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Abstract. In the paper [Lau16], it was shown that the restriction of
a pseudoeffective divisor D to a so-called nef subvariety Y (e.g. Y is
lci in X and has nef normal bundle) is pseudoeffective. Assuming the
normal bundle is ample and that D|Y is not big, we prove that the
numerical dimension of D is bounded above by that of its restriction,
i.e. κσ(D) ≤ κσ(D|Y ). The main motivation is to study the cycle
classes of “positive” curves: we show that the cycle class of a curve
with ample normal bundle lies in the interior of the cone of curves,
and the cycle class of an ample curve lies in the interior of the cone of
movable curves. We do not impose any condition on the singularities
on the curve or the ambient variety. For locally complete intersection
curves in a smooth projective variety, this is the main result of Ottem
[Ott16]. The main tool in this paper is the theory of q-ample divisors.
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1 Introduction

This paper deals with subvarieties (of projective variety) which manifest posi-
tivity property. Recall that a divisor D is q-ample if for any F there is an m0

such that
Hi(X,F ⊗ OX(mD)) = 0 ∀m ≥ m0.

Let X be a projective variety, let Y be a subvariety of X of codimension r and
let X̃ → X be the blowup morphism of X along Y , with exceptional divisor
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E. We call Y a locally ample subvariety of X if OE(E) is (r − 1)-ample. If Y
is lci in X , being locally ample is equivalent to having ample normal bundle.
We call Y an ample subvariety of X if OX̃(E) is (r − 1)-ample (The notion of
an ample subvariety was introduced in [Ott12]). We call Y a nef subvariety of
X if OE(mE +A) is (r − 1)-ample for m ≫ 0, where A is an ample divisor. If
Y is l.c.i. in X , being nef is the same as having nef normal bundle.
In [Lau16], we showed that the restriction of a pseudoeffective divisor to a nef
subvariety is pseudoeffective. In this paper, we shall study how the numer-

ical dimension of the classes on the boundary of Eff
1
(X) behave under the

restriction ι∗ : Eff
1
(X) → Eff

1
(Y ), assuming Y is locally ample.

Nakayama showed that if H is a smooth ample divisor of a smooth projective
variety X and η ∈ N1(X)R is not big, then κσ(η) ≤ κσ(η|H) [Nak04, Proposi-
tion 2.7(5)]. On the other hand, Ottem showed that if X is a smooth projective
variety, Y is a l.c.i. subvariety with ample normal bundle and η ∈ N1(X)R sat-
isfies η|Y = 0, then κσ(η) = 0 [Ott16, Theorem 1]. This was a conjecture due
to Peternell [Pet12, Conjecture 4.12]. The following theorem generalizes both
of the above results.

Theorem A. Let ι : Y →֒ X be a locally ample subvariety of codimension r of
a projective variety X. If η ∈ N1(X)R is a pseudoeffective class such that η|Y
is not big, then κσ(η) ≤ κσ(η|Y ).

From this, we deduce the following result (see theorem 5.5).

Theorem B. Let Y be a locally ample subvariety of X and let f : X → Z

be a morphism from X to a projective variety Z. If dim f(Y ) < dim Y , then
f |Y : Y → Z is surjective, i.e. f(Y ) = Z.

One can regard these results as hints that it is natural to study the notion of
locally ample subvariety.
We now turn our focus to the main application of theorem A.
It seems interesting to ask how the positivity of the normal bundle of a sub-
variety influences the positivity of the underlying cycle class of the subvariety.
The divisor case is well-known. For example, ample divisors generate an open
cone in N1(X)R, called the ample cone. The closure of the ample cone is dual
to the closure of the cone generated by curves in X (Kleiman). Furthermore,
an effective Cartier divisor with ample normal bundle is big [Har70, Theo-
rem III.4.2]. In this paper, we want to see whether similar properties hold for
curves. Boucksom, Demailly, Păun and Peternell [BDPP13] showed that the
closure of the cone of effective divisors in N1(X)R, called the pseudoeffective
cone, is dual to the closure of the cone generated by strongly movable curves,
called the movable cone of curves. Using this result, one can show that the
cycle class of a nef curve (in particular a curve with nef normal bundle) lies in
the movable cone of curves ([DPS96, Theorem 4.1], [Lau16, Theorem 1.3]). By
analogy to the divisor case, it is natural to pose the following question: given a
locally ample (resp. ample) curve, does the cycle class of the curve lies in the
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interior of the cone of curves (resp. movable cone of curves)? In this paper,
we give a positive answer to this question.

Theorem C. Let X be a projective variety and let Y be a locally ample curve
in X. Then [Y ] ∈ N1(X)R is big, i.e. it lies in the interior of cone of curves.
Furthermore, if Y meets all prime divisors of X, e.g. Y is ample, then [Y ] lies
in the interior of the movable cone of curves.

Following an observation of Peternell [Pet12, Conjecture 4.1], Ottem already
deduced that the cycle class of a locally complete intersection curve with ample
normal bundle in a smooth projective variety lies in the interior of the cone of
curves ([Ott16, Theorem 2]). Indeed, if η ∈ N1(X)R is nef and η|Y = 0, then
the conjecture says κσ(η) = 0, which forces η = 0. Theorem C improves upon
Ottem’s result by removing any restrictions on smoothness of X and Y . Our
proof is different from Ottem’s in the sense that the theory of q-ample divisors
is used here.

Notation. We work over a field of characteristic zero. A variety is meant to be
an integral scheme. A curve is meant to be an integral scheme of dimension 1.

Acknowledgments. I would like to thank my advisor, Tommaso de Fernex, for
his many comments that improves the exposition. I would also like to thank
Brian Lehmann and John Christian Ottem for helpful discussions, and the
referee for his careful reading of the paper and many useful suggestions. This
is part of the author’s PhD thesis at University of Utah.

2 Preliminaries

In this section, we shall recall the necessary definitions and tools needed.

2.1 Dualizing sheaf

Definition 2.1 (Dualizing sheaf [Har77, p.241]). Let X be a projective scheme
of dimension n. A dualizing sheaf for X is a coherent sheaf ωX , together with
a trace map t : Hn(X,ω) → k to the ground field k, such that for any coherent
sheaf F on X the natural pairing

Hn(X,F )×Hom(F , ωX) → Hn(X,ωX),

followed by t, is perfect.

Proposition 2.2. [Har77, Proposition 7.2, 7.5] Let X be a projective scheme
of dimension n. Then the dualizing sheaf for X exists and is unique up to
unique isomorphism.

We now show that a dualizing sheaf can be embedded into a sufficiently ample
line bundle. The proof can be found in the proof of [Tot13, Theorem 9.1], but
we include here for the sake of convenience.
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Lemma 2.3 (Embedding a dualizing sheaf into a line bundle). Let X be a
projective variety of dimension n. Then ωX is torsion-free. Moreover, given an
ample divisor on H, there is l such that there is an embedding ωX →֒ OX(lH).

Proof. Let us first show that ωX is torsion-free. Indeed, let T ⊂ ωX be the
torsion subsheaf. Then

Hom(T , ωX) ∼= Hn(X,T )∨ = 0.

The last equality follows from the fact that T is supported at a proper closed
subscheme of X .
As ωX is generically a line bundle, ω∨

X 6= 0. For l large, there is a nontrivial sec-
tion s ∈ H0(X,ω∨ ⊗ OX(lH)). This induces a nontrivial map ωX → OX(lH),
which has to be an injection, since ωX is torsion free of rank 1.

2.2 q-ample divisors

The main tool used in this paper is the theory of q-ample divisors, developed by
Sommese [Som78], Demailly-Peternell-Schneider [DPS96] and Totaro [Tot13].
Let us recall its definition.

Definition 2.4 (q-ample line bundle [DPS96],[Tot13]). Let X be a projective
scheme. A line bundle bundle L is q-ample if for any coherent sheaf F on X ,
there is an m0 such that

Hi(X,F ⊗ L
⊗m) = 0

for i > q and m > m0.

We shall give the definition of a Koszul-ample line bundle. The details are not
very important in this paper, but they are included for the sake of completeness.
Koszul-ample line bundle comes up in the definition of a q-T-ample line bundle,
which we shall give shortly. One useful fact is that any large tensor power of
an ample line bundle is 2n-Koszul-ample, where n is the dimension of the
underlying projective scheme [Bac86].

Definition 2.5 (Koszul-ampleness [Tot13, Section 1]). Let X be a projective
scheme of dimension n, and that the ring of regular function O(X) on X is
a field (e.g. X is connected and reduced). Given a very ample line bundle
OX(1), we say that it is N -Koszul ample if the homogeneous coordinate ring
A =

⊕
j H

0(X,OX(j)) is N -Koszul, i.e. there is a resolution

· · · → M1 → M0 → k → 0

where Mi is a free A-module, generated in degree i, where i ≤ N .

Definition 2.6 (q-T-ampleness [Tot13, Definition 6.1]). Let X be a projective
variety of dimension n. We fix a 2n-Koszul-ample line bundle OX(1) on X .
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We say that a line bundle L is q-T-ample if there is a positive integer N , such
that

Hq+i(X,L ⊗N ⊗ OX(−n− i)) = 0,

for 1 ≤ i ≤ n− q.

The following theorem is the key technical theorem in Totaro’s paper.

Theorem 2.7. [Tot13, Theorem 6.3] The notion of q-ampleness and q-T-
ampleness are equivalent.

Definition 2.8 (q-ampleR-CartierR-divisors). Let X be a projective scheme.
An R-Cartier R-divisor D on X is q-ample if D is numerically equivalent to
cL+A with L a q-ample line bundle, c ∈ R>0, A an ample R-CartierR-divisor.

Based on the work of Demailly, Peternell and Schneider, Totaro also proved
that

Theorem 2.9 ([Tot13, Theorem 8.3]). An integral divisor is q-ample if and only
if its associated line bundle is q-ample. The q-ample R-Cartier R-divisors in
N1(X)R defines an open cone (but not convex in general) and that the sum of
a q-ample R-Cartier R-divisor and an r-ample R-Cartier R-divisor is (q+ r)-
ample.

Remark. Totaro’s paper relies on [DPS96, Theorem 1.4] for a proof of the fact
that q-ampleness descends to numerical equivalence classes, but the proof given
in [DPS96] only works in the smooth case. For projective varieties in general
the claim is treated in Greb and Küronya’s paper [GK15, Theorem 2.17].

Theorem 2.10 ([Tot13, Theorem 9.1]). Let X be a projective variety of dimen-
sion n. A line bundle L on X is (n− 1)-ample if and only if [L ∨] ∈ N1(X)
does not lie in the pseudoeffective cone.

Definition 2.11 (q-almost ample). Let X be a projective scheme and let A

be an ample divisor on X . We say that a R-Cartier R-divisor D is q-almost
ample if D + ǫA is q-ample for all 0 < ǫ ≪ 1.

2.3 σ-dimension

Let us start with the definition of the σ-dimension of an R-Cartier R-divisor.

Definition 2.12 (σ-dimension). Let X be a projective variety. Let D =∑
aiCi be an R-Cartier R-divisor, where ai ∈ R and Ci’s are integral Cartier

divisor and let H be any integral Cartier divisor. We then define

κσ(D)

:= max
H integral Cartier

{max{l ∈ Z| lim sup
t→∞

h0(X,OX(
∑

⌊tai⌋Ci +H))

tl
> 0}}.
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This is a measure of positivity of an R-CartierR-divisor that lies on the bound-
ary of the pseudoeffective cone. However, this definition looks slightly different
from the one that appeared in the literature ([Nak04],[Leh13] and [Eck16]). We
shall prove in proposition 2.14 that the definition is well-posed, i.e. indepen-
dent of the decomposition D =

∑
aiCi; is a numerical invariant and agrees

with the usual definition when X is smooth. Nakayama’s proof of the fact
that σ-dimension is a numerical invariant relies on an Angehrn-Siu type argu-
ment, which requires smoothness of X . On a singular projective variety X , it
is possible to define the σ-dimension of a class η ∈ N1(X) via the following
way, due to Lehmann [Leh13, Chapter 6.1]. Take a resolution of singularities
of X , π : X̃ → X , define κσ(η) := κσ(π

∗η) and note that on smooth projective
varieties the σ-dimension is a birational invariant [Nak04, Proposition V.2.7].
The proof of the following lemma was suggested by the referee.

Lemma 2.13. Let X be a projective variety. Let B ⊂ N1(X)R be a bounded
subset. Let H be an ample divisor on X, Then for m ≫ 0,

H0(X,OX(mH − C)) 6= 0,

for any integral Cartier divisor C with [C] ∈ B.

Proof. We prove by induction on dimX = n. This is true if dimX = 1 by the
Riemann-Roch theorem.
Take a general hyperplane section in H1 ∈ |m1H | for m1 ≫ 0. It is irreducible
and reduced. Consider the short exact sequence

0 → OX(m2H − C) → OX((m1 +m2)H − C) → OH1
((m1 +m2)H − C) → 0.

By induction, h0(H1,OH1
((m1 + m2)H − C)) 6= 0 for m2 ≫ 0 and for

any integral Cartier divisor C with [C] ∈ B. By Fujita vanishing theorem,
h1(X,OX(m2H − C)) = 0 for m2 ≫ 0 and for any integral Cartier divisor C

with [C] ∈ B. These imply that h0(X,OX((m1 +m2)H −C)) 6= 0 for m2 ≫ 0
and for any integral Cartier divisor C with [C] ∈ B.

Proposition 2.14. Let X be a projective variety and let D be a pseudoeffective
R-Cartier R-divisor on X. Then

1. The definition of κσ(D) does not depend on the decomposition D =∑
aiCi. In fact, if D ≡ D′, then κσ(D) = κσ(D

′).

2. Assuming that X is smooth,

κσ(D)

= max
Hintegral Cartier

{max{l ∈ Z| lim sup
m→∞

h0(X,OX(⌊mD⌋+H))

ml
> 0}}.

The right hand side of this equation is the usual definition of the κσ(D)
([Nak04],[Leh13],[Eck16]). Here we are rounding down D as an R-Weil
divisor.
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Proof. For (1), suppose D ≡ D′, D =
∑

aiCi and D′ =
∑

a′iC
′
i. By lemma

2.13, there is an integral Cartier divisor H ′ such that OX(H ′ + C) is effective
for any integral Cartier C ≡

∑
riCi+

∑
r′jC

′
j where ri, r

′
j ∈ [−2, 2]. Given any

integral Cartier divisor H , write
∑

⌊ma′i⌋C
′
i +H +H ′ as

∑
⌊mai⌋Ci+H+(

∑
⌊ma′i⌋C

′
i−mD′)+(mD−

∑
⌊mai⌋Ci)+(mD′−mD)+H ′.

This implies h0(X,OX(
∑

⌊mai⌋Ci +H)) ≤ h0(X,OX(
∑

⌊ma′i⌋C
′
i +H +H ′)).

We can reverse the roles of D and D′ and conclude (1).
For (2), D is expressed uniquely as

∑
aiΓi, where Γi’s are prime divisors

(which are Cartier by the smoothness assumption), ai ∈ R. We have
⌊mD⌋ =

∑
⌊mai⌋Γi, the equality then follows from (1).

Thanks to Proposition 2.14 (1), we may refer to κσ(η), where η ∈ N1(X)R,
without ambiguity.
Here are some of the basic properties of κσ(D). The proofs of (1) and (4) are
essentially the same as the ones given in [Nak04, Proposition V.2.7].

Proposition 2.15 (Basic properties). Let X be a projective variety of dimen-
sion n and let η ∈ N1(X)R.

1. If f : X ′ → X is a surjective morphism from a projective variety, then
κσ(η) = κσ(f

∗(η)).

2. κσ(η) ≤ n.

3. κσ(η) ≥ 0 if and only if η is pseudoeffective.

4. κσ(η) = n if and only if η is big.

Proof. Let D =
∑

aiCi be an R-Cartier R-divisor on X , such that the numer-
ical class of D is η. For (1), we let H be an ample divisor on X ′. First,
we claim that f∗OX′(H) is torsion-free. Since f is surjective, the natural
map OX → f∗OX′ is an injection. Say a section s ∈ f∗OX′(H)(U), s 6= 0,
is torsion, i.e. there is r ∈ OX(U), r 6= 0 such that r · s = 0. Here U

is an open subset of X . But r and s can be identified as nontrivial sec-
tions of OX′(f−1(U)) and OX′(H)(f−1(U)) respectively. This contradicts
the fact that OX′(H) is invertible. Next, as f∗OX′(H) is torsion-free, the
canonical map f∗OX′(H) → (f∗OX′(H))∨∨ is injective. There is some ample
divisor A on X such that we have the following surjection ⊕k

1OX(−A) ։

(f∗OX′(H))∨. Dualizing, this gives an injection f∗OX′(H) →֒ ⊕k
1OX(A).

Hence, h0(X ′,OX′(
∑

⌊tai⌋f
∗Ci + H)) ≤ k · h0(X,OX(

∑
⌊tai⌋Ci + A)) and

κσ(η) ≥ κσ(f
∗(η)). The other direction is obvious.

For (2), take a sufficiently ample divisor H that computes the κσ(D) and that
H −D is ample. Then h0(X,OX(

∑
⌊tai⌋Ci +H)) ≤ h0(X,OX(⌊t+ 1⌋H)) for

t ≫ 0. It follows that κσ(D) ≤ n.
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For (3), if κσ(D) ≥ 0, then there is some divisor H and a sequence tj → ∞
such that h0(X,OX(

∑
i⌊tjai⌋Ci +H)) 6= 0. Write

D =
1

tj
(
∑

i

⌊tjai⌋Ci +H) +
1

tj
(
∑

i

(tjai − ⌊tjai⌋)Ci −H).

We observe that the first term on the right hand side is effective and the second
term goes to 0 as tj → ∞. Thus, D is pseudoeffective.
Now assume that κσ(D) < 0, i.e. for any divisor H ′, h0(X,OX(

∑
⌊tai⌋Ci +

H ′)) = 0 for all t ≫ 0, we would like to show that D is not pseudoeffective. By
taking a sufficiently large multiple of an ample divisor, we can find a Koszul-
ample divisor H such that H+

∑
eiCi is ample for any ei ∈ [−1, 1]. By lemma

2.3, we can find an embedding of the dualizing sheaf of X , ωX →֒ OX(mH)
for some large m. By Serre duality, hn(X,OX(−

∑
⌊tai⌋Ci −H)⊗ OX((−n−

1)H)) = h0(X,ωX ⊗OX(
∑

⌊tai⌋Ci+H)⊗OX((n+1)H)) ≤ h0(X,OX(mH)⊗
OX(

∑
⌊tai⌋Ci +H)⊗ OX((n+ 1)H)), which is 0 for t ≫ 0 by assumption.

This shows that −
∑

⌊tai⌋Ci−H is (n−1)-ample for t ≫ 0 by theorem 2.7 and
implies that

∑
⌊tai⌋Ci+H = tD+(H−

∑
(tai−⌊tai⌋)Ci) is not pseudoeffective

by theorem 2.10, hence D is not pseudoeffective as well.
For (4), if D is big, it is clear that κσ(D) = n by (2). Now assume that
κσ(D) = n. Let H be a sufficiently ample divisor that computes κσ(D). We
may find some m such that mH is very ample, and that (m − 1)H +

∑
ciCi

is ample for any ci ∈ [0, 1]. By Bertini’s theorem, we can find an irreducible,
reduced and effective divisor H1 that is rationally equivalent to mH . Consider
the following short exact sequence

0 → OX((
∑

⌊tai⌋Ci) + (1−m)H) → OX((
∑

⌊tai⌋Ci) +H)

→ OX((
∑

⌊tai⌋Ci) +H)|H1
→ 0.

We may find a sequence of tj → ∞ and some c > 0 such that
h0(X,OX((

∑
⌊tjai⌋Ci) + H)) ≥ ctnj . But by (2), h0(H1,OX((

∑
⌊tjai⌋Ci) +

H)|H1
) < ctn for t ≫ 0. These imply that (

∑
⌊tjai⌋Ci)− (m− 1)H is effective

for j ≫ 0. Hence, tjD = ((
∑

⌊tjai⌋Ci)− (m− 1)H) + ((m − 1)H +
∑

(tjai −
⌊tjai⌋)Ci) is big.

2.4 Ample and Locally ample subvarieties

In this subsection, we shall first recall the definition of an ample subsubscheme,
which was introduced by Ottem in [Ott12]. Then we introduce the notion of a
locally ample subscheme, which generalizes the notion of a subvariety that is
l.c.i. in the ambient variety with ample normal bundle.

Definition 2.16 (Ample subscheme [Ott12, Definition 3.1]). Let X be a pro-
jective scheme of dimension n and let Y be a subscheme of X of codimension
r. Let E be the exceptional divisor of the blowup of X along Y . We say that
Y is an ample subscheme of X if E is (r − 1)-ample.

Documenta Mathematica 23 (2018) 677–696



Numerical Dimension and Locally Ample Curves 685

This notion of ample subschemes indeed generalize the notion of an ample di-
visor naturally. For example, if Y is a smooth ample subvariety of a smooth
projective variety, then the Lefschetz hyperplane theorem with rational coeffi-
cient holds: the natural maps

Hi(X,Q) → Hi(Y,Q)

are isomorphisms for i < n− r and is injective for i = n− r [Ott12, Corollary
5.3].
From the point of view of intersection theory, we also know that if Y is an l.c.i.
ample subvariety of a projective variety X . Then for any subvariety Z of X of
complementary dimension, Y · Z > 0 [FL83].
For more about ample subvarieties, c.f. [Ott12].

Definition 2.17 (Locally ample subscheme). Let X be a projective scheme of
dimension n and let Y be a subscheme of X of codimension r. Let E be the
exceptional divisor of the blowup of X along Y . We say that Y is an locally
ample subscheme of X if OE(E) is (r − 1)-ample.

The following proposition shows that the concept of a locally ample subscheme
generalizes the notion of an l.c.i. subvariety with ample normal bundle.

Proposition 2.18. [Ott12, Corollary 4.3] Let X be a projective scheme of
dimension n and let Y be a l.c.i. subscheme of X of codimension r. Then Y

has ample normal bundle if and only if Y is locally ample in X.

Proposition 2.19 (Pullback). Let X be a projective scheme and let Y be a
locally ample subscheme of X of codimension r. Let Z be a closed subscheme
of X. Suppose Y ∩ Z has codimension r in Z. Then Y ∩ Z is locally ample in
Z.

Proof. Indeed, by the universal property of blowup, we have the following com-
mutative diagram

BlY ∩Z Z
�

�

//

πZ

��

BlY X

πX

��

Z
�

�

// X.

Note that the exceptional divisor of πZ , EZ , is the restriction of the exceptional
divisor E of πX . If OE(E) is (r − 1)-ample, so is OEZ

(E).

We now show that the notion of locally ample subscheme satisfies the transi-
tivity property. The proof is a bit involved but is very similar to the proof of
transitivity of ample subschemes [Lau16, Theorem 4.10], it will be given in the
appendix. The following theorem on transitivity hints that the notion of locally
ample subvarieties is a reasonable generalization of the notion of subvarieties
with ample normal bundle. However, we won’t need it later.
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Theorem 2.20 (Transitivity of locally ample subschemes). Let Y be a locally
ample subscheme of X of codimension r1 and let Z be a locally ample sub-
scheme of Y of codimension r2. Then Z is a locally ample subscheme of X of
codimension r1 + r2.

Corollary 2.21 (Intersection of locally ample subschemes). Let X be a pro-
jective scheme. Let Y and Z be locally ample subschemes of X of codimension
r and s respectively and that Y ∩Z is of codimension r+ s in X. Then Y ∩Z

is locally ample in X.

Proof. By proposition 2.19, Y ∩Z is locally ample in Z. Hence, Y ∩Z is locally
ample in X as well.

3 Numerical dominance

In this section, we prove a basic fact on Nakayama’s notion of numerical dom-
inance, which will streamline the argument in the proof of the main theorem.

Let us first start by stating the definition of numerical dominance.

Definition 3.1. [Nak04, Definition 2.12] Given two classes η1, η2 ∈ N1(X)R.
We say that η1 numerically dominates η2 if for any ample divisor A and for
any b ∈ R there are t1, t2 > b such that t1η1 − t2η2 +A is pseudoeffective.
We say that a class η ∈ N1(X)R numerically dominates a closed subvariety Y of
X if on the blowup π : BlY X → X , π∗η numerically dominates the exceptional
divisor E.

Lemma 3.2. Let X be a projective variety and let η1, η2 ∈ N1(X)R. Then η1
numerically dominates η2 if and only if there exists an ample divisor A such
that for any b ∈ R there are t1, t2 > b such that t1η1−t2η2+A is pseudoeffective.

Proof. Suppose the hypothesis in the lemma holds. Given an ample divisor A′,
choose a large enough integer a such that aA′ − A is pseudoeffective. Given
b > 0, take t1, t2 > ab such that t1η1 − t2η2 + A is pseudoeffective. Then
t1
a
η1 −

t2
a
η2 +A′ = 1

a
(t1η1 − t2η2 +A) + (A′ − 1

a
A) is pseudoeffective.

Let us relate the negation of numerical dominance and vanishing of the top
cohomology group.

Proposition 3.3. Let X be a projective variety of dimension n and let Y

be a subvariety of X. Let E be the exceptional divisor on X̃ := BlY X, the
blowup of X along Y . Let D be a pseudoeffective R-Cartier R-divisor on X,
written as

∑
aiCi, where ai ∈ R and Ci’s are integral Cartier divisors. Fix a

2n-Koszul-ample line bundle O(H) on X̃.

Suppose there is some b ∈ R such that

hn(X̃,OX̃(kE − (
∑

⌊tai⌋π
∗Ci)− (m+ n+ 2)H)) = 0
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for all t ∈ (b,+∞) and for all integer k > b, where m ∈ N such that mH +
eE−

∑
ciπ

∗Ci is ample for any e, ci ∈ [0, 1] on X̃, then D does not numerically
dominate Y .
On the other hand, if D does not numerically dominate Y , then for any divisor
B, there is b ∈ R such that

hn(X̃,OX̃(kE − (
∑

⌊tai⌋π
∗Ci)−B)) = 0

for all t ∈ (b,+∞) and for all integer k > b.

Proof. For the first statement, by the hypothesis,

hn(X̃,OX̃(kE − (
∑

⌊tai⌋π
∗Ci)− (m+ 1)H)⊗ OX̃(−(n+ 1)H)) = 0

for k, t > b, k ∈ Z. Thus, by theorem 2.7, kE − (
∑

⌊tai⌋π
∗Ci) − (m + 1)H is

(n−1)-ample for k, t > b, k ∈ Z. For t1, t2 > b, we can write t2E−t1π
∗D−H =

(⌊t2⌋E−(
∑

⌊t1ai⌋π
∗Ci)−(m+1)H)+(mH+(t2−⌊t2⌋)E−

∑
(t1ai−⌊t1ai⌋)π

∗Ci)
and observe that the first term is (n− 1)-ample and the second term is ample.
It follows that t2E − t1π

∗D − H is (n − 1)-ample for all t1, t2 > b. Thus,
t1π

∗D − t2E +H is not pseudoeffective for all t1, t2 > b. This proves the first
assertion.
For the second statement, for sufficiently large l, we can embed ωX̃ →֒ O(lH)
(Lemma 2.3). We may also assume that B + lH is ample. Take m ∈ N such
that mH +

∑
ciCi is ample for any ci ∈ [0, 1]. By lemma 3.2, there is a b such

that t1π
∗D − t2E + B + (l +m)H is not pseudoeffective for t1, t2 > b. Thus,

for k, t > b and k ∈ Z,

hn(X̃,OX̃(kE − (
∑

⌊tai⌋π
∗Ci)−B))

= h0(X̃, ωX̃ ⊗ OX̃((
∑

⌊tai⌋π
∗Ci)− kE +B)) (Duality)

≤ h0(X̃,OX̃((
∑

⌊tai⌋π
∗Ci)− kE +B + lH)) (ωX̃ →֒ O(lH))

Writing

(
∑

⌊tai⌋π
∗Ci)− kE +B + lH

= [tπ∗D − kE +B + (l +m)H ]− [mH +
∑

(tai − ⌊tai⌋)π
∗Ci]

and observe that the first term on the right hand side is not pseudoeffective
while the second term is ample, we see that h0(X̃,OX̃((

∑
⌊tai⌋π

∗Ci) − kE +
B + lH)) = 0.

Remark. In general, the divisor
∑

⌊tai⌋π
∗Ci appearing in the statement of

Proposition 3.3 is different from the integral part ⌊tπ∗D⌋ of tπ∗D, which is
only a Weil divisor. Note that the expression

∑
⌊tai⌋π

∗Ci depends not only
on D and t but also on the decomposition D =

∑
aiCi expressing D as an

R-linear combination of integral Cartier divisors.
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4 Proof of Theorem A

We are now ready to demonstrate how the notion of numerical dominance
comes into the picture.

Proposition 4.1. Let X be a projective variety of dimension n, let Y be a
locally ample subvariety of codimension r of X and let η ∈ N1(X)R be a pseu-
doeffective class such that η|Y is not big. Then η does not numerically dominate
Y .

Proof. Let X̃ be the blowup of X along Y , with exceptional divisor E. We
fix a Koszul-ample line bundle OX̃(H). Take D =

∑
aiCi to be an R-Cartier

R-divisor representing η. Here ai ∈ R and Ci’s are integral Cartier divisors.
We fix an integer l > n + 1 such that (l − (n + 1))H + eE −

∑
ciCi is ample

for any e, ci ∈ [0, 1].
We would like to prove that for any coherent sheaf F on E, there is k0 such
that

hn−1(E,F ⊗ OE(kE −
∑

⌊tai⌋π
∗Ci − lH)) = 0 (4.1)

for k ≥ k0 and t ≥ 0. It is enough to prove that for the vanishing of cohomology
groups on each of the irreducible components of E. In other words, letting E′

be an irreducible component of E, it suffices to prove that there is k′0 such that
hn−1(E′,F ⊗OE′(kE−

∑
⌊tai⌋π

∗Ci− lH)) = 0 for k ≥ k′0 and t ≥ 0. As there
is a surjection ⊕O(B) ։ F , where O(B) is a line bundle, it suffices to prove
the vanishing assuming F is a line bundle O(B). By duality,

hn−1(E′,OE′(kE −
∑

⌊tai⌋π
∗Ci +B − lH))

= h0(E′, ωE′ ⊗ OE′(−kE +
∑

⌊tai⌋π
∗Ci −B + lH)),

where ωE′ is the dualizing sheaf of E′. We may embed ωE′ →֒ OE′(jH) for
some j by lemma 2.3. It suffices to prove that there is k′0 such that

h0(E′,OE′(−kE +
∑

⌊tai⌋π
∗Ci −B + (l + j)H)) = 0 (4.2)

for k ≥ k′0 and t ≥ 0.
As D|Y is not big, −D|Y is (n− r − 1)-almost ample. By [Lau16, Proposition
2.8], π∗(−D)|E is also (n− r− 1)-almost ample. Since OE(E) is (r− 1)-ample,
we may take k′0 such that (kE +

∑
eiπ

∗Ci +B − (l+ j)H)|E′ is (r− 1)-ample
for k ≥ k′0 and ei ∈ [0, 1], thanks to the openness of the (r − 1)-ample cone
(theorem 2.9). Thus for k ≥ k′0 and t ≥ 0,

(kE −
∑

⌊tai⌋π
∗Ci +B − (l + j)H)|E′

= ((kE +
∑

{tai}π
∗Ci +B − (l + j)H) + π∗(−tD))|E′

is (r− 1)+ (n− r− 1) = (n− 2)-ample, by theorem 2.9. Now we have (4.2) by
[Tot13, Theorem 9.1], hence also (4.1).
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If we fix t and take k large enough, then hn(X̃,OX̃(kE−
∑

⌊tai⌋π
∗Ci− lH))) =

0, since E is (n− 1)-ample. We tensor the short exact sequence

0 → OX̃(kE) → OX̃((k + 1)E) → OE((k + 1)E) → 0 (4.3)

by OX̃(−
∑

⌊tai⌋π
∗Ci− lH), and consider its associated long exact sequence of

cohomologies. We apply (4.1), letting F to be the structure sheaf OE , there is
k0 such that hn−1(E,OE(kE −

∑
⌊tai⌋π

∗Ci − lH)) = 0 for k ≥ k0 and t ≥ 0.
Therefore,

hn(X̃,OX̃(kE −
∑

⌊tai⌋π
∗Ci − lH)) = 0

for k ≥ k0 and t ≥ 0. We may now conclude the proof by applying proposition
3.3.

Proposition 4.2. Let X be a projective variety and let Y be a subvariety
of X. Let D be a pseudoeffective R-Cartier R-divisor such that D does not
numerically dominate Y . Let π : X̃ → X be the blowup of X along Y , with
exceptional divisor E. Suppose π|E : E → Y is an equidimensional morphism.
Then κσ(D) ≤ κσ(D|Y ).

Proof. We use the same notations as in the proof of the preceding proposition.
By proposition 2.15, κσ(D) = κσ(π

∗D). It is enough to look at the growth (in
t) of h0(X̃,OX̃(

∑
⌊tai⌋π

∗Ci + b1H)), for a large enough integer b1. Since ωX̃

is generically a line bundle, the natural map OX̃ → ω∨
X̃

⊗ ωX̃ is an injection.
We have the inequality

h0(X̃,OX̃(
∑

⌊tai⌋π
∗Ci + b1H))

≤ h0(X̃, ω∨
X̃
⊗ ωX̃ ⊗ OX̃(

∑
⌊tai⌋π

∗Ci + b1H))

= hn(X̃, ωX̃ ⊗ OX̃(−
∑

⌊tai⌋π
∗Ci − b1H)).

There is some surjection ⊕NOX̃(−b2H) ։ ωX̃ . Therefore,

hn(X̃, ωX̃ ⊗ OX̃(−
∑

⌊tai⌋π
∗Ci − b1H))

≤ N · hn(X̃,OX̃(−
∑

⌊tai⌋π
∗Ci − (b1 + b2)H))

By proposition 4.1 and proposition 3.3, there is k0 such that

hn(X̃,OX̃(kE −
∑

⌊tai⌋π
∗Ci − (b1 + b2)H)) = 0

for k ≥ k0 and t ≥ k0. Tensoring the short exact sequence 4.3 by
OX̃(−

∑
⌊tai⌋π

∗Ci − (b1 + b2)H) and considering the associated long exact
sequence of cohomologies, we have
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hn(X̃,OX̃(−
∑

⌊tai⌋π
∗Ci − (b1 + b2)H))

≤

k0∑

k=1

hn−1(E,OE(kE −
∑

⌊tai⌋π
∗Ci − (b1 + b2)H))

for t ≥ k0.
Note that the restriction of π : X̃ → X to the exceptional divisor π|E : E → Y

is an equidimensional morphism, with fiber dimension equals to r − 1. Thus,
Rd(π|E)∗OE(kE− (b1+ b2)H) = 0 for d > r−1. Note also that dimY = n− r,
which implies that hd(Y,F ) = 0 for d > n− r and for any coherent sheaf F on
Y . We now apply Leray spectral sequence and the above remarks to see that
for 1 ≤ k ≤ k0,

hn−1(E,OE(kE −
∑

⌊tai⌋π
∗Ci − (b1 + b2)H))

= hn−r(Y, (Rr−1(π|E)∗OE(kE − (b1 + b2)H))⊗ OY (−⌊tai⌋Ci))

= h0(Y, ωY ⊗ (Rr−1(π|E)∗OE(kE − (b1 + b2)H))∨ ⊗ OY (⌊tai⌋Ci)),

where the last equality holds by Serre duality. Since (Rr−1(π|E)∗OE(kE−(b1+
b2)H))∨ is reflexive [Har80, Corollary 1.2] and by lemma 2.3, for sufficiently
large l, there is an embedding ωY ⊗ (Rr−1(π|E)∗OE(kE − (b1 + b2)H))∨ →֒
⊕NkOY (lH) for 1 ≤ k ≤ k0. We can conclude that h0(X̃,OX̃(

∑
⌊tai⌋π

∗Ci +

b1H)) ≤ N · (
∑k0

k=1 Nk) · h
0(Y,OY (⌊tai⌋Ci + lH)) for t ≫ 0. This proves the

proposition.

Theorem A (Numerical dimension via restriction). With the same assump-
tions as in proposition 4.1. Then κσ(η) ≤ κσ(η|Y ).

Proof. Combine proposition 4.1 and 4.2 and note that if Y is locally ample,
then E → Y is equidimensional [Lau16, Proposition 4.6].

5 Applications of theorem A

We give two applications of theorem A. The first one is on positivity of cycle
classes of locally ample and ample curves; the second one concerns the fact
that locally ample subvarieties cannot be contracted.

5.1 Cycle classes of locally ample/ample curves

Peternell conjectured that if Y is a smooth curve with ample normal bundle
in a smooth projective variety X and η ∈ N1(X) is a pseudoeffective class
with η|Y = 0, then κσ(η) = 0 [Pet12, Conjecture 4.12]. Ottem later showed
that the conjecture is indeed true [Ott16, Theorem 1]. From there, Peternell
observed that the cycle class of a smooth curve with ample normal bundle lies
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in the interior of the cone of curves ([Pet12, Conjecture 4.1],[Ott16, Theorem
2]). Indeed, if η ∈ N1(X)R is nef and η|Y = 0, the conjecture says κσ(η) = 0.
But this forces η = 0. We are able to generalize this result by removing any
restrictions on smoothness of X and Y .

Proposition 5.1. [Ott16] Let X be a projective variety. Let η ∈ N1(X)R be
a pseudoeffective class. If κσ(η) = 0 and η is nef, then η = 0.

Proof. It follows from the argument on [Ott16, p.5]. We include the proof here
for the sake of completeness.
Let H be an ample divisor of X . Note that if we can prove that η|H = 0, it
would imply η = 0. By induction on dimension of X , it suffices to show that
κσ(η|H) = 0. Let D =

∑
aiCi be a pseudoeffective R-Cartier R-divisor such

that the numerical class of D is η. Here ai ∈ R and Ci’s are integral Cartier
divisors. By Fujita vanishing theorem, there is a k1 such that for k ≥ k0,

H1(X,OX(kH +N) = 0,

for any nef divisor N . Take a sufficiently large k1 such that k1H −
∑

eiCi is
ample, for any ei ∈ [0, 1]. For t ≥ 0, k1H+

∑
⌊tai⌋Ci = tD+(k1H−

∑
{tai}Ci)

is nef. Thus,

H1(X,OX(kH +
∑

⌊tai⌋D) = 0

for k ≥ k0 + k1. Therefore, we have the surjection

H0(X,OX(
∑

⌋tai⌊D + kH) ։ H0(H,OH(
∑

⌋tai⌊D + kH)

for k ≥ k0 + k1 and t ≥ 0. Hence κσ(η|H) = 0.

The following theorem generalizes the first half of the main theorem in Ottem’s
paper [Ott16, Theorem 2].

Theorem 5.2. Let X be a projective variety. Let Y be a locally ample subva-
riety of dimension 1 of X. Then the cycle class of Y in N1(X)R is big, i.e. it
lies in the interior of the cone of curves, NE(X).

Proof. Suppose there is some nef class η ∈ N1(X)R such that η|Y = 0. By
theorem A, κσ(η) = 0. We then apply proposition 5.1 to conclude that η =
0.

We shall need the following proposition which shows that a pseudoeffective
class η ∈ N1(X)R on a smooth projective variety with κσ(η) = 0 is in fact
“effective”.

Proposition 5.3. [Nak04, Proposition V.2.7] Let X be a smooth projective
variety. Let η ∈ N1(X)R be a pseudoeffective class. If κσ(η) = 0, then there
is an R-Cartier R-divisor

∑
aiCi, where ai ∈ R>0 and Ci are prime divisors,

such that its numerical class in N1(X)R equals to η.
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We are now ready to show that the cycle class of an ample curve lies in the
interior of the movable cone of curves. This strengthens the second half of
[Ott16, Theorem 2].

Theorem 5.4. Let X be a projective variety and let Y be a locally ample curve
in X. Suppose Y meets all prime divisors of X. Then the cycle class [Y ] lies
in the interior of the movable cone of curves. In particular, the cycle class of
an ample subvariety of dimension 1 lies in the interior of the movable cone of
curves.

Proof. Note that the second statement follows from the first. Indeed, if Y is
an ample curve in X , then Hn−1(X\Y,F ) = 0 for any coherent sheaf F on
X\Y [Ott12, Proposition 5.1]. In particular, X\Y cannot contain any prime
divisor.

Let π : X̃ → X be the blowup of X along Y , let X ′ f ′

−→ X̃ = BlY X be a
resolution of singularities on X̃ and let f = π ◦ f ′ be the composition. The
famous result in [BDPP13] says that the dual cone of the movable cone of
curves is the pseudoeffective cone. We can apply [Lau16, Theorem 6.1] to see
that [Y ] lies in the movable cone of curves. It suffices to show that for any
pseudoeffective class η ∈ N1(X)R such that η · [Y ] = 0, then η = 0.

Theorem A says that κσ(f
∗η) = κσ(η) = 0. As f∗η is pseudoeffective, it is

equal to the class of an effective R-Cartier R divisor
∑

biBi where bi > 0 and
Bi’s are prime divisors by proposition 5.3.

Suppose
⋃
Supp(Bi) ∩ f−1(Y ) = ∅. By the projection formula, [η] ≡∑

bif∗[Bi] in Nn−1(X). But
⋃
Supp f(Bi) ∩ Y = ∅ and the hypothesis imply

all Bi’s are exceptional. Thus [η] = 0 inNn−1(X) and η = 0 by [FL17, Example
2.7].

We may assume
⋃
Supp(Bi) ∩ f−1(Y ) 6= ∅. Applying the negativity lemma

to
∑

biBi (note that −
∑

biBi is clearly f -nef), for any closed point p ∈
f(
⋃
Supp(Bi)), f

−1(p) ⊂
⋃
Supp(Bi). Take a curve C′ ⊂ f−1(Y ) such that

f(C′) = Y . By the previous remark, C′ ∩
⋃
Supp(Bi) 6= ∅. On the other

hand,
∑

biBi · [C
′] = f∗η · [C′] = deg(κ(C) : κ(Y ))η · [Y ] = 0. Therefore,

C′ ⊂
⋃
Supp(Bi) and f−1(Y ) ⊂

⋃
Supp(Bi). Thus, f

′∗(π∗η− ǫE) is pseudoef-
fective for some small ǫ > 0. But proposition 4.1 says that η does not dominate
Y numerically. This gives a contradiction.

5.2 Locally ample subvarieties cannot be contracted

In this subsection, we show that, as a consequence of theorem A, a locally
ample subvariety cannot be contracted.

Theorem 5.5. Let X be a projective variety and let Y be a locally ample
subvariety of X. Suppose f : X → Z is a morphism from X to a projective
variety Z. Then if dim f(Y ) < dimY , then f |Y : Y → Z is surjective, i.e.
f(Y ) = Z.
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Proof. Let A be an ample divisor on Z. Then dim f(Y ) = κσ(A|f(Y )) =
κσ(f

∗(A)|Y ) < dimY . Note that f∗(A)|Y is not big. By theorem A,

κσ(f
∗(A)) ≤ κσ(f

∗A|Y ).

But κσ(f
∗(A)) = dimZ. This forces the equality dimZ = dim f(Y ).

Remark. The special case of theorem 5.5, where Y is contracted to a point, is
observed by Ottem by an elementary argument [Ott16, Proof of Lemma 12].

A Proof of theorem 2.20

First, note that we have the following commutative diagram

BlIY ·IZ
X

πY
//

πZ

��
&&
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

BlIZ
X

π′

Z

��

BlIY
X

π′

Y

// X,

where πY and πZ are induced by blowing up the ideals IY · OBlIZ
and IZ ·

OBlIY
respectively. Let E′

Y and E′
Z be the exceptional divisors of π′

Y and π′
Z .

We also let EZ be the exceptional divisor of πZ and let EY be the divisor in
BlIY ·IZ

X such that EY + EZ is the exceptional divisor of πY . Note that
π∗
ZE

′
Y = EY + EZ and π∗

Y E
′
Z = EZ . The proof of the above statements can

be found in [Lau16, Lemma 4.11].
To prove that Z is locally ample in X , it is the same as to show that OE′

Z
(E′

Z)

is (r1 + r2 − 1)-ample. If we let Ỹ be the strict transform of Y in BlIZ
X .

We know that OE′

Z
∩Ỹ (E

′
Z) is (r2 − 1)-ample. By [Lau16, Proposition 4.6], we

know that π′
Y has fiber dimension at most r1 − 1. Therefore, πY has fiber

dimension at most r1 − 1 as well. Let H be an ample divisor on BlIZ
X . By

[Lau16, Lemma 4.9], it suffices to show that for any l ≥ 0,

Hi(EZ ,OEZ
(mEZ)⊗ π∗

Y OBlIZ
X(−lH)) = 0

for i > r1 + r2 − 1 and m ≫ 0. Fix l ∈ Z≥0.

Claim 1. (EZ − δEY )|EZ∩EY
is (r2 − 1)-ample for 0 < δ ≪ 1.

Proof of claim. Since −EY is πY -ample, (π∗
Y E

′
Z − δEY )|EZ∩EY

= (EZ −
δEY )|EZ∩EY

is (r2 − 1)-ample for 0 < δ ≪ 1, by [Lau16, Proposition 2.8].

Claim 2. (EY + EZ − ǫEZ)|EZ
is (r1 − 1)-ample for 0 < ǫ ≪ 1.

Proof of claim. Note that πZ restricts to a morphism EZ → E′
Y , (π∗

ZE
′
Y −

ǫEZ)|EZ
= (EY + EZ − ǫEZ)|EZ

is (r1 − 1)-ample for 0 < ǫ ≪ 1 since −EZ is
πZ -ample, by [Lau16, Proposition 2.8].
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By the above claims, for sufficiently large integer k, OEZ∩EY
(kEZ − EY ) is

(r2 − 1)-ample and OEZ
((k + 1)EY + kEZ) is (r1 − 1)-ample. Fix such k.

Given m1,m2 ∈ Z, write

m1EY +m2EZ = λ1(kEZ − EY ) + λ2(kEZ + (k + 1)EY ) + j1EY + j2EZ ,

where λ2 = ⌊
m1+⌊

m2

k
⌋

k+2 ⌋; λ1 = ⌊m2

k
⌋ − λ2; j1 = ((m1 + ⌊m2

k
⌋) mod (k + 2))

and j2 = (m2 mod k). Note that 0 ≤ j1 < k + 2 and 0 ≤ j2 < k. The
precise formulae for λ1 and λ2 are not very important. The plan is to choose
a big m2, then let m1 increases. As m1 grows, λ1 decreases and λ2 increases.
We then use the positivity of (r2 − 1)-ampleness of OEZ∩EY

(kEZ − EY ) and
(r1 − 1)-ampleness of OEZ

(kEZ + (k + 1)EY ) to prove the required vanishing
statement.
Since OEZ

(kEZ + (k + 1)EY ) is (r1 − 1)-ample, we may find Λ2 such that

Hi(EZ ,OEZ
(λ2(kE2 + (k + 1)EY ) + j1EY + j2EZ)⊗ π∗

Y (OBlIZ
X(−lH))) = 0

(A.1)
for i > r1 − 1, λ2 ≥ Λ2, 0 ≤ j1 < k + 2 and 0 ≤ j2 < k.
Applying theorem [Lau16, Theorem 3.9] to the scheme EZ ∩ EY , there is an
Λ′
2 such that

Hi(EZ ∩ EY ,OEZ∩EY
(λ1(kEZ − EY )

+ λ2(kE2 + (k + 1)EY ) + j1EY + j2EZ)⊗ π∗
Y OBlIZ

(−lH))

= 0

for i > (r2 − 1) + (r1 − 1), λ1 ≥ 0, λ2 ≥ Λ′
2, 0 ≤ j1 < k + 2 and 0 ≤ j2 < k.

This implies

Hi(EZ ,OEZ
(m2EZ +m1EY )⊗ π∗

Y (OBlIZ
X(−lH)))

∼= Hi(EZ ,OEZ
(m2EZ + (m1 + 1)EY )⊗ π∗

Y (OBlIZ
X(−lH))) (A.2)

for i > r1 + r2 − 1, 0 < m1 + 1 < (k + 1)⌊m2

k
⌋+ k + 2 and ⌊

m1+1+⌊
m2

k
⌋

k+2 ⌋ ≥ Λ′
2.

Choose some big M2 such that ⌊
⌊
M2

k
⌋

k+2 ⌋ ≥ max{Λ2,Λ
′
2}. Applying (A.2) repeat-

edly, we have for m2 > M2,

Hi(EZ ,OEZ
(m2EZ)⊗ π∗

Y (OBlIZ
X(−lH)))

∼= Hi(EZ ,OEZ
(m2EZ + (k + 1)⌊

m2

k
⌋EY )⊗ π∗

Y (OBlIZ
X(−lH))) (A.3)

for i > r1 + r2 − 1. The above cohomology group can be rewritten as

Hi(EZ ,OEZ
(⌊
m2

k
⌋(kEZ+(k+1)EY )+(m2−k⌊

m2

k
⌋)EZ)⊗π∗

Y (OBlIZ
X(−lH))),

which is 0 by (A.1). This completes the proof.
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[BDPP13] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell,
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