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Abstract. Let G be a connected, simply connected, simple, com-
plex, linear algebraic group. Let P be an arbitrary parabolic subgroup
of G. Let X = G/P be the G-homogeneous projective space attached
to this situation. Let d ∈ H2(X) be a degree. Let M0,3(X, d) be
the (coarse) moduli space of three pointed genus zero stable maps to
X of degree d. We prove under reasonable assumptions on d that
M0,3(X, d) is quasi-homogeneous under the action of G.

The essential assumption on d is that d is a minimal degree, i.e. that
d is a degree which is minimal with the property that qd occurs with
non-zero coefficient in the quantum product σu ⋆ σv of two Schubert
classes σu and σv, where ⋆ denotes the product in the (small) quantum
cohomology ring QH∗(X) attached to X . We prove our main result
on quasi-homogeneity by constructing an explicit morphism which has
a dense open G-orbit in M0,3(X, d). To carry out the construction
of this morphism, we develop a combinatorial theory of generalized
cascades of orthogonal roots which is interesting in its own right.
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1 Introduction

Let G be a connected, simply connected, simple, complex, linear algebraic
group. Let P be a fixed but arbitrary parabolic subgroup of G. Let X = G/P
be the G-homogeneous projective space attached to this situation. We select
once and for all a maximal torus T and a Borel subgroup B of G such that

T ⊆ B ⊆ P ⊆ G .

We call an effective homology class in H2(X) a degree. Let d be a degree.
Let M0,3(X, d) be the (coarse) moduli space of three pointed genus zero stable
maps toX of degree d. By definition, the moduli spaceM0,3(X, d) parametrizes
isomorphism classes [C, p1, p2, p3, µ : C → X ] where:

• C is a complex, projective, connected, reduced, (at worst) nodal curve of
arithmetic genus zero.

• The marked points pi ∈ C are distinct and lie in the nonsingular locus.

• µ is a morphism such that µ∗[C] = d.

• The pointed map µ has no infinitesimal automorphisms.

Remark 1.1. The stability condition in the fourth item is often reformulated
in terms of a condition on the special points on each irreducible component of
C (cf. [5, Subsection 0.4]).

Basic properties of the moduli space M0,3(X, d) can be found in [5]. It is a
consequence of more general results in [5, 9], namely of [5, Theorem 2(i)] and
[9, Corollary 1], that M0,3(X, d) is a normal projective irreducible variety.
In this work, we ask the question if it is possible to prove stronger properties
of M0,3(X, d) than irreducibility. Note that the group G acts on M0,3(X, d)
by translation. Hence, the following definition and question make sense.

Definition 1.2. The moduli space M0,3(X, d) is called quasi-homogeneous
under the action of G if the action of G on M0,3(X, d) admits a dense open
G-orbit.

Question 1.3. For which degrees d is the moduli space M0,3(X, d) quasi-
homogeneous under the action of G?

To give an affirmative answer to Question 1.3 for specific degrees, it turns out
that the class of all minimal degrees is a good starting point. Minimal degrees
and their properties were studied in [1]. We build on this work in various ways.

Definition 1.4. Let (QH∗(X), ⋆) be the (small) quantum cohomology ring
attached to X as defined in [5, Section 10]. For a Weyl group element w, we
denote by σw the Schubert class attached to w.2 We say that a degree d is

2The Schubert class σw we are using here is the cohomology class of the opposite Schubert
variety associated to w of codimension equal to the length of the minimal representative of
the coset of w modulo the Weyl group of P (for more details, see Section 2, page 703).
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a minimal degree if there exist Weyl group elements u and v such that d is a
minimal degree in σu ⋆σv, i.e. if the power q

d appears with non-zero coefficient
in the expression σu ⋆ σv and if d is minimal with this property.

Notation 1.5. We denote by ΠP the set of all minimal degrees. We use this
notation to make clear relative to which P the minimal degrees are computed.
In particular, the set of all minimal degrees in H2(G/B) is denoted by ΠB .
The sets ΠP and ΠB will be often simultaneously in use.

Example 1.6. By Corollary 6.8, Remark 6.11, there exists a unique minimal
degree in the quantum product pt ⋆ pt of two point classes. We denote this
degree by dX ∈ ΠP . In particular, we have dG/B ∈ ΠB. By Corollary 6.12, we
have an inclusion ΠP ⊆ {0 ≤ d ≤ dX} where the partial order “≤” on H2(X)
is defined in Section 2 on page 704. Note that this inclusion is possibly strict
unless P is maximal (cf. [1, Example 10.14]). For more informations on the
minimal degree dX , we refer to [1].

Starting from the class of minimal degrees, we impose one further assumption
on a minimal degree, namely Assumption 7.13, to give an affirmative answer to
Question 1.3. For this introduction, it suffices to know that Assumption 7.13
is satisfied for all minimal degrees if the root system R associated to G and T
is simply laced or if P = B, i.e. if X is a generalized complete flag variety. We
are able to obtain the following theorem.

Theorem 1.7 (Theorem 8.2). The moduli space M0,3(X, d) is quasi-
homogeneous under the action of G for all minimal degrees d which satisfy
Assumption 7.13.

We prove Theorem 1.7 by constructing for every minimal degree d an explicit
morphism fP,d : P

1 → X . Then, we show that fP,d has a dense open orbit in
M0,3(X, d) under the action of G if d satisfies Assumption 7.13. We do so by
comparing the dimension of the orbit of fP,d with the dimension of the moduli
space. For the convenience of the reader, we sketch the construction of fP,d in
this introduction.

Construction 1.8. Let d ∈ ΠP . In Section 6, we uniquely associate to d a
minimal degree e ∈ ΠB – the so-called lifting of d. The precise definition of e
is given in Definition 6.2. For the moment, it suffices to know that the image
of e under the natural map H2(G/B) → H2(X) is d (cf. Fact 6.5(3)). In this
way, the lifting helps us to transport the situation from X to G/B.
In the next step, we associate to the degree e ∈ ΠB a set of (strongly) or-
thogonal roots BR,e – a so-called generalized cascade of orthogonal roots. We
systematically investigate the properties of these generalized cascades of or-
thogonal roots in Section 4. The reader finds the precise definition of BR,e in
Definition 4.1.
Let RP be the root system associated to the Levi factor of P and T . Let R+

P

be the positive roots of RP induced by B. For a root α ∈ BR,e \ R
+
P , there is
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a unique irreducible T -invariant curve Cα ⊆ X containing the T -fixed points
associated to 1 and sα, where sα is the reflection along α (cf. [6, Lemma 4.2]).
Each of the curves Cα is isomorphic to P1 (cf. [6, Lemma 4.2]).
With these preliminaries, we can now define the morphism fP,d as in Defini-
tion 7.3. We define the morphism fP,d by the assignment

fP,d : P
1 →֒

∏

α∈BR,e\R
+

P

Cα →֒ X

where the first morphism is the diagonal embedding of P1 into card(BR,e \R
+
P )

isomorphic copies of P1 and the second morphism is the embedding into X
which is well-defined due to the fact that two distinct elements of BR,e are
(strongly) orthogonal (cf. Theorem 4.5(3)). Also, by the very same fact, the
definition of fP,d is independent of the ordering of the product

∏
α∈BR,e\R

+

P
.

Hence, the morphism fP,d is well-defined. We call the image fP,d(P
1) the

diagonal curve (associated to d).

One can show that fP,d has degree (fP,d)∗[P
1] = d (cf. Fact 7.4). Hence, the

morphism fP,d gives indeed a candidate for an element of M0,3(X, d) which is
interesting for an answer of Question 1.3.
We give an example for a class of degrees for which the diagonal curve turns
out to be particularly simple and explicit.

Example 1.9. Let α1, . . . , αk be P -cosmall roots (cf. Definition 3.3) such
that the supports of α1, . . . , αk are pairwise totally disjoint (cf. Notation 3.8,

Definition 3.20). Let d =
∑k

i=1[Cαi ], where Cαi is the curve associated to αi

as in Construction 1.8. Then we have d ∈ ΠP (cf. Theorem 6.16). Let e be the
lifting of d. By Theorem 6.16, we then have BR,e \R

+
P = {α1, . . . , αk}. We see

directly from the assumption on αi that two distinct elements of BR,e \R
+
P are

(strongly) orthogonal (cf. Fact 3.21). Hence, in this case, we can verify directly
that the diagonal curve (associated to d) is well-defined. The morphism fP,d is
given by

fP,d : P
1 →֒

k∏

i=1

Cαi →֒ X

where the two arrows are defined as in Construction 1.8.

History

The problem to prove quasi-homogeneity of the moduli space of stable maps
to homogeneous spaces was first posed in [12, Section 3.2]. A preliminary
construction of the diagonal curve fP,d(P

1) for maximal parabolic subgroups
P and degrees 0 ≤ d ≤ dX is given there and it is stated (without rigorous
proof) that fP,d has a dense open orbit in M0,3(X, d) (cf. [12, Proposition 3.1]).
Preliminary attempts to give a proof of this theorem for the degree d = dX
were undertaken in [2, Section 9]. In this series of work, the present paper can
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be seen as a more rigorous and more final attempt to prove quasi-homogeneity
for arbitrary parabolic subgroups and arbitrary minimal degrees.

The very idea of the construction of the diagonal curve fP,d(P
1) goes back to

[12]. However, in this work, we make clear in a general context to which set
of strongly orthogonal roots, namely BR,e where e is the lifting of a minimal
degree d, one has to associate the morphism fP,d to – a question which is left
open in [12].

In particular, the combinatorial aspects of minimal degrees which lead to the
essential properties of generalized cascades of orthogonal roots and make our
results eventually possible were already well prepared in [1]. The reader can
consider this paper, in particular Section 3, 4, as a follow-up which completes
some aspects of the theory developed in [1].

Organization

As being said in the history section, a reader only interested in the combina-
torial aspects of minimal degrees and generalized cascades of orthogonal roots
may read Section 3, 4 independently from the rest of the text.

Moreover, most (or even all) of the results in Section 5, 6 are only interesting
in the relative setting modulo P whenever P 6= B. The reader can check for
each of those results that the statements turn out to be trivial if P = B.

Section 6 deals with the theory of liftings. The step of passing from a degree
d ∈ ΠP to its lifting e ∈ ΠB is superfluous if P = B, in the sense that the
lifting of e ∈ ΠB is e itself. Therefore, the construction of fB,e for e ∈ ΠB

simplifies reasonably. Only the theory of generalized cascades of orthogonal
roots is necessary to understand it.

All in all, a reader only interested in Theorem 1.7 for degrees which satisfy As-
sumption 7.13(2), i.e. in the theorem that M0,3(G/B, e) is quasi-homogeneous
under the action of G for all minimal degrees e ∈ ΠB, can skip Section 5, 6
and go directly from Section 4 to Section 7. For the case of a generalized com-
plete flag variety G/B and minimal degrees e ∈ ΠB, the proof of Theorem 1.7
simplifies a lot and relies only on our considerations in Section 4.
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2 Notation and conventions

In this section, we set up basic notation and summarize well-known terminology
concerning the theory of algebraic groups. The notation and the conventions
are very similar to those in [1, Section 1]. We recall everything which is neces-
sary to understand this paper. For more details, the reader may go to [1].
Let R be the root system associated to G and T . Let R+ be the positive roots
of R associated to B. Let ∆ be the set of simple roots associated to R+. Let

W = NG(T )/T and WP = NP (T )/T

be the Weyl group of G and P respectively. Let ∆P = {β ∈ ∆ | sβ ∈ WP }. We
set RP = R ∩ Z∆P and R+

P = RP ∩R+. The positive roots R+ clearly induce
a partial order “≤” on R. In turn, this partial order induces via restriction a
partial order on RP which is still denotes by “≤” and coincides with the partial
order induced by R+

P .

Notation 2.1. We denote by R− the set of negative roots of R. In other
words, we have R− = {−α | α ∈ R+} = {α ∈ R | α < 0}. Similarly, we define
R−

P by the requirement that R−
P = {−γ | γ ∈ R+

P } = {γ ∈ RP | γ < 0}.

Convention 2.2. From now on, if we speak about a parabolic subgroup, we
always mean what is usually called a standard parabolic subgroup (relative to
the fixed B), i.e. a parabolic subgroup of G containing B. In other words, by
convention, all parabolic subgroups are standard. Following this convention,
parabolic subgroups of G correspond one to one to subsets of ∆ (cf. [7, 30.1]).
In particular, the fixed parabolic subgroup P corresponds to ∆P as defined
above. For an arbitrary (standard) parabolic subgroup Q, we denote by ∆Q

the subset of ∆ associated to Q via this correspondence. Vice versa, for a
given subset S of ∆, we often uniquely define a parabolic subgroup Q by the
requirement ∆Q = S.

Throughout the discussion, we fix a W -invariant scalar product (−,−) on R∆.
This scalar product is unique up to non-zero scalar. Each root α ∈ R has a
coroot α∨ which is defined by α∨ = 2α

(α,α) . All coroots together form the dual

root system R∨ = {α∨ | α ∈ R}. The set of simple coroots of R∨ is given by
∆∨ = {β∨ | β ∈ ∆}. For each β ∈ ∆ we denote by ωβ ∈ R∆ the corresponding
fundamental weight. It is defined by the equation (ωβ , β

′) = δβ,β′ for all β′ ∈ ∆.
On the Weyl group, we have a natural length function. For w ∈ W , the length
of w, denoted by ℓ(w), is defined to be the number of simple reflections in a
reduced expression of W . It is well-known that this number does not depend
on the choice of the reduced expression. Each coset wWP ∈ W/WP has a
unique minimal and maximal representative, i.e. contains a unique element
of minimal and maximal length. The length function carries over from W to
W/WP . The length of a coset wWP ∈ W/WP , denoted by ℓ(wWP ), is defined
to be the length of the minimal representative in wWP .
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Notation 2.3. For each element w ∈ W , we denote by I(w) = {α ∈ R+ |
w(α) < 0} the inversion set of w. With this notation, we have the identities
ℓ(w) = card(I(w)) and ℓ(wWP ) = card(I(w) \ R+

P ) for all w ∈ W . A proof of
these equalities can be found in [8, 5.6, Proposition (b)].

Notation 2.4. We denote by wo the longest element of W , i.e. the unique
element of W with maximal length. Similarly, we denote by wP the longest
element of WP , i.e. the unique element of WP with maximal length. Note that
wo and wP are both involutions.

On the Weyl group, we have a natural partial order “�” – the so-called Bruhat
order. This partial order can be defined in terms of the Bruhat graph as in
[8, 5.9]. It has an equivalent characterization in terms of subexpressions as
described in [8, 5.10]. The geometric meaning of the Bruhat order is given by
inclusions of Schubert varieties in G/B. We explain this geometric meaning in
more detail once we have recalled the notion of Schubert varieties in general
(cf. Remark 2.6).

Convention 2.5. All homology and cohomology groups in this paper are taken
with integral coefficients. By convention, we write H∗(X) = H∗(X,Z) and
H∗(X) = H∗(X,Z). For a closed irreducible subvariety Z ⊆ X , we denote
by [Z] ∈ H2codim(Z)(X) the cohomology class of Z. By abuse of notation, we
also denote with the same symbol [Z] ∈ H2dim(Z)(X) the homology class of Z.
Both definitions are Poincaré dual to each other.

Let B− = woBwo be the Borel subgroup of G opposite to B. Let w ∈ W . We
denote by Xw = BwP/P the Schubert variety associated to w. We denote by
Yw = B−wP/P the opposite Schubert variety associated to w. Note that Xw

and Yw depend only on wWP . We have the following equality for the dimension
and codimension of Schubert and opposite Schubert varieties:

dim(Xw) = codim(Yw) = ℓ(wWP ) . (1)

Remark 2.6. Let w ∈ W . If we denote by (G/B)w the Schubert variety in
G/B associated to w, the geometric meaning of the Bruhat order is given by
the equivalence:

u � v ⇐⇒ (G/B)u ⊆ (G/B)v where u, v ∈ W .

Let w ∈ W . Using Xw and Yw we can define Schubert classes

σ(w) = [Xw] ∈ H2ℓ(wWP )(X) and σw = [Yw] ∈ H2ℓ(wWP )(X) .

From the Bruhat decomposition of X (cf. [7, 28.3, Theorem]) it follows easily
that the cohomology of X decomposes as direct sums

H∗(X) =
⊕

w

Zσ(w) =
⊕

w

Zσw (2)
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where each of the direct sums in the equation ranges over all minimal repre-
sentatives w of the cosets in W/WP . Poincaré duality transforms one basis of
Schubert classes into the other basis of Schubert classes and vice versa.
Using Equation (1) and (2), we see that we have the following decompositions

H2(X) =
⊕

β∈∆\∆P

Zσ(sβ) and H2(X) =
⊕

β∈∆\∆P

Zσsβ . (3)

In this work, we will be very much concerned with elements of H2(X) and
H2(X). Therefore, it is useful to use identifications as in [4, Section 2]. For
a simple root β ∈ ∆ \∆P , we will always identify the Schubert classes σ(sβ)
with β∨ + Z∆∨

P ∈ Z∆∨/Z∆∨
P and σsβ with the fundamental weight ωβ. Using

these identification, we will simply write Equation (3) as

H2(X) = Z∆∨/Z∆∨
P and H2(X) = Z{ωβ | β ∈ ∆ \∆P } . (4)

Under these identifications, the Poincaré pairing H2(X) ⊗ H2(X) → Z sim-
ply becomes the restriction of the W -invariant scalar product (−,−) on R∆.
Note that H2(X) and H2(X) are naturally endowed with a partial order “≤”
which is given by comparing all the coefficients of the Z-bases pointed out in
Equation (3).

Convention 2.7. If we speak about a degree, without further specification,
then we always mean an effective class in H2(X). If we speak about a degree
in H2(G/B), we mean an effective class in H2(G/B). In the later case, where
the lattice might be different from H2(X), we explicitly mention it in our
terminology. We reserve the term degree without specification for degrees in
H2(X).

Notation 2.8. Let α ∈ R+. One degree associated to α will be ubiquitous in
our discussion. By definition, the degree d(α) is given by the equation

d(α) = α∨ + Z∆∨
P ∈ H2(X) .

Note that the degree d(α) depends not only on α but also on P although P
is not explicitly mentioned in the notation d(α). No confusion will arise from
this sloppiness since we refer always to one and the same parabolic subgroup P
which is fixed throughout the discussion. The geometric meaning of the degree
d(α) will become clear later in the context of irreducible T -invariant curves (cf.
Notation 7.2).

Notation 2.9. We denote by c1(X) the first Chern class of the tangent bundle
on X . The Chern class c1(X) is an element of H2(X) which will be often in use
in this paper. For explicit computations, it is useful to have a description of
c1(X) in terms of the root system. According to [6, Lemma 3.5] and the iden-
tifications made in Equation (4), we have c1(X) =

∑
γ∈R+\R+

P
γ. In particular,

we have c1(G/B) =
∑

γ∈R+ γ.
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3 Preliminaries

In this section, we set up the preliminaries which are used throughout the rest
of the text. In particular, this section completes some aspects of the theory
developed in [1]. These aspects concern the properties of degrees with pairwise
totally disjoint extended support (cf. Subsection 3.2). This situation was of
no relevance for the analysis in [1] but becomes increasingly important for the
purpose of this paper.

It should be clear that many notions and ideas we use originally go back to [4].
We rely in various ways on the theory of curve neighborhoods developed in [4].
We review everything we need from this theory in Subsection 3.1.

3.1 Curve neighborhoods

In this subsection, we review everything we need from the theory of curve
neighborhood due to [4]. For examples, proofs and more informations, we
encourage the reader to look at [4].

Definition 3.1 ([4, Section 4.2]). Let d be a degree. The maximal elements
of the set {α ∈ R+ \R+

P | d(α) ≤ d} are called maximal roots of d. A sequence
of roots (α1, . . . , αr) is called a greedy decomposition of d if α1 is a maximal
root of d and (α2, . . . , αr) is a greedy decomposition of d− d(α1). The empty
sequence is the unique greedy decomposition of 0.

Remark 3.2. Let d be a degree. According to [4, Section 4], the greedy
decomposition of d is unique up to reordering. We will often use this result
without explicitly referring to [4]. This concerns in particular Section 4.

Definition 3.3 ([4, Section 4.2]). A root α ∈ R+ \ R+
P is called P -cosmall if

α is a maximal root of d(α).

Theorem 3.4. Let α be a P -cosmall root. Then we have (α, γ) = 0 for all
γ ∈ R+

P \ I(sα).

Proof. We first prove a seemingly weaker statement.

First claim: We have sα(R
+
P \ I(sα)) = R+

P \ I(sα). Indeed, by [4, Theo-
rem 6.1(c)], we know that sα maps R+

P to the complement of R+ \ R+
P in R,

i.e. to R− ∪ RP . On the other hand R+ \ I(sα) is mapped to R+ under sα.
Altogether, it follows that sα(R

+
P \ I(sα)) ⊆ (R− ∪RP ) ∩R+ = R+

P . If a root
γ satisfies sα(γ) ∈ I(sα), then we necessarily have γ ∈ R− (by applying sα
to sα(γ)). Thus, we even have sα(R

+
P \ I(sα)) ⊆ R+

P \ I(sα). This suffices to
prove the first claim. △

Second claim: We have
∑

γ∈R+

P \I(sα)(γ, α
∨) = 0. Indeed, since (−,−) is W -

invariant, we know that (γ, α∨) = −(sα(γ), α
∨). The first claim therefore
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yields that the sum the second claim speaks about is equal to its negative.
Hence, we find the desired vanishing.3 △

Since α ∈ R+\R+
P by definition, all γ ∈ R+

P \I(sα) satisfy (γ, α∨) ≤ 0 (otherwise
we have sα(γ) < 0). The second claim shows that none of these inequalities
can be strict. In other words, the theorem follows.

Definition 3.5 ([4, Section 3]). Let u, v ∈ W and β ∈ ∆. Then we define the
Hecke product of u and sβ by

u · sβ =

{
usβ if usβ ≻ u

u if usβ ≺ u .

Let v = sβ1
· · · sβl

be any reduced expression for v. Then we define the Hecke
product of u and v by

u · v = u · sβ1
· . . . · sβl

.

That the expression u·v is well-defined (independent of the choice of the reduced
expression for v) is proved in detail in [4, Section 3].

The reader finds a list of the most important properties of the Hecke product in
[4, Proposition 3.1]. Among other properties, this list contains the associativity
of the Hecke product ([1, Proposition 3.1(a)]). Mostly, we need the Hecke
product to define for any degree d a Weyl group element zPd which captures
the geometric properties of d.

Definition 3.6 ([4, Section 4.2]). Let d be a degree. Let (α1, . . . , αr) be a
greedy decomposition of d. Then we define an element zPd ∈ W by the following
equation

zPd wP = sα1
· . . . · sαr · wP .

It is easy to see that zPd is the minimal representative in zPd WP (cf. [1, Propo-
sition 2.4(8)]). Well-definedness questions of the element zPd (independence
of the choice of the greedy decomposition of d) are discussed in detail in [4,
Section 4, in particular Definition 4.6].

Remark 3.7. Most or all intuitions concerning the element zPd for a degree d
come from its geometric meaning which is illuminated in [4, Theorem 5.1]. This
theorem says among other things that the degree d curve neighborhood of the
zero dimensional Schubert variety X1 is itself a Schubert variety parametrized
by the element zPd . We will use [4, Theorem 5.1] in this weak form precisely
once in this paper, namely in the proof of Theorem 8.2.

3It is actually easy to work out a different proof of the second claim without using the
first claim. One can simply apply Lemma 6.25 to the degree d = d(α).
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3.2 Supports

This subsection is about various kinds of notions of supports. Most notably,
we recapitulate the notion of the extended support of a degree which was first
introduced in [1, Subsection 3.1]. It turns out that the extended support is
the right way to extend the naive support with the proper amount of simple
roots in ∆P to get a useful notion. In this way, we can formulate a disjointness
assumption (namely that the extended supports of two degrees are totally dis-
joint4) which enables us to prove certain addition theorems in Subsection 3.6
(see for example Theorem 3.42).

Notation 3.8. Let α ∈ R+. Then we denote by ∆(α) the support of α, i.e.
the set of simple roots β ∈ ∆ such that β ≤ α.

Notation 3.9. Let α ∈ R+. Then we denote by ∆◦
α the set of all simple roots

which are orthogonal to α; in formulas ∆◦
α = {β ∈ ∆ | (α, β) = 0}.

Definition 3.10 ([1, Subsection 3.1]). Let d be a degree. We define the naive
support of d to be the set ∆(d) of all simple roots β ∈ ∆ \ ∆P such that

(ωβ , d) > 0. We define the extended support of d to be the set ∆̃ defined as

the union ∆̃(d) =
⋃r

i=1 ∆(αi) where (α1, . . . , αr) is a greedy decomposition of
d. The extended support is clearly well-defined since the greedy decomposition
is unique up to reordering.

Remark 3.11. Let d be a degree. We have the following trivial relations
between the naive and the extended support:

∆(d) = ∆̃(d) \∆P ⊆ ∆̃(d) ⊆ ∆(d) ∪∆P = ∆̃(d) ∪∆P .

In particular, for a degree e ∈ H2(G/B), we have ∆̃(e) = ∆(e).

Definition 3.12 ([1, Definition 3.15]). We say that a degree d is a connected

degree if ∆̃(d) is a connected subset of the Dynkin diagram. We say that a

degree d is a disconnected degree if ∆̃(d) is a disconnected subset of the Dynkin
diagram.

Notation 3.13. Let d 6= 0 be a connected degree. Then the first entry of a
greedy decomposition of d is uniquely determined by d – does not depend on
the choice of the greedy decomposition of d (cf. [1, Proposition 3.16]). We
denote by α(d) this unique first entry of a greedy decomposition of d. With

this notation, we have ∆̃(d) = ∆(α(d)) by [1, loc. cit.].

Convention 3.14. As we consider the empty set as a connected subset of
the Dynkin diagram, the degree d = 0 is considered as a connected degree
with empty greedy decomposition. In particular, there does not exist a unique
first entry α(d) of the degree d = 0. We mentioned this exception once in

4We will recall the meaning of “totally disjoint” in Definition 3.20
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Notation 3.13. To avoid trivial considerations, we will from now on tacitly
assume that a connected degree d is nonzero whenever we speak about α(d).
The reader can convince himself that the case d = 0 can be treated in a trivial
way in all proofs we do: All statements about the connected degree d = 0 are
obvious right in the beginning, although we will not explicitly say this each
time.

Definition 3.15. Let w ∈ W . We define the support of w to be the set ∆(w)
of all simple roots β ∈ ∆ such that sβ � w.

The reader finds a list of the most important properties of the support of a
Weyl group element in [1, Proposition 3.17]. For later use, we add one further
property which is subject to Lemma 3.16.

Lemma 3.16. Let u, v ∈ W such that ∆(u) and ∆(v) are disjoint. Then we
have u · v = uv.

Proof. Let Q be the parabolic subgroup of G such that ∆Q = ∆(u). Let Q′ be
the parabolic subgroup of G such that ∆Q′ = ∆(v). By definition, we clearly
have u ∈ WQ and v ∈ WQ′ . We also have v−1 ∈ WQ′ since ∆(v−1) = ∆(v).
By [8, 5.5, Theorem (b)], it follows that I(u) ⊆ R+

Q and I(v−1) ⊆ R+
Q′ . The

assumption ∆(u) ∩ ∆(v) = ∅ implies that R+
Q ∩ R+

Q′ = ∅ and consequently

that I(u) ∩ I(v−1) = ∅. The statement now follows from [4, Proposition 3.2:
(c) ⇔ (e)].

3.3 Local notions

Local notions were studied intensively in [1, Section 6]. In particular, it was
shown in [1, Theorem 6.10] that minimal degrees in quantum products behave
well under “localization”. In this work, we will only speak about locally high
roots and about the root subsystem R(ϕ) of R associated to a positive root ϕ.
We introduce these notions in this subsection.

Notation 3.17. Let ϕ be a positive root. We denote by R(ϕ) the root subsys-
tem of R generated by ∆(ϕ). Since ∆(ϕ) is a connected subset of the Dynkin
diagram, the root system R(ϕ) is always irreducible.

Definition 3.18 ([11, Section 1]). Let ϕ ∈ R+. We say ϕ is locally high if ϕ
is the highest root of R(ϕ).

Definition 3.19 ([3, VI, 1, 3]). We say that two roots α and α′ are strongly
orthogonal if and only if α± α′ /∈ R ∪ {0}.

Definition 3.20 ([11, Section 1]). Two subsets of roots S and S′ are called
totally disjoint if every element of S is strongly orthogonal to every element of
S′.

Fact 3.21. Let S ⊆ ∆. Let ϕ1, . . . , ϕk be locally high roots such
that ∆(ϕ1), . . . ,∆(ϕk) are the distinct connected components of S. Then
R(ϕ1), . . . , R(ϕk) are pairwise totally disjoint.
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Proof. It is very easy to supply a proof of Fact 3.21. We leave the details to
the reader.

Fact 3.22. Every locally high root is B-cosmall.

Proof. Let ϕ be a locally high root. Let α ∈ R+ be a root such that ϕ ≤ α and
α∨ ≤ ϕ∨. In order to prove that ϕ is B-cosmall, we have to show that α = ϕ.
The inequality α∨ ≤ ϕ∨ implies that ∆(α) ⊆ ∆(ϕ) and thus α ∈ R(ϕ). By
definition, the root ϕ is the highest root of R(ϕ). Consequently, we necessarily
have α ≤ ϕ. In total, this implies that α = ϕ – as required.

3.4 Connected components of a degree

As we already introduced a notion of connected (and disconnected) degrees,
it is plausible also to introduce a notion of connected components of a degree.
We do so in this subsection. The notion of connected components of a degree
is useful because many characteristics of a degree, such as its set of maximal
roots (cf. Theorem 3.36) or the number of its greedy decompositions, are
already determined by its connected components.

Definition 3.23. Let d be a degree. Let ϕ1, . . . , ϕk be locally high roots such
that

∆(ϕ1), . . . ,∆(ϕk)

are the distinct connected components of ∆̃(d). Let (α1, . . . , αr) be a greedy
decomposition of d. Then we define the connected components of d to be the
degrees

di =
∑

1≤j≤r : ∆(αj)⊆∆(ϕi)

d(αj) where 1 ≤ i ≤ k .

Since the greedy decomposition of d is unique up to reordering, the connected
components d1, . . . , dk of d are clearly well-defined – do not depend on the
choice of the greedy decomposition but only on d.

Lemma 3.24. Let d be a degree. Let d1, . . . , dk be the connected components of
d. Then

∆̃(d1), . . . , ∆̃(dk)

are the distinct connected components of ∆̃(d), in particular each di is a con-

nected degree. Moreover, we have d =
∑k

i=1 di.

Proof. Let ϕ1, . . . , ϕk be locally high roots such that ∆(ϕ), . . . ,∆(ϕk) are the

distinct connected components of ∆̃(d). Let (α1, . . . , αr) be a greedy decompo-
sition of d. It is clear that for every 1 ≤ j ≤ r there exists a unique 1 ≤ i ≤ k
such that ∆(αj) ⊆ ∆(ϕi). Hence, we find by definition that d =

∑k
i=1 di. By

[1, Proposition 3.10(7)] and by definition of ∆̃(di), we have

∆̃(di) =
⋃

1≤j≤r : ∆(αj)⊆∆(ϕi)

∆(αj) ⊆ ∆(ϕi) for all 1 ≤ i ≤ k (5)
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and consequently

∆̃(d) =

k∐

i=1

∆̃(di) . (6)

If one of the inclusions in Equation (5) is strict, it follows from Equation (6)
that

∆̃(d) (
k∐

i=1

∆(ϕi) = ∆̃(d) .

Therefore, we conclude that ∆̃(di) = ∆(ϕi) for all 1 ≤ i ≤ k, in other words
that

∆̃(d1), . . . , ∆̃(dk)

are the distinct connected components of ∆̃(d). Since each ∆̃(di) is in particular
connected, it follows that each di is a connected degree.

3.5 Minimal degrees in quantum products

In this subsection we introduce the class of minimal degrees. We organize these
degrees in a set ΠP where the P indicates the parabolic subgroup relative to
which they are computed. Minimal degrees are central because they feature
many important properties (most prominently orthogonality relations, cf. [1,
Section 8]) which eventually lead to the quasi-homogeneity result which is sub-
ject to this paper. We will elaborate on the consequences of the properties of a
minimal degree e ∈ ΠB for the greedy decomposition of e and the element zBe
in Section 4.
Minimal degrees naturally arise in the context of quantum cohomology as min-
imal degrees in quantum products (cf. [1]). In our exposition, we choose a
completely combinatorial definition of minimal degrees which makes only use
of the theory of curve neighborhoods surveyed in Subsection 3.1. We do so to
keep the prerequisites as low as possible. Moreover, for all of our proofs the
combinatorial approach is more suitable. The relation to quantum cohomology
is mentioned only in a few remarks intended to the reader familiar with this
theory and not needed to understand the purpose of this paper.

Definition 3.25. Let d be a degree. We say that d is a minimal degree if d is
a minimal element of the set

{d′ a degree such that zPd � zPd′} .

Notation 3.26. We denote by ΠP the set of all minimal degrees. In particular,
the set of all minimal degrees in H2(G/B) is denoted by ΠB .

Remark 3.27 (For the reader familiar with quantum cohomology). Let
(QH∗(X), ⋆) be the (small) quantum cohomology ring attached to X as de-
fined in [5, Section 10] . In terms of quantum cohomology, the set ΠP can be
described as follows:

ΠP = {d is a minimal degree in σu ⋆ σv for some u, v ∈ W} . (7)
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The definition of a minimal degree in the quantum product of two Schubert
classes is given in [1, Definition 5.14]. The inclusion “⊆” in Equation (7) follows
since a degree d ∈ ΠP is a minimal degree in σzP

d
⋆pt (cf. [1, Definition 4.1, The-

orem 5.15]). The inclusion “⊇” in Equation (7) follows from [1, Definition 4.1,
Theorem 5.10, Theorem 5.15].

Notation 3.28. By [1, Definition 4.1, Theorem 4.7], there exists a unique
minimal element of the set

{d a degree such that woWP = zPd WP } .

This unique minimal element is denoted by dX . By definition, we clearly have
dX ∈ ΠP . In particular, we have dG/B ∈ ΠB.

Remark 3.29. The minimal degree dX is the main object of study of [1]. In
particular, it can be explicitly computed (cf. [1, Corollary 7.12]).

Example 3.30. We summarize examples of minimal degrees and ways to pro-
duce new minimal degrees out of existing ones.

1. Let α be a P -cosmall root. Then we have d(α) ∈ ΠP ([1, Proposi-
tion 4.4(6)]).

2. Let β be a simple root. Then we have d(β) ∈ ΠP ([1, Proposition 4.4(8)]).

3. Suppose that R is simply laced. Then we have d(α) ∈ ΠP for all α ∈ R+

([1, Theorem 4.15])

4. Let d ∈ ΠP . Let (α1, . . . , αr) be a subsequence of a greedy decompo-
sition of d. Then we have

∑r
i=1 d(αi) ∈ ΠP . This follows by repeated

application of [1, Proposition 4.4(9)].

5. Let d1, . . . , dk ∈ ΠP be minimal degrees such that ∆̃(d1), . . . , ∆̃(dk) are

pairwise totally disjoint. Then we have
∑k

i=1 di ∈ ΠP . We will prove this
statement later on (cf. Theorem 3.42).

6. Let (α1, . . . , αr) be a subsequence of a greedy decomposition of dG/B.
Then we have

∑r
i=1 d(αi) ∈ ΠP . This follows from [1, Theorem 7.14,

Remark 8.4] and Remark 4.2.

3.6 Addition theorems

In this subsection we present various kinds of addition theorems. By an addi-
tion theorem, we mean a theorem which expresses properties of the sum d1+d2
of two degrees (or more generally of k degrees) in terms of properties of the
individual degrees d1 and d2. In most cases, we do so by assuming from the
beginning that ∆̃(d1) and ∆̃(d2) are totally disjoint. In this way, we are for
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example able to describe all greedy decomposition of d1+d2 in terms of greedy
decompositions of d1 and d2 whenever the extended supports are totally dis-
joint (cf. Theorem 3.34, 3.35). In particular, this gives us a way to reduce
many problems, e.g. testing the minimality of a degree (cf. Theorem 3.42 and
Corollary 3.43), from an arbitrary degree d to a connected degree by passing
to the connected components of d.

Theorem 3.31. Let d and d′ be two degrees such that d ≤ d′. Then we have
∆̃(d) ⊆ ∆̃(d′) (and clearly also ∆(d) ⊆ ∆(d′)).

Proof. We first reduce the theorem to the case of a connected degree d. Assume
that the assertion is true for all connected degrees d. Let d1, . . . , dk be the
connected components of d. By Lemma 3.24 we have di ≤ d′ for all 1 ≤ i ≤ k.
The assumption implies ∆̃(di) ⊆ ∆̃(d′). Again, by Lemma 3.24, we then find

that ∆̃(d) ⊆ ∆̃(d′) (cf. Equation (6)).
Without loss of generality, we may assume that d is a connected degree. Let
α = α(d). Since d(α) ≤ d ≤ d′, we can find a maximal root α′ of d′ such that
α ≤ α′. By definition, α′ occurs in a greedy decomposition of d′. Thus, we have
∆(α′) ⊆ ∆̃(d′). By [1, Proposition 3.16], we have ∆̃(d) = ∆(α). Therefore the
desired inclusion follows from the trivial inclusion ∆(α) ⊆ ∆(α′).

Theorem 3.32 (Addition theorem for extended supports). Let d and d′ be two

degrees. Then we have ∆̃(d+ d′) = ∆̃(d) ∪ ∆̃(d′).

Remark 3.33. The corresponding addition theorem for naive supports is ab-
solutely trivial and also follows immediately from Theorem 3.32 by subtracting
∆P . Therefore, we can think of Theorem 3.32 as a more refined statement.

Proof of Theorem 3.32. Let d and d′ be as in the statement. Let ∆̃ = ∆̃(d) ∪

∆̃(d′) for short. By Theorem 3.31 we have

∆̃ ⊆ ∆̃(d+ d′) ⊆ ∆̃ ∪∆P .

Let S = ∆̃(d + d′) \ ∆̃. By the previous inclusions, we clearly have S ⊆ ∆P

and ∆̃(d+ d′) = S ∐ ∆̃.

Claim: S and ∆̃ are totally disjoint. Let β ∈ S and β′ ∈ ∆̃. We have to show
that β and β′ are strongly orthogonal. Since clearly β − β′ /∈ R, it suffices
to show that (β, β′) = 0 ([1, Lemma 7.3]). Suppose for a contradiction that
(β, β′) 6= 0. Since β 6= β′, we clearly have (β, β′) < 0. (All non-diagonal entries
of a Cartan matrix are non-positive.)

By replacing d with d′ if necessary, we may assume that β′ ∈ ∆̃(d). This means
that there exists a root α which occurs in a greedy decomposition of d such that
β′ ∈ ∆(α). Since α occurs in a greedy decomposition of d, it is in particular
P -cosmall. Since β ∈ ∆P , it follows from [1, Corollary 3.19] that (α, β) ≥ 0.
Let α =

∑
µ∈∆(α) nµµ be the expression of α as a linear combination of simple

roots. Since α is a positive root (we even have α ∈ R+ \ R+
P ), we know that
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nµ > 0 for all µ ∈ ∆(α). By definition of α, we have β′ ∈ ∆(α). Hence, we can
write

(α, β) =
∑

µ∈∆(α)\{β′}

nµ(µ, β) + nβ′(β, β′) .

We already figured out that (β, β′) < 0 and (α, β) ≥ 0. In view of these
inequalities and the previous displayed equation, we find that

∑

µ∈∆(α)\{β′}

nµ(µ, β) ≥ −nβ′(β, β′) > 0 .

Therefore, there must exist a µ ∈ ∆(α) \ {β′} such that (µ, β) > 0. Since all
non-diagonal entries of a Cartan matrix are non-positive, it follows that µ = β
and thus β ∈ ∆(α) ⊆ ∆̃(d) ⊆ ∆̃. This is a contradiction since by definition

β ∈ S and β /∈ ∆̃. This proves the claim. △

Let α be a root which occurs in a greedy decomposition of d+d′. By definition,
we have ∆(α) ⊆ ∆̃(d+ d′) and thus

∆(α) = (∆(α) ∩ S)∐ (∆(α) ∩ ∆̃) .

Since ∆(α) is necessarily connected, the previous claim shows that either

∆(α) ⊆ S or ∆(α) ⊆ ∆̃. If ∆(α) ⊆ S, then we have α ∈ R+
P since S ⊆ ∆P –

a contradiction since α ∈ R+ \ R+
P by definition. Therefore, we conclude that

∆(α) ⊆ ∆̃. Since α was an arbitrary entry in a greedy decomposition of d+ d′,

the definition of the extended support shows that ∆̃(d+ d′) ⊆ ∆̃. This means

that S = ∅ and ∆̃(d+ d′) = ∆̃ – as claimed.

Theorem 3.34 (Addition theorem for greedy decompositions). Let d1, . . . , dk
be degrees such that ∆̃(d1), . . . , ∆̃(dk) are pairwise totally disjoint. Let

(αi
1, . . . , α

i
ri) be a greedy decomposition of di for all 1 ≤ i ≤ k. Let r =

∑k
i=1 ri

for short. Let (α1, . . . , αr) be a sequence of roots such that (αi
1, . . . , α

i
ri) is a

subsequence of (α1, . . . , αr) for all 1 ≤ i ≤ k. Then the sequence (α1, . . . , αr)

is a greedy decomposition of
∑k

i=1 di.

Proof. We first assume that k = 2 and prove the theorem for that case. We do
so by induction on r. The case where r1 = 0 or r2 = 0 is obvious. Assume that
r1 > 0 and r2 > 0. This means that r ≥ 2. Assume further that the statement
is known for sequences of length strictly less than r. By renaming the indices if
necessary (i ∈ {1, 2}), we may assume that α1 = α1

1. Let us write α = α1 = α1
1

and d = d1 + d2 for short.

Claim: α is a maximal root of d. Let α′ be a maximal root of d such that α ≤
α′. We can clearly choose such a root α′ since d(α) ≤ d1 ≤ d and α ∈ R+ \R+

P

by definition. By Theorem 3.32, we have

∆(α′) ⊆ ∆̃(d) = ∆̃(d1)∐ ∆̃(d2) .

Documenta Mathematica 23 (2018) 697–745



714 Christoph Bärligea

Since ∆̃(d1) and ∆̃(d2) are totally disjoint and since ∆(α′) is connected, it

follows that ether ∆(α′) ⊆ ∆̃(d1) or ∆(α′) ⊆ ∆̃(d2). Since α ≤ α′, we have

∆(α) ⊆ ∆(α′). Thus the second case (i.e. ∆(α′) ⊆ ∆̃(d2)) implies that ∆(α) ⊆

∆̃(d1) ∩ ∆̃(d2) which contradicts the assumption that ∆̃(d1) and ∆̃(d2) are

totally disjoint. Therefore, we conclude that ∆(α′) ⊆ ∆̃(d1). In view of this
inclusion, the inequality d(α′) ≤ d implies that d(α′) ≤ d1. By definition, α is
a maximal root of d1. This means that we must have α = α′ (since α ≤ α′ and
d(α′) ≤ d1). By the choice of α′, we have now proved that α is a maximal root
of d – as claimed. △

In view of the claim, (α1, . . . , αr) is a greedy decomposition of d if and only if
(α2, . . . , αr) is a greedy decomposition of d−d(α) = (d1−d(α))+d2. We now ap-
ply the induction hypothesis to the sequence (α2, . . . , αr) to see that the latter
statement is true. (This is possible since (α1

2, . . . , α
1
r1) is a greedy decomposition

of d1 − d(α), (α2
1, . . . , α

2
r2) is a greedy decomposition of d2, (α

1
2, . . . , α

1
r1) and

(α2
1, . . . , α

2
r2) are subsequences of (α2, . . . , αr), and since ∆̃(d1−d(α)) ⊆ ∆̃(d1)

and ∆̃(d2) are totally disjoint.)
We now prove the statement for arbitrary k by induction. The case k = 1 is
obvious. The case k = 2 was treated above. Assume that k > 2 and that the
statement is known for all positive integers strictly less than k.
By definition and assumption, it is clear that for all 1 ≤ j ≤ r there exists a
unique 1 ≤ i ≤ k such that ∆(αj) ⊆ ∆̃(di). Therefore, we can form a maximal
subsequence (µ1, . . . , µr′) of (α1, . . . , αr) of length r′ = r1 + r2 such that

∆(µj) ⊆ ∆̃(d1 + d2) = ∆̃(d1) ∐ ∆̃(d2) for all 1 ≤ j ≤ r′ . (8)

Here, the last equality follows from Theorem 3.32 and the totally disjoint-
ness assumption. Moreover, by definition, it is clear that (α1

1, . . . , α
1
r1) and

(α2
1, . . . , α

2
r2) are subsequences of (µ1, . . . , µr′). The induction hypothesis ap-

plied to the case k = 2 implies that (µ1, . . . , µr′) is a greedy decomposition
of d1 + d2. Finally, the induction hypothesis applied to the k − 1 degrees
d1 + d2, d3, . . . , dk and the greedy decompositions (µ1, . . . , µr′) of d1 + d2 and
(αi

1, . . . , α
i
ri) of di for all 3 ≤ i ≤ k (clearly, (µ1, . . . , µr′) is a subsequence

of (α1, . . . , αr) and ∆̃(d1 + d2), ∆̃(d3), . . . , ∆̃(dk) are pairwise totally disjoint,
cf. Equation (8) and the initial totally disjointness assumption) implies that

(α1, . . . , αr) is a greedy decomposition of
∑k

i=1 di. This is all we wanted to
prove.

Theorem 3.35 (Converse of Theorem 3.34). Let d1, . . . , dk be degrees such that

∆̃(d1), . . . , ∆̃(dk)

are pairwise totally disjoint. Let (α1, . . . , αr) be a greedy decomposition of∑k
i=1 di. Then there exist unique greedy decompositions (αi

1, . . . , α
i
ri) of di for

all 1 ≤ i ≤ k such that r =
∑k

i=1 ri and such that (αi
1, . . . , α

i
ri) is a subsequence
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of (α1, . . . , αr) for all 1 ≤ i ≤ k. In other words, every greedy decomposition of∑k
i=1 di can be constructed in the way described in Theorem 3.34 and uniquely

determines the greedy decompositions of di for all 1 ≤ i ≤ k out of which it is
constructed.5

Proof. Let d =
∑k

i=1 di for short. By Theorem 3.32 and assumption, it is clear
that we have

∆̃(d) =
k∐

i=1

∆̃(di) .

Again by the totally disjointness assumption, it is therefore clear that for all
1 ≤ j ≤ r there exists a unique 1 ≤ i ≤ k such that ∆(αj) ⊆ ∆̃(di). It follows
that

di =
∑

1≤j≤r : ∆(αj)⊆∆̃(di)

d(αj) .

For all 1 ≤ i ≤ k, we are now forced to define (αi
1, . . . , α

i
ri) as the maximal

subsequence of (α1, . . . , αr) such that ∆(αi
j) ⊆ ∆̃(di) for all 1 ≤ j ≤ ri. This

already proves the uniqueness part of the statement. By [1, Proposition 3.10(7)]
it also follows that (αi

1, . . . , α
i
ri) is indeed a greedy decomposition of di for all

1 ≤ i ≤ k. By definition, we also have r =
∑k

i=1 ri.

Theorem 3.36. Let d be a degree. Let d1, . . . , dk be the connected components
of d. Then there exist precisely k maximal roots of d, namely α(d1), . . . , α(dk).

Proof. It is clear that α(d1), . . . , α(dk) are pairwise distinct, since their supports
are even pairwise totally disjoint (cf. Lemma 3.24). Therefore, it suffices to
show the equality of sets

{α a maximal root of d} = {α(d1), . . . , α(dk)} .

We first prove the inclusion “⊇”. Let 1 ≤ i ≤ k. Each greedy decomposition
of di has as unique first entry α(di). Consequently, Theorem 3.34 applied
to d1, . . . , dk shows that there exists a greedy decomposition of d which has
as first entry α(di). (The assumption of Theorem 3.34 is satisfied in view of
Lemma 3.24.) This means that α(di) is a maximal root of d. Next, we prove
the inclusion “⊆”. Let α be a maximal root of d. This means that there exists a
greedy decomposition of d which has as first entry α. By Theorem 3.35 applied
to d1, . . . , dk there exists an 1 ≤ i ≤ k and a greedy decomposition of di such
that the first entry of this greedy decomposition is α. (Again, the assumption
of Theorem 3.35 is satisfied in view of Lemma 3.24.) In other words, we have
α = α(di) for some 1 ≤ i ≤ k.

Corollary 3.37. Let d be a degree. All maximal roots of d occur in every
greedy decomposition of d.

5The other way round, it should be clear that (α1, . . . , αr) is not uniquely determined by
(αi

1
, . . . , αi

ri
) for all 1 ≤ i ≤ k.
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Lemma 3.38. Let d be a degree. Let d1, . . . , dk be the connected components
of d. Then there exist roots αk+1, . . . , αr ∈ R+ \ R+

P (k ≤ r) such that
(α(d1), . . . , α(dk), αk+1, . . . , αr) is a greedy decomposition of d.

Proof of Corollary 3.37 and Lemma 3.38. In order to prove Corollary 3.37, it
clearly suffices to prove Lemma 3.38. This is because of Theorem 3.36 and the
uniqueness of the greedy decomposition up to reordering. But Lemma 3.38
follows directly from Theorem 3.34 applied to d1, . . . , dk. The assumption of
Theorem 3.34 is saitsfied in view of Lemma 3.24.

Definition 3.39 ([4, Section 4.2]). Let d be a degree. Let (α1, . . . , αr) be a
greedy decomposition d. Then we define

z̃Pd = sα1
· . . . · sαr .

The element z̃Pd is well-defined (does only depend on d and not on the choice of
the greedy decomposition of d) for the same reason as zPd is well-defined. This
was proved in [4, Section 4].

Remark 3.40. Let d be a degree. Let (α1, . . . , αr) be a greedy decomposition

of d. Let e =
∑k

i=1 α
∨
i ∈ H2(G/B)6. Then we have z̃Pd = zBe . In particular,

it follows from [4, Corollary 4.9] that z̃Pd is an involution. It can also be seen
more directly that z̃Pd is an involution by using [4, Proposition 3.1(b)] and [1,
Proposition 3.10(2)].

Theorem 3.41 (Addition theorem for z̃Pd ). Let d1, . . . , dk be degrees such that

∆̃(d1), . . . , ∆̃(dk) are pairwise totally disjoint. Let d =
∑k

i=1 di for short. Then
we have

z̃Pd = z̃Pd1
· . . . · z̃Pdk

= z̃Pd1
· · · z̃Pdk

. (9)

This means in particular that the Hecke and the ordinary product in Equa-
tion (9) is independent of the ordering of the factors.

Proof. Let (αi
1, . . . , α

i
ri) be a greedy decomposition of di for all 1 ≤ i ≤ k.

By Theorem 3.34, the sequence (α1
1, . . . , α

1
r1 , . . . , α

k
1 , . . . , α

k
rk
) is a greedy de-

composition of d. Hence, the first equality in Equation (9) follows directly
from the definition of z̃Pd . We prove the second equality of Equation (9) by
induction on k. The case k = 1 is immediate. Assume that k > 1 and that
the second equality of Equation (9) is known for all values strictly smaller
than k. By induction hypothesis applied to d2, . . . , dk, it suffices to show that
z̃Pd1

· z̃Pd′ = z̃Pd1
z̃Pd′ where d′ =

∑k
i=2 di. By Lemma 3.16, it therefore suffices to

show that ∆(z̃Pd1
)∩∆(zPd′) = ∅. But by [1, Proposition 3.17] and Theorem 3.32,

we have ∆(z̃Pd1
) = ∆̃(d1) and ∆(z̃Pd′) =

∐k
i=2 ∆̃(di). Hence, the results follows

by assumption.

6With the terminology of [1, Subsection 4.1], the degree e is the induction of d.
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Theorem 3.42 (Addition theorem for minimal degrees). Let d1, . . . , dk be de-

grees such that ∆̃(d1), . . . , ∆̃(dk) are pairwise totally disjoint. Let d =
∑k

i=1 di
for short. Then we have

d1, . . . , dk ∈ ΠP if and only if d ∈ ΠP .

Proof. The implication from right to left follows from Theorem 3.35 and [1,
Proposition 4.4(9)]. Assume that d1, . . . , dk ∈ ΠP . A simple induction on k
shows that we may assume that k = 2. Let d′ ∈ ΠP be a minimal degree such
that d′ ≤ d and such that zPd = zPd′ . We have

∆(d′) ⊆ ∆(d) = ∆(d1) ∐∆(d2)

by the totally disjointness assumption. Therefore, we can write d′ = d′1 +
d′2 where d′1 and d′2 are two degrees such that d′1 ≤ d1 and d′2 ≤ d2. By

Theorem 3.31 we then have ∆̃(d′1) ⊆ ∆̃(d1) and ∆̃(d′2) ⊆ ∆̃(d2). The totally

disjointness assumption implies that ∆̃(d′1) and ∆̃(d′2) are totally disjoint. If
we now apply Theorem 3.41 to the degrees d1, d2 and d′1, d

′
2 we find that

z̃Pd = z̃Pd1
z̃Pd2

and z̃Pd′ = z̃Pd′

1
z̃Pd′

2
(10)

By definition, it is clear that zPd WP = z̃Pd WP and zPd′WP = z̃Pd′WP . The fact
that zPd = zPd′ and Equation (10) therefore imply that

z̃Pd1
z̃Pd2

WP = z̃Pd′

1
z̃Pd′

2
WP .

The last equation means that there exists a w ∈ WP such that

z̃Pd1
z̃Pd2

w = z̃Pd′

1
z̃Pd′

2
.

In view of Remark 3.40, the last equation becomes after rearranging

z̃Pd2
wz̃Pd′

2
= z̃Pd1

z̃Pd′

1
.

By changing the order of the product in Equation (10) we also find the analo-
gous equation

z̃Pd1
wz̃Pd′

1
= z̃Pd2

z̃Pd′

2
.

Using the last two displayed equations and the computation rules for the sup-
port of a Weyl group element (cf. [1, Proposition 3.17]) and the Hecke product
(cf. [4, Proposition 3.1]), we see that

∆(z̃Pd1
z̃Pd′

1
) ⊆ ∆̃(d1) ∩ (∆̃(d2) ∪∆P ) ⊆ ∆P ,

∆(z̃Pd2
z̃Pd′

2
) ⊆ ∆̃(d2) ∩ (∆̃(d1) ∪∆P ) ⊆ ∆P .

But this means that z̃Pd1
z̃Pd′

1

, z̃Pd2
z̃Pd′

2

∈ WP . Remark 3.40 shows again that we

can rewrite this containment as z̃Pd1
WP = z̃Pd′

1

WP and z̃Pd2
WP = z̃Pd′

2

WP . As

d1, d2 ∈ ΠP , d
′
1 ≤ d1 and d′2 ≤ d2, these two equations and the very definition

of minimal degrees imply that d1 = d′1 and d2 = d′2. Eventually, this means
d = d′ ∈ ΠP – as claimed.
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Corollary 3.43. Let d be a degree. Let d1, . . . , dk be the connected compo-
nents of d. Then we have

d1, . . . , dk ∈ ΠP if and only if d ∈ ΠP .

Proof. This follows directly from Lemma 3.24 and Theorem 3.42.

4 Generalized cascades of orthogonal roots

In this section, we develop the theory of generalized cascades of orthogonal
roots. This theory is a direct generalization of Kostant’s cascade of orthogonal
roots [11, Section 1] in the sense that Kostant’s cascade is associated to the
specific minimal degree dG/B ∈ ΠB while the general construction works for an
arbitrary minimal degree e ∈ ΠB (for more details see Remark 4.2). Basically
all properties of Kostant’s cascade as they were investigated in [11, loc. cit.]
carry over in a reasonable way to generalized cascades as the theorems in this
section show. But the proofs are less evident. As a key feature of minimal
degrees, we need the so-called orthogonality relations in greedy decompositions
of minimal degrees which were first proved in [1, Theorem 8.1]. With the
help of this property of minimal degrees, it is easy to see that two distinct
elements of a generalized cascade of orthogonal roots are strongly orthogonal
(Theorem 4.5(3)). This kind of orthogonality is essential to make the diagonal
curve (cf. Definition 7.3) well-defined and eventually to prove our main result
on quasi-homogeneity.

Definition 4.1. Let e ∈ ΠB . Let ϕ ∈ R+. Then we define

BR,e = {α ∈ R+ | α occurs in a greedy decomposition of e} .

We call the set BR,e of positive roots a generalized cascade of orthogonal roots.
Furthermore, we define

CR,e(ϕ) = {α ∈ BR,e | α ≥ ϕ} .

We call the subset CR,e(ϕ) of BR,e a generalized chain cascade. We define the
length of a generalized chain cascade to be the cardinality of a generalized chain
cascade.

Remark 4.2. We will see in Theorem 4.5(3) that the name “generalized cascade
of orthogonal roots” is justified by showing that two distinct elements of any
generalized cascade of orthogonal roots are indeed orthogonal (even strongly
orthogonal). For now, we only want to mention that Definition 4.1 is a direct
generalization of Kostant’s cascade of orthogonal roots and chain cascades [11,
Section 1] from one specific minimal degree in ΠB , namely dG/B, to arbitrary
minimal degrees in ΠB . Indeed, by [1, Corollary 7.12, Footnote 8], we have

BR,dG/B
= ordinary cascade of orthogonal roots ,

CR,dG/B
(ϕ) = ordinary chain cascades where ϕ ∈ R+.

Documenta Mathematica 23 (2018) 697–745



Quasi-Homogeneity of the Moduli Space of Stable Maps 719

While this relation to the original concepts is important to understand their
generalizations intuitively, it is not formally needed elsewhere in the text.

Fact 4.3. Let e ∈ ΠB. Let e1, . . . , ek be the connected components of e. Then
we have

BR,e =

k∐

i=1

BR,ei .

Moreover, if e is a connected degree, then we have

BR,e = {α(e)} ∐ BR,e−α(e)∨ .

The two previous formulas uniquely determine BR,e and can serve as an in-
ductive definition of generalized cascades of orthogonal roots alternative to
Definition 4.1.

Remark 4.4. The reader may wish to compare the two formulas in Fact 4.3
which can serve as an alternative definition of generalized cascades of orthog-
onal roots with the definition of ordinary cascades of orthogonal roots which
we chose in [1, Definition 7.6] (see also [1, Remark 7.7]). The two definitions
are completely analogous. One may also expect analogous properties of ordi-
nary and generalized cascades of orthogonal roots to hold. Indeed, we will see
throughout this section that this is true (cf. Theorem 4.5, 4.7, 4.10).

Proof of Fact 4.3. By Corollary 3.43, we have e1, . . . , ek ∈ ΠB . Hence, the sets
BR,ei are well-defined for all 1 ≤ i ≤ k. It follows immediately from Lemma 3.24

that the union
⋃k

i=1 BR,ei is disjoint. The equality BR,e =
∐k

i=1 BR,ei is a trivial
consequence of Theorem 3.34 and Theorem 3.35. Suppose that e is a connected
degree. Let α = α(e) for short. The equation

BR,e = {α} ∪ BR,e−α∨

follows by [1, Proposition 3.10(7), 4.4(9)]. The disjointness of the previous
union follows by [1, Remark 8.4].

Theorem 4.5. Let e ∈ ΠB. Let ϕ ∈ R+.

1. The generalized chain cascade CR,e(ϕ) is totally ordered.

2. All elements of the generalized cascade of orthogonal roots BR,e are B-
cosmall.

3. Two distinct elements of the generalized cascade of orthogonal roots BR,e

are strongly orthogonal.

4. Let α, α′ ∈ BR,e such that CR,e(α) ∩ CR,e(α
′) = ∅. Then the sets R(α)

and R(α′) are totally disjoint.
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5. Let α, α′ ∈ BR,e. Assume that α and α′ do not belong to a common
generalized chain cascade CR,e(ϕ), i.e. assume that there exists no ϕ ∈
R+ such that α, α′ ∈ CR,e(ϕ). Then the sets R(α) and R(α′) are totally
disjoint.

Remark 4.6. The properties of generalized cascades of orthogonal roots which
are subject to Item (1), (3), (5) are direct generalizations of properties of the
ordinary cascade of orthogonal roots. Indeed, one respectively recovers the
statements [11, Remark 1.3, Lemma 1.6, Proposition 1.7] (see also [1, Propo-
sition 7.8] for a summary) by setting e = dG/B (cf. Remark 4.2). In view
of Fact 3.22, Item (2) can be understood as a weaker version of [11, Propo-
sition 1.4] which holds for all e ∈ ΠB. Note that there is no hope to expect
locally high roots in BR,e for all e 6= dG/B, since this already fails in the simplest
examples (e.g. if R is simply laced and not of type A).

Proof of Item (1). We prove this statement by induction on the length of gen-
eralized chain cascades. For any generalized chain cascade of length one, the
statement is trivially satisfied. Let n > 1 be an integer and suppose that any
generalized chain cascade of length less than n is totally ordered. Let CR,e(ϕ)
be an arbitrary generalized chain cascade of length n for some e ∈ ΠB and
some ϕ ∈ R+. Let

ê =
∑

α∈CR,e(ϕ)

α∨ .

By [1, Proposition 4.4(9)], we know that ê ∈ ΠB . Moreover, by [1, Proposi-
tion 3.10(7)], we know that

BR,ê = CR,e(ϕ) . (11)

Claim: The degree ê is connected. Indeed, let ê1, . . . , êk be the connected com-
ponents of ê. By Equation (11), we have ϕ ≤ α for all α ∈ BR,ê and thus
∆(ϕ) ⊆ ∆(α) for all α ∈ BR,ê. By Lemma 3.24, we have

êi =
∑

α∈BR,ê : ∆(α)⊆∆(êi)

α∨ .

It follows that ∆(ϕ) ⊆ ∆(êi) for all 1 ≤ i ≤ k. Again, by Lemma 3.24, we
must have k = 1 and that ê is connected. △

Since ê is connected, we can define α1 = α(ê) to be the unique first entry of
a greedy decomposition of ê. By [1, Proposition 3.16], we have α1 ≥ α for all
α ∈ BR,ê. By Equation (11), this means that α1 is the unique maximal element
of CR,e(ϕ)

Claim: We have CR,ê−α∨

1
(ϕ) = CR,e(ϕ) \ {α1}. First note that ê−α∨

1 ∈ ΠB by
[1, Proposition 4.4(9)]. Hence, it makes sense to speak about CR,ê−α∨

1
(ϕ) and
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BR,ê−α∨

1
. By Equation (11), it suffices to prove that CR,ê−α∨

1
(ϕ) = BR,ê \{α1}.

By [1, Proposition 3.10(7), Remark 8.4], it is clear that

BR,ê \ {α1} = BR,ê−α∨

1
. (12)

Thus, it suffices to show that α ≥ ϕ for all α ∈ BR,ê−α∨

1
. But this later

statements is clear in view of Equation (11), (12), since we have an inclusion
BR,ê−α∨

1
⊆ CR,e(ϕ). △

The previous claim shows that CR,ê−α∨

1
(ϕ) is a generalized chain cascade of

length n − 1. Thus the induction hypothesis implies that there exists a total
ordering

CR,ê−α∨

1
(ϕ) = {α2 ≥ · · · ≥ αn} .

Again the previous claim and the fact that α1 is the unique maximal element
of CR,e(ϕ) show that we get a total ordering

CR,e(ϕ) = {α1 ≥ α2 ≥ · · · ≥ αn} .

Proof of Item (2). Let α ∈ BR,e. By definition, α occurs in a greedy decom-
position of e. This means, there exists a degree e′ ∈ H2(G/B) such that
α∨ ≤ e′ ≤ e and such that α is a maximal root of e′. This implies in particular
that α is B-cosmall.

Proof of Item (3). The statement is a consequence of the assumption e ∈ ΠB

which leads to a phenomenon which we call “orthogonality relations in greedy
decompositions” (cf. [1, Section 8]. By [1, Corollary 8.3], we know that two
different entries of a greedy decomposition of e ∈ ΠB are strongly orthogonal, in
particular we know that two distinct elements of BR,e are strongly orthogonal.

Proof of Item (4). Let α, α′ ∈ BR,e such that CR,e(α) ∩ CR,e(α
′) = ∅. If e is

a connected degree, then we have α, α′ ≤ α(e) ([1, Proposition 3.16]) and thus
α(e) ∈ CR,e(α)∩CR,e(α

′) – contrary to our assumption. Therefore, we conclude
that e is a disconnected degree. Let e1, . . . , ek be the connected components
of e. By Lemma 3.24, we necessarily have k > 1. By definition, we have
∆(α),∆(α′) ⊆ ∆(e). By Lemma 3.24, we conclude that ∆(α) ⊆ ∆(ei) and
∆(α′) ⊆ ∆(ej) for some 1 ≤ i, j ≤ k. By Theorem 3.35, we know that α occurs
in a greedy decomposition of ei and that α′ occurs in a greedy decomposition
of ej. Hence, [1, Proposition 3.16] says that α ≤ α(ei) and that α′ ≤ α(ej).
Moreover, it follows from Lemma 3.38 that α(ei), α(ej) ∈ BR,e. If i = j, then
we must have α(ei) = α(ej) ∈ CR,e(α) ∩ CR,e(α

′) – contrary to the initial
assumption. Therefore, we conclude that i 6= j.
Let ϕi, ϕj ∈ R+ be locally high roots such that ∆(ei) = ∆(ϕi) and ∆(ej) =
∆(ϕj). By Fact 3.21 (applied to S = ∆(e)), we conclude that R(ϕi) and R(ϕj)
are totally disjoint. Since we clearly have R(α) ⊆ R(ϕi) and R(α′) ⊆ R(ϕj),
it follows that R(α) and R(α′) are also totally disjoint – as claimed.
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Proof of Item (5). Let α, α′ ∈ BR,e. Assume that there exists no ϕ ∈ R+

such that α, α′ ∈ CR,e(ϕ). If CR,e(α) ∩ CR,e(α
′) = ∅, then, by Item (4),

the set R(α) and R(α′) are totally disjoint. Therefore, we may assume that
CR,e(α) ∩ CR,e(α

′) 6= ∅. Let C = CR,e(α) ∩ CR,e(α
′) for short. By Item (1),

there exists a unique minimal element in C, which we denote by ϕ. It is easy
to see that we have C = CR,e(ϕ).

Claim: We have α < ϕ and α′ < ϕ. Indeed, since ϕ ∈ CR,e(α), we have α ≤
ϕ. On the other hand, if α = ϕ, then α ∈ C ⊆ CR,e(α

′) – contrary to our initial
assumption. Therefore, we must have α 6= ϕ and thus α < ϕ. Analogously, we
see that α′ < ϕ. △

Let
ê =

∑

µ∈BR,e : µ<ϕ

µ∨ .

By [1, Proposition 4.4(9)], we know that ê ∈ ΠB . Moreover, by [1, Proposi-
tion 3.10(7)], we know that

BR,ê = {µ ∈ BR,e | µ < ϕ} . (13)

The previous claim shows in particular that α, α′ ∈ BR,ê.

Claim: We have CR,ê(α) ∩ CR,ê(α
′) = ∅. Suppose for a contradiction that

CR,ê(α) ∩CR,ê(α
′) 6= ∅ .

By Equation (13), then there exists a ϕ′ ∈ BR,e such that ϕ′ < ϕ and such that
ϕ′ ≥ α and ϕ′ ≥ α′. This means that ϕ′ is an element of C which is strictly
smaller than ϕ – contrary to the choice of ϕ as the unique minimal element of
C. △

By the previous claim, we can apply Item (4) to α, α′ ∈ BR,ê and get that R(α)
and R(α′) are totally disjoint – as desired.

Theorem 4.7. Let e ∈ ΠB. Then we have the following formula:

zBe =
∏

α∈BR,e

sα .

Remark 4.8. Note that the product Theorem 4.7 speaks about is well-defined
in view of Theorem 4.5(3). For the very same reason, all other products we
will refer to are also well-defined.

Remark 4.9. As in Remark 4.6, we see that Theorem 4.7 is an important
generalization of [11, Proposition 1.10]. Indeed, we recover the formula

wo =
∏

α∈BR,dG/B

sα

where BR,dG/B
is the ordinary cascade of orthogonal roots by setting e = dG/B

(cf. Remark 4.2).
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Proof of Theorem 4.7. Let (α1, . . . , αr) be a greedy decomposition of e. For
brevity, let α = α1. By [1, Proposition 4.4(9)], we know that e−α∨ ∈ ΠB . By
[1, Proposition 3.10(7)], we know that BR,e−α∨ = {α2, . . . , αr}. Moreover, since
e ∈ ΠB , we know that there are no repeated entries in a greedy decomposition
of e ([1, Remark 8.4]). Hence, it follows that

BR,e−α∨ = BR,e \ {α} . (14)

We now perform an induction on the length of the greedy decomposition of e.
The statement of Theorem 4.7 is obvious whenever the greedy decomposition
of e has length zero, i.e. if e = 0 and BR,e = ∅. Assume that r > 0 and that the
statement is known for all minimal degrees in ΠB whose greedy decomposition
has length less than r. By [1, Proposition 3.10(7)], a greedy decomposition of
e − α∨ (e.g. (α2, . . . , αr)) has length r − 1. Hence, the induction hypothesis
applies to e− α∨. In view of Equation (14), we find that

zBe−α∨ =
∏

µ∈BR,e\{α}

sµ . (15)

To prove Theorem 4.7, it therefore suffices to show that

zBe = sαz
B
e−α∨ . (16)

By [4, Proposition 3.2: (c) ⇔ (e)] and [4, Corollary 4.9] (see also [1, Proposi-
tion 3.10(6)] for a more refined statement), Equation (16) is equivalent to the
statement

I(sα) ∩ I(zBe−α∨) = ∅ . (17)

Let Q be the parabolic subgroup of G such that ∆Q = ∆◦
α.

Claim: We have I(zBe−α∨) ⊆ R+
Q. Indeed, to prove the claim, it suffices to show

that zBe−α∨ ∈ WQ ([8, 5.5, Theorem (b)]). By Equation (14), (15), it suffices to
show that

sµ ∈ WQ ⇔ µ ∈ R+
Q ⇔ ∆(µ) ⊆ ∆Q

for all µ ∈ BR,e−α∨ . But by [1, Theorem 8.1], we have

∆(µ) ⊆ ∆(e− α∨) ⊆ ∆◦
α = ∆Q

for all µ ∈ BR,e−α∨ . This completes the proof of the claim. △

We are now able to prove Equation (17) which will complete the proof of
Theorem 4.7. Let µ ∈ I(zBe−α∨). By the previous claim, we have µ ∈ R+

Q.
By definition of Q, this means that α is orthogonal to µ. Thus, we have
sα(µ) = µ > 0 and µ /∈ I(sα). This means that Equation (17) is indeed
true.
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Theorem 4.10. Let e ∈ ΠB . Then we have the following formulas:

I(zBe ) =
∐

α∈BR,e

I(sα) ,

I(zBe ) \R+
P =

∐

α∈BR,e\R
+

P

(
I(sα) \R

+
P

)
.

Remark 4.11. As in Remark 4.6, we see that the first formula in Theorem 4.10
is a generalization of [11, Equation (1.5)]. Indeed, we recover the formula

R+ =
∐

α∈BR,dG/B

I(sα)

where BR,dG/B
is the ordinary cascade of orthogonal roots by setting e = dG/B

(cf. Remark 4.2).

Proof of Theorem 4.10. Let us first note that the second formula follows di-
rectly from the first by subtracting R+

P . Indeed, we have I(sα) ⊆ R+
P for all

α ∈ BR,e ∩R+
P by [8, 5.5, Theorem (b)]. We now prove the first formula.

Let (α1, . . . , αr) be a greedy decomposition of e. For brevity, let α = α1. The
situation is now precisely the same as in the proof of Theorem 4.7 and we can
freely use the formulas we worked out there. By Equation (16), (17) and [4,
Proposition 3.2: (d) ⇔ (e)], we have

I(sα) ∐ I(zBe−α∨) ⊆ I(zBe ) . (18)

We now perform an induction on the length of the greedy decomposition of e
– the first formula of Theorem 4.10 being obvious whenever the greedy decom-
position of e has length zero. By the induction hypothesis applied to e − α∨

and Equation (14), we find that

I(zBe−α∨) =
∐

µ∈BR,e\{α}

I(sµ) .

Combined with the last equation, Inclusion (18) gives the inclusion

∐

µ∈BR,e

I(sµ) ⊆ I(zBe ) .

To prove that this inclusion is actually an equality (and hence Theorem 4.10),
it suffices to show that the left and right set have the same cardinality. But
this follows from Theorem 4.7 and the triangle inequality:

ℓ(zBe ) ≤
∑

µ∈BR,e

ℓ(sµ) .
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Corollary 4.12 (Length additivity in generalized cascades of orthogonal
roots). Let e ∈ ΠB . Then we have the following formulas:

ℓ(zBe ) =
∑

α∈BR,e

ℓ(sα) ,

ℓ(zBe WP ) =
∑

α∈BR,e\R
+

P

ℓ(sαWP ) .

Proof. This corollary follows directly from Theorem 4.10 by taking the cardi-
nality of the involved sets.

Remark 4.13. Several preliminary attempts towards a suitable length addi-
tivity theorem were already done in [2, Lemma 8.9]. Corollary 4.12 can be seen
as final generalization of these.

Corollary 4.14. Let e ∈ ΠB . Then we have the following formula:

ℓ(zBe ) = (c1(G/B), e)− card(BR,e) .

Proof. By Theorem 4.5(2), we know that all α ∈ BR,e are B-cosmall. Hence, it
follows from [4, Theorem 6.1: (a) ⇔ (b)] that ℓ(sα) = (c1(G/B), α∨)− 1 for all
α ∈ BR,e. Since there are no repeated entries in a greedy decomposition of e
([1, Remark 8.4]), we clearly have e =

∑
α∈BR,e

α∨. The corollary follows from
these facts and Corollary 4.12.

5 Positivity in generalized cascades of orthogonal roots

In this section, we work out a positivity statement in generalized cascades of
orthogonal roots (Theorem 5.1). This theorem closes the general properties of
generalized chain cascades which we started to investigate in Section 4. We
apply this theorem to degrees e ∈ ΠB where zBe is the maximal representative
in zBe WP (cf. Theorem 5.5). In Section 6, we set up a framework where such
degrees naturally occur. Namely, they occur as the lifting of a degree d ∈ ΠP

(cf. Fact 6.5(2)). Finally, we give an application specific to the combinatorics in
type A which might be useful in different contexts (Theorem 5.7). This section
is not strictly necessary to understand the main result on quasi-homogeneity.
The impatient reader can skip it.

Theorem 5.1 (Positivity in generalized cascades of orthogonal roots). Let
e ∈ ΠB . Let ê =

∑
α∈BR,e∩R+

P
α∨. Let γ ∈ I(zBê ). Then we have

(α, γ) ≥ 0 for all α ∈ BR,e \R
+
P .

Remark 5.2. Note that the choice of e ∈ ΠB in Theorem 5.1 does not depend
on P . Thus, for a fixed e ∈ ΠB , we get a bunch of positivity results by varying
P .
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Proof of Theorem 5.1. Let e, ê, γ be as in the statement. Suppose for a con-
tradiction, there exists an α ∈ BR,e \ R

+
P such that (α, γ) < 0. By [1, Propo-

sition 3.10(7), 4.4(9)], we know that BR,ê = BR,e ∩R+
P . Thus, the assumption

γ ∈ I(zBê ) and Theorem 4.10 imply that there exists an α′ ∈ BR,e ∩ R+
P such

that γ ∈ I(sα′). Since α′ is member of a generalized cascade of orthogonal
roots, we know by Theorem 4.5(2) that α′ is B-cosmall. It is clear that α′ 6= γ,
since otherwise we had (α, γ) = 0 by Theorem 4.5(3) (note that α 6= α′ since
α ∈ BR,e \ R+

P and α′ ∈ BR,e ∩ R+
P ) – contradicting our initial assumption

that (α, γ) < 0. Therefore, it follows by [4, Theorem 6.1: (a) ⇔ (c)] that
(γ, α′∨) = 1.
We now consider the root δ defined by δ = sαsα′(γ). Since α and α′ are
orthogonal (cf. Theorem 4.5(3)) we compute

δ = γ − α′ − (γ, α∨)α . (19)

Since α ∈ BR,e \ R
+
P , there exists a β ∈ ∆ \∆P such that (ωβ , α

∨) > 0. Since
α′ ∈ R+

P , we have I(sα′) ⊆ R+
P (cf. [8, 5.5, Theorem (b)]), in particular γ ∈ R+

P .
Thus, we have sα′(γ) = γ − α′ ∈ R−

P and consequently (ωβ, sα′(γ)∨) = 0.
Altogether, it follows from the assumption (α, γ) < 0 and Equation (19) that
(ωβ , δ

∨) > 0 and thus that δ is a positive root. We can now reformulate
Equation (19) as

− (γ, α∨)α > α′ − γ > 0 . (20)

First case: The roots α and α′ are comparable. Suppose that α and α′ are
comparable. Let α∗ be the maximum and α∗ be the minimum of the totally
ordered set {α, α′}, i.e. we have {α∗, α

∗} = {α, α′}. Let

ẽ =
∑

µ∈BR,e : µ≤α∗

µ∨ .

By [1, Proposition 4.4(9)], we have ẽ ∈ ΠB . By [1, Proposition 3.10(7)], it
follows that ∆(ẽ) = ∆(α∗). Thus, ẽ is a connected degree with α(ẽ) = α∗. By
[1, Proposition 3.10(7), 3.16, Theorem 8.1], it follows that

∆(α∗) ⊆ ∆(ẽ− α∗∨) ⊆ ∆◦
α∗ . (21)

△

First sub-case: α < α′, i.e. α∗ = α and α∗ = α′. By Inequality (20), it follows
that ∆(α′ − γ) ⊆ ∆(α). By Inclusion (21), we then have ∆(α′ − γ) ⊆ ∆◦

α′ .
This means that (α′ − γ, α′∨) = 0 and thus (γ, α′∨) = 2. But we already saw
that (γ, α′∨) = 1 – a contradiction. △

Second sub-case: α > α′, i.e. α∗ = α′ and α∗ = α. By Inequality (20), we
have

α′ > α′ − γ > 0 (22)

and thus ∆(α′−γ) ⊆ ∆(α′). Inclusion (21) implies that ∆(α′−γ) ⊆ ∆◦
α. This

means that (α, α′ − γ) = 0 and thus (α, γ) = 0 (cf. Theorem 4.5(3)). But by
assumption we have (α, γ) < 0 – a contradiction. △
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Second case: The roots α and α′ are incomparable. Suppose that α and α′ are
incomparable. Then there exists no ϕ ∈ R+ such that α, α′ ∈ CR,e(ϕ) (cf.
Theorem 4.5(1)). Theorem 4.5(5) implies that R(α) and R(α′) are totally
disjoint. On the other hand, Inequality (20), (22) show that the positive root
α′ − γ belongs both to R(α) and R(α′) – a contradiction. △

All in all, this shows that our initial assumption that there exists an α ∈
BR,e \R

+
P such that (α, γ) < 0 must be false. In other words, the statement of

the theorem is true.

Lemma 5.3. Let e ∈ ΠB. Let γ ∈ R+
P . Then there exists at most one α ∈

BR,e \R
+
P such that (α, γ) > 0.

Remark 5.4. Lemma 5.3 says in particular that all or all except one inequality
in Theorem 5.1 are actually equalities. This follows from the fact that I(zBê ) ⊆
R+

P where ê depends on e and P as in Theorem 5.1. We saw this fact in the
proof of Theorem 5.1. It is also easy to deduce more directly without invoking
Theorem 4.10.

Proof of Lemma 5.3. Let e and γ be as in the statement. Suppose for a contra-
diction there exist two distinct roots α, α′ ∈ BR,e \R

+
P such that (α, γ) > 0 and

(α′, γ) > 0. In view of the assumption, it is easy to see that γ ∈ I(sα)∩ I(sα′).
(Indeed, sα(γ) and sα′(γ) must contain a simple root in ∆ \ ∆P with nega-
tive coefficient in their expression as linear combination of simple roots.) This
contradicts the disjointness result in Theorem 4.10.

Theorem 5.5. Let e ∈ ΠB. Suppose that zBe is the maximal representative in
zBe WP . Let γ ∈ R+

P . Suppose there exists an α ∈ BR,e\R
+
P such that (α, γ) < 0.

Then there exists an α′ ∈ BR,e \R
+
P such that (α′, γ) > 0.

Remark 5.6. Lemma 5.3 shows that the α′ in Theorem 5.5 is unique.

Proof of Theorem 5.5. Let e be as in the statement. Let

ê =
∑

α∈BR,e∩R+

P

α∨ and ẽ =
∑

α∈BR,e\R
+

P

α∨ .

Theorem 5.1 implies the following inclusion:

{γ ∈ R+
P | ∃α ∈ BR,e \R

+
P : (α, γ) < 0} ⊆ R+

P \ I(zBê ) . (23)

By assumption zBe is the maximal representative in zBe WP . Therefore we have
R+

P ⊆ I(zBe ). Theorem 4.10 and [1, Proposition 3.10(7), 4.4(9)] show that
I(zBe ) = I(zBê )∐I(zBẽ ). Both facts together yield that R+

P \I(zBê ) = I(zBẽ )∩R+
P .

Finally, it is easy to see that

I(zBẽ ) ∩R+
P = {γ ∈ R+

P | ∃α ∈ BR,e \R
+
P : (α, γ) > 0} . (24)
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(This equation is a direct consequence of Theorem 4.10 applied to ẽ. One only
has to note that we have BR,ẽ = BR,e \ R+

P by [1, loc. cit.]. For the proof of
the inclusion “⊇” one may use similar arguments as in the proof of Lemma 5.3.
Note also, as a consequence of Lemma 5.3, we can equally well write ∃!α instead
of ∃α on the right side of Equation (24).) Inclusion (23) and Equation (24)
together yield the inclusion

{γ ∈ R+
P | ∃α ∈ BR,e \R

+
P : (α, γ) < 0} ⊆

{γ ∈ R+
P | ∃α ∈ BR,e \R

+
P : (α, γ) > 0} .

This inclusion shows all we claimed in the statement.

Theorem 5.7. Assume that R is of type A. Let e ∈ ΠB. Suppose that zBe is
the maximal representative in zBe WP . Let γ ∈ R+

P . Then there exists at most
one α ∈ BR,e \R

+
P such that (α, γ) < 0.

Remark 5.8. Note that Theorem 5.7 is specific to type A. In general, there
may exist several α’s as in the statement of Theorem 5.7. The reader can find
examples for this behavior in type D4 or type E6 for the degree e = dG/B ∈ ΠB .

Proof of Theorem 5.7. Assume that R is of type An for some n ≥ 1. Let
∆ = {β1, . . . , βn} be the set of simple roots with the numbering as in [3,
Plate I].

First case: Assume that γ ∈ ∆P . Let γ = βi for some 1 ≤ i ≤ n. Assume for
a contradiction that there exist two distinct roots α, α′ ∈ BR,e \R

+
P such that

(α, γ) < 0 and (α′, γ) < 0. Write

α = βi∗(α) + · · ·+ βi∗(α)

α′ = βi∗(α′) + · · ·+ βi∗(α′)

for some integers 1 ≤ i∗(α) ≤ i∗(α) ≤ n and 1 ≤ i∗(α
′) ≤ i∗(α′) ≤ n. The

assumption (α, γ) < 0 and (α′, γ) < 0 implies that we have either

i∗(α) = i∗(α
′) = i+ 1 or i∗(α) = i∗(α′) = i− 1 or

i∗(α) = i+ 1, i∗(α′) = i− 1 or i∗(α) = i− 1, i∗(α
′) = i+ 1 .

In the first two cases, we have (α, α′) > 0 - contrary to Theorem 4.5(3) ac-
cording to which we have (α, α′) = 0. The last two cases are symmetric. By
replacing α and α′ if necessary, we may assume that we are in the fourth case.
By Theorem 5.5 there exists an α′′ ∈ BR,e \ R+

P such that (α′′, γ) > 0. The
root α′′ is clearly distinct from α and α′. Write

α′′ = βi∗(α′′) + · · ·+ βi∗(α′′)
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for some integers 1 ≤ i∗(α
′′) ≤ i∗(α′′) ≤ n. The inequality (α′′, γ) > 0 implies

that we have either i∗(α
′′) = i or i∗(α′′) = i. In the first case we have (α, α′′) <

0. In the second case we have (α′, α′′) < 0. Both conclusions are contrary to
Theorem 4.5(3) according to which we have (α, α′′) = (α′, α′′) = 0. This shows
that the conclusion of Theorem 5.7 holds for all γ ∈ ∆P . △

Second case: Assume that γ ∈ R+
P is arbitrary. By the first case, Lemma 5.3

and Theorem 5.5, we have
∑

α∈BR,e\R
+

P
(β, α∨) ≥ 0 for all β ∈ ∆P . By summing

over all β ∈ ∆(γ), we also obtain
∑

α∈BR,e\R
+

P

(γ, α∨) ≥ 0 . (25)

Let l be the number of roots α ∈ BR,e \R
+
P such that (α, γ) < 0. If l = 0, there

is nothing to prove. Assume that l ≥ 1. We have to show that we even have
l = 1. But by Lemma 5.3 and Theorem 5.5 we clearly have

∑

α∈BR,e\R
+

P

(γ, α∨) = −l+ 1 .

Together with Inequality (25) this gives l ≤ 1 and thus l = 1 – as desired. △

The second case shows that the conclusion of Theorem 5.7 holds for all γ ∈
R+

P .

Corollary 5.9. Assume that R is of type A. Let e ∈ ΠB . Suppose that zBe
is the maximal representative in zBe WP . Let γ ∈ R+

P . Then we have
∑

α∈BR,e\R
+

P

(γ, α∨) ∈ {0, 1} .

Proof. This follows directly from Lemma 5.3 and Theorem 5.5, 5.7.

6 The lifting of a minimal degree

In this section, we introduce the notion of the lifting of a minimal degree.
This notion basically prepares the construction of the diagonal curve in the
relative setting modulo P by associating to a degree d ∈ ΠP the generalized
cascade of orthogonal roots BR,e where e ∈ ΠB is the lifting of d. In case of a
generalized complete flag variety G/B (i.e. P = B) the step of passing from
a minimal degree to its lifting is superfluous. It is only necessary in a more
general context.
The nontrivial input in this section is certainly [13, Corollary 3] which states
that there exists a unique minimal degree in the quantum product of two Schu-
bert classes in H∗(G/B). This result guarantees in particular the uniqueness
of the lifting of a minimal degree and also has other consequences concerning
the uniqueness of minimal degrees in the relative setting modulo P which we
investigate in the beginning of this section.
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Notation 6.1. Let d be a degree. Let Q be a parabolic subgroup of G
containing P . We denote by dQ the image of d under the natural map
H2(X) → H2(G/Q), i.e. we have dQ = d + Z∆∨

Q. We will mostly apply
this notation for the relative situation B ⊆ P , i.e. if e ∈ H2(G/B) is a degree,
we write eP = e+ Z∆∨

P .
7

Definition 6.2. Let d ∈ ΠP . By [13, Corollary 3] and [1, Definition 4.1,
Theorem 5.15] there exists a unique minimal element of the set

{e ∈ H2(G/B) a degree such that zPd wP � zBe } .

This unique minimal element is called the lifting of d.

Example 6.3. The degree dG/B is the lifting of dX . This follows directly from
the definition of dX and dG/B in Notation 3.28

Example 6.4. The lifting of a degree e ∈ ΠB is the degree e itself.

Fact 6.5. Let d ∈ ΠP . Let e be the lifting of d. Then the following is true.

1. We have e ∈ ΠB and zPd wP = zBe .

2. The element zBe is the maximal representative in zBe WP .

3. We have eP = d.

Proof. Item (2) is clear from the equation zPd wP = zBe in Item (1). All other
claims follow from [13, Corollary 3] and [1, Definition 4.1, Theorem 4.13] applied
to the relative situation B ⊆ P .

Theorem 6.6 (Consequence of [13, Corollary 3]). Let d, d′ ∈ ΠP such that
zPd � zPd′ . Then we have d ≤ d′.

Proof. Let d and d′ be as in the statement. Let e be the lifting of d and let e′

be the lifting of d. As zPd � zPd′ by definition, Fact 6.5(1) implies that zBe � zBe′ .
Since e ∈ ΠB by Fact 6.5(1), [13, Corollary 3] and [1, Proposition 4.4(3)] imply
that e ≤ e′. Finally, Fact 6.5(3) shows that d ≤ d′ – as required.

Corollary 6.7. Let d, d′ ∈ ΠP such that zPd = zPd′ . Then we have d = d′.

Proof. This is an immediate corollary of Theorem 6.6.

Corollary 6.8. Let d ∈ ΠP . Then d is the unique minimal element of the set

{d′ a degree such that zPd � zPd′} .

7With the terminology of [1, Subsection 4.1], the degree eP is the restriction of e.
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Remark 6.9. That d ∈ ΠP is a minimal element of the prescribed set is content
of Definition 3.25. Corollary 6.8 makes a statement about the uniqueness which
is nontrivial.

Remark 6.10. Corollary 6.8 shows in particular that dX is the unique minimal
element of the set

{d a degree such that woWP = zPd WP } .

This result was found independently from [13, Corollary 3] in [1, Definition 4.1,
Theorem 4.7] (cf. Notation 3.28).

Remark 6.11 (For the reader familiar with quantum cohomology). By Re-
mark 3.27, we know that a degree d ∈ ΠP is a minimal degree in σzP

d
⋆ pt.

In view of [1, Definition 4.1, Theorem 5.15], Corollary 6.8 says that a degree
d ∈ ΠP is even the unique minimal degree in σzP

d
⋆pt. In particular, the degree

dX is the unique minimal degree in pt ⋆ pt.

Proof of Corollary 6.8. Let d ∈ ΠP . Let d
′′ be a minimal element of the set

{d′ a degree such that zPd � zPd′} .

We have to show that d = d′′. By [1, Definition 4.1, Proposition 4.4(10)], we
know that d′′ ∈ ΠP . By definition of d′′, we also have zPd � zPd′′ . Therefore,
Theorem 6.6 implies that d ≤ d′′. By the minimality of d′′, this implies that
d = d′′ – as claimed.

Corollary 6.12. For all d ∈ ΠP we have d ≤ dX .

Remark 6.13. Corollary 6.12 was found independently from [13, Corollary 3]
in [1, Definition 4.1, Theorem 10.7]

Proof of Corollary 6.12. Let d ∈ ΠP . By definition, we have woWP = zPdX
WP

and thus zPd � zPdX
. As d, dX ∈ ΠP , Theorem 6.6 now implies that d ≤ dX .

Theorem 6.14. Let d ∈ ΠP . Let e be the lifting of d. Let ê =
∑

α∈BR,e\R
+

P
α∨.

A root α is a maximal root of d if and only if α is a maximal root of ê.

Proof. Let α be a maximal root of d. First, we show that α is also a maximal
root of ê. By definition, α is P -cosmall and also B-cosmall. Hence, we have
zPd(α)wP = sα · wP and zBα∨ = sα. From [4, Proposition 3.1(c)], it follows

that zBα∨ � zPd(α)wP . By definition, we have d(α) ≤ d and hence zPd(α)wP �

zPd wP = zBe by [4, Corollary 4.12(b)] and Fact 6.5(1). Altogether, it follows
that zBα∨ � zBe . By [1, Proposition 4.4(6)], we have α∨ ∈ ΠB and by Fact 6.5(1),
we have e ∈ ΠB . Hence, Theorem 6.6 and the previous relation in the Bruhat
order show that α∨ ≤ e.
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Claim: α is a maximal root of e. Indeed, let α′ be a maximal root of e such
that α ≤ α′. (As α∨ ≤ e, we can clearly choose such an α′.) By definition,
we have α′∨ ≤ e and thus by Fact 6.5(3) that d(α′) ≤ d. Since α ≤ α′ and
α ∈ R+ \ R+

P by definition, it is also clear that α′ ∈ R+ \ R+
P . Since α is a

maximal root of d, it follows that α = α′. In other words, α is a maximal root
of e. △

As α is a maximal root of e, there exists a greedy decomposition of e such that
α occurs as its first entry. This means in particular that α ∈ BR,e and since
α ∈ R+ \ R+

P also that α ∈ BR,e \ R
+
P . By [1, Proposition 3.10(7), 4.4(9)], we

have ê ∈ ΠB and BR,ê = BR,e \R
+
P . Thus, we have α ∈ BR,ê and consequently

α∨ ≤ ê ≤ e. Since α is a maximal root of e by the claim, the last inequality
implies that α is also a maximal root of ê. This proves the implication from
left to right.

To prove the other implication, let α be a maximal root of ê. We have to
show that α is also a maximal root of d. By definition, there exists a greedy
decomposition of ê such that α occurs as its first entry. This means that
α ∈ BR,ê = BR,e\R

+
P . (The last equality was already justified in the paragraph

before.) In particular, we have α ∈ R+\R+
P . Moreover, as α∨ ≤ ê by definition,

it follows from Fact 6.5(3) that d(α) ≤ êP = eP = d. (To see that êP = eP ,
just note that e =

∑
α∈BR,e

α∨ in view of [1, Remark 8.4].) These facts show

that we can choose a maximal root α′ of d such that α ≤ α′. By the first
implication already shown, α′ is also a maximal root of ê. Since α is also a
maximal root of ê by our initial choice, it follows that α = α′. In other words,
α is a maximal root of d. This proves the implication from right to left.

Corollary 6.15. Let d ∈ ΠP . Let e be the lifting of d. Let ê =∑
α∈BR,e\R

+

P
α∨. Then we have ∆̃(d) = ∆(ê).

Proof. Let d1, . . . , dk be the connected components of d. Let ê1, . . . , êk′ be the
connected components of ê. By Theorem 3.36, 6.14, it follows that k = k′ and

{α(d1), . . . , α(dk)} = {α(ê1), . . . , α(êk)} .

By Notation 3.13 and Lemma 3.24, we also have

∆̃(d) =

k∐

i=1

∆(α(di)) and ∆(ê) =

k∐

i=1

∆(α(êi)) .

The result follows from these facts.

Theorem 6.16. Let α1, . . . , αk be P -cosmall roots such that ∆(α1), . . . ,∆(αk)

are pairwise totally disjoint. Let d =
∑k

i=1 d(αi) for short. Then we have
d ∈ ΠP . Let e be the lifting of d. Then we have BR,e \R

+
P = {α1, . . . , αk}.
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Proof. For all 1 ≤ i ≤ k, let di = d(αi) for short. We have ∆̃(di) = ∆(αi) for
all 1 ≤ i ≤ k since αi is P -cosmall. By Theorem 3.34 applied to d1, . . . , dk,
we know that (α1, . . . , αk) is a greedy decomposition of d. In particular, we

have ∆̃(d) =
∐k

i=1 ∆(αi) and that ∆(α1), . . . ,∆(αk) are the distinct connected

components of ∆̃(d). By definition, we see that d1, . . . , dk are the connected
components of d.
To prove that d ∈ ΠP , it suffices to prove that d1, . . . , dk ∈ ΠP (Corollary 3.43).
But the later statement was proved in [1, Proposition 4.4(6)]. This proves the
first claim of the theorem. The lifting e of d is now well-defined.
In the first paragraph, we saw that d1, . . . , dk are the connected components of
d. Hence, Theorem 3.36 implies that there are precisely k maximal roots of d,
namely α1, . . . , αk. Let ê =

∑
α∈BR,e\R

+

P
α∨. Let ê1, . . . , êk′ be the connected

components of ê. By Theorem 3.36, 6.14, it follows that k = k′ and that we
can rename the connected components of ê in such a way that α(êi) = αi for all
1 ≤ i ≤ k. By Lemma 3.38 applied to ê, there exist roots αk+1, . . . , αr (k ≤ r)
such that (α1, . . . , αk, αk+1, . . . , αr) is a greedy decomposition of ê.

Claim: We have αk+1, . . . , αr ∈ R+
P . To prove the claim, it clearly suffices to

show that ê −
∑k

i=1 α
∨
i ∈ Z∆∨

P or equivalent to show that êP = d. But we
already saw this equality in the proof of Theorem 6.14 △

Also, in the proof of Theorem 6.14, we saw that BR,ê = BR,e \R
+
P , so that all

members of every greedy decomposition of ê are elements of R+\R+
P . This fact

is only compatible with the claim if k = r. In other words, we have shown that
(α1, . . . , αk) is a greedy decomposition of ê. We can reformulate this result
by saying that BR,e \ R+

P = BR,ê = {α1, . . . , αk}. This is all we wanted to
prove.

Notation 6.17. Let d ∈ ΠP . Let e be the lifting of d. Then we denote by
ΣP,d the sum defined by

ΣP,d =
∑

α∈BR,e\R
+

P

γ∈R+

P

(γ, α∨) .

Definition 6.18. Let d ∈ ΠP . We say that d is a P -admissible degree if
ΣP,d ≥ 0.

Proposition 6.19.

1. All minimal degrees in ΠB are B-admissible.

2. Let α1, . . . , αk be P -cosmall roots such that ∆(α1), . . . ,∆(αk) are pairwise

totally disjoint. Then
∑k

i=1 d(αi) is a P -admissible degree.

3. Assume that R is of type A. Then all minimal degrees in ΠP are P -
admissible.
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Proof of Item (1). This is immediately clear from the definition. For all e ∈
ΠB , we have ΣB,e = 0 since R+

B = ∅.

Proof of Item (2). Let α1, . . . , αk be as in the statement. Let d =
∑k

i=1 d(αi)
for short. By Theorem 6.16, we have d ∈ ΠP . To see that d is a P -admissible
degree, we have to show that ΣP,d ≥ 0. In order to prove that ΣP,d ≥ 0, it
suffices to prove that

∑
γ∈R+

P
(γ, α∨

i ) ≥ 0 for all 1 ≤ i ≤ k (cf. Theorem 6.16).

In other words, Theorem 6.16 helps us to reduce the assertion ΣP,d ≥ 0 to the
case k = 1. We assume from now on that k = 1 and we write α = α1 and
d = d(α).

Claim: We have ΣP,d = (c1(G/B), α∨)− (c1(X), d). By [4, Equation (3)], we
have

(c1(G/B), α∨) =
∑

γ∈R+

(γ, α∨) and (c1(X), d) =
∑

γ∈R+\R+

P

(γ, d) .

As
∑

γ∈R+\R+

P
γ ∈ H2(X) = Z{ωβ | β ∈ ∆ \∆P } we also find that

∑

γ∈R+\R+

P

(γ, d) =
∑

γ∈R+\R+

P

(γ, α∨) .

The claim now follows by subtracting the two displayed expressions for
(c1(G/B), α∨) and (c1(X), d). △

By assumption, α is P -cosmall and hence also B-cosmall. By [4, Theorem 6.1:
(a) ⇔ (b)] we therefore have

ℓ(sα) = (c1(G/B), α∨)− 1 and ℓ(sαWP ) = (c1(X), d)− 1 .

In view of the previous claim, these equations give ΣP,d = ℓ(sα)−ℓ(sαWP ). But
this quantity is by definition certainly nonnegative. Hence, we find ΣP,d ≥ 0 –
as required.

Proof of Item (3). By Fact 6.5(2), the claim follows from the stronger state-
ment that for all e ∈ ΠB such that zBe is the maximal representative in zBe WP

the inequality ∑

α∈BR,e\R
+

P

γ∈R+

P

(γ, α∨) ≥ 0

holds. In turn, this statement follows from the more stronger statement that
for all e ∈ ΠB such that zBe is the maximal representative in zBe WP and for all
γ ∈ R+

P the inequality ∑

α∈BR,e\R
+

P

(γ, α∨) ≥ 0

holds. But this is clear in view of the even more precise statement in Corol-
lary 5.9.
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The following statements until the end of this section are meant to prepare the
proof of the main result on quasi-homogeneity. They are less interesting on
their own right.

Lemma 6.20. Let d ∈ ΠP . Let e be the lifting of d. Then we have the following
formula:

ℓ(zPd ) = (c1(G/B), e)− card(BR,e)− card(R+
P ) .

Proof. Let d and e be as in the statement. By Fact 6.5(1), (2), we know that zPd
is the minimal and that zBe is the maximal representative in zPd WP = zBe WP .
Hence, we have ℓ(zPd ) = ℓ(zBe ) − card(R+

P ). The result follows from this and
Corollary 4.14.

Lemma 6.21. Let d ∈ ΠP . Let e be the lifting of d. Then we have the following
equality:

(c1(G/B), e)− (c1(X), d) = ΣP,d + card
∐

α∈BR,e∩R+

P

I(sα) + card(BR,e ∩R+
P ) .

Proof. By arguments very similar to those in the proof of the claim in Propo-
sition 6.19(2) and as eP = d by Fact 6.5(3), we have

(c1(G/B), e)− (c1(X), d) =
∑

γ∈R+

(γ, e)−
∑

γ∈R+\R+

P

(γ, e) =
∑

γ∈R+

P

(γ, e) .

The last sum can be split into two summands

ΣP,d +
∑

α∈BR,e∩R+

P

γ∈R+

P

(γ, α∨)

since e =
∑

α∈BR,e
α∨ by Fact 6.5(1) and [1, Remark 8.4].

Claim: Let α ∈ R+
P be a B-cosmall root. Then we have ℓ(sα) =

∑
γ∈R+

P
(γ, α∨)

− 1. Indeed, since α is B-cosmall, we have ℓ(sα) =
∑

γ∈R+(γ, α∨) − 1 by
[4, Equation (3), Theorem 6.1: (a) ⇔ (b)]. In order to prove the claim, it
therefore suffices to show that

∑
γ∈R+\R+

P
(γ, α∨) = 0. Since α ∈ R+

P , we

have I(sα) ⊆ R+
P by [8, 5.5, Theorem (b)]. Thus, we have sα(RP ) = RP

and sα(R
+ \ R+

P ) = R+ \ R+
P . Since (−,−) is W -invariant, we know that

(γ, α) = −(sα(γ), α). All facts together yields that the sum
∑

γ∈R+\R+

P
(γ, α)

is equal to its negative. Hence, we find the desired vanishing.8 △

8It is actually easy to work out a more conceptional proof of the claim than we gave by
using local notions as introduced in [1, Section 6].

Documenta Mathematica 23 (2018) 697–745



736 Christoph Bärligea

By Theorem 4.5(2), all roots in BR,e∩R+
P are B-cosmall. If we apply the claim

to each of them, we find that

∑

α∈BR,e∩R+

P

γ∈R+

P

(γ, α∨) =
∑

α∈BR,e∩R+

P

ℓ(sα) + card(BR,e ∩R+
P ) .

All in all, the desired equality now follows from the last three displayed equa-
tions and Theorem 4.10.

Corollary 6.22. Let d be a P -admissible degree. Let e be the lifting of d.
Then we have the following inequality:

(c1(G/B), e)− (c1(X), d) ≥ 0 .

Proof. This follows directly from the assumption on d since Lemma 6.21 ex-
presses the difference in question as a sum of three nonnegative summands.

Remark 6.23. Let d ∈ ΠP . Let e be the lifting of d. In general, if d is not
P -admissible, it may happen that the difference (c1(G/B), e) − (c1(X), d) is
negative. The reader can find examples for this behavior in type D4 or type E6

for the degree d = dX ∈ ΠP and a suitable parabolic subgroup P .

Lemma 6.24. Let d ∈ ΠP . Let e be the lifting of d. Then we have the following
equality:

(c1(X), d)− ℓ(zPd ) = −ΣP,d + card
∐

α∈BR,e\R
+

P

(I(sα) ∩R+
P ) + card(BR,e \R

+
P ) .

Proof. By Lemma 6.20, 6.21 we have the identity

(c1(X), d)− ℓ(zPd ) = −ΣP,d + card(R+
P )− card

∐

α∈BR,e∩R+

P

I(sα)+

card(BR,e)− card(BR,e ∩R+
P ) .

The last difference in this formula is clearly equal to card(BR,e \ R+
P ). As

I(sα) ⊆ R+
P for all α ∈ BR,e ∩R+

P by [8, 5.5, Theorem (b)], it suffices to show
that

R+
P \

∐

α∈BR,e∩R+

P

I(sα) =
∐

α∈BR,e\R
+

P

(I(sα) ∩R+
P ) (26)

in order to prove the identity which is stated in Lemma 6.24. We argue very
similar as in the proof of Theorem 5.5 to show Equation (26). By Theorem 4.10
and Fact 6.5(2), we have

R+
P ⊆ I(zBe ) =

∐

α∈BR,e

I(sα)
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and thus
R+

P =
∐

α∈BR,e\R
+

P

(I(sα) ∩R+
P ) ∐

∐

α∈BR,e∩R+

P

I(sα) .

The desired Equation (26) now follows by reorganizing the previous displayed
equation. This completes the proof of Lemma 6.24.

Lemma 6.25. Let d ∈ ΠP . Let e be the lifting of d. Then we have the following
equality:

(c1(X), d)− ℓ(zPd ) = −
∑

α∈BR,e\R
+

P

∑

γ∈R+

P \I(sα)

(γ, α∨) + card(BR,e \R
+
P ) .

Proof. We can split the sum ΣP,d into two summands as follows

ΣP,d =
∑

α∈BR,e\R
+

P

∑

γ∈R+

P \I(sα)

(γ, α∨) +
∑

α∈BR,e\R
+

P

∑

γ∈I(sα)∩R+

P

(γ, α∨) .

Let α ∈ BR,e \ R+
P and γ ∈ I(sα) ∩ R+

P . By Theorem 4.5(2), the root α is
B-cosmall. Hence, we have (γ, α∨) = 1 since α 6= γ (cf. [4, Theorem 6.1:
(a) ⇒ (c)]). This means that all terms in the second summand of the previous
displayed equation are equal to one. In other words, we have

∑

α∈BR,e\R
+

P

∑

γ∈I(sα)∩R+

P

(γ, α∨) = card
∐

α∈BR,e\R
+

P

(I(sα) ∩R+
P )

in view of Theorem 4.10. The lemma now follows from the last two displayed
equations and Lemma 6.24.

7 The diagonal curve

In this section, we introduce in full detail the diagonal curve associated to a
minimal degree (cf. Definition 7.3). For this construction, we make use of
generalized cascades of orthogonal roots and liftings of minimal degrees which
we introduced in the sections before. We formulate an additional assumption
on minimal degrees (Assumption 7.13). For minimal degrees satisfying this
assumption, we prove in the next section that the morphism associated to the
diagonal curve has a dense open orbit in the moduli space of stable maps. In the
course of this proof, the set of tangent directions associated to a minimal degree
plays a certain role. We introduce and investigate this set in this section (cf.
Notation 7.11). It parametrizes certain tangent directions which result from
the action of a suitable subgroup of G on the tangent direction of the diagonal
curve.

Notation 7.1. Let XT denote the fixed point set of the left T -action on X .
The elements of XT are called T -fixed points. It is well known (cf. [9, Lemma 1
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and Lemma 2]) that we have a bijection W/WP
∼= XT . For any w ∈ W , we

denote by x(w) the image of wWP under this bijection, i.e. x(w) is the T -fixed
point given by the equation x(w) = wP .

Notation 7.2 ([6, Lemma 4.2]). Let α ∈ R+ \R+
P . We denote by Cα ⊆ X the

unique irreducible T -invariant curve containing the points x(1) and x(sα). By
[6, Lemma 4.2] such a unique curve exists. Moreover [6, Lemma 4.2] says that
Cα is isomorphic to P1 and has degree [Cα] = d(α). For an explicit construction
of Cα, see [6, Section 3].

Definition 7.3. Let d ∈ ΠP . Let e be the lifting of d. Then we define a
morphism fP,d by the assignment

fP,d : P
1 →֒

∏

α∈BR,e\R
+

P

Cα →֒ X

where the first morphism is the diagonal embedding of P1 into card(BR,e \R
+
P )

isomorphic copies of P1 and the second morphism is the embedding into X
which is well-defined due to Theorem 4.5(3). Again by Theorem 4.5(3), the
definition of fP,d is independent of the ordering of the product

∏
α∈BR,e\R

+

P
.

Hence, the morphism fP,d is well-defined. We call the image fP,d(P
1) the

diagonal curve (associated to d).

Fact 7.4. Let d ∈ ΠP . The morphism fP,d is a closed immersion of degree
(fP,d)∗[P

1] = d. Moreover, we have fP,d(0) = x(1) and fP,d(∞) = x(zPd ).

Proof. The morphism fP,d is defined as the composition of two closed immer-
sion. Hence, fP,d is itself a closed immersion. We now compute the degree of
fP,d. Let e be the lifting of d. By definition of fP,d and the result [6, Lemma 3.4]
recalled in Notation 7.2, we have

(fP,d)∗[P
1] = [fP,d(P

1)] =
∑

α∈BR,e\R
+

P

[Cα] =
∑

α∈BR,e\R
+

P

d(α) .

As in the proof of Theorem 6.14, by Fact 6.5(3) and [1, Remark 8.4], we also
have ∑

α∈BR,e\R
+

P

d(α) = eP = d .

Altogether, this leads to the equation (fP,d)∗[P
1] = d – as claimed. The equa-

tion fP,d(0) = x(1) is immediately clear from the definition of fP,d. By Theo-
rem 4.7 and Fact 6.5(1), we have

zPd WP = zBe WP =
∏

α∈BR,e

sα ·WP =
∏

α∈BR,e\R
+

P

sα ·WP .

This equation basically shows that fP,d(∞) = x(zPd ). (Note that ∞ is sent to
x(sα) under the isomorphism P1 ∼= Cα for all α ∈ R+ \R+

P .)
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Remark 7.5. Let d ∈ ΠP . One may conjecture that the morphism fP,d has
a dense open orbit in M0,3(X, d) under the action of the automorphism group
Aut(X). In this generality, we are not able to prove a quasi-homogeneity result,
mainly because we do not have a type independent description of Aut(X).
In this paper, we will prove the sharper and more restrictive result that the
morphism fP,d has a dense open orbit in M0,3(X, d) under the action of G
as long as d satisfies Assumption 7.13. Note that all minimal degrees satisfy
Assumption 7.13 if R is simply laced or if P = B. In this way, we obtain
quasi-homogeneity of the moduli space M0,3(X, d) for a large class of degrees
d.

Fact 7.6. Let d be a degree. Then we have (zPd )
−1 = wP z

P
d wP .

Proof. Let e ∈ H2(G/B) be a sufficiently large degree such that eP = d and
such that zPd wP = zBe . We can choose such a degree e ∈ H2(G/B) by [4,
Corollary 4.12(d)]. By [4, Corollary 4.9], we know that zBe is an involution.
Hence, we have (zPd wP )

−1 = zPd wP or equivalent (zPd )
−1 = wP z

P
d wP – as

claimed.

Notation 7.7. For a root α ∈ R, we denote by Uα the associated root group
as defined in [7, 26.3, Theorem (a)].

Notation 7.8. To simplify notation, we write R(P ) = R+∪RP for short. The
set of roots R(P ) is precisely the set of roots α ∈ R such that Uα ⊆ P .

Notation 7.9. For a Weyl group element z ∈ W , we denote by P z the conju-
gate of P , i.e. P z = zPz−1.

Lemma 7.10. Let d be a degree. Let z = zPd for short. Then we have U−γ ⊆
P ∩ P z for all γ ∈ R+

P .

Proof. By Notation 7.8, we can describe the set of roots α ∈ R such that
Uα ⊆ P ∩ P z as {γ ∈ R(P ) | Uγ ⊆ P z}. By [7, 26.3, Theorem (b)] and
Notation 7.8, this set equals {γ ∈ R(P ) | z−1(γ) ∈ R(P )}. Since wP ∈ WP , it is
clear that wP (R(P )) = R(P ). Fact 7.6 therefore yields that the aforementioned
set is equal to {γ ∈ R(P ) | zwP (γ) ∈ R(P )}.
We have to show that this set contains R−

P . Since R−
P ⊆ R(P ), it clearly

suffices to show that zwP (R
−
P ) ⊆ R(P ). Since wP is the longest element of the

Weyl group WP , we know that I(wP ) = R+
P . But this means that wP (R

+
P ) =

R−
P . Since wP is an involution, the equation wP (R

+
P ) = R−

P is equivalent to
wP (R

−
P ) = R+

P . Therefore, the claim zwP (R
−
P ) ⊆ R(P ) is equivalent to the

statement z(R+
P ) ⊆ R(P ).

We now show the latter statement. By definition, the element z is the minimal
representative in zWP , so that we have I(z)∩R+

P = ∅. In other words, we have
z(R+

P ) ⊆ R+ ⊆ R(P ) which suffices to prove the lemma.
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Notation 7.11. Let d ∈ ΠP . Let e be the lifting of d. Then we denote by
TDP,d the set of roots defined by

TDP,d = {−α− γ ∈ R− \R−
P | α ∈ BR,e \R

+
P , γ ∈ R+

P ∪ {0}} .

We call this set of roots the set of tangent directions (associated to d).

Theorem 7.12. Let d ∈ ΠP . Let e be the lifting of d. Then we have an injective
map

{(α, γ) ∈ (BR,e \R
+
P )×R+

P | (γ, α∨) = −1} →֒ TDP,d \ (−(BR,e \R
+
P ))

defined by the assignment (α, γ) 7→ −α − γ. Here we denote by −(BR,e \ R
+
P )

the set of roots consisting of all −α where α ∈ BR,e \R
+
P .

Proof. First, we prove that the map defined by the assignment as in the state-
ment is well-defined. Let α ∈ BR,e \ R

+
P and γ ∈ R+

P such that (γ, α∨) = −1.
Then, we have sα(γ) = α+γ. Hence, α+γ ∈ R+ \R+

P and −α−γ ∈ R− \R−
P .

This proves that −α− γ ∈ TDP,d.
Suppose for a contradiction that α + γ = α′ for some α′ ∈ BR,e \ R+

P . We
clearly have α 6= α′ and that α and α′ are orthogonal (cf. Theorem 4.5(3)). If
we now apply (−, α∨) to the equation α+ γ = α′, we find that 0 = (α′, α∨) =
(α, α∨) + (γ, α∨) = 2 − 1 = 1 – a contradiction. This proves that −α − γ ∈
TDP,d \ (−(BR,e \R

+
P )). This completes the proof of the well-definedness of the

map.
We now prove injectivity of the map. To this end, suppose that α+γ = α′+γ′

where α, α′ ∈ BR,e \ R+
P and γ, γ′ ∈ R+

P such that (γ, α∨) = (γ′, α′∨) = −1.
Suppose for a contradiction that α 6= α′.

Claim: We have (γ′, α∨) = (γ, α′∨) = 1. Since α 6= α′ by assumption, the
roots α and α′ are orthogonal (cf. Theorem 4.5(3)). In view of this fact,
if we apply (−, α∨) to the equation α+ γ = α′ + γ′, we find that (γ′, α∨) = 1.
Similarly, if we apply (−, α′∨), we find (γ, α′∨) = 1. This completes the proof
of the claim. △

By the previous claim, sα(γ
′) = γ′ − α and sα′(γ) = γ − α′ are roots. Hence,

ρ = α−γ′ = α′−γ is also a root which lies in R+ \R+
P . The root ρ is obviously

an element of R(α)∩R(α′). In particular, we have R(α)∩R(α′) 6= ∅. By Theo-
rem 4.5(5), there exists a root ϕ ∈ R+ such that α, α′ ∈ CR,e(ϕ). In particular,
this means that α and α′ are comparable (cf. Theorem 4.5(1)). Without loss
of generality, we may assume that α ≥ α′. In view of the assumption α 6= α′,
this means that we even have α > α′.

Claim: We have (α, ρ) = 0. The arguments in the proof of this claim are very
similar to those in the proof of Theorem 5.1. For the convenience of the reader,
we spell them out once more.
Let ê =

∑
µ∈BR,e : µ≤α µ∨. By [1, Proposition 4.4(9)], we have ê ∈ ΠB . By

[1, Proposition 3.10(7)], it follows that ∆(ê) = ∆(α). Thus, ê is a connected
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degree with α(ê) = α. By [1, Proposition 3.10(7), 3.16, Theorem 8.1], it follows
that

∆(ρ) ⊆ ∆(α′) ⊆ ∆(ê− α∨) ⊆ ∆◦
α .

Therefore, we have (α, ρ) = 0 – as claimed. △

In one of the claims before, we figured out that (γ′, α∨) = 1. By the very
definition of ρ = α−γ′, we therefore find that (ρ, α∨) = 2−1 = 1. This equation
obviously contradicts the statement of the previous claim. This contradiction
shows that we must have α = α′ and thus (α, γ) = (α′, γ′). This shows that
the defined map is injective and completes the proof of the theorem.

Assumption 7.13. Let d ∈ ΠP . Let e be the lifting of d. We say that d satisfies
Assumption 7.13 if one of the following conditions holds:

1. All roots in BR,e \R
+
P are long.

2. We have P = B, i.e. X is a generalized complete flag variety.

3. There exist P -cosmall roots α1, . . . , αk such that ∆(α1), . . . ,∆(αk) are

pairwise totally disjoint and such that d =
∑k

i=1 d(αi).

Lemma 7.14. Let α be a long root and let γ be a root non-proportional to α
(i.e. γ 6= ±α). Then we have (γ, α∨) ∈ {−1, 0, 1}.

Proof. Since α and γ are non-proportional, they are linearly independent.
Thus, the Cauchy-Schwarz inequality applied to α and γ is strict and reads
as

|(γ, α)| < ‖γ‖‖α‖

where ‖·‖ is the norm associated to the scalar product (−,−). Using this strict
inequality, we find that

|(γ, α∨)| =
2|(γ, α)|

(α, α)
<

2‖γ‖‖α‖

‖α‖2
≤ 2

where the last inequality follows since α is long. This inequality gives the
claimed values of (γ, α∨).

Lemma 7.15. Let d ∈ ΠP . Let e be the lifting of d. Assume that d satisfies
Assumption 7.13. Then we have the following equality:

−
∑

α∈BR,e\R
+

P

∑

γ∈R+

P \I(sα)

(γ, α∨) =

card{(α, γ) ∈ (BR,e \R
+
P )×R+

P | (γ, α∨) = −1} .
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Proof. Assume first that Assumption 7.13(1) is satisfied. Let (α, γ) be a pair as
it occurs in the index set of the double sum in the statement. By definition, we
know that (γ, α∨) ≤ 0 – otherwise γ ∈ I(sα). (We use here that α ∈ R+ \R+

P

and γ ∈ R+
P .) Since α is long by assumption, Lemma 7.14 applies and we find

that (γ, α∨) ∈ {−1, 0}. If we discard all summands from the double sum which
are zero, we are counting precisely the pairs (α, γ) such that (γ, α∨) = −1.
In this counting, we can equally well allow γ to range over all of R+

P (instead
of γ ∈ R+

P \ I(sα)), since all elements γ ∈ I(sα) satisfy (γ, α∨) = 1 by [4,
Theorem 6.1: (a) ⇒ (c)]. (Here we use that α is B-cosmall by Theorem 4.5(2).)
This proves the equality in this case.
If Assumption 7.13(2) is satisfied, both sides of the claimed equality are obvi-
ously zero. There is nothing to prove.
Finally, assume that Assumption 7.13(3) is satisfied. Let α1, . . . , αk be P -
cosmall roots such that ∆(α1), . . . ,∆(αk) are pairwise totally disjoint and such

that d =
∑k

i=1 d(αi). By Theorem 6.16, we know that BR,e\R
+
P = {α1, . . . , αk},

in particular all elements of BR,e \ R+
P are P -cosmall. In view of this fact,

Theorem 3.4 shows that the left side of the claimed equality is zero. But
Theorem 3.4 also shows that the right side of the equality is zero. (For α ∈
BR,e \ R+

P , all elements γ ∈ R+
P \ I(sα) satisfy (α, γ) = 0 and all elements

γ ∈ I(sα) satisfy (γ, α∨) = 1 as it was explained in the first paragraph of this
proof.) This shows the claimed equality in the last case.

Theorem 7.16. Let d ∈ ΠP . Assume that d satisfies Assumption 7.13. Then
we have the following inequality:

(c1(X), d)− ℓ(zPd ) ≤ card(TDP,d) .

Proof. The theorem follows by combining Lemma 6.25, 7.15 and Theorem 7.12.

8 Main result on quasi-homogeneity

This section is devoted to the proof of the main result on quasi-homogeneity.
After all preparations, it remains to combine the results proved until now and
to relate them to the geometric question of quasi-homogeneity of the moduli
space of stable maps.

Notation 8.1. Let d be a degree. The moduli space M0,3(X, d) comes
equipped with three evaluation maps. For each i ∈ {1, 2, 3}, the ith evalu-
ation map evi : M0,3(X, d) → X is defined by

evi([C, p1, p2, p3, µ : C → X ]) = µ(pi) .

Theorem 8.2. Let d ∈ ΠP . Assume that d satisfies Assumption 7.13. Then
the morphism fP,d has a dense open orbit in M0,3(X, d) under the action of
G. In particular, the moduli space M0,3(X, d) is quasi-homogeneous under the
action of G for all minimal degrees d ∈ ΠP which satisfy Assumption 7.13.
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Proof. We fix a minimal degree d ∈ ΠP which satisfies Assumption 7.13. Let
z = zPd for short. Let M = M0,3(X, d) for short. We denote by M(2) the fiber
of the total evaluation map ev1× ev2 : M → X×X over the point (x(1), x(z)).

Claim: We have dim(M(2)) = (c1(X), d)− ℓ(z). Indeed, the evaluation map
ev1 : M → X is flat (cf. [10, Lemma 2.5.1]) and obviously surjective. Denote by
M(1) the fiber of ev1 over x(1). By the dimension formula for flat morphisms,
we find that dim(M(1)) = dim(M) − dim(X). Similarly, we next consider
the evaluation map ev2 : M(1) → Xz. This maps is again flat (cf. [10, loc.
cit.]) and surjective (cf. [4, Theorem 5.1]). The fiber of ev2 over x(z) is
precisely M(2). Again, by the dimension formula for flat morphisms, we find
that dim(M(2)) = dim(M) − dim(X) − ℓ(z). If we plug in the dimension
formula for M (cf. [5, Theorem 2(i)]) in the last equation, we see that the
claim is true. △

Let L = P ∩ P z. It is clear that L acts on M(2). Moreover, the morphism
fP,d has a dense open orbit in M under the action of G if and only if it has
a dense open orbit in M(2) under the action of L. We rather prove the latter
equivalent formulation of the theorem.
Let f = fP,d for short. Let Tf be the tangent space at f of the orbit Lf ⊆ M(2)
of f under the action of L. In order to prove that f has a dense open orbit in
M(2) under the action of L, it suffices to prove that dim(M(2)) ≤ dim(Tf ).

Claim: We have card(TDP,d) ≤ dim(Tf). Let g be the Lie algebra of G, let p
be the Lie algebra of P , and let t be the Lie algebra of T . For a root α ∈ R,
we denote by gα the Lie algebra of Uα. By [14, Proposition 1.1], the tangent
space of X at the point x(1) can be identified with g/p. Hence, the tangent
space Tf can be identified with a vector subspace of g/p. We will now prove
an inclusion of vector spaces as follows:

⊕

µ∈TDP,d

(gµ + p)/p ⊆ Tf .

The claim follows immediately from this by taking dimensions. (Note that
TDP,d ⊆ R− \R−

P by definition.)
Let e be the lifting of d. For a root α ∈ R, we denote by xα ∈ gα the associated
root vector. For a root α ∈ R, we also write hα = [xα, x−α] ∈ t. In order to
prove the desired inclusion of vector spaces, we prove first that x−α + p ∈ Tf

for all α ∈ BR,e \R
+
P . By definition of f , the tangent direction of f at the point

x(1) is the image of x =
∑

α∈BR,e\R
+

P
x−α in g/p. Hence, we have x+p ∈ Tf . In

view of Theorem 4.5(3), we see that [hα, x] = [hα, x−α] = −2x−α ∈ g−α \ {0}
for all α ∈ BR,e \ R+

P . Since T ⊆ B ∩ Bz ⊆ L and since t acts on Tf , we see
from this that x−α + p ∈ Tf for all α ∈ BR,e \R

+
P .

Let µ ∈ TDP,d. The desired inclusion of vector spaces follows if we prove that
(gµ + p)/p ⊆ Tf . By the previous paragraph and the definition of TDP,d, we
may assume that µ = −α− γ for some α ∈ BR,e \R

+
P and some γ ∈ R+

P . Since
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µ is a root, we have [g−γ , g−α] = gµ. By Lemma 7.10, we know that g−γ acts
on Tf . Hence, the previous paragraph and the previous equation show that we
have indeed (gµ + p)/p ⊆ Tf . △

After all, the desired inequality dim(M(2)) ≤ dim(Tf ) is now easy to deduce
from our previous results. Indeed, we have

dim(M(2)) = (c1(X), d)− ℓ(z) by the first claim

≤ card(TDP,d) by Theorem 7.16

≤ dim(Tf ) by the second claim.

This completes the proof of the desired inequality and hence the proof of the
theorem.
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Universitätsstraße 150
44780 Bochum
Germany
christoph.baerligea@rub.de
and
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