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Abstract. In [GP2] we constructed a new class of Iwasawa
modules as ℓ–adic realizations of what we called abstract
ℓ–adic 1–motives in the number field setting. We proved in
loc. cit. that the new Iwasawa modules satisfy an equivari-
ant main conjecture. In this paper we link the new modules
to the ℓ–adified Tate canonical class, defined by Tate in 1960
[Ta1] and give an explicit construction of (the minus part
of) ℓ–adic Tate sequences for any Galois CM extension K/k
of an arbitrary totally real number field k. These explicit
constructions are significant and useful in their own right
but also due to their applications (via results in [GP2]) to
a proof of the minus part of the far reaching Equivariant
Tamagawa Number Conjecture for the Artin motive asso-
ciated to the Galois extension K/k.
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840 Greither and Popescu

1. Setup and preparation

Let K/k be a Galois extension of number fields of Galois group
G. Assume that K is a CM field and that k is totally real. We
fix an odd prime ℓ and denote by K∞ and k∞ the cyclotomic
Zℓ–extensions of K and k, respectively. We fix two finite, dis-
joint, G–invariant sets of primes S and T in K, such that S con-
tains the ramification locus Sram(K∞/k) of K∞/k (in particular,
it contains the set Sℓ of all ℓ–adic primes and the set S∞ of all
the archimedean primes) and T contains at least two primes of
distinct residual characteristics. We assume throughout that the
classical Iwasawa µ–invariant associated to K∞ and ℓ vanishes, as
conjectured by Iwasawa. In earlier work [GP2] we defined the cate-
gory of “abstract ℓ–adic 1–motives” (which contains Deligne’s cat-
egory of Picard 1–motives as a full subcategory) and from the data
(K/k, S, T, ℓ) as above we constructed a canonical abstract ℓ–adic
1–motive M :=Mℓ

S,T (K/k). Its ℓ–adic realization (Tate module)
Tℓ(M), which was defined in loc.cit., is a free Zℓ–module of finite
rank which comes endowed with a natural Zℓ[[G]]–module structure,
where G := Gal(K∞/k). In fact, the unique complex conjugation
automorphism j of the CM field K∞ acts upon Tℓ(M) with eigen-
value (−1), so Tℓ(M) can be naturally viewed as a module over the
quotient ring Zℓ[[G]]− := Zℓ[[G]]/(1 + j). The main result in [GP2]
states the following.

Theorem 1.1. Under the above hypotheses, the following hold.

(1) pdZℓ[[G]]
Tℓ(M) = 1.

(2) If G is abelian, then FitZℓ[[G]]−Tℓ(M) =
(
Θ∞

S,T

)
.

Above, “Fit” denotes as usual the initial (0–th) Fitting ideal and
Θ∞

S,T denotes a certain equivariant ℓ–adic L–function (a distin-
guished element of Zℓ[[G]]−) defined in loc.cit. Part (2) of the above
theorem is what we called an “equivariant main conjecture” and it
is a G–equivariant refinement of the classical Iwasawa Main Con-
jecture for arbitrary totally real number fields and odd primes ℓ
proved by Wiles in [Wi]. As shown in [GP2], this refinement im-
plies refined versions of the classical (imprimitive) Brumer-Stark
and Coates-Sinnott conjectures. At this point we want to stress
that Ritter and Weiss, and Kakde, have also proved Equivariant
Main Conjectures which are in a way broader in scope, as they
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are valid in the non-abelian setting as well. The relation with our
version stated above was very nicely clarified by Nickel in [Ni].
From now on we will assume for simplicity that the extensions k∞/k
and K/k are linearly disjoint (over k). This hypothesis will be re-
moved in Remark 5.11. As a consequence of this hypothesis, Ga-
lois restriction induces a group isomorphism G ≃ G × Γ, where
Γ := Gal(K∞/K) ≃ Gal(k∞/k). Consequently, we have ring iso-
morphisms Zℓ[[G]]− ≃ Zℓ[G]−[[Γ]] ≃ Λ[G]−, where Λ = Zℓ[[Γ]] is
the usual Iwasawa algebra. Consequently (see [GP2] and the refer-
ences therein) part (1) of the theorem above is equivalent to

pdZℓ[G]Tℓ(M) = 0,

i.e. Tℓ(M) is a finitely generated projective module over Zℓ[G] (and
over Zℓ[G]−, obviously.) As a consequence, if we fix a topological
generator γ of Γ, we obtain a perfect complex of Zℓ[G]–modules

C• = [Tℓ(M)
1−γ−→ Tℓ(M)],

concentrated in degrees 0 and 1. Of course, the two cohomol-
ogy groups of C• are given by the Γ-invariants Tℓ(M)Γ and Γ-
coinvariants Tℓ(M)Γ of Tℓ(M), respectively.
The main goal of this paper is twofold: first, fully describe the two
cohomology groups of C• in terms of arithmetic invariants associ-
ated to (K/k, S, T ) and second, fully describe the class of C• in the
appropriate Ext2Zℓ[G]−(∗, ∗). More precisely, the main result of our

paper is that C• gives a T -modified version of Tate’s class (defined
in [Ta1]) in the appropriate Ext2. (See Theorem 5.9 for the precise
statement.) In the next remark and the paragraph that follows we
explain these goals in more detail.

Remark 1.2. In [GP1] we proved the exact analogue of Theorem
1.1 in the case where K/k is a Galois extension of global fields
of characteristic p > 0 (i.e. function fields) and K∞ (respectively
k∞) is the maximal constant field extension of K (respectively k.)
In that case there exists an actual geometric 1–motive (Deligne’s
Picard 1–motive)MS,T (K/k) whose ℓ–primary partMS,T (K/k)⊗
Zℓ gives the abstract ℓ–adic 1–motive Mℓ

S,T (K/k), for all prime
numbers ℓ (including ℓ = 2, p.) In that geometric context there
is no analogue of complex conjugation, so taking (−1)–eigenspaces
does not make sense. Also, there is no analogue of the sets Sℓ
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or S∞ and, most importantly, the extension K∞/K (which in that
case is the maximal constant field extension of K) is unramified.
Moreover, in [GPff] we studied the function field analogue of the
complex C• and under a natural largeness hypothesis on the set S
emerging from work of Tate (see below for details) we showed that
there are Zℓ[G]–module isomorphisms

(1) H0(C•) ≃ US,T ⊗ Zℓ, H1(C•) ≃ XS ⊗ Zℓ,

where US,T is the group of S–units in K which are congruent to 1
modulo all primes in T and XS is the group of degree 0 divisors in
K supported at S. For all G–Galois extensions K/k of global fields
and data (K/k, S, T ) as above Tate [Ta1, Ta2] defined a canonical
class τK/k,S ∈ Ext2Zℓ[G](XS, US), for “large” S and independent on
T , where US is the group of S–units in K and XS is as above.
It turns out that under the “largeness” hypothesis (to be explained
below), the Z[G]–module inclusion ι : US,T → US induces a group
isomorphism (more on this below)

(2) ι∗ : Ext
2
Z[G](XS, US,T ) ≃ Ext2Z[G](XS, US).

In the function field setting we proved in [GPff] that if cℓK/k,S,T is

the extension class of C• and τ ℓK/k,S is the ℓ-primary part of Tate’s
class, then

(3) (ι∗ ⊗ idZℓ
)(cℓK/k,S,T ) = τ ℓK/k,S,

for all primes ℓ 6= p. The same result should hold for ℓ = p, but as
explained in loc. cit. we will address that case in a separate paper
as the calculations would be somewhat different in nature, involving
crystalline rather than ℓ–adic étale cohomology. This way we ob-
tained in the function field setting a very explicit ℓ–adic realization

0→ US,T ⊗ Zℓ → Tℓ(M)
1−γ−→ Tℓ(M)→ XS ⊗ Zℓ → 0.

of a so–called Tate sequence (meaning that its middle terms are
finitely generated, projective Zℓ[G]–modules and representing the ℓ–
adic Tate class via ι∗ ⊗ idZℓ

.)

The remark above makes it easier for us to state the goals of this
paper more precisely: prove (1) and (3) in the number field setting
laid out above, under the assumption that ℓ is an odd prime, with
US,T ⊗ Zℓ, XS ⊗ Zℓ and τ ℓK/k,S replaced by (US,T ⊗ Zℓ)

−, (XS ⊗
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Zℓ)
− and τ ℓ,−K/k,S,T , respectively. As in [GPff], we will approach the

question of linking C• to the Tate class from two sides. On one
hand we calculate the Γ–invariants and Γ–coinvariants of Tℓ(M)
directly, via Iwasawa theoretic methods, in sections 2 and 3. On
the other hand, in section 5 (see Theorem 5.9) we establish the

desired link between C• and the Tate class τ ℓ,−K/k,S via calculations

in a certain derived category and by relying in an essential way
upon deep results of Burns–Flach [BF] and [Bu1]. The reason why
we insist on presenting the explicit calculations of the cohomology
of C• is because the proof of Theorem 5.9 relies on less explicit, not
so easily transparent derived category arguments. It is satisfactory
to see that the results obtained via the two approaches agree at
the cohomology level. We must admit that at present the explicit
calculation in the coinvariant case is somewhat laborious and not
as smooth as the result one extracts from the “identification” with
Tate’s canonical class. However, it is definitely much more explicit.
To put things into context, it is important to note the following.
In his Habilitationsschrift [Wt], Witte has reproved the results of
[GP2] in a much wider context, which also covers Nickel’s general-
ization [Ni]. In the present paper we need a link between torsion
of the realization of abstract 1-motives and cohomology. This is
established in Section 5. As it turns out, this is also to be found
in Chapter 6 of [Wt], see Cor. 6.3.3 in particular. Witte’s language
is much more general and abstract. The arguments in Section 5
of the present paper were developed several years ago; we feel that
their more pedestrian presentation might be useful, and we would
like to let them stand. It was only in the summer of 2017 that the
authors became aware of [Wt].
The rest of this section reviews additional notation and presents
some preparations. For the construction ofM and its ℓ–adic real-
ization Tℓ(M), the reader should consult [GP2]. For the definition
of Tate’s class τK/k,S the reader should consult [Ta1, Ta2]. In or-
der to simplify notation we will let K := K∞. For any algebraic
field extension N/K, S(N) denotes the set of places of N above
places in S, but often we will be sloppy in context, just writing
S instead of S(N). In the particular case N = K we write S for
S(K). The same notational convention should be used for the set
T , but for simplicity we will use T for T (N) and for T most of
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844 Greither and Popescu

the time. No confusion will ensue. The superscript minus always
means the (−1)-eigenspace under the unique complex conjugation
of K, as customary. As in Remark 1.2 above, US denotes the group
of S–units in K and US,T denotes its subgroup consisting of those
S–units which are congruent to 1 modulo every prime in T . For an
algebraic extension N/K, US(N) and US,T (N) have similar mean-
ings. If X is a set and O is a commutative ring, then O[X ] will
denote the free O–module of basis X . If X happens to be a group
(or a set endowed with an action by a group H), then O[X ] is
viewed with its additional group–ring structure (or O[H ]–module
structure). Note that since K and K are CM, we have

(XS⊗Zℓ)
− = Zℓ[S]

− = Zℓ[S\S∞]−,Zℓ[S\Sℓ]− = Zℓ[S\(Sℓ∪S∞)]−.

For an algebraic extension N/K, the group clT (N) denotes the ray
class group of N with conductor equal to the product of the prime
ideals belonging to places in T (N). In less elaborate language,
this is the group of all fractional ideals coprime to T (N) modulo
all principal ideals admitting a generator u which is congruent to
1 modulo all v ∈ T (N). We let cl(N) denote the usual class–
group of N . For simplicity, we let CT (N) := (clT (N) ⊗ Zℓ)

− and
CT

∞ := CT (K). We give similar meanings to C(N) and C∞.

Definition 1.3. The set S is called large (respectively ℓ–large) if
clT (K) (respectively CT (K)) is generated by ideal classes supported
at primes in S.

Note that Tate’s definition of “large” involves the usual class–group
cl(K) instead of the ray–class group clT (K). However, the existence
of a canonical surjective group morphism clT (K) ։ cl(K) shows
that “large” in the sense of the definition above implies “large” in
Tate’s sense. Also, there is a well known canonical exact sequence
of Z[G]–modules

(4) 0→ US,T
ι→ US → κ(T )→ clT (K)S → cl(K)S → 0

where κ(T ) = ⊕v∈Tκ(v)
× (here κ(v) is the residue field at v) and

clT (K)S and cl(K)S are the quotients of the corresponding ideal–
class groups by the subgroups of S–ideal classes. It is well known
(see [GP2], for example) that pdZ[G]κ(T ) = 1. Consequently, if S
is large then clT (K)S = cl(K)S = 0 and ι induces the isomorphism
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ι∗ mentioned in (2) above. Under the weaker “ℓ–largeness” hy-
pothesis this line of arguments yields the isomorphism (ι∗⊗ idZℓ

)−,
which is in fact all that is needed for our goals. We repeat our
first goal: compute the modules Tℓ(M)Γ and Tℓ(M)Γ directly. The
main problems we are going to encounter are caused by the set Sℓ

of ℓ-adic places, which have no analog in the function field case. To
guide us in our task, we recall from [GP2] that there is a canonical
short exact sequence of Zℓ[[G]]–modules

0→ Tℓ(C
T
∞)→ Tℓ(M)→ Zℓ[S \ Sℓ]− → 0,

and we rely on the following largely self-explanatory diagram arising
from that s.e.s; the two dotted arrows indicate the snake map. The
resulting 6-term exact sequence of Γ-invariants and Γ-coinvariants,
connected by the snake map in the middle, is well visible in this
diagram and will be used later on. Here γ is a fixed generator of Γ.

0

��

0

��

0

��

0 // Tℓ(C
T
∞)Γ //

��

Tℓ(M)Γ //

��

Zℓ[S \ Sℓ]−,Γ //

��

0 // Tℓ(C
T
∞) //

1−γ
��

Tℓ(M) //

1−γ

��

Zℓ[S \ Sℓ]− //

1−γ

��

0

0 // Tℓ(C
T
∞) //

��

Tℓ(M) //

��

Zℓ[S \ Sℓ]− //

��

0

// Tℓ(C
T
∞)Γ //

��

Tℓ(M)Γ //

��

Zℓ[S \ Sℓ]−Γ //

��

0

0 0 0

2. Invariants

We begin by dealing with the Γ-invariants. This is a relatively
easy task in light of a very concrete interpretation given to Tℓ(M)
in [GP2], §3. In this section and the next, we make two blanket
assumptions:
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(1) S is ℓ–large, i.e. CT (K) is generated by the classes of primes
in S.

(2) All primes in Sℓ are totally ramified in K∞/K.

The second assumption will be eliminated in section 4 below.

Proposition 2.1. There is an isomorphism

ϕ∞ : Tℓ(M)Γ ∼= (Zℓ ⊗Z US,T )
−.

Proof: Recall from §3 of [GP2] that Tℓ(M) ∼= lim←−ν
M[ℓν ] and

that there are canonical module isomorphisms

M[ℓν ] ∼=
(
K(ℓν )

S,T /K×ℓν

T

)−

.

For simplicity, fix ν, denote m := ℓν and let Em := K(m)
S,T/K×m

T .
Recall that

K×
T := {x ∈ K× | x ≡ 1mod v, ∀ v ∈ T },

K(m)
S,T := {x ∈ K×

T | divK(x) = mD +D′},
where divK(x) denotes the non-archimedean K–divisor of x and D′

is a divisor supported at S. In plainer terms K(m)
S,T consists of those

elements of K×
T whose divisors are multiples of m away from S.

(1) We claim that EΓ
m
∼= (K(m)

S,T )
Γ/(K×m

T )Γ, and that the denomina-

tor is simply K×m
T , where K×

T is defined as above, but at the K–
level. Indeed, the second statement is clear (raising to the power
m induces an isomorphism K×

T
∼= K×m

T , just as in loc.cit., since
there are no nontrivial ℓ-power roots of unity in K×

T , due to our
assumptions on T ). For the first statement, we need the vanish-
ing of H1(Γ,K×m

T ). Again the exponent m can be omitted, due to
the isomorphism above. The vanishing follows, very similarly as
in loc.cit., from Hilbert 90 and weak approximation. The ingredi-
ent which makes this work is the fact that T is unramified in the
extension K/K.

(2) By the previous step we have EΓ
m
∼= (K(m)

S,T )
Γ/K×m

T . Now, we
establish a canonical isomorphism

πm : (K(m)
S,T )

Γ/K×m
T
∼= US,T/U

m
S,T .
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Take an element x ∈ (K(m)
S,T )

Γ ⊆ K×
T . We have a unique writing

divK(x) = mD + D′ where D and D′ are K-divisors with D′ sup-
ported on S and D supported away from S. Since K/K is unram-
ified away from S and x ∈ K×

T , we also have divK(x) = mD +D′

with K–divisors D and D′ supported away from and on S, re-
spectively. Using the first of our blanket hypotheses we get that
D = divK(y) + D′′ with y ∈ K×

T and D′′ supported on S.
Hence divK(xy

−m) = mD′′ + D′ is supported on S, and therefore

xy−m ∈ US,T . We let π̃m(x) := x̂y−m (the class of xy−m modulo

Um
S,T ). It is easy to see that π̃m : (K(m)

S,T )
Γ → US,T/U

m
S,T is well de-

fined and onto, and also easily checked that the kernel is exactly
K×m

T . Therefore π̃m induces the desired isomorphism πm.
(3) After a compatibility check for the πm’s and passing to the
projective limit, π−

∞ = lim←−ν
π−
ℓν gives the desired isomorphism

Tℓ(M) ∼= lim←−
ν

E−
ℓν
∼= (Zℓ ⊗Z US,T )

− .

We may safely leave these details to the reader. Q.E.D.

3. Coinvariants

Now, we turn to the calculation of Γ-coinvariants of Tℓ(M). We
remind the reader that the assumptions (1) and (2), see beginning of
Section 2, are in force. The desired isomorphism Tℓ(M)Γ ∼= Zℓ[S]

−

will result via a simple homological algebra lemma (Lemma 3.8)
from Thm. 3.4 (ii) below, which yields a short exact sequence

0→ Zℓ[Sℓ]
− → Tℓ(M)Γ → Zℓ[S \ Sℓ]

− → 0.

Unfortunately there does not seem to be a simple proof of the ex-
istence of this sequence. We begin with some notation and some
fairly easy auxiliary results. Then we present the calculation of the
coinvariants modulo three lemmas (one of which is highly techni-
cal), and finally we proceed to prove the lemmas.
Let Kn be the unique intermediate field of K/K with [Kn : K] =
ℓn. Let Γn = Gal(Kn/K) and let γn ∈ Γn be the image of the
generator γ of Γ via Galois restriction. Let d be the Zℓ-rank of
Zℓ[Sℓ]

− (note that this is unchanged if Sℓ is replaced by Sℓ(Kn)
or Sℓ due to our blanket hypotheses). We remind the reader that
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CT (N) (respectively C(N)) is shorthand for the minus part of the ℓ-
part of the ray class group clT (N) (respectively class group cl(N)),
for any appropriate field N . (Usually N is one of the fields Kn.)
It is well known (see [GP2], for example) that the canonical maps
CT (Kn) → CT (Kn+1) and C(Kn) → C(Kn+1) are injective and
that CT

∞ =
⋃

n CT (Kn) and C∞ =
⋃

n C(Kn).
For an appropriate field N , let DT (N) ⊂ CT (N) be the subgroup
generated by the classes of the prime ideals in N dividing ℓ. It is
easy to see that

| Im
(
DT (Kn)→ CT (Kn)/C

T (K)
)
| ≤ ℓnd.

Note that it is legitimate to consider CT (K) as a subgroup of
CT (Kn).

Lemma 3.1. The preceding inequality is an equality, that is:

| Im
(
DT (Kn)→ CT (Kn)/C

T (K)
)
|= ℓnd, for all n.

Proof: Let b1, . . . , bd be a Zℓ–basis of Zℓ[Sℓ(Kn)]
− where each bi

has the form (1−j)p for some prime p|ℓ in Kn. (The letter j means
complex conjugation of course; we have to take exactly those p that
split from K+ to K.) There is a map

ϕT
n : (Z/ℓn)d → CT (Kn)/C

T (K)

sending the i-th basis vector ei of the left-hand module to the class
of bi. It is well-defined since ℓnbi comes from an ideal of K. The
image of ϕT

n is equal to the image of DT (Kn) in CT (Kn)/C
T (K).

We claim that ϕT
n is injective. For this it clearly suffices to show

the injectivity of the analogously defined map

ϕn : (Z/ℓn)d → C(Kn)/C(K),

as ϕn factors through ϕT
n . Let (m1, . . . , md) ∈ Zd and assume that

the class [
∏

i b
mi

i ] in C(Kn) is equal to [c] where c is a fractional
ideal in K. This means that there exists x ∈ (K×

n ⊗ Zℓ)
− such

that divKn
(x) = −c +∑

imi · bi. Then the divisor on the right is
Γn-invariant, hence xγn−1 ∈ (O×

Kn
⊗ Zℓ)

− = µ(Kn)⊗ Zℓ. Since the
module of roots of unity µ(Kn) is Γn-cohomologically trivial (well
known fact), we may arrange that xγn−1 = 1, that is x is already
in K× ⊗ Zℓ. Then the divisor

∑
i mi · bi also comes from K, and

this is only possible if all mi are divisible by ℓn (remember that all
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primes above ℓ in Kn are totally ramified in Kn/K). This shows
that ϕn is injective as claimed. Q.E.D.

Recall that CT
∞ =

⋃
n C

T (Kn). Define DT
∞ :=

⋃
n D

T (Kn).

Lemma 3.2. (i) (CT
∞)Γ = CT (K) ·DT

∞, and DT
∞ is divisible. (ii) DT

∞

is the divisible part of (CT
∞)Γ. (iii) We have DT

∞∩CT (K) = DT (K).

Proof: (i) We start with the “ambiguous class number formula”,
both for Kn/K and for K+

n /K
+, see Lemma 13.4.1 in [La]. If we

divide the former by the latter and note that the second factor in
the denominator in loc.cit. just goes away in the minus part (again,
cohomological triviality of roots of unity), we end up, after some
comparison of notation, with the following:

|C(Kn)
Γn | = |C(K)| · ℓnd.

It is straightforward to deduce from this the following T -variant:

|CT (Kn)
Γn | = |CT (K)| · ℓnd.

Indeed, it suffices to prove that ker(CT (Kn) → C(Kn)) is Γn-
cohomologically trivial, and the Γn-invariants of this kernel identify
naturally with ker(CT (K) → C(K)). By taking the minus part of
the exact sequence (4) tensored with Zℓ (in the case S = S∞), one
can see that

ker(CT (Kn)→ C(Kn)) = (
κ(TKn

)

µKn

⊗ Zℓ)
−,

ker(CT (K)→ C(K)) = (
κ(T )

µK
⊗ Zℓ)

−.

Since κ(TKn
) is Γn–cohomologically trivial (apply Shapiro’s Lemma

or see [GP2]) and so is (µKn
⊗Zℓ)

−, the above result follows imme-
diately.
When combined with Lemma 3.1 (and its proof) the above equal-
ity implies that the natural map DT (Kn) → CT (Kn)

Γn/CT (K) is
bijective. Therefore we obtain

CT (Kn)
Γn = CT (K) ·DT (Kn).

By passing to the inductive limit, we obtain

(CT
∞)Γ = CT (K) ·DT

∞.

This proves the equality in (i). Now, DT
∞ is divisible since all ℓ-adic

primes are infinitely ramified in K∞/K. Since CT (K) is finite, we
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get (ii) at once. Part (iii) is proved using the method of proof of
Lemma 3.1: any element of DT

∞ fixed by Γ = Γ0 has to come from
an ideal of K supported above ℓ. Q.E.D.

We now present the initial step towards calculating the coinvariants.
We need one more object. Let BT (K) denote the quotient of CT (K)
by the subgroup DT (K).

Proposition 3.3. There is an exact sequence

0→ BT (K)→ Tℓ(C
T
∞)Γ → Tℓ(M)Γ → Zℓ[S \ Sℓ]

− → 0.

Proof: We extract the following sequence from the diagram at
the end of Section 1 (the second arrow is the snake map):

Tℓ(M)Γ → Zℓ[S \Sℓ]−,Γ → Tℓ(C
T
∞)Γ → Tℓ(M)Γ → Zℓ[S \Sℓ]−Γ → 0.

The second and last nontrivial terms are isomorphic to Zℓ[S \ Sℓ]
−

(as primes in S \ Sℓ are not ramified in K∞/K.) Going back to
the proof of Proposition 2.1, one may verify the following: if we
identify Tℓ(M)Γ with (Zℓ⊗US,T )

− as in loc.cit, then the first arrow
Tℓ(M)Γ → Zℓ[S \ Sℓ]

− corresponds to the Sℓ–forgetful divisor map
divK,S\Sℓ

from (Zℓ ⊗Z US,T )
− to Zℓ[S \ Sℓ]

−. Hence the cokernel
of the first arrow of the above sequence agrees with the cokernel
of divK,S\Sℓ

; this gives exactly BT (K), by definition, because of
our assumption that CT (K) is generated by S-ideal classes. The
following commutative diagram, with surjective second column of
vertical arrows captures what is going on.

0 // (USℓ,T ⊗ Zℓ)
− //

��

(US,T ⊗ Zℓ)
− //

��

divK,S\Sℓ

((◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

(US,T/USℓ,T ⊗ Zℓ)
− //

��

0

0 // Zℓ[Sℓ]
− //

��
��

Zℓ[S]
− //

��
��

Zℓ[S \ Sℓ]
− //

��
��

0

0 // DT (K) // CT (K) // BT (K) // 0

This produces the exact sequence in the statement of part (ii) of
the lemma. Q.E.D.

Let α : BT (K)→ Tℓ(C
T
∞)Γ denote the first map in the statement of

the preceding proposition. We will determine the cokernel of this
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map, and this will give the desired coinvariants. Let us state the
result:

Theorem 3.4. The following hold true. (i) The cokernel of α :
BT (K)→ Tℓ(C

T
∞)Γ is isomorphic to Zℓ[Sℓ]

−. (ii) We have a short
exact sequence

0→ Zℓ[Sℓ]
− → Tℓ(M)Γ → Zℓ[S \ Sℓ]

− → 0.

(iii) We have a Zℓ[G]–module isomorphism Tℓ(M)Γ ∼= Zℓ[S]
−.

Proof: Part (ii) is a direct consequence of Part (i) and Proposition
3.3. To prove part (i), we will need several lemmas. For simplicity,
from this point on we will let C := CT

∞. We will state the lemmas,
explain why they suffice to prove (ii) of the theorem, and then give
the proofs of the lemmas. Then we will prove part (iii).

Lemma 3.5. There is an exact sequence

0→ CΓ/(CΓ)div → Tℓ(C)Γ → Tℓ(CΓ)→ 0.

Lemma 3.6. The left-hand term CΓ/(CΓ)div in Lemma 3.5 is iso-
morphic to BT (K).

Lemma 3.7. The right-hand term Tℓ(CΓ) in Lemma 3.5 is isomorphic
to Zℓ[Sℓ]

−. In particular, it is torsion-free as a Zℓ–module.

Proof of Thm. 3.4(ii): From Lemmas 3.5 and 3.7 we see that
the torsion part of Tℓ(C)Γ is exactly the image of the arrow
CΓ/(CΓ)div → Tℓ(C)Γ. Hence by Lemma 3.6 we infer that the
torsion part of Tℓ(C)Γ is isomorphic to BT (K). Now this is exactly
the domain of definition of the map α. Even if we do not know the
(injective) map α, we thus obtain that its cokernel identifies with
the quotient of Tℓ(C)Γ modulo its torsion. Using the isomorphism
of Lemma 3.7, we may conclude that the cokernel of α is isomorphic
to Zℓ[S]

− as claimed. This concludes the proof of Thm. 3.4(i) and
(ii) pending the proofs of the lemmas. Q.E.D.

We now give the proof of the three lemmas in turn, the third one
being by far the most complex one. We tried to find a simpler
argument, without success.
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Proof of Lemma 3.5: Recall that our hypothesis that Iwasawa
µ–invariant associated to K and ℓ vanishes implies that C is divis-
ible. (See [GP2] for details.) Therefore the short exact sequence of
divisible groups

0→ C/CΓ 1−γ−→ C → CΓ → 0

produces a short exact sequence of ℓ–adic Tate modules

0→ Tℓ(C/C
Γ)

1−γ−→ Tℓ(C)→ Tℓ(CΓ)→ 0.

Furthermore, noting that Tℓ(C)Γ = Tℓ(C
Γ), there is a canonical

s.e.s.

0→ Tℓ(C)/Tℓ(C)Γ → Tℓ(C/C
Γ)→ CΓ/(CΓ)div → 0.

A diagram chase based on the two s.e.s.’s above then produces the
desired s.e.s.

0→ CΓ/(CΓ)div → Tℓ(C)Γ → Tℓ(CΓ)→ 0.

Q.E.D.

Proof of Lemma 3.6: We need to calculate the quotient of CΓ by
its maximal divisible subgroup. The latter is, by Lemma 3.2 (ii),
equal to DT

∞. Hence

CΓ/(CΓ)div = CT (K)DT
∞/DT

∞
∼= CT (K)/CT (K) ∩DT

∞ =

= CT (K)/DT (K) = BT (K).

We used Lemma 3.2 (i) and (iii). Q.E.D.

Proof of Lemma 3.7: We have to calculate the module Tℓ(CΓ).
As already mentioned, this is the most delicate part. We rely on
Kurihara’s paper [Ku], in particular on its Prop. 5.2, which is proved
using Lemma 5.1 of that paper. We apply this to the Γn-extension
Kn/K, and we note that we may omit the µ-term at the left of the
sequence in Prop. 5.2. Kurihara’s notation for the field extension is
L/K; and we may omit the µ-term since it comes from a H1 of the
(−1)-eigenspace of global units (first term in second line of the long
sequence in Lemma 5.1), so we may invoke cohomological triviality
of roots of unity again. Since all inertia groups of Kn/K at primes
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v|ℓ are the whole of Γn, the mentioned Proposition of [Ku] gives
the s.e.s.

0→
(⊕

v∈Sℓ

Γn

)− → C(Kn)Γn
→ C(K)→ 0.

We will now establish that the following variant also holds:

0→
(⊕

v∈Sℓ

Γn

)− → CT (Kn)Γn
→ CT (K)→ 0.

where the surjection is induced by the norm map at the level of
ray class groups. Indeed, since this norm map is onto, its kernel is

isomorphic to Ĥ
−1
(Γn, C

T (Kn)); on the other hand the term Γn
∼=

Ĥ
0
(Γn, O

×
Kn,v

) ∼= Ĥ
0
(Γn, K

×
n,v), via the local Artin map. (Keep in

mind that Kn,v/Kv is totally ramified.) Consequently, we obtain
an isomorphism

(5) Ĥ
−1
(Γn, C

T (Kn)) ∼=
(⊕

v∈Sℓ

Ĥ
0
(Γn, K

×
n,v)

)−

(see Kurihara’s argument). This isomorphism will be needed below.
We denote the norm map from CT (Kn) to CT (K) by πn. Now, we
need to pass to an inductive limit. To this end, we look at the
diagram

0 // Ĥ
−1
(Γn, C

T (Kn))

jn,n+1

��

// CT (Kn)Γ

��

πn
// CT (K)

·ℓ

��

0 // Ĥ
−1
(Γn+1, C

T (Kn+1)) // CT (Kn+1)Γ
πn+1

// CT (K).

Here the transition map jn,n+1 has a direct and simple definition: it
is induced by the inclusion map CT (Kn)→ CT (Kn+1) and the usual

description of Ĥ
−1

as the kernel of the norm modulo the multiples
of (1 − σ), with σ a generator of the cyclic group in question. As
CT (K) is finite, the inductive limit gives an isomorphism

CΓ
∼= lim−→ Ĥ

−1
(Γn, C

T (Kn)),

where the limit is taken along the maps jn,n+1. Now (5) leads to
an isomorphism

CΓ
∼= lim−→ Ĥ

0
(Γn, K

×
n,v)
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where the inductive limit is taken along certain canonical maps

in,n+1 : Ĥ
0
(Γn, K

×
n,v)→ Ĥ

0
(Γn+1, K

×
n+1,v).

An easy direct calculation reveals that in,n+1 is given by multipli-
cation with the relative norm element νn+1,n := NG(Kn+1/Kn). But
in our case the action of this element is the same as multiplica-
tion (or more properly, exponentiation) by ℓ. Therefore we have a
commutative diagram:

Ĥ
0
(Γn, K

×
n,v)

//

νn+1,n=ℓ
��

Γn

ℓ

��

Ĥ
0
(Γn+1, K

×
n+1,v) // Γn+1

where the horizontal maps are local Artin maps. So we find that

CΓ
∼= lim−→ (

⊕

v∈Sℓ

Γn)
−,

where the transition maps are multiplication by ℓ. The choice of a
generator for Γ identifies the above injective limit with (Q/Z) ⊗Z

Zℓ[Sℓ]
−. This proves, by applying the functor Tℓ, that

Tℓ(CΓ) ∼= Tℓ((Q/Z)⊗ Zℓ[Sℓ]
−) ∼= Zℓ[Sℓ]

−,

which concludes the proof of Lemma 3.7. Q.E.D. As mentioned

earlier, the preceding series of arguments finishes the proof of The-
orem 3.4 parts (i) and (ii).

Proof of Thm. 3.4 part (iii): This will follow immediately if we
can prove that the short exact sequence in Thm. 3.4(ii) is split.
Luckily, this is indeed the case, as shown by the next lemma.

Lemma 3.8. Let G be any finite group and U and V two subgroups
of G. Then the Ext group Ext1Z[G](Z[G/U ],Z[G/V ]) vanishes. (Our
modules are left modules, so G/U denotes the set of left cosets xU ,
with the obvious G-action.) Consequently Ext1Z[G](M,N) vanishes
for any two permutation G–modules M and N , and this holds as
well if the base ring Z is replaced by Zℓ.
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Proof: First step: note that for any subgroup W < G we have
H1(G,Z[G/W ]) = 0. This is a well-known consequence of Shapiro’s
Lemma and the fact H1(W,Z) = 0. Consequently, we also have
H1(G,P ) = 0 for every permutation module P over G.
Second step: By a standard homological algebra argument, the Ext
group in question is isomorphic to H1(G,Hom(Z[G/U ],Z[G/V ])).
Note that Hom is taken over Z, and G acts on it in the usual way.
Finally, we claim that P (U, V ) := Hom(Z[G/U ],Z[G/V ]) is a per-
mutation module over G. Then by the two previous steps, we will
be done. There is a canonical Z-basis of P (U, V ), consisting of ho-
momorphisms e(x, y), defined as follows. For any choice of x ∈ G/U
and y ∈ G/V , declare that e(x, y) maps x to y, and maps every
other x′ ∈ G/U to zero. It is now easy to check that the G-action
permutes this basis. Actually one can easily determine the stabi-
lizer of each e(x, y), but this does not matter; it suffices to know
that P (U, V ) is a permutation module. Q.E.D.
The preceding Lemma applies in particular to the permutation
modules N = Zℓ[Sℓ]

− and M = Zℓ[S \ Sℓ]
−: the exact sequence

in Thm. 3.4 (ii) is split, and the module in the middle is therefore
isomorphic to Zℓ[S]

−. Q.E.D.

Remark 3.9. Let us remark that we do not quite get an explicit
isomorphism between Tℓ(M)Γ and Zℓ[S]

−. It is explicit up to a
splitting of an exact sequence, which exists but is not unique. Un-
fortunately, although the final theorem in the next section does also
imply, as a corollary, that Tℓ(M)Γ is indeed isomorphic to Zℓ[S]

−,
since the ℓ-adified Tate sequence in the minus part has exactly
Zℓ[S]

− on the right, that isomorphism is much less explicit.

4. Removing a technical assumption

In this short section we explain how to eliminate condition (2) (see
Section 2) in the end results of the preceding two sections. (Con-
dition (1) is built into the theory of Tate sequences and therefore
indispensable.) The idea is the same for invariants and for coinvari-
ants. One chooses n0 large enough so that condition (2) holds for
K∞/Kn0

and puts Γ0 = Gal(K∞/Kn0
). If we replace K by Kn0

in
the results Prop. 2.1 and Thm. 3.4 (ii) (jointly with Lemma 3.8, we
obtain descriptions of Tℓ(MΓ0) and Tℓ(MΓ0

); the isomorphisms in
these descriptions are invariant under G′ := G × (Γ/Γ0). We then
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perform a final (co)descent, taking invariants (resp. coinvariants)
under the action Γ/Γ0. For the invariants everything is clear: the
Γ/Γ0-invariants of (US,T (Kn0

)⊗Zℓ)
− coincide with (US,T (K)⊗Zℓ)

−.
For the coinvariants, it is also easy to check that Zℓ[S(Kn0

)]−Γ/Γ0
is

isomorphic to Zℓ[S(K)]−. The resulting isomorphism at level K is,
of course, not quite explicit, since the isomorphism at level Kn0

,
coming about through Lemma 3.8, was not totally explicit.

5. The link with Tate’s canonical class

We now consider the Tate canonical class τ := τK/k,S ∈
Ext2Z[G](XS, US) introduced in Remark 1.2. We retain all our work-
ing hypotheses as well as notations introduced in Section 1. In
particular, S is assumed large which means that the S–classes gen-
erate clT (K), and consequently cl(K). Tate proved (see [Ta2], Ch.
5, §2) that there exists a Yoneda 2–extension of Z[G]-modules (not
unique and not canonical)

(6) 0→ US → A→ B → XS → 0

which represents τ and such that A and B are finitely generated and
of finite projective dimension over Z[G] (i.e. cohomologically trivial
or c.t. over G.) Such a Yoneda extension is called a Tate sequence.
As mentioned before, we do not review the defining properties of
τ here. The reader can consult [Ta1] and [Ta2] for details. It is
our goal now to link τ with Tℓ(M). For this, one has to ℓ-adify,
T–modify and take the minus part of τ , as explained in Section
1. Next, we follow [BF] and [Bu1] and interpret the ℓ–adification

(Zℓ ⊗Z τ) of τ as the isomorphism class (in a sense to be made
precise below) of the complex [Aℓ → Bℓ] in the derived category
Dperf(Zℓ[G]) of perfect cochain complexes of Zℓ[G]-modules, where
Aℓ := A ⊗ Zℓ and Bℓ := B ⊗ Zℓ are viewed in degrees 0 and 1
respectively.

Let C• be a complex in the derived category D(Zℓ[G]) (or D(Z[G]))
with differential maps (∂s)s∈Z and some i ∈ Z such that

(7) Hj(C•) = 0, for all j 6= i, i+ 1.

Then one can associate to C• the (correctly) truncated complex

τ≥i(τ≤i+1C
•) : [C i/im ∂i−1 ∂i

−→ ker ∂i+1]
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concentrated in degrees i and i + 1, with the same cohomology as
C•. This truncated complex leads to the canonical exact sequence

0→ Hi(C•)→ (τ≥i(τ≤i+1C
•))i →

→ (τ≥i(τ≤i+1C
•))i+1 → Hi+1(C•)→ 0,

which determines a Yoneda extension class

e(C•) ∈ Ext2Zℓ[G](H
i+1(C•),Hi(C•))

(or in Ext2Z[G]) canonically associated to C•.

Lemma 5.1 (Burns-Flach, [BF]). Let i ∈ Z and C• and D• complexes
in D(Zℓ[G]) satisfying (7). Assume that we are given isomorphisms
at the level of cohomology

αi : H
i(C•)

∼−→ Hi(D•), αi+1 : H
i+1(C•)

∼−→ Hi+1(D•).

Then there exists an isomorphism α : C• ∼= D• in D(Zℓ[G]) such
that H i(α) = αi and H i+1(α) = αi+1 if and only if

(α−1
i+1)

∗ ◦ (αi)∗(e(C
•)) = e(D•),

where (α−1
i+1)

∗ ◦ (αi)∗ is the canonical isomorphism

Ext2Zℓ[G](H
i+1(C•),Hi(C•))

∼−→ Ext2Zℓ[G](H
i+1(D•),Hi(D•))

induced by αi and αi+1.

Proof: See [BF], page 1353 or work out your own proof from the
definitions. Q.E.D.

Remark 5.2. Note that for any complex C• in D(Zℓ[G]) satisfying
(7) for some i ∈ Z there exists an isomorphism in D(Zℓ[G])

C• ∼= τ≥i(τ≤i+1C
•),

inducing the identity maps at the level of cohomology. So e(C•) =
e(τ≥i(τ≤i+1C

•)). Most importantly, note that, by definition, any
two Tate sequences

0→ US
u→ A

f→ B
x→ XS → 0,

0→→ US
u′

→ A′ f ′

→ B′ x′

→ XS → 0

give perfect complexes in Dperf(Zℓ[G]) in levels 0 and 1

C• : [Aℓ
f→ Bℓ], C ′• : [A′

ℓ

f ′

→ B′
ℓ]
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and isomorphisms at the level of cohomology (induced by u, u′ and
x, x′, respectively)

H0(C•) ∼= US ⊗ Zℓ
∼= H0(C ′•), H1(C•) ∼= US ⊗ Zℓ

∼= H1(C ′•)

which map the class e(C•) to e(C ′•). Therefore, we have an iso-
morphism C• ∼= C ′• in Dperf(Zℓ[G]) which induces the above iso-
morphisms at the level of cohomology.

From now on we will denote by (τ ⊗ Zℓ) (respectively (τ ⊗ Zℓ)
−)

the complex C• : [Aℓ
f→ Bℓ] (respectively (C•)− : [A−

ℓ

f→ B−
ℓ ])

associated to a Tate sequence (6) as in the above remark. According
to the above remark these complexes are unique up to isomorphisms
in D(Zℓ[G]).

We will consider the affine schemes

X := Spec(OK) \ S = Spec(OK,S),

X := Spec(OK) \ S = Spec(OK,S).

We will let j : T → X and i : X \ T → X be the usual closed
and open immersion, respectively. When confusion is unlikely, we
will use the same notation j : T → X and i : X \ T → X
for the corresponding immersions at the finite level. From now
on all cohomology is viewed in the étale sense, so in particular
RΓ(X, ∗) := RΓ(Xet, ∗), RΓc(X, ∗) := RΓc(Xet, ∗) and similarly
for the scheme X .

Proposition 5.3. There is an isomorphism in Dperf(Zℓ[G])

(Zℓ ⊗Z τ)[−1] ∼= RΓ(X,Zℓ(1)).

(The [−1]–shift on the left produces a complex with cohomology con-
centrated in degrees 1 and 2.)

Proof: This is a fairly short argument. All the same, it is not
very direct, since it uses the full strength of the key paper [BF].
Unexplained notation is taken literally from there; all references in
the present proof are to this paper, if not said otherwise. According
to the last line of p.1383, the complex ΨS represents Tate’s class
τ (see the definition of KS, p.1351 and p.1353). By Prop. 3.3, we
have an isomorphism in the derived category (of course one also has
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to check, using the explicit information given in loc.cit. eqn.(69)
that it gives the canonical maps on cohomology):

Zℓ ⊗ τ ∼= RΓc(X,Zℓ)
∗[−2].

The superscript star stands for R Hom(−,Zℓ) (a functor of the
derived category to itself). Now we invoke Lemma 16(b), which
gives

RΓc(X,Zℓ)
∗ ∼= RΓc(X,Qℓ/Zℓ)

∨,

where the superscript ∨ is RHom(−,Qℓ/Zℓ). In contrast to the
functor ()∗, the functor ∨ can be evaluated on any complex in a
quasi-isomorphism class, termwise, since Hom(−,Qℓ/Zℓ) is exact.
As a third and last ingredient, we invoke Artin-Verdier duality:

RΓc(X,Qℓ/Zℓ)
∨[−3] ∼= RΓ(X,Zℓ(1)).

Again one has to make sure that the two preceding isomorphisms
are canonical on cohomology level. Putting the three displayed
isomorphisms together (the first shifted by −1, and the second by
−3), we obtain the formula of the proposition. Note: We have
been following the sign conventions of [BF]. It appears that in the
terminology of [Bu1], a minus sign would come up. Q. E. D.

Another important step is a description of Tℓ(M) in terms of étale
cohomology. The following result will be important in the sequel;
we would like to mention that it was proved independently in Malte
Witte’s habilitation thesis, see [Wt] Prop. 6.3.2.

Theorem 5.4. We have a canonical isomorphism

Tℓ(M) ∼= H1(X , j!Zℓ(1))
−.

Proof: We will actually prove M[m] ∼= H1(X , j!Z/m(1))− for
m := ℓν and all ν ≥ 1. The isomorphisms will be compatible and
produce the desired result in the projective limit. We again resort
to the description given in [GP2]:

M[m] ∼=
(
K(m)

S,T/K×m
T

)−
.

(See the proof of Proposition 2.1 and the notations therein.)

Proposition 5.5. For any fixed m as above, there is a natural iso-
morphism

ϕ = ϕm : K(m)
S,T/K×m

T

∼−→ H1(X , j!Z/m(1)).
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Proof: This will take several steps. Most of the underlying ideas
are from [De], see Section 10.3.6 in particular, but the mathematical
language in loc.cit. is so different that we prefer to give a reasonably
self-contained argument. To make the main points more clearly
visible, we will first prove a simplified version: replace T by the
empty set. (In particular, j!Z/m(1) just becomes Z/m(1).) Then
there is an explicit geometric interpretation of H1(X ,Z/m(1)): it
is canonically isomorphic to the group Dm of equivalence classes of
pairs (L, α), where L is a projective rank one module over OK,S (in
other words a line bundle over X ), and

α : L⊗m → OX

is an isomorphism. The equivalence relation is as expected:
(L, α) ∼ (L′, α′) iff there is an isomorphism h : L → L′ with
α′ ◦ h⊗m = α. The group structure is obvious. The relation be-
tween Dm and H1(X ,Z/m(1)) can be easily seen in the light of
Grothendieck’s descent theory; the automorphism group of the triv-
ial element (OX , 1) of Dm is Z/m(1), just as the automorphism
group of the trivial (or any) line bundle is Gm. The isomorphism

ϕ may now be constructed directly. Given f ∈ K(m)
S , we know that

the principal OK-ideal generated by f is an m-th power away from
S, so the sheaf fOX is the m-th power of a unique ideal sheaf I.
We let ϕ(f̂) be the class of the pair (I, f−1) in Dm. There are
two things to check: The kernel of ϕ is precisely K×m, and ϕ is
surjective. Both are straightforward. This settles the case where T
is replaced by the empty set.
Now we put T and T back in. (This is the part where our ter-
minology and that in [De] differ the most.) We define a modified
group DT

m. Its elements are equivalence classes of triples (L, α, β),
where L and α are as before and β is defined as follows. We let
κ(T ) :=

⊕
v∈T κ(v), where κ(v) is the residue field at v, as usual.

Now β, a so-called trivialization at T , is an isomorphism

β : κ(T )⊗OX
L ∼−→ κ(T ),

which has to be compatible with α in the obvious way:

idκ(T ) ⊗ α = β⊗m.
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Two triples (L, α, β) and (L′, α′, β ′) as above are equivalent if there

is an isomorphism h : L ∼→ L′ such that

α′ ◦ h⊗m = α, β ′ = β ◦ (idκ(T ) ⊗OX
h).

The above argument carries over directly to produce a canonical

isomorphism between the groups K(m)
S,T/K×m

T and DT
m. It remains to

identify DT
m with étale cohomology. We feel this should be known,

and it certainly can be extracted from [De] with some effort. Let us
give a direct argument anyway, via Cech cohomology. Using that
m = ℓν is invertible in OX , one easily obtains that every element
of DT

m is trivialized by some étale covering (Ui)i of X . We may
suppose that all Ui connected. The resulting transition maps over
Ui ∩ Uj are on the one hand sections of Z/m(1) (as we said, this is
the automorphism sheaf of the trivial element of Dm), but because
of the trivialisation at T they are all trivial whenever Ui ∩Uj has a
point above T . This produces therefore a 1-cocycle over the sheaf
j!Z/m(1) relative to the covering, and hence a canonical map δT

from DT
m to the first Cech cohomology of that sheaf. Since Cech

cohomology embeds into étale cohomology, δT gives a morphism
DT

m → H1(X , j!Z/m(1)). The analogous map with T empty is an
isomorphism. One has a commutative diagram

1 // Z/m(1)(κ(T ))
Z/m(1)(K)

//

��

DT
m

//

δT

��

Dm
//

δ

��

1

1 // Z/m(1)(κ(T ))
Z/m(1)(K)

// H1(X , j!Z/m(1)) // H1(X ,Z/m(1)) // 1.

The top sequence comes from a standard s.e.s., cf. [GPff]. One can
check directly that the leftmost vertical map is the identity. Since
δ is an isomorphism, δT is an isomorphism as well. This proves the
proposition. Q.E.D.

Now, the proposition above together with the above mentioned

identification of M[m] with
(
K(m)

S,T/K×m
T

)−

and a passage to the

projective limit, gives a proof of Theorem 5.4. Q.E.D.

In order to use the results 5.4 and 5.3 towards our goal of identi-
fying the Tate class in terms of Tℓ(M) we need some intermediate
lemmas. All previous notation remains in place.
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Lemma 5.6. The sheaf j!Zℓ(1) on X has cohomology concentrated in
degree 1.

Proof: To show this, one first looks at the cohomology of the
ℓ–adic étale sheaf Zℓ(1) on X .
(1) H0(X ,Zℓ(1)) = lim←−µℓn(K) ∼= Zℓ(1) or 0 if µℓ ⊆ K× or not. (2)

H2(X ,Zℓ(1)) = 0. Indeed, if one writes the cohomology sequence
attached to the Kummer sequence of étale sheaves on X

0→ Z/ℓn(1)→ Gm → Gm → 0,

and takes into account that H1(X ,Gm)ℓ = Pic(OK,S)ℓ which is di-
visible under our working hypothesis that the µ–invariant of K and
ℓ vanishes, one concludes that

H2(X ,Z/ℓm(1)) ∼= Br(X )[ℓm],
for every m. (Cautionary remark about notation: The cohomol-
ogy on the left is not meant as a projective limit of the analo-
gous cohomology groups over Spec(OKn

), as done by a few authors,
but literally, taking X as a scheme in its own right.) However,
Br(X )[ℓm] = 0 for all m: if A is a central simple algebra over K
split outside S and killed by ℓm (i.e. a representative of an element
in Br(X )[ℓm]) then it is defined over some Kn and therefore split by
Kn′ , for n′ sufficiently large. (If n′ is sufficiently large, the extension
Kn′/Kn has local degree divisible by ℓm at all primes in S(Kn)\S∞

and therefore the algebra A is split by Kn′ locally everywhere and
therefore splits globally.) Passing to the limit gives the claimed
vanishing. Now we use the closed immersion i : T → X and the
open immersion j : X \ T → X and look at the standard exact
sequence of sheaves on X

0→ j!Zℓ(1)→ Zℓ(1)→ i∗Zℓ(1)→ 0.

The long exact sequence in cohomology reads as follows.

0→ H0(X , j!Zℓ(1))→ H0(X ,Zℓ(1))
ρ−→ H0(X , i∗Zℓ(1)) →

→ H1(X , j!Zℓ(1))→ H1(X ,Zℓ(1))→ H1(X , i∗Zℓ(1))→
→ H2(X , j!Zℓ(1))→ H2(X ,Zℓ(1)) = 0.

Now, the map ρ is a diagonal embedding and therefore injective, as

H0(X , i∗Zℓ(1)) ∼= ⊕v∈T H0(κ(v),Zℓ(1)) ∼= ⊕v∈T lim←−µℓn(κ(v))
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and (under our working assumption on T ) no roots of unity in K are
congruent to 1 mod v for all v ∈ T . Consequently, H0(X , j!Zℓ(1)) =
0. Recall that T is a finite set of closed points on X , so the natural
map

H1(X , i∗Zℓ(1))→ H1(T ,Zℓ(1))

is an isomorphism. Since T is a finite union of spectra of fields
of char. 6= ℓ without algebraic extensions of ℓ-power degree,
H1(T ,Zℓ(1)) = 0. This implies (via the long exact sequence above)
that H2(X , j!Zℓ(1)) = 0, which concludes the proof. Q. E. D.

For the purpose of the next results, we remind the reader that we
are working under the hypothesis that S is large (i.e. clT (K) is
generated by S–ideal classes.) It is likewise important to point
out that the T -modified Tate sequence as in part (2) below was
also obtained with different methods by Burns-Kurihara-Sano for
abelian extensions of number fields, see [BKS]. However, for CM
fields our approach on the minus part appears to be more explicit.

Lemma 5.7. (1) The inclusion ι : US,T → US induces a canonical
isomorphism

ι∗ : Ext
2
Z[G](XS, US,T ) ∼= Ext2Z[G](XS, US).

(2) The unique class τ ′ := τK/k,S,T in Ext2Z[G](XS, US,T ) satisfy-
ing ι∗(τ

′) = τ admits a representative

0→ US,T → A′ → B′ → XS → 0

with A′ and B′ finitely generated and c.t. over G. (Any such
representative will be called a T–modified Tate sequence.)

(3) The pushout along ι of any T–modified Tate sequence is a
Tate sequence.

Proof: (1) Recall the exact sequence (4) in Section 1 and let
Z := US/US,T . Since S is large, Z ∼= κ(T ) as Z[G]–modules. It is
easily seen (see [GP2]) that pdZ[G](κ(T )) = 1. Therefore Z is c.t.

over G. By a routine argument, we get that ExtiZ[G](N,Z) = 0 for
all i > 0, all G-modules N without Z-torsion, and all Z that are
c.t. over G. This shows that the inclusion ι : US,T → US induces
an isomorphism

ι∗ : Ext
2
Z[G](XS, US,T ) ∼= Ext2Z[G](XS, US).
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(2) Now, since XS is free of Z–torsion, there is a canonical commu-
tative diagram

H2(G,Hom(XS, US,T ))

ι∗≀

��

∼
// Ext2Z[G](XS, US,T )

ι∗≀

��

H2(G,Hom(XS, US))
∼

// Ext2Z[G](XS, US)

Let α ∈ H2(G,Hom(XS, US)) be the preimage of τ via the bottom
isomorphism. Then Tate showed (see [Ta2], Ch. II, §5) that the cup
product with α induces isomorphisms Ĥi(G,XS) ∼= Ĥi+2(G,US) ,
for all i. Consequently, the cup product with α′ (the preimage of α

under ι∗) induces similar isomorphisms Ĥi(G,XS) ∼= Ĥi+2(G,US,T ).
Now, this is sufficient for the argument in [Ta2] pp. 56-57 (right
before Remark 5.3 in loc.cit.) to produce a representative for τ ′ as
required in part (2) of the Lemma. One important note here is that
since US,T has no Z–torsion (unlike US), A

′ and B′ can be picked to
be projective, finitely generated Z[G]–modules. (3) By definition,
the push-out along ι of a T–modified Tate sequence as in (2) is a
representative of τ . It is of the form 0→ US → A→ B → XS → 0
with B′ = B, hence f.g. and c.t. over G and A′ part of an exact
sequence 0 → A′ → A → κ(T ) → 0, hence c.t. and f.g. over G.
We obtain this way a Tate sequence. Q. E. D.

Lemma 5.8. We have the following variant of Prop. 5.3:

(Zℓ ⊗Z τ ′)[−1] ∼= RΓ(X, j!Zℓ(1)).

Here we have abusively used j to indicate the open immersion j :
X \ T → X at the finite level as well.

Proof: Let ξ : j!Zℓ(1) → Zℓ(1) denote the canonical inclu-
sion of sheaves. Using the arguments in lemmas 5.6 and 5.7 one
checks easily that H1(X, ξ) is injective with cokernel US/US,T

∼=
H1(X, i∗Zℓ(1)), and H2(X, ξ) is an isomorphism. It is then clear
that the ℓ–adic étale sheaf j!Zℓ(1) of X has cohomology concen-
trated in degrees 1 and 2 as well, so we can think of RΓ(X, j!Zℓ(1))
in terms of Yoneda 2-extensions. Let C• be a complex concentrated
in degrees 1 and 2 isomorphic inD(Zℓ[G]) to RΓ(X, j!Zℓ(1)) . (Take
for example the correct truncation of the latter complex.) There
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is a map f of complexes from C• to some complex D• which rep-
resents RΓ(X,Zℓ(1)), such that f induces H•(X, ι) on cohomology.
In particular it gives the inclusion US,T → US on H1, and an iso-
morphism on H2. Let ι∗C

• = C ′• be the complex given by pushing
out:

0 // Zℓ ⊗ US,T

��

// C1

��

// C2

0 // Zℓ ⊗ US
// (C ′)1 // (C ′)2.

Note that C ′2 = C2. Then f extends to a map of complexes f ′

from C ′• to D•, just by the universal property of the pushout. One
verifies that f ′ is now identity on H1, and nothing has changed on
H2, so f ′ is an isomorphism and actually induces an equivalence.
(See reminder before 5.3.) Hence ι∗C

• represents RΓ(X,Zℓ(1)), and
this agrees with Zℓ⊗τ by Prop. 5.3. Since τ ′ is the inverse image of
τ under ι∗, we conclude by Lemma 5.7 that C• agrees with Zℓ⊗ τ ′.
Q.E.D.

With these preparations, we can state and prove the main result of
this section. Recall that M := Tℓ(M) and let C• be the complex

[M
1−γ−→ M ] concentrated in degrees 0 and 1. From this point on,

for all i ∈ Z we let M [i] denote the complex having terms M in
degree (−i), 0 in all other degrees, and (obviously) all differentials
zero.

Theorem 5.9. If the assumption at the beginning of Lemma 5.7 is
satisfied, then there is a canonical isomorphism in D(Zℓ[G])

(Zℓ ⊗Z τ ′)− ∼= C•.

Proof: By Theorem 5.4 and Lemma 5.6 we have a canoni-
cal (therefore Γ–equivariant) isomorphism in the derived category
D(Zℓ[G])

M [−1] ∼= RΓ(X , j!Zℓ(1))
−.

We now descend from X to X . From [Bu1], diagram (8) on p.371
plus comment (see also definition of C(θ)• on p.366 of loc. cit.) we
get a canonical isomorphism in the derived category D(Zℓ[G])

(8) RΓ(X, j!Zℓ(1))
− ∼= C•[−1].
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Three comments are necessary in order to derive this isomorphism
from loc. cit. (1) To link up with the notation in [Bu1], note that
the (−1) shift of the mapping cone of the map of complexes 1− γ :
M [−1] → M [−1] (which is the precise definition of Burns’ C(θ)•

in our context) is exactly the complex C•[−1]. (2) We also remark
that [Bu1] is concerned with the function field case where there
is a canonical choice for γ, to wit Frobenius. But actually the

isomorphism class (in the derived sense) of the complex C• : [M
1−γ→

M ] does not change when γ is replaced by any other generator of Γ,
so the lack of a canonical generator of Γ is not an issue. (3) The rest
of the argument taken from [Bu1] is entirely cohomological algebra,
so there is no difference between the function field and number field
cases in this respect.
Finally, we combine (8) with Lemma 5.8 to get the isomorphism in
the statement of the above theorem. Q. E. D.

Remark 5.10. (1) If one weakens the assumption at the beginning of
Lemma 5.7 to say that just CT (K) (the minus-ℓ-part of cl(K)) is
S-generated (which is even closer to Hypothesis (1) in Section 2),
then an ℓ-adic version of that lemma remains correct, as well as a
version of the preceding theorem, in which the modified Tate class
τ ′ only exists as an ℓ-adic object. (2) With notations as in the proof
of Lemma 5.8, one also has (Zℓ⊗Z τ)

− ∼= (C ′•)−. This can be seen
as an “explicit Tate sequence”. The complex C ′• arises from M by
a very simple and explicit construction involving pushout along ι.
For further reference, here is the relevant diagram (basically taken
from the proof of Lemma 5.8; we also put in the cokernels on the
right for clarity); M ′ is defined as the pushout, and (C ′•)− is simply
the complex [M ′ →M ] that shows up in the lower row.

0 // (Zℓ ⊗ US,T )
−

��

// M

��

1−γ
// M // Zℓ[S]

− // 0

0 // (Zℓ ⊗ US)
− // M ′ // M // Zℓ[S]

− // 0.

Note that in order to really work with [M ′ → M ], one needs a good
grasp on the maps (Zℓ ⊗ US,T )

− → M and M → Zℓ[S]
−. This

is another justification, apart from their intrinsic interest, for the
explicit calculations in Sections 2 and 3.
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Remark 5.11. Finally, we would like to indicate briefly how the lin-
ear disjointness condition k∞ ∩K = k can be removed in all of the
above considerations. In the case where this condition is not sat-
isfied, Tℓ(MS,T (K∞)) does not have a natural Zℓ[G]–module struc-
ture. Indeed, in this case G(K∞/k) ∼= H⋊Γ, where H := G(K/k∞∩
K) and Γ := G(k∞/k), so Tℓ(MS,T (K∞)) is naturally endowed with
a Zℓ[H ]–module structure only, and it is projective over this ring
(see [GP2].). Consequently Tℓ(MS,T (K∞))⊗Zℓ[H] Zℓ[G] is a projec-
tive Zℓ[G]–module. It is easily seen (see [GP2]) that this is in fact
isomorphic to the ℓ–adic realization of the abstract ℓ–adic 1–motive
associated to the semisimple k–algebra K⊗k k∞ and the sets S and
T , i.e. we have a natural isomorphism of Zℓ[[G⋊ Γ]]–modules

Tℓ(MS,T (K ⊗k k∞)) ∼= Tℓ(MS,T (K∞))⊗Zℓ[H] Zℓ[G].

All of the above considerations can be easily generalized to show that
the complex

[Tℓ(MS,T (K ⊗k k∞))
1−γ−→ Tℓ(MS,T (K ⊗k k∞))]

concentrated at levels 0 and 1 represents the (minus ℓ–adic) Tate
class and gives an explicit (minus ℓ–adic) Tate sequence just as
above.

6. Examples

We would like to end by giving a couple of concrete examples, illus-
trating the fact that, unlike the newly constructed Iwasawa modules
M := Tℓ(M), the classical Iwasawa modules M0 := Tℓ(C∞) are not
Zℓ[G]–projective in general and therefore a similar construction of
Tate sequences in terms of the latter is hopeless.
More concretely, let us start with the following observation: if G′ is
an abelian ℓ-group, then the Zℓ-rank of any projective (and there-
fore free) module over Zℓ[G

′] is a multiple of the order of G′. Since
ℓ is odd, the classical λ–invariant λℓ,K of the CM field K splits as
λℓ,K = λ−

ℓ,K + λℓ,K+, where λ−
ℓ,K := rkZℓ

M0.
We choose two settings which are as simple as possible and com-
pute rkZℓ

M0, showing that the results preclude the possibility of
Zℓ[G]–projectivity, based on the above observation. For illustra-
tive purposes, we also compute rkZℓ

(M) as well as rkZℓ
(MΓ) and

rkZℓ
(MΓ) in both settings. In what follows rk(∗) = rkZℓ

(∗).
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Let k = Q and let K+ be the cubic field of conductor 7. We take
ℓ = 3. For K, we will look at two choices: K = K+L where
the imaginary quadratic field L is either Q(

√
−5) or Q(

√
−37). In

both cases K is CM, and of course k is totally real. For S we
consistently take the set of ramified primes in K/k together with
the 3-adic primes; the contribution of the places over 5 (resp. 37)
and of the infinite places disappears in the minus part. For T we
take the set of primes in K sitting over a completely split prime in
K/k. In both cases, 7 is split in L and ramified in K/L. Moreover
ζ3 := e2πi/3 is not contained in K∞. Hence the “toric part”, that
is, the kernel of Tℓ(C

T
∞) → Tℓ(C∞), is a copy of the free module

Zℓ[G
′], where G′ = Gal(K/L) = Gal(K+/Q). The rank of the

lattice Zℓ[S \ Sℓ]
− is 1 in both cases. In both cases we have:

rk(M) = λ−
3,K + 4,

where the constant 4 comes about as 3+1 (3 for the toric part and
1 for the lattice part.) Since M is free over Zℓ[G

′] (by Theorem 1.1
(1)), this already tells us that λ−

3,K ≡ 2 modulo 3. Of course this
can also be seen from the Kida’s formula, which says in this case
that

λ−
3,K = 3λ3,L + 2.

First case: K = K+(
√
−5). Here 3 is split in L, and by [DFKS],

λ3,L = λ−
3,L = 1. Hence λ−

3,K = 5 and the rk(M) = 9. Both the Γ-
invariants and coinvariants of M give a rank 2 module with trivial
G′-action. The conclusion is that M0 is not projective over Zℓ[G

′].
Second case: K = K+(

√
−37). Here 3 is inert in L, and therefore

λ3,L = λ−
3,L = 0. Hence λ−

3,K = 2 and rk(M) = 6. Both the Γ-
invariants and coinvariants of M give a rank 1 module with trivial
G′-action. Once again, M0 fails to be projective over Zℓ[G

′].
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