.

Definition. For u, v1, . . . , vN ∈ B2n such that 〈u, vk〉 = 0 for all k define

Z(u; v1, . . . , vN ) = X(u, v1, 0) . . . X(u, vN , 0) · X(u, 0, −
∑

i<j

〈vi, vj〉).

Lemma 4.1. Consider u, v, w ∈ B2n, 〈u, v〉 = 〈u, w〉 = 0. Suppose that w has

a pair of zero coordinates, i.e., wi = w−i = 0 for some i. Then

[X(u, v, 0), X(u, w, 0)] = X(u, 0, 2〈v, w〉).

Proof. Use Lemma 1.1 (X1) to compute the conjugate and decompose
the result by Lemma 1.1 (X6)

X(u, v, 0)X(u, w, 0) =

= X(u, 0, −1)X(w + u〈v, w〉, 0, −1)X(w + u(1 + 〈v, w〉), 0, 1),

then decompose the first and the third factors by Lemma 1.4 (X8). Next,
change the order of factors and then simplify the product using Lemmas 1.1
and 1.4. As a result, we have

X(u, v, 0)X(u, w, 0) = X(u, 0, 2〈v, w〉)X(w, u, 0).

�
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For the following corollary use that the symmetric group is generated by fun-
damental transpositions.

Corollary 4.1.1. Take u and v1, . . . , vN ∈ B2n such that 〈u, vk〉 = 0 and

each vk has a pair of zero coordinates. Then for any permutation σ ∈ SN we

have

Z(u; v1, . . . , vN ) = Z(u; vσ(1), . . . , vσ(N)).

Definition. For u, v1, . . . , vN ∈ B2n such that 〈u, vk〉 = 0 and each vk has a
symmetric pair of zero coordinates we denote

Z(u; {vk}1≤k≤N ) = Z(u; v1, . . . , vN ).

Observe also that the following easy fact holds (use Lemma 1.1 (X2) and Lem-
ma 1.4 (X9).

Lemma 4.2. For u, v1, . . . , vN ∈ B2n such that 〈u, vk〉 = 0 and each vk has a

pair of zero coordinates, r ∈ B, one has

Z(ur; {vk}1≤k≤N ) = Z(u; {rvk}1≤k≤N ).

The following result is well-known (see [2,5]).

Lemma 4.3 (Symplectic Suslin’s Lemma). For w, u, v ∈ B2n such that

〈w, u〉 = A ∈ B, 〈u, v〉 = 0 denote

vij = vwij = (eiu−j sign(j)− eju−i sign(i))(viwj − vjwi)

for any distinct −n ≤ i, j ≤ n. Then one has vij = vji, 〈u, vij〉 = 0, and
∑

i<j

vij = vA.

Compare the next result with Lemma 1.4 (X10): we do not need that vi =
v−i = 0, but we assume that 〈v, w〉 = 0.

Lemma 4.4. Take u, v, w ∈ B2n such that 〈u, v〉 = 〈u, w〉 = 〈v, w〉 = 0 and

wi = w−i = 0. Then

X(u, v + w, 0) = X(u, v, 0)X(u, w, 0).

Proof. By Lemma 1.1 (X6) we have

X(u, v + w, 0) = X(u, 0, −1)X(v + w, 0, −1)X(u+ v + w, 0, 1).

Decompose the second and the third factors by Lemma 1.4 (X8). We get a
factor X(w, u + v, 0), and decompose it by Lemma 1.4 (X10). Vectors u, v,
w are orthogonal, thus all factors commute. Simplify the product by Lem-
ma 1.4 (X10) and get the claim with the use of Lemma 1.1 (X6). �

Lemma 4.5. Take w, u, v ∈ B2n such that 〈w, u〉 = A and 〈u, v〉 = 0. Assume

in addition that v has a symmetric pair of zero coordinates. Then

X(u, vA, 0) = Z(u, {vij}i≤j).
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Proof. Say, v1 = v−1 = 0. Then v1,−1 = 0. Decompose

vA =
∑

i<j

vij =
∑

i6=±1

v−1,i

︸ ︷︷ ︸

p

+
∑

i6=±1

v1,i

︸ ︷︷ ︸

q

+
∑

i,j 6=±1

vij

︸ ︷︷ ︸

r

with the use of Suslin’s Lemma (Lemma 4.3). Obviously,

p−1 =
( ∑

i6=±1

v−1,i

)

−1
=

(∑

i<j

vij

)

−1
= v−1A = 0

and similarly q1 = v1A = 0. Also, p1 = q−1 = r−1 = r1 = 0. Thus, by
Lemma 1.4 (X10) we get

X(u, vA, 0) = X(u, p+ q + r, 0) =

= X(u, p, 0)X(u, q, 0)X(u, r, 0)X(u, 0, −〈p, q〉 − 〈p, r〉 − 〈q, r〉).

For 1 < i ≤ n denote zi = v−1,i + v−1,−i. Then 〈zi, zj〉 = 0 for i 6= j, each zi
has a pair of zero coordinates and

∑n
i=2 zi = p. By Lemma 4.4 we get

X(u, p, 0) =

n∏

i=2

X(u, zi, 0).

Next, observe that v−1,i and v−1,−i have a common symmetric pair of zero
coordinates. Thus, by Lemma 1.4 (X10), one has

X(u, zi, 0) = X(u, v−1,i, 0)X(u, v1,i, 0)X(u, 0, −〈v−1,i, v1,i〉),

so that

X(u, p, 0) = Z(u; {v−1,i}i6=±1).

Similarly, X(u, q, 0) = Z(u; {v1,i}i6=±1) and by Lemma 1.4 (X10),

X(u, r, 0) = Z(u; {vij}i,j 6=±1)

what finishes the proof. �

Lemma 4.6. Take w, u, v ∈ B2n, 〈w, u〉 = A and 〈u, v〉 = 0. Consider

x1, . . . xN ∈ B2n such that each xk has a pair of zero coordinates, 〈u, xk〉 = 0,

and
∑N

k=1 x
k = vA. Then one has

Z(u; {xkA}Nk=1) = Z(u; {vijA}i<j).

Proof. Since 〈u, xk〉 = 0 consider xkij = (xk)wij from Suslin’s Lemma

(Lemma 4.3) and use Lemma 4.5 to get

X(u, xkA, 0) = Z(u, {xkij}i<j).

Then,

Z(u; {xkA}Nk=1) = Z(u, {xkij}k, i<j).
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On the other hand, for fixed i and j all xkij are scalar multiples of the same
vector having a pair of zero coordinates and

N∑

k=1

xkij = (eiu−j sign(j)− eju−i sign(i))
((

N∑

k=1

xki
)
wj −

(
N∑

k=1

xkj
)
wi

)

= vijA.

Thus,

X(u, vijA, 0) =

N∏

k=1

X(u, xkij , 0)

by Lemma 1.4 (X10) and

Z(u; {vijA}i<j) = Z(u, {xkij}k, i<j).

�

Definition. Take u, v ∈ B2n such that 〈u, v〉 = 0 and denote by

I(u) =

n∑

k=−n

Buk

the ideal generated by entries of u. Then for an A ∈ I(u) take any w ∈ B2n

such that 〈w, u〉 = A and denote

ZA(u, v) = Z(u; {vwijA}i<j).

By the previous lemma, this element does not depend on the choice of w. The
projection of ZA(u, v) to the elementary group is

φ(ZA(u, v)) = T (u, vA2, 0).

We start to prove properties of the elements ZA(u, v).

Lemma 4.7. Take u, v ∈ B2n such that 〈u, v〉 = 0, A ∈ I(u) and g ∈
StSp2n(B). Then

g ZA(u, v)g−1 = ZA(φ(g)u, φ(g)v).

Remark. Take w such that 〈w, u〉 = A. Then, 〈φ(g)w, φ(g)u〉 = 〈w, u〉 = A
as well, so that A ∈ I(φ(g)u) and the right hand side is well-defined.

Proof. We may assume that g = Xij(b). Obviously,

g X(u, vhkA, 0)g
−1 = X(φ(g)u, φ(g)vhkA, 0)

and

−
∑

〈vhkA, vstA〉 = −
∑

〈φ(g)vhkA, φ(g)vstA〉,

so that,

g ZA(u, v)g−1 = Z(φ(g)u; {φ(g)vhkA}h<k).

For n ≥ 4 each Tij(b)vhk still has at least one pair of zero coordinates what
finishes the proof for this case by Lemma 4.6.
Now, consider the case of n = 3. For j = −i any Tij(b)vhk still has a pair of
zero coordinates. Now, assume j 6= ±i. If h, k 6∈ {j,−i}, then φ(g)vhk = vhk.
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If {h, k} = {j,−i} we also get that Tij(b)vhk has a pair of zero coordinates.
Thus, we may assume that h ∈ {j,−i}, say, h = −i, and k 6∈ {±i,±j}.
Set

uk,−i = ekui sign(−i)− e−iu−k sign(k),

then vk,−i = uk,−i(vkw−i − v−iwk). One has

Tij(b)u = u+ eiujb− e−ju−i b sign(ij),

Tij(b)uk,−i = uk,−i + e−ju−k b sign(ijk).

Direct computation shows that

〈Tij(b)u, uk,−i − ekuj b sign(i)〉 = 0.

Set

q = uk,−i − ekuj b sign(i) and r = ekuj b sign(i) + e−ju−k b sign(ijk).

One has Tij(b)uk,−i = q + r, so that r is also orthogonal to Tij(b)u. Both q
and r have a pair of zero coordinates and, moreover, they are orthogonal. Set
c = (vkw−i − v−iwk), then by Lemma 4.4

X(Tij(b)u, Tij(b)vk,−iA, 0) = X(Tij(b)u, qcA, 0)X(Tij(b)u, rcA, 0).

Finally, the claim follows from Lemma 4.6. �

The next lemma follows from Lemma 4.6.

Lemma 4.8. Take u, v, w ∈ B2n such that 〈u, v〉 = 〈u, w〉 = 0, A ∈ I(u).
Then

ZA(u, v)ZA(u, w) = ZA(u, v + w)X(u, 0, 〈v, w〉 ·A4).

Corollary 4.8.1. For u, v, 〈u, v〉 = 0, A ∈ I(u) one has

ZA(u, 0) = 1,

ZA(u, v)−1 = ZA(u, −v).

Lemma 4.9. Take u, v ∈ B2n such that 〈u, v〉 = 0, A ∈ I(u) ∩ I(v), b ∈ B.

Assume that there exist p, q ∈ B2n such that

〈u, p〉 = 〈u, q〉 = 〈v, p〉 = 〈v, q〉 = 0,

and 〈p, q〉 = A. Then one has

ZA(u, vb · A3) = ZA(v, ub ·A3).

Proof. Denote g = ZA(u, pb) and h = ZA(v, q). Compute the commu-
tator in two ways

gh · h−1 = g · hg−1.

Recall that φ
(
ZA(u, pb)

)
= T (u, pbA2, 0) and use Lemmas 4.7 and 4.8 to get

gh · h−1 = ZA(v, q + ubA3)ZA(v, −q) = ZA(v, ubA3).

Similarly, g · hg−1 = ZA(u, vbA3). �
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Lemma 4.10. Consider w, u ∈ B2n, b ∈ B, denote A = 〈w, u〉. Assume that

there exist z, v ∈ B2n such that 〈z, v〉 = A and

〈u, v〉 = 〈u, z〉 = 〈w, v〉 = 〈w, z〉 = 0.

Then one has

ZA(u, ubA3) = X(u, 0, 2bA5).

Proof. Set g = ZA(u, zb), h = ZA(u, v) and compute [g, h] in two ways.
On the one hand,

gh · h−1 = ZA(u, v + ubA3)ZA(u, −v) = Z(u, ubA3)

by Lemma 4.7. On the other hand,

gh · g−1h−1 =

= ZA(u, zb+ v)X(u, 0, bA5)ZA(u, −zb− v)X(u, 0, bA5) =

= X(u, 0, 2bA5)

by Lemma 4.8. �

Lemma 4.11. Consider u, v ∈ B2n, A ∈ I(u) ∩ I(v), b, c ∈ B. Assume that

there exist w, z, x, y ∈ B2n, such that

〈w, u〉 = 〈z, v〉 = 〈x, y〉 = A

and pairs (w, u), (z, v) and (x, y) are mutually orthogonal. Then one has

X(u+ vb, 0, cA11) = X(u, 0, cA11)X(v, 0, b2cA11)ZA(u, vbcA9).

Proof. First, use Lemma 4.8

ZA(u+ vb, xA3)ZA(u+ vb, ycA3) =

= ZA(u+ vb, (x+ yc)A3)X(u+ vb, 0, cA11).

We want to show that

ZA(u+ vb, xA3) = ZA(x, (u+ vb)A3).

With this end, use Lemma 4.9 with p = z − wb and q = v. Next, decompose

ZA(x, (u + vb)A3) = ZA(x, uA3)ZA(x, vbA3)

by Lemma 4.8 and use Lemma 4.9 with p = z and q = v to show that

ZA(x, uA3) = ZA(u, xA3)

and with p = w, q = u to get that

ZA(x, vbA3) = ZA(v, xbA3).

Similarly, one shows that

ZA(u+ vb, ycA3) = ZA(u, ycA3)ZA(v, ybcA3)

and

ZA(u + vb, −(x+ yc)A3) = ZA(u, −(x+ yc)A3)ZA(v, −(x+ yc)bA3).
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Decompose also

ZA(u, −(x+ yc)A3) = ZA(u, −ycA3)ZA(u, −xA3)X(u, 0, cA11),

ZA(v, −(x+ yc)bA3) = ZA(v, −ybcA3)ZA(v, −xbA3)X(v, 0, b2cA11)

by Lemma 4.8. Now, we can express X(u + vb, 0, cA11) in terms of these
ten elements. Most of the factors will cancel, but we will need to interchange
positions of ZA(u, xA3) and ZA(v, ybcA3), thus we obtain their commutator
as an extra factor

[ZA(u, xA3), ZA(v, ybcA3)] = ZA(u, vbcA9).

�

Now, we focus on the case A = aN .

Definition. Take b ∈ I and u, v ∈ B2n, such that aN ∈ I(u) for some N ∈ N,
〈u, v〉 = 0. Then set

Z(u, v, b) = Z(aN)
(

u, v
b

a2N

)

.

This element does not depend on the choice of N . Take w ∈ B2n such that
〈w, u〉 = aN , then 〈waM , u〉 = aN+M and by the very definition

(

v
b

a2(N+M)

)(waM )

ij
= v

(waM )
ij ·

b

a2(N+M)
= vwij · a

M ·
b

a2(N+M)
,

so that

Z(aN+M)
(

u, v
b

a2(N+M)

)

=

= Z
(

u;
{(
vwij

b

a2N+M

)
aN+M

}

i<j

)

= Z(aN )
(

u, v
b

a2N

)

.

Observe that φ
(
Z(u, v, b)

)
= T (u, vb, 0).

Below we list the properties of our new elements Z(u, v, b). They follow directly
from the definition and Lemmas 4.7 – 4.11.

Lemma 4.12. Take u, v, v′ ∈ B2n such that aN ∈ I(u) for some N ∈ N,

〈u, v〉 = 〈u, v′〉 = 0, b, c ∈ I, r ∈ B, g ∈ StSp2n(B). Then one has

φ
(
Z(u, v, b)

)
= T (u, vb, 0), (Z0)

Z(u, vr, b) = Z(u, v, rb), (Z1)

Z(u, v, b)Z(u, v′, b) = Z(u, v + v′, b)X(u, 0, b2〈v, v′〉), (Z2)

Z(u, v, b)Z(u, v, c) = Z(u, v, b + c), (Z3)

g Z(u, v, b)g−1 = Z(φ(g)u, φ(g)v, b). (Z4)

Assume that there also exist w, z ∈ B2n such that holds 〈w, u〉 = 〈z, v〉 = aN

and pairs (w, u), (z, v) are orthogonal. Then one also has

Z(u, u, b) = X(u, 0, 2b). (Z5)
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If in addition there exist x, y ∈ B2n such that 〈x, y〉 = aN and the pair (x, y)
is orthogonal to pairs (w, u) and (z, v), then

Z(u, v, b) = Z(v, u, b), (Z6)

X(u+ vr, 0, b) = X(u, 0, b)X(v, 0, br2)Z(u, v, br). (Z7)

We need yet another property of Z(u, v, b).

Lemma 4.13. For u, v ∈ B2n, b ∈ I, M , N ∈ N, such that aN ∈ I(u),
〈u, v〉 = 0, holds

Z(uaM , v, b) = Z(u, v, aM b).

Proof. Firstly, we clarify the notations. Take w ∈ B2n such that 〈w, u〉 =
aN , then 〈w, uaM 〉 = aN+M . Denote uij = eiu−j sign(j) − eju−i sign(i), then
(uaM )ij = uija

M . Denote as usually vij = uij(viwj − vjwi). Then in the
definition of

ZaN+M
(

uaM , v
b

a2N+2M

)

we actually use (uaM )ij · (viwj − vjwi) = vija
M . Thus, we have

Z(uaM , v, b) = ZaN+M
(

uaM , v
b

a2N+2M

)

=

= Z
(

uaM ;
{(
vija

M b

a2N+2M

)
aN+M

}

i<j

)

.

Now use Lemma 4.2 and get

Z
(

uaM ;
{(
vij

b

a2N
)
aN

}

i<j

)

= Z
(

u;
{(
vij
aM b

a2N
)
aN

}

i<j

)

= Z(u, v, aMb).

�

Finally, introduce yet another notation.

Definition. For u, v ∈ B2n, such that aN ∈ I(u) for some N ∈ N, 〈u, v〉 = 0,
b, c ∈ I denote

Z(u, v, b, c) = Z(u, v, b)X(u, 0, c).

At this point, we are ready to construct Tulenbaev map

T: StSpT2n(Ba, I) → StSp2n(B).

Proof of Lemma 3.3. For each quadruple

(u, v, b, c) ∈
(

Ep2n(Ba)e1

)

×B2n
a × I × I

we associate an element in StSp2n(B). We proceed as follows. First, if
u =Me1, denote w = −Me−1, then 〈w, u〉 = 1. Next, w, u, v ∈ Ba, thus there
exists an N ∈ N such that the entries of waN , uaN , vaN do not have denom-
inators, i.e., lie in the image of the localisation homomorphism λa : B → Ba.
Then for each of these elements take their preimages and get vectors w̃, ũ,
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ṽ ∈ B2n. Since 〈ũ, ṽ〉 localises to zero and 〈w̃, ũ〉 localises to a2N , there exist
M ∈ N such that 〈ũ, ṽaM 〉 = 0 and 〈w̃aM , ũ〉 = a2N+M . Then the element

Z
(

ũ, ṽaM ,
b

a2N+M
,

c

a2N

)

in StSp2n(B) is defined. Using Lemma 1.1(X2), Lemma 4.12(Z1) and Lem-
ma 4.13 one can show that this element does not depend on the above choices.
Thus, we have a well-defined set-theoretic map from the set of generators of
StSpT2n(Ba, I) to StSp2n(B).
Next, we need to show that the images of (u, v, b, c) under this map satisfy
relations T0–T6. This is a straightforward consequence of Lemmas 1.1 and
4.12 and the fact that the above map is well-defined. The only trick one should
use to get T3–T5 is the following. For u = Me1, where M ∈ Ep2n(Ba), one
can take w = −Me−1, v = Me−2, z = Me2 and use their lifts to deduce T3
from Lemma 4.12(Z5). Similarly, one can use (e3, e−3) for T4 and T5.
Now, we have to show that the diagram

StSpT
2n(B, I)

κ
//

λ∗

a

��

StSp2n(B)

λ∗

a

��
StSpT2n(Ba, Ia) κ

//

T

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

StSp2n(Ba)

is commutative. Start with the upper triangle. Lemma 4.12 (Z7) and Lem-
ma 1.4 (X8) imply that for u with a pair of symmetric zeros holds Z(u, v, b, c) =
X(u, vb, c). Next, take X(u, v, b, c) ∈ StSp2n(B, I) and take g ∈ StSp2n(B)
such that φ(g)u = e1. Then κ sends it to X(u, vb, c) and T ◦ λ∗a to

Z
(

λa(u)a
N , λa(v)a

N+M ,
b

a2N+M
,

c

a2N

)

.

Now, conjugate both elements by g and use the previous observation to show
that they coincide. The lower triangle can be treated similarly.
Finally, we show that T maps

g ∈ Im
(

StSp2n−2(Ba, Ia) → StSp2n(Ba, Ia)
)

to the element of Im
(

StSp2n−2(B) → StSp2n(B)
)

. For n = 2 there exist no

obvious analogue of the Tulenbaev map, so that for n = 3 we argue as follows
(for n > 3 this argument works as well). We can assume that g = X(u, v, b, c)
for u and v such that un = u−n = vn = v−n = 0. Then, consider lifts ũ, ṽ
of uaN and vaN . Their ±n-th coordinates localise to zeros, thus increasing N
we may assume that they actually are zeros. Thus, it remains to show that
for u and v such that un = u−n = vn = v−n = 0 one has Z(u, v, b, c) ∈
ImStSp2n−2(B). As above, in this situation Z(u, v, b, c) = X(u, vb, c). By
Lemma 1.1 (X6), we only need to consider X(u, 0, c) with un = u−n = 0.
With the use of Lemma 1.2 (Y3–Y6) we reduce it to the case X(ei, v, c) with
i 6= ±n, vn = v−n = 0. To conclude the proof, decompose this element by
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Lemma 1.4 (X10) as a product of usual elementary generators of Steinberg
group

X(ei, v, c) = X(ei, 0, c−
∑

vkv−k)
∏

X(ei, ekvk, 0).

Al of them lie in ImStSp2n−2(B). �
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