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Abstract. We associate to every symmetric (antisymmetric) her-
mitian form a system of quadratic forms over the base field which
determines its isotropy and metabolicity behaviour. It is shown that
two even hermitian forms are isometric if and only if their associated
systems are equivalent. As an application, it is also shown that an
anisotropic symmetric hermitian form over a quaternion division al-
gebra in characteristic two remains anisotropic over all odd degree
extensions of the ground field.

2010 Mathematics Subject Classification: 11E39, 11E04.
Keywords and Phrases: Hermitian form, system of quadratic forms,
division algebra with involution, Springer’s theorem.

1 Introduction

The theory of hermitian forms appears as a natural generalization of the theory
of bilinear forms, replacing the ground field by an associative ring with involu-
tion. In view of this generalization, a natural problem is to compare important
properties of quadratic and bilinear forms with their corresponding properties
in hermitian forms. A possible approach to this problem is to associate to
every hermitian form h a bilinear or quadratic form over the base field sharing
some properties with h. Among these properties, the isometry and isotropy of
hermitian forms are of particular importance.
The first attempt on the aforementioned problem was made by N. Jacobson
[4]. He associated a quadratic form to hermitian forms over quadratic separable
extensions or quaternion algebras with the canonical involution in characteristic
different from two. This quadratic form determines the isometry class and the
isotropy behaviour of hermitian forms (see [11, Ch. 10, §1] for more details
and [10] for a generalization to arbitrary characteristic). In other words, the

Documenta Mathematica 23 (2018) 747–758



748 Amir Hossein Nokhodkar

theory of hermitian forms over these division algebras with involution reduces
to the theory of quadratic forms.
In this work we generalize the ideas of [4] and associate a system of quadratic
forms to every ±1-hermitian form over a division algebra with involution of the
first kind (D, θ). This correspondence agrees with the Jacobson’s one in the
case where D is a quaternion algebra endowed with the canonical involution
(see Remark 3.3). We start by studying some basic properties of systems of
quadratic forms in §2. In §3 the generalized Jacobson’s trace map qh of a
hermitian form h is defined and its basic properties are studied. We then study
some characterizing properties of qh in §4. It is easily seen that qh determines
the isotropy behaviour of h (see Proposition 4.1). Further, it is shown in
Theorem 4.2 that if charF 6= 2 or D 6= F , a regular ±1-hermitian form h over
(D, θ) is metabolic if and only if qh is metabolic. It is also shown that for
λ = ±1, the generalized Jacobson’s trace map classifies, up to isometry, even
λ-hermitian forms over (D, θ), except for the case where charF 6= 2, D = F
and λ = −1 (see Theorem 4.5). Finally, in §5 we use the system qh to prove
a characteristic two counterpart of a result of Parimala et al [8], which states
that an anisotropic hermitian form over a quaternion division algebra remains
anisotropic over all odd degree extensions of the ground field (see Theorem 5.3).

2 Systems of quadratic forms

Let V be a finite dimensional vector space over a field F of arbitrary char-
acteristic. A quadratic form on V is a map q : V → F for which (i)
q(αv) = α2q(v) for all α ∈ F and v ∈ V ; (ii) the map bq : V × V → F
given by bq(u, v) = q(u + v) − q(u) − q(v) is a bilinear form. The map bq is
called the polar form of q. The orthogonal complement of a subspace W of V
is defined as

W⊥ = {v ∈ V | bq(v, w) = 0 for all w ∈ W}.

As in [9], we say that q is regular if V ⊥ = {0}. Note that this definition is
different from the one given in [3] (see [3, p. 42]). A nonzero vector v ∈ V is
called isotropic if q(v) = 0. The form q is called isotropic if there is an isotropic
vector in V and anisotropic otherwise.
By an n-fold system of quadratic forms on V we mean an n-tuple q =
(q1, · · · , qn), where every qi is a quadratic form on V . Note that we may
identify q with a quadratic map q : V → Fn (see [9, p. 132]). Then q induces
a polar map bq : V × V → Fn given by

bq(u, v) = q(u+ v)− q(u)− q(v).

For a subspace W of V we use the notation

W⊥ = {v ∈ V | bq(v, w) = 0 ∈ Fn for all w ∈ W}.

Clearly, W⊥ is the intersection of the orthogonal complements of W in the
quadratic spaces (V, q1), · · · , (V, qn). The system q is called regular if V ⊥ = {0}.
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Note that q could be regular, while none of the forms q1, · · · , qn are regular.
We say that q is strongly regular if qi is regular for some 1 6 i 6 n.
The system q is called isotropic if q(v) = 0 for some nonzero vector v ∈ V .
In other words, q is isotropic if the forms q1, · · · , qn have a common isotropic
vector. Two systems q : V → Fn and q′ : V ′ → Fn are called equivalent if
there exists an F -linear isomorphism f : V → V ′ such that q′(f(v)) = q(v) for
every v ∈ V . In this case, we write (V, q) ≃ (V ′, q′).

Definition 2.1. A system (V, q) of quadratic forms over F is called metabolic

if there exists a subspace L of V with dimF L > 1
2 dimF V such that q|L = 0.

We call such a subspace L a lagrangian of (V, q). Note that if q is strongly
regular and metabolic, then dimF L = 1

2 dimF V and L⊥ = L.
It is worth noting that there are other possible definitions for the metabolicity

of a system of quadratic forms. However, Definition 2.1 is the weakest one (see
[9, p. 133]).
Given two systems q : V → Fn and q′ : V ′ → Fn of quadratic forms, one can
consider the orthogonal sum q ⊥ q′ : V ⊕ V ′ → Fn given by

(q ⊥ q′)((v, v′)) = q(v) + q′(v′) for v ∈ V and v′ ∈ V ′.

Lemma 2.2. Let (V, q) be a system of quadratic forms over a field F . Then

q ⊥ (−q) is metabolic.

Proof. Let {v1, · · · , vn} be a basis of V , so that

{(v1, 0), · · · , (vn, 0), (0, v1), · · · , (0, vn)}

is a basis of V ⊕ V . It readily follows that the subspace L ⊆ V ⊕ V spanned
by ((v1, v1), · · · , (vn, vn)) is a lagrangian of q ⊥ (−q).

Note that there is no Witt group of systems of quadratic forms. Indeed, there
exists an equivalence q ≃ q1 ⊥ q2 of systems of quadratic forms such that q
and q1 are metabolic, but q2 is not metabolic (see [9, pp. 132–133]). However,
for strongly regular systems we can prove the following result.

Proposition 2.3. Let (V, q) ≃ (U, ρ) ⊥ (W,φ) be an equivalence of systems of

quadratic forms. Suppose that q is strongly regular. If q and φ are metabolic

then ρ is isotropic.

Proof. Suppose that ρ is anisotropic. Considering the isomorphism V ≃ U⊕W ,
we may identify U and W with subspaces of V in such a way that V = U +W
and U ∩ W = {0}. Hence, every element v ∈ V can be uniquely written as
v = u+ w, where u ∈ U and w ∈ W . Therefore,

q(v) = ρ(u) + φ(w). (1)

Let L be a lagrangian of (V, q) and set W1 = L ∩ W . Let {v1, · · · , vk} be a
basis of W1 and extend it to a basis {v1, · · · , vn} of L, where n = 1

2 dimF V .
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For i = 1, · · · , n, write vi = ui + wi, where ui ∈ U and wi ∈ W . Then ui = 0
for i 6 k. Since q|L is trivial, (1) implies that

ρ(ui) = −φ(wi) and bρ(ui, uj) = −bφ(wi, wj) for i, j = 1, · · · , n. (2)

We claim that the set {w1, · · · , wn} is linearly independent. Suppose that∑n

i=1 αiwi = 0 for some α1, · · · , αn ∈ F . Then φ(
∑n

i=1 αiwi) = 0, which
implies that ρ(

∑n
i=1 αiui) = 0, thanks to (2). Since ρ is anisotropic, we obtain∑n

i=1 αiui = 0. Hence,
∑n

i=1 αivi = 0, which yields α1 = · · · = αn = 0,
because {v1, · · · , vn} is a basis of L. This proves the claim.
Let W ′ be the subspace of W spanned by w1, · · · , wn. For i 6 k and j =
1, · · · , n, the equality bq(vi, vj) = 0 implies that bq(wi, uj + wj) = 0. Since
bq(wi, uj) = 0 for all i, j, we have

bφ(wi, wj) = bq(wi, wj) = 0 for all i 6 k and j = 1, · · · , n.

It follows that W ′ ⊆ W⊥
1 with respect to the polar form of φ.

Let L′ be a lagrangian of (W,φ). We claim that W1 ∩ L′ = W ′ ∩ L′. Since
wi = vi for i 6 k, we have W1 ⊆ W ′, hence W1 ∩ L′ ⊆ W ′ ∩ L′. Conversely,
let w ∈ W ′ ∩ L′. Write w =

∑n

i=1 βiwi for some β1, · · · , βn ∈ F . Since
φ(w) = 0, we obtain ρ(

∑n

i=1 βiui) = 0 by (2). Hence,
∑n

i=1 βiui = 0, because
ρ is anisotropic. It follows that

w =

n∑

i=1

βiwi =

n∑

i=1

βiwi +

n∑

i=1

βiui =

n∑

i=1

βivi ∈ L.

On the other hand, we have W ′ ⊆ W , hence w ∈ W ∩ L = W1, proving the
converse inclusion.
Set X = W1 ∩ L′ = W ′ ∩ L′ and let l = dimF X . The inclusion X ⊆ W1

shows that W⊥
1 ⊆ X⊥, hence W ′ ⊆ X⊥ (with respect to the polar form

of φ). Similarly, the inclusion X ⊆ L′ implies that L′ = L′⊥ ⊆ X⊥. Let
dimF W = 2s. Since φ is strongly regular, X⊥ is a subspace of W of dimension
at most 2s − l. Also, W ′ is an n-dimensional subspace of X⊥ and L′ is an
s-dimensional subspace of X⊥ with dimF W ′∩L′ = l. Hence, n+s− l 6 2s− l,
which implies that n = s, because s 6 n. But this means that the form (U, ρ)
is trivial, a contradiction.

3 The generalized Jacobson’s trace map

Let A be a central simple algebra over a field F . An involution on A is a map
σ : A → A satisfying σ(x+ y) = σ(x) + σ(y), σ(xy) = σ(y)σ(x) and σ2(x) = x
for x, y ∈ A. An involution σ on A is said to be of the first kind if it restricts
to the identity on F . Otherwise, it is said to be of the second kind. For an
algebra with involution (A, σ) and λ = ±1 we use the notation

Symλ(A, σ) = {x ∈ A | σ(x) = λx},

Symdλ(A, σ) = {x+ λσ(x) | x ∈ A}.
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Note that if charF 6= 2 then Symλ(A, σ) = Symdλ(A, σ) (see [6, p. 14]). We
will simply denote Sym1(A, σ) by Sym(A, σ) and Symd1(A, σ) by Symd(A, σ).
From now on, we fix (D, θ) as a finite dimensional division algebra with in-
volution of the first kind over a field F . We also fix the element λ = ±1. A
λ-hermitian space over (D, θ) is a pair (V, h), where V is a finite dimensional
right vector space over D and h : V × V → D is a bi-additive map satisfy-
ing h(ud, vd′) = θ(d)h(u, v)d′ and h(v, u) = λθ(h(u, v)) for all u, v ∈ V and
d, d′ ∈ D. It follows immediately that h(v, v) ∈ Symλ(D, θ) for every v ∈ V .
A λ-hermitian space (V, h) is called even if h(v, v) ∈ Symdλ(D, θ) for all v ∈
V . Note that if charF 6= 2 then all λ-hermitian forms are even, because
Symλ(D, θ) = Symdλ(D, θ). A λ-hermitian space (V, h) is called regular if for
every nonzero vector u ∈ V there exists a vector v ∈ V such that h(u, v) 6= 0.

Lemma 3.1. Let (V, h) be a λ-hermitian space over (D, θ) and let π :
Symλ(D, θ) → F be an F -linear map. Considering V as a vector space over

F , the map q : V → F defined by q(v) = π(h(v, v)) is a quadratic form with

the polar form

bq(u, v) = π(h(u, v) + h(v, u)) for u, v ∈ V. (3)

Proof. For α ∈ F and v ∈ V we have

q(αv) = π(h(αv, αv)) = π(α2h(v, v)) = α2π(h(v, v)) = α2q(v).

Consider the map bq : V × V → F given by bq(u, v) = q(u+ v) − q(u)− q(v).
Then the relation (3) follows from the equality

h(u + v, u+ v)− h(u, u)− h(v, v) = h(u, v) + h(v, u).

It readily follows that bq is a symmetric bilinear form on V , i.e., q is a quadratic
form.

We now fix a basis B = {u1, · · · , un} of Symλ(D, θ) over F and denote by
{π1, · · · , πn} its dual basis of Hom(Symλ(D, θ), F ). By Lemma 3.1, the map
qui

h,B : V → F given by
qui

h,B(v) = πi(h(v, v))

is a quadratic form with the polar form

bq
ui
h,B

(u, v) = πi(h(u, v) + h(v, u)).

Note that

h(v, v) =

n∑

i=1

qui

h,B(v)ui for all v ∈ V.

Let qh,B = (qu1

h,B, · · · , q
un

h,B). Then qh,B : V → Fn is a system of quadratic forms
over F . We will simply denote qui

h,B by qi and qh,B by qh if no confusion arises.
Note that if (V, h) and (V ′, h′) are two hermitian spaces over (D, θ) then
qh⊥h′,B = qh,B ⊥ qh′,B.
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Remark 3.2. Suppose that (D, θ) = (F, id). If λ = 1 then h is a symmetric
bilinear form and Symλ(D, θ) = F . Taking B = {1}, the form qh is just the
quadratic form associated to the bilinear form h given by qh(v) = h(v, v). If
λ = −1 and charF 6= 2 then h is an alternating bilinear form (i.e., h(v, v) = 0
for all v ∈ V ) and Symλ(D, θ) = {0}. In this case, qh is trivial.

Remark 3.3. Suppose that charF 6= 2, λ = 1 and D is a quaternion algebra.
Let θ be the canonical involution of D, i.e., θ(x) = TrdD(x) − x for x ∈ D,
where TrdD(x) is the reduced trace of x in D. Then Symλ(D, θ) = F and one
can choose B = {1} (see [6, p. 26]). In this case, the system qh,B is just a
quadratic form, known as the Jacobson’s trace form. This form was introduced
first in [4] (see [10] for a characteristic two counterpart).

In view of Remark 3.3, we call qh the generalized Jacobson’s trace map of h.
The next result shows that qh is an invariant of the isometry class of h.

Proposition 3.4. Let (V, h) and (V ′, h′) be two λ-hermitian spaces over (D, θ).
If (V, h) ≃ (V ′, h′) then qh,B ≃ qh′,B.

Proof. Let φ : (V, h) ≃ (V ′, h′) be an isometry. Considering φ as an isomor-
phism of F -linear spaces, we have

qui

h′,B(φ(v)) = πi(h
′(φ(v), φ(v))) = πi(h(v, v)) = qui

h,B(v),

for i = 1, · · · , n and v ∈ V . It follows that qh′,B(φ(v)) = qh,B(v) for all v ∈ V ,
i.e., qh,B ≃ qh′,B.

Proposition 3.5. Let (V, h) be a regular λ-hermitian space over (D, θ) and

let u ∈ Symdλ(D, θ). Then for every nonzero vector v ∈ V there exists w ∈ V
such that h(v, w) + h(w, v) = u. In particular, if ui ∈ Symdλ(D, θ) for some

basis element ui ∈ B, where 1 6 i 6 n, then qi is regular.

Proof. Let v ∈ V be a nonzero vector. Since h is regular, there exists v′ ∈ V
for which h(v, v′) = 1. Write u = d + λθ(d), where d ∈ D and set w = v′d.
Then

h(v, w) + h(w, v) = h(v, v′)d+ θ(d)h(v′, v) = d+ λθ(d) = u.

If ui ∈ Symdλ(D, θ) for some i = 1, · · · , n, then the above argument shows that
for every nonzero vector v ∈ V there exists w ∈ V such that h(v, w)+h(w, v) =
ui. Hence, bqi(v, w) = 1, i.e., qi is regular.

Remark 3.6. The last statement of Proposition 3.5 is not necessarily true if
ui /∈ Symdλ(D, θ). Indeed, let charF = 2 and suppose that the basis B is
chosen with the additional property that {u1, · · · , ur} is a basis of Symd(D, θ)
for some nonnegative integer r < n. Since for all v, w ∈ V we have h(v, w) +
h(w, v) ∈ Symd(D, θ), the polar form of qi is zero for all i > r. In particular, if
D = F then h is a bilinear form and qh is a quadratic form, whose polar form
is zero (note that in this case, Sym(D, θ) = F and Symd(D, θ) = {0}).
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Corollary 3.7. Let (V, h) be a λ-hermitian space over (D, θ). Suppose that

either D 6= F or λ 6= −1. If h is regular then qh is strongly regular.

Proof. The assumption D 6= F or λ 6= −1 implies that Symdλ(D, θ) 6= {0} (see
[6, (2.6)]). Let u ∈ Symdλ(D, θ) be a nonzero element. Write u =

∑n
i=1 aiui

for some a1, · · · , an ∈ F . By re-indexing if necessary, we may assume that
a1 · · · ar 6= 0, where r 6 n is a positive integer. Let v ∈ V be an arbitrary
nonzero vector. By Proposition 3.5 there exists w ∈ V for which h(v, w) +
h(w, v) = u. It follows that bqi(v, w) = ai 6= 0 for i 6 r. Hence, qi is regular
for i = 1, · · · , r.

Remark 3.8. Corollary 3.7 does not hold in the case whereD = F and λ = −1.
Indeed, if charF 6= 2 then as observed in Remark 3.2, qh is trivial. Also, if
charF = 2 then the polar form of qh is zero (see Remark 3.6).

4 Classification of hermitian forms

In this section we state some characterizing properties of the generalized Jacob-
son’s trace map. We first show that the system (V, qh) completely determines
the isotropy behaviour of the λ-hermitian space (V, h). Recall that h is called
isotropic if h(v, v) = 0 for some nonzero vector v ∈ V . Let W be a subspace of
V . The orthogonal complement of W is defined as

W⊥h = {v ∈ V | h(v, w) = 0 for all w ∈ W}.

The form h is called metabolic if there exists a subspace L ⊆ V such that
L = L⊥h .

Proposition 4.1. Let (V, h) be a λ-hermitian space over (D, θ). Then h is

isotropic if and only if qh is isotropic.

Proof. The result follows from the equality

h(v, v) = q1(v)u1 + · · ·+ qn(v)un for v ∈ V,

together with the linear independence of {u1, · · · , un}.

Theorem 4.2. Let (V, h) be a λ-hermitian space over (D, θ). If h is metabolic

then qh is metabolic. The converse is also true if h is regular and either

charF 6= 2 or D 6= F .

Proof. If there exists a subspace L ⊆ V such that L = L⊥h , then dimD L >
1
2 dimD V and h|L×L = 0. Hence, dimF L >

1
2 dimF V and qh|L = 0, i.e., qh is

metabolic.
Suppose now that qh is metabolic, h is regular and either D 6= F or charF 6= 2.
In the case where D = F and λ = −1 we have charF 6= 2. Hence, h is an
alternating bilinear form, which is metabolic by [3, (1.8)]. Otherwise, the
hypotheses of Corollary 3.7 are satisfied, hence qh is strongly regular. By [5,
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Ch. I, (6.1.1)], one can write h ≃ han ⊥ hmet, where han is anisotropic and
hmet is metabolic. Hence, qh ≃ qhan

⊥ qhmet
by Proposition 3.4. If han is

nontrivial, then qhan
is anisotropic by Proposition 4.1. However, the above

argument shows that qhmet
is metabolic. This contradicts Proposition 2.3.

Remark 4.3. The converse of Theorem 4.2 does not necessarily hold if either
h is not regular or charF = 2 and D = F . For the first case, let h = 〈1, 0〉(D,θ)

be the diagonal form h((x1, x2), (y1, y2)) = θ(x1)y1. Then h is not metabolic,
but qh is metabolic. For the second case, let b be a two-dimensional anisotropic
symmetric bilinear form and set h = b ⊥ H, where H is the hyperbolic plane
(note that in this case h is a bilinear form and qh is a quadratic form). Then
h is a regular form which is not metabolic, but qh is metabolic.

Lemma 4.4. Let f : (V, q) ⊥ (W,ρ) ≃ (V ′, q′) ⊥ (W ′, ρ′) be an equivalence of

systems of quadratic forms. If ρ and ρ′ are zero forms and q and q′ are regular,

then (V, q) ≃ (V ′, q′).

Proof. Since (V ⊕ W )⊥ = W and (V ′ ⊕ W ′)⊥ = W ′, we have dimF W =
dimF W ′, hence dimF V = dimF V ′. Let p1 : V ′ ⊕ W ′ → V ′ be the natural
projection (v′, w′) 7→ v′. Consider the map g : V → V ′ defined by g(v) = p1 ◦
f(v, 0). It is easily seen that g is an injective map satisfying q′(g(v)) = q(v) for
all v ∈ V . Dimension count shows that g : (V, q) ≃ (V ′, q′) an equivalence.

We now consider the converse of Proposition 3.4 for even λ-hermitian forms
over (D, θ).

Theorem 4.5. Let (V, h) and (V ′, h′) be two even λ-hermitian spaces over

(D, θ). If qh,B ≃ qh′,B then (V, h) ≃ (V ′, h′), except for the case where charF 6=
2, D = F and λ = −1.

Proof. Suppose that charF = 2 or D 6= F or λ 6= −1. If D = F and λ = −1,
then charF = 2 and Symd(F, id) = {0}. Hence, h and h′ are zero forms and
the result holds by dimension count. Otherwise, we have D 6= F or λ 6= −1.
Write h ≃ h1 ⊥ h2 and h′ ≃ h′

1 ⊥ h′
2, where h1 and h′

1 are regular and h2 and
h′
2 are zero forms. Then the equivalence qh,B ≃ qh′,B implies that

qh1,B ⊥ qh2,B ≃ qh′

1
,B ⊥ qh′

2
,B.

By Corollary 3.7, qh1,B and qh′

1
,B are strongly regular. Since qh2,B and qh′

2
,B are

zero forms, Lemma 4.4 implies that qh1,B ≃ qh′

1
,B. It follows from Lemma 2.2

that qh1⊥(−h′

1
),B ≃ qh1,B ⊥ (−qh′

1
,B) is metabolic. The assumption D 6= F or

λ 6= −1 implies that either D 6= F or charF 6= 2, and thus it follows that
h1 ⊥ (−h′

1) is metabolic by Theorem 4.2. Since h1 and h′
1 are even, [5, Ch. I,

(6.4.5)] implies that h1 ≃ h′
1. Dimension count now shows that h ≃ h′.

Remark 4.6. If charF 6= 2, D = F and λ = −1 in Theorem 4.5 then qh and
qh′ are trivial (see Remark 3.2). Hence, this result is not necessarily true in this
exceptional case. It is also worth noting that Theorem 4.5 does not hold for an
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arbitrary regular hermitian form. Indeed, let D = F be a field of characteristic
two with F 6= F 2 and choose an element a ∈ F \ F 2. The bilinear forms h1 =
〈1, a〉 and h2 = 〈1, a+ 1〉 are not equivalent because a(a+ 1) /∈ F 2. However,
the quadratic forms qh1

= 〈1, a〉 and qh2
= 〈1, a + 1〉, whose corresponding

symmetric bilinear forms are trivial, are equivalent because {1, a} and {1, a+1}
generate the same subspace of F over F 2.

5 An application in characteristic two

Let K/F be a finite extension such that DK := D⊗K is a division algebra. If
(V, h) is a λ-hermitian space over (D, θ), then there exists a λ-hermitian form
(VK , hK) over (D, θ)K := (DK , θ ⊗ id), where hK : VK × VK → DK is induced
by hK(x⊗α, y⊗β) = h(x, y)⊗αβ. Since Symλ((D, θ)K) = Symλ(D, θ)⊗K, the
set B′ := {u1⊗ 1, · · · , un⊗ 1} is a K-basis of Symλ((D, θ)K). For i = 1, · · · , n,
by identifying F ⊗ K = K, we obtain a quadratic form qui⊗1

hK ,B′ : VK → K
satisfying

qui⊗1
hK ,B′(v ⊗ α) = πi(h(v, v))α

2 = qui

h,B(v)α
2 for all v ∈ V and α ∈ K.

It readily follows that the definition of qh,B is functorial, i.e.,

qhK ,B′ = (qh,B)K .

The following result is based on Springer’s theorem [3, (18.5)] and a theorem
of Amer-Brumer (see [1], [2] and [7]).

Theorem 5.1. Let K/F be a field extension of odd degree and let q = (q1, q2)
be a 2-fold system of quadratic forms over F . If q is anisotropic, then qK is

also anisotropic.

Proof. See [9, Ch. 9, (1.11)].

Lemma 5.2. Let (A, σ) be a central simple algebra over F . If x ∈ Symdλ(A, σ)
then σ(y)xy ∈ Symdλ(A, σ) for every y ∈ A.

Proof. Write x = z + λσ(z) for some z ∈ A. Then

σ(y)xy = σ(y)(z + λσ(z))y = σ(y)zy + λσ(σ(y)zy) ∈ Symdλ(A, σ).

We conclude by proving the following analogue of [8, (3.5)].

Theorem 5.3. Suppose that charF = 2 and D is a quaternion division F -

algebra. If K/F is a finite extension of odd degree, then every anisotropic

hermitian space over (D, θ) remains anisotropic over (D, θ)K .

Proof. Suppose that there exists an anisotropic hermitian space (V, h) over
(D, θ) for which (VK , hK) is isotropic. Choose such a hermitian space with
m := dimD V minimal. Clearly, we have m > 1. We claim that there exists
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an orthogonal basis {v1, · · · , vm} of (V, h) satisfying h(vi, vi) ∈ Symd(D, θ) for
i = 1, · · · ,m.
By [6, (2.6 (2))] we have dimF Symd(D, θ) = 1 and dimF Sym(D, θ) = 3.
Let u1 ∈ Symd(D, θ) be a unit, so that Symd(D, θ) = Fu1. Extend {u1} to
a basis {u1, u2, u3} of Sym(D, θ). We construct inductively the required set
{v1, · · · , vm}. First, note that since hK is isotropic, the system

(q1, q2, q3)K = (qh)K = qhK

is isotropic by Proposition 4.1. Applying Theorem 5.1 to the system (q2, q3),
one can find a nonzero vector v1 ∈ V such that q2(v1) = q3(v1) = 0. Hence,

h(v1, v1) = a1u1 ∈ Symd(D, θ),

where a1 = q1(v1) ∈ F . Suppose now that there exists a linearly independent
set {v1, · · · , vr} ⊂ V such that

h(vi, vi) ∈ Symd(D, θ) for i = 1, · · · , r, (4)

and h(vi, vj) = 0 for 1 6 i 6= j 6 r, where 1 6 r < m. Let W = v1D+ · · ·+vrD
and S = W⊥h . Then (V, h) ≃ (W,h|W×W ) ⊥ (S, h|S×S) by [5, Ch. I, (3.6.2)].
The minimality of m implies that (h|W×W )K and (h|S×S)K are anisotropic.
Since hK is isotropic there exist nonzero vectorsw ∈ WK and w′ ∈ SK such that
hK(w+w′, w+w′) = 0. Write w = v1d1+ · · ·+ vrdr for some d1, · · · , dr ∈ DK

and set h′ = h|S×S . By Lemma 5.2 and (4) we have

h′
K(w′, w′) = hK(w′, w′) = −hK(w,w)

= −
r∑

i=1

θK(di)h(vi, vi)di ∈ Symd(D, θ)⊗K.

Hence, (qu2

h′,B)K(w′) = (qu3

h′,B)K(w′) = 0. By Theorem 5.1 there exists a nonzero
vector vr+1 ∈ S such that qu2

h′,B(vr+1) = qu3

h′,B(vr+1) = 0. Hence,

h(vr+1, vr+1) ∈ Symd(D, θ).

So we have extended the set {v1, · · · , vr} to {v1, · · · , vr+1} with the required
properties. The claim therefore follows from induction.
Now, let v ∈ V be an arbitrary vector and write v = v1d

′
1 + · · · vmd′m for some

d′1, · · · , d
′
m ∈ D. Then Lemma 5.2 implies that

h(v, v) =

m∑

i=1

θ(d′i)h(vi, vi)d
′
i ∈ Symd(D, θ),

i.e., h is an even hermitian form. It follows that the forms q2 and q3 are
trivial. In other words, the system qh reduces to the quadratic form q1. Since
hK is isotropic, using Proposition 4.1 and Springer’s theorem [3, (18.5)], one
concludes that h is isotropic, contradicting the assumption.
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Remark 5.4. The proof of Theorem 5.3 is really specific to the characteristic 2
case. Indeed, this proof relies on the fact that Symd(D, θ) is a one-dimensional
subspace of Sym(D, θ) satisfying θ(d) · Symd(D, θ) · d ⊆ Symd(D, θ) for all d ∈
D. However, if charF 6= 2, dimF Symλ(D, θ) = 3 and h is a λ-hermitian form
over (D, θ), then one can easily show that there is no 1-dimensional subspace
S of Symλ(D, θ) for which θ(d) · S · d ⊆ S for all d ∈ D.
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